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SIMILARITY OF COSMOLOGICAL MODELS AND ITS APPLICATION

TO THE ANALYSIS OF COSMOLOGICAL EVOLUTION

Yu. G. Ignat’ev∗

Scale transformations of cosmological models based on a statistical system of degenerate fermions with

a scalar Higgs interaction are studied. The similarity properties of cosmological models under scale trans-

formations of their fundamental parameters are revealed. The transformation laws for the coordinates

of singular points and eigenvalues of the characteristic matrix of the dynamical system of the cosmolog-

ical model under its scale transformations are established. With the help of the transformation to new

variables, the previously studied dynamical system of scalar-charged fermions is modified to a dynamical

system with a nondegenerate characteristic matrix; for its nondegenerate branch, the singular points and

eigenvalues of the characteristic matrix are found, which coincide with the corresponding values for the

vacuum field model. Examples of numerical simulation of such cosmological models are given.
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1. Introduction

Methods of similarity theory and the dimensional analysis of dynamical systems [1] have long been

successfully used in mechanics, hydro- and gasdynamics [2], as well as in astrophysics and cosmology [3].

These methods allow extending the results of research to other models and are especially valuable in the

study of complex, essentially nonlinear dynamical systems, when the use of numerical modeling methods

becomes mandatory. Revealing the laws of similarity of such dynamical systems allows extending the results

of numerical integration to models with other parameters, thereby providing the possibility of a compre-

hensive numerical–analytical study of a class of models.

The methods of similarity theory and dimensional analysis become especially effective in the study

of cosmological models, based, in turn, on various field-theory models, often containing fundamental con-

stants and parameters not determined at the time of research. In [4], on the basis of microscopic dynamics,

a macroscopic model of the Universe was formulated based on statistical systems of fermions with scalar

charges, classical and phantom, with the Higgs interaction potential.1 Subsequently, various versions of this

model were constructed and studied (see, e.g., [6]), and were also studied for stability with respect to longitu-

dinal plane-wave gravitational disturbances (see, e.g., [7]). In these works, a short-wave scalar-gravitational

instability of a homogeneous cosmological model was identified and studied, which is fundamentally dif-

ferent from the previously studied hydrodynamic and gaseous gravitational instability. The same studies
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demonstrated the fundamental possibility of supermassive black holes in the early Universe using the mech-

anism of scalar-gravitational instability. In [8], the evolution of spherical gravitational perturbations in

a medium of scalar-charged fermions with the Higgs interaction was studied, including the evolution of

localized perturbations without a wavelength limitation.

Studies on the scalar-gravitational stability of the cosmological medium of degenerate scalar-charged

fermions, in particular, revealed a close connection between the singular points of the vacuum-field cosmo-

logical model and the appearance of unstable phases in the model with charged fermions. This revealed

connection makes it necessary to carry out a more detailed qualitative study of the dynamical systems of

cosmological models based on statistical systems of scalar-charged fermions. To study the general regu-

larities for these models, the methods of similarity theory are also necessary. This paper is devoted to

these questions. We note that the general similarity property for self-gravitating systems with scalar Higgs

interaction was formulated in [8].

We also note that from the late 1990s to the present, many researchers (B. Saha, G. N. Shikin,

M. O. Ribas, F. P. Devecchi, G. M. Kremer, L. Fabbri, J. Wang, S.-W. Cui, C.-M. Zhang, Y. P. Rybakov,

K. A. Bronnikov, T. Boyadzhiev, and others) studied cosmological models based on scalar and nonlinear

fermionic (spinor) fields (see, e.g., [9]–[16] and references therein).

2. Cosmological system of fermions with scalar interaction

We briefly state the main provisions of the macroscopic theory2 for a cosmological model based on

a one-component degenerate statistical system of scalar-charged fermions and a scalar Higgs field Φ.

2.1. General model equations. The Lagrange function Ls of the scalar Higgs field is3

Ls =
1

16π
(gikΦ,iΦ,k − 2V (Φ)), (1)

where

V (Φ) = −α
4

(
Φ2 − m2

s

α

)2

(2)

is the potential energy of the scalar field, α is the self-action constant, and ms is the mass of the scalar field

quanta. The energy–momentum tensors of scalar fields relative to the Lagrange function (1) and equilibrium

statistical system are

Si
k =

1

16π

(
2Φ,iΦ,k − δikΦ,jΦ

,j + 2V (Φ)δik
)
, (3)

T i
k = (εp + pp)u

iuk − δikpp, (4)

where ui is the velocity vector of the statistical system, and εp and pp are the energy density and pressure

of the statistical system.

Einstein’s equations for the “scalar field + particles” system are:

Ri
k −

1

2
δikR = 8π(T i

k + Si
k) + δikΛ0, (5)

where Λ0 is the seed value of the cosmological constant, related to its observed value Λ, obtained by

removing the constant term in the potential energy, as

Λ = Λ0 − m4
s

4α
. (6)

2In [4] it is shown how this theory is obtained from the microscopic dynamics.
3Here and hereafter, Latin letters range 1, 4, and Greek letter, 1, 3. We also use the Planck system of units, where

G = � = c = 1.
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The macroscopic consequences of the kinetic theory are the transfer equations [4], including the conser-

vation law for some vector current corresponding to the microscopic conservation law for some fundamental

charge

∇iqn
i = 0, (7)

as well as the energy–momentum conservation laws of the statistical system,

∇kT
ik
p − σ∇iΦ = 0, (8)

where σ is the density of scalar charges with respect to the field Φ [4]. Equations (8) are equivalent to the

equations of ideal hydrodynamics

(εp + pp)u
i
,ku

k = (gik − uiuk)(pp,k + σΦ,k), (9)

∇k[(εp + pp)u
k] = uk(pp,k + σΦ,k), (10)

and the fundamental charge conservation laws (7)

∇kρu
k = 0, (11)

where ρ ≡ qn is the kinematic density of the scalar charge.

Macroscopic scalars for a one-component statistical system of degenerate fermions take the form

n =
1

π2
π3
F, pp =

e4Φ4

24π2
(F2(ψ)− 4F1(ψ)), (12)

σ =
e4Φ3

2π2
F1(ψ), εp =

e4Φ4

8π2
F2(ψ), (13)

where πF is the Fermi momentum, σ is the density of scalar charges e, and

ψ =
πF
|eΦ| (14)

and the functions F1(ψ) and F2(ψ) are introduced as

F1(ψ) = ψ
√
1 + ψ2 − ln

(
ψ +

√
1 + ψ2

)
,

F2(ψ) = ψ
√
1 + ψ2(1 + 2ψ2)− ln

(
ψ +

√
1 + ψ2

)
.

The scalar field equation for a system of scalar-charged degenerate fermions can be derives as a corollary

of the transport equations

�Φ+m2
sΦ− αΦ3 = −8πσ ≡ −4e4Φ3

π
F1(ψ). (15)

Thus, the complete system of equations for the mathematical model M of a system of scalar-charged

fermions consists of Einstein’s equations (5), hydrodynamic equations (8), and scalar field equation (15)

together with definitions of the sources: scalar field energy–momentum tensors (3), fermionic component (4),

and scalar charge density (13), as well as fermion energy density (12) and the corresponding pressure (13).

As can be seen from the equations of this system and the definition of its coefficients, the solution of the

Cauchy problem for this system of equations for given fundamental parameters

p = [ [α,ms, e],Λ] (16)

are completely determined by the corresponding initial conditions for the metric functions gik(x
j), the

potential Φ(xj), the velocity vector ui(xj), and the Fermi momentum πF(x
j). This complete system of

equations, together with the definitions of the functions contained in them, given by the initial conditions

on a Cauchy hypersurface and a given set of fundamental parameters p, is referred to as the mathemati-

cal model M of a self-gravitating statistical system of degenerate scalar-charged fermions with the Higgs

interaction.
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2.2. The similarity property of the mathematical model. In [8], the following similarity prop-

erty of the considered dynamical system was proved.

Assertion 1. The complete system of equations of the mathematical model M is invariant under

simultaneous scaling transformations of fundamental parameters P

Sk(M) : α = k2α̃, ms = km̃s, e =
√
k ẽ, Λ = k2Λ̃, (17)

and the coordinates and Fermi momentum

xi = k−1x̃i, πF =
√
k π̃F, k = const > 0 (18)

of the mathematical model; in other words, under scaling transformations (17) and (18) and the corre-

sponding transformation of the initial conditions, the solutions of the equations of the original model M

and the scaling-transformed model M̃ coincide:

Φ(x) = Φ̃(x̃), gik(x) = g̃ik(x̃), ui(x) = ũi(x̃). (19)

The similarity property of the mathematical model allows extending a solution with a given set of

fundamental parameters to other values of fundamental parameters. This is practically important in the

numerical integration of the model equations in the case of very small or very large values of the parameters

and over large intervals of coordinate values.

Under scaling transformations (17) and (18), both parts of Eqs. (5), (8), and (15) are multiplied by k2,

and the scalars and tensors introduced above change in accordance with the laws

ψ = ψ̃, σ = k2σ̃, V (Φ) = k2Ṽ (Φ̃),

pp = k2p̃p, εp = k2ε̃p, Si
k = k2S̃i

k, T i
k = k2T̃ i

k. (20)

2.3. Cosmological model equations. In the case of a spatially flat Friedmann metric

ds20 = dt2 − a2(t)(dx2 + dy2 + dz2) (21)

and a homogeneous isotropic distribution of matter Φ = Φ(t), πF = πF(t), u
i = δi4, the energy–momentum

tensor of a scalar field takes the form of the energy–momentum tensor of an ideal isotropic fluid,

Sik = (εs + ps)u
iuk − psg

ik, (22)

where

εs =
1

8π

(
Φ̇2

2
+ V (Φ)

)
, ps =

1

8π

(
Φ̇2

2
− V (Φ)

)
. (23)

In this case, material equations (8) and (9) can be integrated exactly [4]:

aπF = const. (24)

As a result, the function ψ in (14) is defined in terms of the functions a(t) and Φ(t),

ψ =
π0
|eΦ| e

−ξ, π0 = πF(0), (25)
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where we put

ξ = ln a, ξ0 ≡ ξ(0) = 0. (26)

Thus, system of equations (5), (7), (8), and (15) reduces to autonomous dynamical system [4] (H(t) is

the Hubble parameter)

ξ̇ = H (≡ F1), Φ̇ = Z (≡ F3), (27)

Ḣ = −Z
2

2
− 4

3π
e4zΦ

4ψ3
√
1 + ψ2 (≡ F2), (28)

Ż = −3HZ −m2
sΦ+ Φ3

(
α− 4e4

π
F1(ψ)

)
(≡ F4), (29)

and the Einstein equation for the 4
4 component becomes the first integral of this system:

3H2 − Λ − Z2

2
− m2

sΦ
2

2
+
αΦ4

4
− e4Φ4

π
F2(ψ) = 0. (30)

Equation (30) defines some three-dimensional hypersurface S3 in the four-dimensional arithmetic phase

space of the dynamical system

S3 ⊂ R4 = {ξ,H,Φ, Z} ≡ {x1, x2, x3, x4}, (31)

on which all phase trajectories of a dynamical system lie, i.e., specific cosmological models. In what

follows, we call S3 the Einstein–Higgs hypersurface. Equation (30) determines the initial value of the

Hubble parameter H(0) ≡ H0 given the initial values of the remaining dynamical variables. Two symmetric

solutions for the initial value of the Hubble parameterH±
0 = ±H0 correspond to starting from an expanding

state (+) or from a contracting state (−). Autonomous system (27)–(29) is invariant under time translations

t → t+ t0, which allows us to choose (26) (ξ0 = 0) as the initial condition. Thus, with a fixed sign of the

initial value of the Hubble parameter, only two initial values remain free, Φ0 and Z0, which we arrange into

an ordered list

I = [Φ0, Z0], Φ0 = Φ(0), Z0 = Z(0). (32)

Taking the exact integral (24) into account, we also assume that the initial value of the Fermi momentum

π0 is a fundamental parameter of the cosmological model; in what follows, we arrange the fundamental

parameters of the model M into an ordered list [4]

P = [ [α,ms, e, π0],Λ]. (33)

2.4. Similarity of cosmological models. We consider two cosmological models: M with the funda-

mental parameters P and the initial conditions I, and a similar model M̃ with the fundamental parameters

P̃ and the initial conditions Ĩ:

Ĩ =

[
Φ0,

1

k
Z0

]
, (34)

P̃ =

[[
α

k2
,
ms

k
,
e√
k
,
π0√
k

]
,
Λ

k2

]
. (35)

Functions f(t) = f̃(t̃) that are invariant under similarity transformation (17), (18) are transformed according

to the rules

f̃(t̃) = f

(
t̃

k

)
. (36)
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Let the solutions of dynamical system (27)–(29), (30) for the model M in (32) and (33) be

S(t) = [ξ(t), H(t),Φ(t), Z(t)].

Then the solutions of the corresponding equations for such a model M̃ in (34) and (35) are

S̃(t) = [ξ̃(t), H̃(t), Φ̃(t), Z̃(t)] ≡
[
ξ

(
t

k

)
,
1

k
H

(
t

k

)
,Φ

(
t

k

)
,
1

k
Z

(
t

k

)]
. (37)

2.5. Transformation of the dynamical system matrix and its eigenvalues. We find how

the eigenvalues of the dynamical system matrix transform under scaling transformations (17), (18). The

characteristic matrix A of the dynamical system M in (27)–(29) at a point M (see, e.g., [17]), according

to phase coordinates (31), is

A(M) = ‖Ak
i ‖ ≡

∥∥∥∥ ∂Fi

∂xk

∥∥∥∥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

∂F2

∂ξ
0

∂F2

∂Φ
−Z

0 0 0 1

∂F4

∂ξ
−3Z

∂F4

∂Φ
−3H

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (38)

According to the law of transformation of fundamental parameters (17), the coordinates, and the Fermi

momentum, the right-hand sides of dynamical system (27)–(29) that is similar to the dynamical system M̃

are obtained according to the rules

F̃1 =
1

k
F1, F̃2 =

1

k2
F2, F̃3 =

1

k
F3, F̃4 =

1

k2
F4. (39)

Thus, the characteristic matrix Ã of the image M̃ of the dynamical system is

Ã(M̃) = ‖Ãk
i ‖ ≡

∥∥∥∥ ∂F̃i

∂x̃k

∥∥∥∥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1

k2
∂F2

∂ξ
0

1

k2
∂F2

∂Φ
− 1

k
Z

0 0 0 1

1

k2
∂F4

∂ξ
− 3

k
Z

1

k2
∂F4

∂Φ
− 3

k
H

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (40)

The comparison of (38) and (40) shows that the characteristic matrix Ã of the image M̃ of the

dynamical system M is not similar to the matrix A, which may lead us to a wrong conclusion. It must

be borne in mind that this matrix is not an independent object, but is connected precisely with the

characteristic equation of the qualitative theory of dynamical systems,

A ·X = λX, X =

⎛
⎜⎜⎜⎝
ξ

H

Φ

Z

⎞
⎟⎟⎟⎠ , (41)

where λ are the eigenvalues and X is a column matrix of phase coordinates of a point in the dynamical

system. The corresponding equations for the image M̃ are

Ã · X̃ = λ̃X̃, X̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ

H

k
Φ

Z

k

⎞
⎟⎟⎟⎟⎟⎟⎠
. (42)
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Multiplying A in (38) and X in accordance with (41) and the matrices Ã in (40) and X̃ in accordance

with (42), it is easy to see that the resulting systems of linear homogeneous algebraic equations with respect

to phase coordinates become equivalent if and only if the eigenvalues λ and λ̃ are related as λ̃ = λ/k.

Thus, the following assertion is true.

Assertion 2. Under scaling transformations (17) and (18), the eigenvalues of the characteristic matrix

of dynamical system (27)–(29) transform in accordance with the law

λ̃ =
λ

k
. (43)

The coordinates of singular points transform the same as arbitrary coordinates of a phase trajectory of the

dynamical system, i.e., in accordance with the law (42) (or, equivalently, (37)).

Due to the proportionality of the eigenvalues of such models, the nature of singular points is an invariant

property of similarity.

2.6. Vacuum-field cosmological model. The transition to the vacuum-field cosmological model in

which there is no scalar-charged matter is carried out by substituting e = 0 in system of equations (28)–(30).

As a result, we obtain the system

ξ̇ = H (≡ F1), Φ̇ = Z (≡ F3), (44)

Ḣ = −Z
2

2
(≡ F2), (45)

Ż = −3HZ −m2
sΦ + αΦ3 (≡ F4), (46)

3H2 − Λ− Z2

2
− m2

sΦ
2

2
+
αΦ4

4
= 0. (47)

This dynamical system is a special case of the general system in (27)–(29), and it hence inherits all the

similarity properties discussed above. On the other hand, as studies [4], [6], [7] showed, the cosmological

system of scalar-charged particles inherits the behavior of vacuum-field cosmological models, and there-

fore the importance of studying their global properties persists. However, this dynamical system is also

fundamentally different from dynamical system (27)–(29) considered above: all functions Fi of this sys-

tem are independent of the scaling function ξ(t). As a result, dynamical system (44)–(46) reduces to an

autonomous subsystem in the three-dimensional phase space R3 = {H,Φ, Z}. Reducing the dimension of

the phase space, in turn, leads to the removal of conditions on the Hubble parameter by the subsystem

of dynamical equations; as a result, the Hubble parameter at singular points is determined from Einstein

equation (47).

We demonstrate the above assertions by analyzing singular points of the single-field model in

Eqs. (44)–(47). The singular points of the model are determined by the vanishing of the right-hand sides

of the dynamical equations, which implies that their phase coordinates are determined by the system of

equations

Fi(X) = 0, i = 1, 4. (48)

For system (44)–(46), Eqs. (48) and their solutions take the form

H = 0, Z = 0, (49)

−m2
sΦ+ αΦ3 = 0 ⇒ Φ0 = 0, Φ± = ± m√

α
. (50)
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Substituting these solutions in the first integral in (47) leads to conditions on the value of the cosmological

constant,

Φ = Φ0 ⇒ Λ = 0,

Φ = Φ± ⇒ Λ0 = 0,
(51)

where Λ0 is the seed value of the cosmological constant and Λ is its observed value (see (6)). Further,

because H = 0, we conclude that ξ = const = 0, and therefore the Universe at the singular point is

Euclidean and the total energy density is equal to zero.

However, if we use the autonomous subsystem of dynamical system (44)–(46), dropping the first equa-

tion (44) from it, this subsystem does not imply any condition on the Hubble parameter that we find

from (47) by substituting the values Z = 0 from (49) and Φ from (50) in this equation. Thus, we obtain

correct results for the characteristics of singular points (see, e.g., [6], [18]). The above example indicates

that not any dynamical function can be good enough for a qualitative analysis of a dynamical system; in

some cases, poor choice can lead to system degeneration.

3. Modified system of dynamical equations

3.1. Transformation of the dynamical system to a nondegenerate form. To eliminate the

disadvantage discussed above, we transform dynamical system (28)–(30) to new variables. For this, we

note that the right-hand sides of these equations depend on ξ(t) only through the function ψ(t), and we

can express the scale-invariant function ξ(t) in relation (25) in terms of a couple of other scale-invariant

functions:

ξ = − ln

∣∣∣∣eψΦπ0
∣∣∣∣. (52)

Thus, instead of (28)–(30), we obtain a new system of equations (only the first equation of the system

formally changes)

ψ̇ = ψ

(
H − Z

Φ

)
(≡ G1), Φ̇ = Z (≡ G3), (53)

Ḣ = −Z
2

2
− 4

3π
e4zΦ

4ψ3
√
1 + ψ2 (≡ G2), (54)

Ż = −3HZ −m2
sΦ+ Φ3

(
α− 4e4

π
F1(ψ)

)
(≡ G4). (55)

The first integral of system (30) does not change.

3.2. Singular points of the modified system. We now find the singular point coordinates. The

equation G1 = 0 has two solutions: Z = HΦ and ψ = 0. It is easy to see that the first solution eventually

brings us back to the previous situation (H = 0). We therefore turn to the second solution. With Z = 0,

this solution turns the equation G2 = 0 into an identity. Because F1(0) = 0 in accordance with (15), we

can use (55) to obtain solutions for the coordinate of a singular point, coincident with the solutions for the

one-field vacuum model (50). Thus, dynamical equations (53)–(55) do not impose any restrictions on H(t).

As in the case of the vacuum field model, we obtain this quantity from the first integral (30), taking into

account that F2(0) = 0:

H±
0 = ±

√
Λ

3
, Φ = Φ0,

H± = ±
√

Λ0

3
, Φ = Φ±.

(56)
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We write the coordinates of the six singular points of the system (with the signs taking independent values)

M±
0 =

[
0,±

√
Λ

3
, 0, 0

]
, (57)

M±
± =

[
0,±

√
Λ0

3
,±ms√

α
, 0

]
. (58)

We note, first, that the coordinates of the singular points [H,Φ, Z] for dynamical system (53)–(55) with

integral condition (30) coincide with the coordinates of the singular points of the vacuum-field model for

the scalar singlet (see [18]), which explains the previously noted features of the behavior of the cosmological

model with charged fermions near singular points of the vacuum field model. Second, these points corre-

spond to the vanishing of the function ψ(t), (ξ → +∞), i.e., to the late stages of cosmological evolution,

when the role of matter is negligible. Third, we note that all similarity laws, together with the scaling

transformation laws for eigenvalues, are also preserved for the upgraded dynamical system.

3.3. Characteristic matrix and eigenvalues of a nondegenerate dynamical system.

Introducing an ordered set of new phase coordinates [ψ,H,Φ, Z], we write the matrix of dynamical

system (53)–(55) at singular points as

M0 = [0, H,Φ, 0] ⇒ Y =

⎛
⎜⎜⎜⎝

0

H

Φ

0

⎞
⎟⎟⎟⎠ ,

B(M0) = ‖Bk
i ‖ ≡

∥∥∥∥∂Gi

∂yk

∥∥∥∥ =

⎛
⎜⎜⎜⎝
H 0 0 0

0 0 0 0

0 0 0 1

0 0 −m2
s + 3αΦ2 −3H

⎞
⎟⎟⎟⎠ , (59)

where we must substitute Φ and H from (50) and (56).

The eigenvalues of matrix (59) are

λ1 = 0, λ2 = H, λ3,4 = −3

2
H ± 3

2

√
H2 +

4

9
(3αΦ2 −m2

s) .

Substituting Φ and H from (50) and (56), we finally find the eigenvalues of matrix (59) at singular points:

M±
0 :

⎧⎪⎪⎨
⎪⎪⎩
λ2 = ±

√
Λ

3
,

λ3,4 = ∓1

2

√
3Λ± 1

2

√
3Λ− 4m2

s ,

(60)

M±
± :

⎧⎪⎪⎨
⎪⎪⎩
λ2 = ±

√
Λ0

3
,

λ3,4 = ∓1

2

√
3Λ0 ± 1

2

√
3Λ0 + 8m2

s .

(61)

We note that the expressions for eigenvalues (60), (61), as well as the expressions for singular points

coordinates (50) and (56), in accordance with the transformation law for fundamental parameters (17),

once again confirm the validity of Assertion 2.
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Assertion 3. The coordinates of the eigenpoints of the dynamical system of the cosmological modelM

at H �≡ 0 in the subspace R3 ≡ {H,Φ, Z} ⊂ R4, as well as the eigenvalues of the characteristic matrix

coincide with the coordinates of the eigenpoints and the eigenvalues of the characteristic matrix of the

vacuum-field cosmological model.

We note that papers [4], [6] cited above did not reveal these singular points due to the choice of dynamical

variables [ξ,H,Φ, Z] that gave rise to a degenerate characteristic matrix of the dynamical system. In these

papers, the singular points of only one branch of the solutions of the equation G1 = 0 in Sec. 3.2, correspond-

ing to the infinite future of the Universe (ξ→+∞, H → 0), were identified and studied. We also note that

the solution branch found in this paper corresponds to ψ→0, i.e., formally also corresponds to the ξ→+∞
case, but the model remains in the inflationary mode—that of the scalar field dominance over particles.

4. Examples of numerical simulation of the dynamical system

According to Assertions 1 and 3, the coordinates of singular points (57) and (58) of the dynamical

system under study transform under the Sk similarity transformation as

M̃±
0 =

[
0,± 1

k

√
Λ

3
, 0, 0

]
, (62)

M̃±
± =

[
0,± 1

k

√
Λ0

3
,±ms√

α
, 0

]
. (63)

4.1. Standard example. We consider the example of a numerical simulation of two similar systems

M and M̃ = Sk(M) with the similarity coefficient k = 104:

M : P = [ [1, 1, 1, 0.1], 3 · 10−3], I = [1, 0, 1], (64)

M̃ : P̃ = [ [10−8, 10−4, 10−2, 10−3], 3 · 10−11], Ĩ = [1, 0, 1]. (65)

The eigenpoints of these models in the subspaces S3 = {H,Φ, Z} and S̃3 = {H̃,Φ, Z̃} have the following
coordinates (quoting approximate values for simplicity):

M :

⎧⎨
⎩
M0 = [3.16 · 10−2, 0, 0],

M± = [2.90 · 10−1, 1, 0],
(66)

M̃ :

⎧⎨
⎩
M̃0 = [3.16 · 10−6, 0, 0],

M̃± = [2.90 · 10−5, 1, 0].
(67)

As is easy to see, the coordinates of singular points transform exactly in accordance with similarity laws (37)

with the similarity coefficient k = 104.

It is easy to calculate the eigenvalues of the characteristic matrix at these points (the signs take

independent values)

M :

⎧⎨
⎩
k0 = ∓0.0474∓ i,

k± = ∓1.915± 1.044,
(68)

M̃ :

⎧⎨
⎩
k̃0 = ∓4.74 · 10−6 ∓ i · 10−4,

k̃± = ∓1.915 · 10−4 ± 1.044 · 10−4.
(69)

The eigenvalues of the characteristic matrices of two similar dynamical cosmological systems also transform

in exact correspondence with similarity law (43) with the similarity coefficient k = 104. Thus, in the

considered example, the points M0 and M̃0 are attracting foci, and the points M± and M̃± are saddle or

nodal foci.
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In Fig. 1, we show projections of the Einstein–Higgs surface of two models onto the hyperplane

ξ = ξ̃ = 0.1, S3 = [H,Φ, Z, ], and in Fig. 2, projections on the hyperplanes Z = 0.1 and Z̃ = 10−5 of

the dynamical system phase space. As is easy to see from these figures, the graphs of the Einstein surfaces

of two similar models are also similar in all projections: the scales along the OH and OZ axes are contracted

by 104 times for the similar model, while the scales along the Oξ and OΦ axes are preserved. We also note

that according the equation for the secant hyperplane Z = const is also transformed in accordance with

similarity laws (37).

In Fig. 3, we show graphs of the evolution of the scale functions ξ(t) and H(t) in the M and M̃ models,

and in Fig. 4, phase diagrams of the corresponding models. It can be seen that all corresponding pairs of

graphs are similar with the similarity coefficient k = 104 in accordance with similarity laws (37). In Fig. 3,

in particular, we can observe a rigorous time scaling t̃ = 104t.

Thus, the numerical simulation results rigorously and clearly confirm all the similarity properties

formulated above (Assertions 1–3) for similar models M in (64) and M̃ in (65).

4.2. Possible violation of the similarity symmetry near saddle singular points. Although

the numerical simulation results given above for the standard example reveal the rigorous fulfillment of

the formulated similarity properties (Assertions 1–3), violations of the similarity symmetry of cosmological

models are possible in building numerical models. These violations can occur at very small values of the

scalar charge e if in this case the phase trajectory of the model passes through an unstable singular point

of the dynamical system. We consider the example

M1 : P = [ [1, 1, 10−7, 0.1], 3 · 10−3], I = [1, 0, 1], (70)

M̃1 : P̃ = [ [10−8, 10−4, 10−9, 10−3], 3 · 10−11], Ĩ = [1, 0, 1]. (71)

We note that in this case, the singular point coordinates coincide with the coordinates of the singular

points of models (66) and (67), because the parameters e and π0 do not affect either these coordinates or

the nature of the points. We also note that the initial conditions Φ0 and Z0 in the above example, as in

the case under considaration, coincide with the coordinates of the unstable singular points M± and M̃±.
But in the current case, we reduced the scalar charge by 107 times. In Fig. 5, the evolution of the scale

functions ξ(t) and H(t) in the M1 and M̃1 models is plotted.

These figures, despite being superficially similar, demonstrate a violation of the similarity symmetry.

Indeed, the similarity coefficient for these models is equal to k = 104. Therefore, according to the plot in

Fig. 5a, the value ξ = 70 should be reached in the model M̃1 at the time t ≈ 2.4 · 106, but we see from

the plot in Fig. 5b that this value is reached at t ≈ 2 · 107, i.e., an order of magnitude later. The value of

the Hubble parameter according to the plot in Fig. 5a in the M̃1 model must be about H ≈ 3 · 10−5, but

from the plot in Fig. 5b, we find the value H ≈ 3 · 10−6, i.e., an order of magnitude smaller. To resolve this

discrepancy, we present the phase diagrams of the models in the {Φ, Z} plane (Fig. 6).

Regarding the plot in Fig. 6a, we note that taking the accuracy of the calculations into account, this

plot represents one point on the plane {Φ, Z}: Φ = 1, Z = 0, i.e., describes the “sticking” of the trajectory

at a singular point.

To demonstrate the effect of a singular point on phase trajectories, we consider an example with initial

conditions close to this point: we replace the initial value Φ0 = 1 with Φ0 = 0.999 close to it:

M1a : P = [ [1, 1, 10−7, 0.1], 3 · 10−3], I = [0.999, 0, 1], (72)

M̃1a : P̃ = [ [10−8, 10−4, 10−9, 10−3
]
, 3 · 10−11], Ĩ = [0.999, 0, 1]. (73)
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Fig. 1. Projection of the Einstein–Higgs hypersurface of the models M (64) (a) and ˜M (65) (b) onto

the hyperplane ξ = 0.1.

Fig. 2. Projection of the Einstein–Higgs hypersurface of the model M (64) onto the hyperplane

Z = 0.1 (a) and the model ˜M (65) onto the hyperplane ˜Z = 10−5 (b).

Fig. 3. Evolution of the scale functions ξ(t) (dashed lines) and H(t) (solid lines) in the models

M (64) (a) and ˜M (65) (b).
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Fig. 4. Phase diagram of the models M (64) (a) and ˜M (65) (b) on the {Φ, Z} plane.

Fig. 5. Evolution of the scaling functions ξ(t) (dashed lines) and H(t) (solid lines) in the models

M1 (70) (a) and ˜M1 (71) (b).

Fig. 6. Phase diagram of the models M1 (70) (a) and ˜M1 (71) (b) in the {Φ, Z} plane.
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In Figs. 7 and 8, we plot the evolution of the scale functions ξ(t) and H(t) and phase diagrams in

the {Φ, Z} plane of the M1a model. In this case, the plots of the M̃1a model do not differ from the

corresponding plots in Figs. 5b and 6b. Thus, we can verify that the similarity symmetry is restored with

a slight shift of the initial conditions away from the coordinates of the singular point. Nevertheless, the

considered case shows that the similarity transformation must be applied with caution near singular points.

Fig. 7. Evolution of the scaling functions ξ(t) (dashed line) and H(t) (solid line) in the model M1a (72).

Fig. 8. Phase diagram of the model M1a (70) in the {Φ, Z} plane.

5. Conclusions

To conclude, we note, first, that realistic cosmological models must correspond to physically realizable

values of the fundamental parameters corresponding to the scales of field models of the SU(5) type

SU(5) : α � 10−8, m � 10−4, e � 10−2, (74)

or the standard SM model

SM : α � 10−30, m � 10−15, e � 10−9. (75)

But with such small values of the fundamental parameters, purely technical difficulties in numerically

integrating a nonlinear system of dynamical equations allow extending the calculations only up to time

values of the order of t � 104 (see, e.g., [4]). However, by performing a scale transformation with a similarity
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coefficient of the order of k = 104, we pass to theM cosmological model with the parameters α = m = e = 1,

which is already amenable to numerical simulations up to significantly longer times t ∼ 108. Using the

results of integrating the M model by the scaling rules, we thereby extend the results for the original M̃

model to times of the order of t � 108. Similarly, in the case of the standard model, we must choose the

coefficient k = 1015, which gives rise to t ∼ 1019 (see [19]). We note that the application of the similarity

transformation to the theory of the formation of early nuclei of supermassive black holes [19] leads to the

formation times of these objects t ∼ 1013 for the SU(5) model and t ∼ 1023 for the Standard Model. Both

these values fit within the observed permissible time interval with a margin.

Second, a physically important circumstance is that during the transition from the studied cosmological

model M to the similar cosmological model M̃ with the similarity coefficient k ∼ 104 ÷ 105, we extend the

time interval of cosmological evolution by the same factor, passing to times kt� tPl, at which no quantum

field consideration of the cosmological model is required, but its classical description suffices. Making the

inverse transition from the classical model M̃ to the similar model M with the similarity coefficient k−1, we

obtain a classical model at times comparable to Planck’s times. This model, however, in no way claims to

have any physical significance. It serves only as a convenient computational model, similar to the classical

cosmological model under study at late evolution times t� tPl.

Third, the explicit dependence of solutions (37) of the dynamical system of equations describing the

cosmological model on the similarity coefficient allows analytically continuing the obtained numerical solu-

tions to similar models and similar time intervals, which significantly expands the possibilities of analyzing

numerical models. Simultaneously extendec are the results of a qualitative analysis of the global properties

of dynamical models.

Fourth, finally, it is obvious that the established laws of similarity of dynamical systems can be success-

fully applied to other cosmological models with scalar fields, including, which is significant, the previously

considered cosmological models based on scalar multipoles, an asymmetric scalar doublet [18], or a multifield

model with an exponential interaction potential [20].
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