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Abstract
StyleGAN has excelled in 2D face reconstruction and semantic editing, but the extension to 3D lacks a generic inversion
framework, limiting its applications in 3D reconstruction. In this paper, we address the challenge of 3D GAN inversion,
focusing on predicting a latent code from a single 2D image to faithfully recover 3D shapes and textures. The inherent
ill-posed nature of the problem, coupled with the limited capacity of global latent codes, presents significant challenges.
To overcome these challenges, we introduce an efficient self-training scheme that does not rely on real-world 2D-3D pairs
but instead utilizes proxy samples generated from a 3D GAN. Additionally, our approach goes beyond the global latent
code by enhancing the generation network with a local branch. This branch incorporates pixel-aligned features to accurately
reconstruct texture details. Furthermore, we introduce a novel pipeline for 3D view-consistent editing. The efficacy of our
method is validated on two representative 3D GANs, namely StyleSDF and EG3D. Through extensive experiments, we
demonstrate that our approach consistently outperforms state-of-the-art inversion methods, delivering superior quality in both
shape and texture reconstruction.

1 Introduction

This work aims to devise an effective and generic approach
for encoder-based3DGenerativeAdversarialNetwork (GAN)
inversion. In particular, we focus on the reconstruction of 3D
faces, requiring just a single 2D face image as the input. In the
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inversion process, we wish to map a given image to the latent
space and obtain an editable latent code with an encoder. The
latent codewill be further fed to a generator to reconstruct the
corresponding 3D shape with high-quality shape and texture.
Besides inversion, we aim to further develop an approach to
synthesize 3D view-consistent editing results, e.g., chang-
ing a neutral expression to smiling, by altering the estimated
latent code.

GAN inversion (Xia et al., 2022) has been extensively
studied for 2D images but remains underexplored in the 3D
world. Inversion can be achieved via optimization (Abdal
et al., 2019, 2020; Roich et al., 2021), which typically
provides a precise image-to-latent mapping but can be time-
consuming, or encoder-based techniques (Richardson et al.,
2021; Wang et al., 2022; Tov et al., 2021), which explic-
itly learn an encoding network that maps an image into the
latent space. Encoder-based techniques enjoy faster inver-
sion, but the mapping is typically inferior to optimization. In
this study, we extend the notion of encoder-based inversion
from 2D images to 3D shapes.

Increasing the additional dimensionmakes inversionmore
challenging beyond the goal of reconstructing an editable
shape with detail preservation. In particular,
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1) Recovering 3D shapes from 2D images is an ill-posed
problem, where innumerable compositions of shape and
texture could generate identical rendering results. 3D
supervisions are crucial to alleviate the ambiguity of
shape inversion from images. Though high-quality 2D
datasets are easily accessible, owing to the expensive cost
of scans, there is currently a lack of large-scale labeled
3D datasets.

2) The global latent code, due to its compact and low-
dimensional nature, only captures the coarse shape
and texture information. Without high-frequency spatial
details, we cannot generate high-fidelity outputs.

3) Compared with 2D inversion methods where the editing
view mostly aligns with the input view, in 3D editing we
expect the editing results to perform well over the novel
views with large pose variations. Therefore, 3D GAN
inversion is a non-trivial task and cannot be achieved by
directly applying existing approaches.

To this end, we propose a novel Encoder-based 3D GAN
invErsion framework, E3DGE , which addresses the afore-
mentioned three challenges. Our framework has three novel
components with a delicate model design. Specifically:
Learning Inversion with Self-supervised Learning - The
first component focuses on the training of the inversion
encoder. To address the shape collapse of single-view 3D
reconstruction without external 3D datasets, we retrofit the
generator of a 3D GAN model to provide us with diverse
pseudo-training samples, which can then be used to train
our inversion encoder in a self-supervised manner. Specif-
ically, we generate 3D shapes from the latent space W of
a 3D GAN, and then render diverse 2D views from each
3D shape given different camera poses. In this way, we can
generate many pseudo-2D-3D pairs together with the corre-
sponding latent codes. Since the pseudo pairs are generated
from a smooth latent space that learns to approximate a nat-
ural shape manifold, they serve as effective surrogate data to
train the encoder, avoiding potential shape collapse.
Local Features for High-Fidelity Inversion - The second
component learns to reconstruct accurate texture details. Our
novelty here is to leverage local features to enhance the
representation capacity, beyond just the global latent code
generated by the inversion encoder. Specifically, in addition
to inferring an editable global latent code to represent the
overall shape of the face, we further devise an hour-glass
model to extract local features over the residuals details that
the global latent code fails to capture. The local features,
with proper projection to the 3D space, serve as conditions
to modulate the 2D image rendering. Through this effective
learning scheme, we marry the benefits of both global and
local priors and achieve high-fidelity reconstruction.
Synthesizing View-consistent Edited Output - The third
component addresses the problem of novel view synthesis, a

problem unique to 3D shape editing. Specifically, though we
achieve high-fidelity reconstruction through the aforemen-
tioned designs, the local residual features may not fully align
with the scene when being semantically edited. Moreover,
the occlusion issue further degrades the fusion performance
when rendering from novel views with large pose variations.
To this end, we propose a 2D-3D hybrid alignment module
for high-quality editing. Specifically, a 2D alignment module
and a 3D projection scheme are introduced to jointly align
the local features with edited images and inpaint occluded
local features in novel view synthesis.

Extensive experiments show that our method achieves 3D
GAN inversionwith plausible shapes and high-fidelity image
reconstruction without affecting editability. Owing to the
self-supervised training strategy with delicate global-local
design, our approach performs well on real-world 2D and 3D
benchmarks without resorting to any real-world 3D dataset
for training.

Compared with our previous work (Lan et al., 2023) that
mainly studies 3D GAN inversion on MLP-based StyleSDF,
we renovate E3DGE as a generic 3D GAN inversion frame-
work with the following key improvements:

1) Representation-wise, we explore 3D inversion over tri-
plane-based GAN, characterized by EG3D (Chan et al.,
2022a), the state-of-the-art GAN-based 3D generative
model.

2) Modality-wise, we adapt our proposedmethod over video
input, facilitating 4D monocular reconstruction.

3) Application-wise, we include a new practical application
of our method: 3D toonification.

Since EG3D adopts a new 3D representation, it poses
new challenges for 3D GAN inversion: how to design an
efficient and high-fidelity encoder-based inversion pipeline
that leverages a triplane-based method. An observation in
our experiment is that, though with superior representation
capacity, the tri-plane is more sensitive to inaccurate pose
during inference. To tackle this challenge, we propose the
following component for EG3D-based E3DGE :

Pose estimation for domain adaptation - This newly
proposed component addresses the problem of noisy poses
of 3DGAN inversion over real images, which EG3D is espe-
cially sensitive to. Specifically, though the aforementioned
designs could achieve high-quality inversion, we rely on the
assumption that an accurate input pose is available at test
time. However, though we directly leverage pseudo sam-
ples with ground truth pose for training, the real inputs are
inclined to pair with noisy pose labels, which intensifies the
domain gap between training and test. To bridge the gap,
we first propose to use predicted pose during training with
ground-truth poses supervising the pose estimator. Besides,
we provide the option to finetune the predicted pose to boost
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the performance. In addition, comprehensive experiments
are conducted to evaluate the new designs of the extended
EG3D-E3DGE , including qualitative and quantitative eval-
uations on the introduced pose estimator, hybrid fine-tuning,
and the comparison results with the corresponding baselines.
New applications and inversion on more categories are also
included.

To summarize, our main contributions are as follows:

– We propose the learning of an encoder-based 3D GAN
inversion framework for high-quality shape and texture
inversion. We show that with careful design, samples
synthesized by a GAN could serve as proxy data for self-
supervised training in inversion.

– Wepresent an effective framework that uses local features
to complement the global latent code for high-fidelity
inversion.

– We propose an effective approach to synthesize view-
consistent output with a 2D-3D hybrid alignment.

– We propose to jointly train a pose estimator to address
the pose domain gap during inversion.

– We validate our method on two representative 3D GAN
models, showing its generalizability to different back-
bones.

The rest of this paper is organized as follows. In Section
2, we review related studies in 3D-aware image synthe-
sis, GAN-supervised training, 2D GAN inversion, and 3D
reconstruction and editing with 3D GANs. Section 3 intro-
duces the preliminary 3D representation background of the
proposed method. In Section 4, the details of the proposed
self-supervised 3D GAN inversion method, E3DGE , are
introduced. Section 5 further discussed applying E3DGE
over the StyleSDF backbone, which is used in our confer-
ence version submission. Section 6 validates the superiority
of our method via extensive experiments and comparisons
with state-of-the-art encoder-based 3DGAN inversionmeth-
ods. Finally, we conclude our work in Section 7.

2 RelatedWork

3D-aware Image Synthesis Generative Adversarial Net-
work (Goodfellow et al., 2014) has shown promising results
in generating photorealistic images (Karras et al., 2019;
Brock et al., 2019; Karras et al., 2020a) and inspired
researchers to put efforts on 3D aware generation (Nguyen-
Phuoc et al., 2019; Henzler et al., 2019; Pan et al., 2021a).
However, these methods use explicit shape representations,
i.e., voxels (Nguyen-Phuoc et al., 2019; Henzler et al., 2019)
and meshes (Pan et al., 2021a) as the intermediate shape
models, which lacks photorealism and ismemory-inefficient.
Motivated by the recent success of neural rendering (Park et

al., 2019; Mescheder et al., 2019; Mildenhall et al., 2020),
researchers shift to implicit function along with the vol-
ume rendering process as the incorporated 3D inductive
bias. Especially, NeRF (Mildenhall et al., 2020) proposed an
implicit 3D representation for novel view synthesis which
defines a scene as {c, σ } = F�(x, v), where x is the
query point, v is the viewing direction from camera origin
to x, c is the emitted color and σ is the volume density.
Researchers further extend NeRF to generation task (Chan
et al., 2021; Schwarz et al., 2020) and show impressive
3D-awareness synthesis. To further increase the generation
resolution, recent works (Niemeyer & Geiger, 2021; Or-
El et al., 2021; Chan et al., 2022a; Gu et al., 2021; Hong
et al., 2022) resort to the StyleGAN-based architecture on
the 3D generation tasks with a hybrid design. By lifting
the intermediate low-resolution 2D features to high resolu-
tion with a 2D super-resolution decoder, the hybrid design
achieves high resolution of 10242. Two of the canonical
works, StyleSDF (Or-El et al., 2021) and EG3D (Chan et al.,
2022a), stand out as the state-of-the-art 3DGANs using SDF
(Signed Distance Field)- and triplane-based 3D represen-
tations correspondingly. We select these two representative
methods as the backbone for the 3D GAN inversion study.
GAN-supervised Training Previous works (Besnier et al.,
2020; Pan et al., 2022; Jahanian et al., 2020, 2022; Yang
et al., 2022; Zhang et al., 2021a; Ling et al., 2021) pro-
pose to use pretrained GAN to generate training dataset.
Through careful design in the sampling strategy (Jahanian
et al., 2022), loss functions (Pan et al., 2022) and generation
process (Zhang et al., 2021a), researches show that off-the-
shelf image generators could facilitate a series of downstream
visual applications.
2D GAN Inversion Optimization-based 2D GAN inversion
methods (Abdal et al., 2019; Fu et al., 2022) achieve photore-
alistic reconstruction at the cost of slow inference and lack of
editability. To speed up, Encoder-based methods (Richard-
son et al., 2021; Wang et al., 2022; Tov et al., 2021; Chan
et al., 2022b; Zhu et al., 2020) like pSp (Richardson et
al., 2021) and e4e (Tov et al., 2021) have been developed
and show better properties in editing through specific model
design (Richardson et al., 2021; Wang et al., 2022) and train-
ing strategies (Tov et al., 2021).However, they (Richardson et
al., 2021; Tov et al., 2021; Zhu et al., 2020; Abdal et al., 2019,
2020) all adopt global latent code alone for GAN inversion
task, thus failing to recover high-fidelity details. Recently,
HFGI (Wang et al., 2022) introduce an extra spatial consulta-
tionmap tomitigate this issue, though still designed to restore
2D textures without considering 3D shape modeling. In this
work, we propose a delicate design that exploits local fea-
tures to recover texture details and achieves view-consistent
synthesis.
3D Reconstruction and Editing with 3D GANs Recent
development of 3DGANs (Schwarz et al., 2020;Niemeyer&
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Geiger, 2021;Chan et al., 2021;Or-El et al., 2021;Chan et al.,
2022a; Gu et al., 2021) also calls for corresponding inversion
frameworks. π -GAN and EG3D (Chan et al., 2022a) directly
adopt 2D inversion method (Abdal et al., 2019; Roich et al.,
2021),which requires expensive latent ormodel optimization
and still introduces implausible shape artifacts. The most rel-
evant work to ours is Lin et al. (Lin et al., 2022), which
employs a computationally expensive optimization-based
framework (Abdal et al., 2019) and combines FLAME (Feng
et al., 2021; Li et al., 2017) for portrait animation. How-
ever, it fails to guarantee reasonable shape and is limited to
the human face domain. In parallel, Pix2NeRF (Cai et al.,
2022) introduces a feed-forward network to pre-trained π -
GANand enables single-view3D reconstruction.However, it
does not demonstrate its performance in high-quality novel
view editing. Pavllo et al. (Pavllo et al., 2023) proposes a
hybrid 3DGAN inversion framework for single-image shape
reconstruction. However, the hybrid framework trades off the
performance with speed, while our method achieves high-
quality inversion and editing performance with fast inference
speed. Someotherworks rely on 3Dparametricmodels (Feng
et al., 2021) or auto-decoder (Rebain et al., 2022) architec-
ture for single-view 3D reconstruction (Feng et al., 2021)
or editing (Rebain et al., 2022), which cannot leverage the
strong GAN priors for high-resolution and flexible latent-
based editing.

Concurrently, SPI (Yin et al., 2022) and HFGI3D (Xie et
al., 2022) also proposed to conduct 3D GAN inversion given
monocular inputs. However, their encoder-free design suffers
from costly per-instance optimization. Live3DPortrait (Tre-
vithick et al., 2023) also proposed an encoder-based 3D
portrait reconstruction model by distilling a pre-trained
EG3D (Chan et al., 2022a) generator. However, it is designed
for reconstruction only and does not yield compact latent
code with editing capability. Our method, however, enables
this with the help of hybrid alignment, as introduced in
Sec. 4.3.

GOAE (Yuan et al., 2023) proposed a two-stage 3D GAN
inversion framework. However, it only demonstrates its abil-
ity on tri-plane and image inversion, while our method is
verified on both SDF and tri-plane 3D representation over
both image and video.

The most similar work to ours is GRAMInverter (Deng et
al., 2022b),which also presents a detail-preserved 3Dportrait
inversion framework, leveraging thepretrainedGRAM(Deng
et al., 2021).However,GRAMInverter does not support latent
code-based editing as in 2D GAN, which is enabled by
our hybrid alignment module mentioned in Sec. 4.3. Fur-
thermore, our method supports both SDF and NeRF-based
3D GAN framework. Besides, GRAMInverter’s global-local
inversion design is also included in our Sec. 4.1 and Sec. 4.2.
In summary, our proposed method is a superset for GRAM-
Inverter.

Dynamic 3D Head Avatars for Pose and Expression Edit-
ing Beyond the progress in static avatar head generation, a
parallel line of work focuses on extending 3D avatar recon-
struction to video for pose and expression editing. GOHA (Li
et al., 2023) proposes a 3DMM-conditioned framework that
lifts 2D features to 3D neural points. GPAvatar (Chu et al.,
2024) and Portrait4D (Deng et al., 2024a, b), in contrast,
explicitly inject FLAME (Li et al., 2017) geometry into the
generative pipeline. Note that this line of work is specifi-
cally designed for 3D avatars and requires 3DMM (Blanz &
Vetter, 1999) integration. Our method, however, is a generic
3D GAN inversion framework that can be applied to generic
3D datasets like ShapeNet. Besides, beyond 3D/4D recon-
struction, our method also yields a compact latent code that
supports semantic editing.

3 Preliminaries

Since recent 3D-aware image generativemodels are based on
neural implicit representations, especially NeRF (Mildenhall
et al., 2020), here we briefly introduce the NeRF-based 3D
representation and also hybrid 3D-aware generation based
on EG3D/StyleSDF for clarification.
NeRF-based 3D Representation NeRF (Mildenhall et al.,
2020) proposed an implicit 3D representation for novel view
synthesis. Specifically, NeRF defines a scene as {c, σ } =
F�(x, v), where x is the query point, v is the viewing direc-
tion from camera origin to x, c is the emitted radiance (RGB
value), σ is the volume density. To query the RGBvalueC(r)
of a point on a ray r(t) = o+tv shoot from the 3D coordinate
origin o, we have the volume rendering formulation,

C(r) =
∫ t f

tn
T (t)σ (r(t))c(r(t), v)dt, (1)

where T (t) = exp(− ∫ t
tn

σ(r(s))ds) is the accumulated
transmittance along the ray r from tn to t . tn and t f denote
the near and far bounds.
Hybrid 3D-aware Generation To achieve high-resolution
novel view synthesis, hybrid 3D-aware generators (Niemeyer
& Geiger, 2021; Gu et al., 2021; Chan et al., 2022a; Or-El
et al., 2021) are proposed. It is typically a cascade model
G = G1 ◦G0 composed of a NeRF-based rendererG0 (Chan
et al., 2021) and a 2D super-resolution networkG1, as shown
in Fig. 1. Both G0 and G1 follow the style-based architec-
ture (Karras et al., 2019, 2020b) to accept a latent code w
to control the style of the generated object. During gener-
ation, G0 captures the underlying geometry with the full
control of w and camera pose ξ , and renders a low-resolution
image I0 and an intermediate feature map F. Then, G1 fur-
ther upsamples F to obtain a high-resolution image I with
added high-frequency details. Among them, StyleSDF (Or-
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Fig. 1 StyleSDF and EG3D. Given a sampled latent code w and a
camera pose ξ , StyleSDF (Or-El et al., 2021) generates object SDF d
to depict the shape with the corresponding image I, while EG3D (Chan
et al., 2022a) adopts density σ as the shape descriptor. Both methods
adopt a hybrid synthesis pipeline, where a low-resolution image I0 is
first synthesized and further up-sampled to high-res image I

El et al., 2021) adopts NeRF-basedMLP asG0 for 3D-aware
high-quality surface synthesis. In comparison, EG3D (Chan
et al., 2022a) introduces axis-aligned plane (Peng et al., 2020)
as G0 and achieves state of the art performance on sev-
eral benchmarks with faster rendering efficiency and sharper
geometry details compared against previous work (Chan et
al., 2021) and StyleSDF. EG3D also enjoys the flexible style
control for semantic editing as in StyleGAN (Karras et al.,
2019). Therefore, in this work, we mainly explore EG3D as
the base model for the GAN inversion study (Section 4). Our
method is not limited to EG3D and could be easily extended
to other style-based 3D GAN variations (Or-El et al., 2021;
Gu et al., 2021). Please refer to Sec. 5 and the appendix for
the technical details of the StyleSDF-based E3DGE study.

4 E3DGE with EG3D Backbone

An effective 3D GAN inversion should be capable of 1)
reconstructing plausible 3D shape given single-view input,
2) maintaining high-fidelity texture, and 3) allowing view-
consistent semantic edits. To achieve these goals, we propose
the E3DGE framework with three novel components: In

Sec. 4.1, we leverage 3D GAN to generate pseudo 2D-3D
paired samples for 3D supervisions, and train an inversion
encoder E0 to estimate the latent of plausible 3D shapes
from a 2D image; In Sec. 4.2, we train a local encoder E1

to extract pixel-aligned features to enrich texture details for
high-fidelity inversion; In Sec. 4.3 introduces a hybrid align-
ment module for view-consistent semantic editing; Finally,
in Sec. 4.4 we propose to jointly estimate the input camera
pose and fine-tune the estimated code to alleviate the domain
gap for better performance on the real-world inversion. We
also include a notation table in the Tab. 1 of appendix.

4.1 Self-supervised Inversion Learning

In this section, we propose to mitigate the lack of large-scale
high-quality 2D-3Dpaired datasets by retrofitting pre-trained
3D GANs to provide pseudo samples for training our inver-
sion encoder.We demonstrate themodel trained from pseudo
samples can rival and even outperform the methods learned
from real data on the 3D GAN inversion task. We detail the
process as follows.
Global Encoder for 3D GAN Inversion With the style-
based G, we build our encoder E0 based on pSp (Richardson
et al., 2021) for inversion. Given a target image I, E0 predicts
its latent code ŵ = E0(I). Given the corresponding camera
pose ξ , the reconstructed image is obtained by Ĩ = G(ŵ, ξ)

to approximate I. In addition, we would like its 3D shape
predicted by G0 to be plausible enough.
Distill 3D GANs as 3D Supervisions Different composi-
tions of shape and texture could lead to identical 2D-rendered
images. 3D supervision is needed to alleviate such shape-
texture ambiguity. In the lack of large-scale high-quality
2D-3D paired samples, we formulate GAN Inversion as a
self-training task, where samples synthesized from itself are
leveraged to boost the reconstruction fidelity in both 2D and
3D domains. As shown in Fig. 1 and Fig. 2, we synthesize
paired 3D shape information S and 2D image I from latent
code w and camera pose ξ using G to train E0. To extract
the 3D shape information S of each synthetic shape, we first
sample a point set P = {PO,PF} where PO and PF con-
tain points sampled from the surface and around the surface,
respectively. Then, we calculate the geometry descriptor σ i

and Di for each 3D point xi ∈ P, and S is defined as the set
of geometry descriptors of all 3D point in P:

S = {{σ i , Di }|P|
i=1 |

xi ∈ P, σ i = G0(w, xi ), Di =
∫ t f

tn
T (t)σ (r(t))dt}, (2)

where σ i is the density of point xi , Di is the depth of point
xi under the given view direction ξ and σ is the density
of the point along the ray. Note our method is not limited
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to the triplane-based shape representation and can be easily
extended to SDF-based methods, as detailed in Sec. 5. More-
over, given different camera poses, we can generate a diverse
2D-3D dataset to help alleviate the shape-texture ambiguity,
i.e., for each shape S, various images I = G(w, ξ) can be
rendered by randomly sampling ξ from a predefined pose
distribution pξ . Finally, we defineX = {S, ξ , I} as a training
sample for E0.
3D GAN-Supervised TrainingAs shown in Fig. 2 (a), given
a training sample X, the forward process is represented as:

ŵ = E0(I)

{Ĩ, Ŝ} = G(ŵ, ξ ,P)
(3)

where ŵ is the estimated latent code and Ŝ = {{σ̂ i , D̂i }|P|
i=1 |

xi ∈ P} is the estimated 3D shape information conditioned
on w̃ and P.

To achieve 3D supervision, for all points wewould like the
estimated Ŝ to approximate the ground truth S. Specifically,
we supervise both the predicted density σ̂ as well as the
depth D̂ (Deng et al., 2022a) for surface points xi ∈ PO
and supervise the predicted density for the remaining points
xi ∈ PF, leading to the geometry loss:

LO
geo = EX

[
1

|PO|
|PO|∑
i=1

λg1 |σ̂ i − σ i | + λg2‖D̂i − Di‖1
]

(4)

LF
geo = EX

[
1

|PF|
|PF|∑
i=1

λg3 |σ̂ i − σ i |
]

(5)

Lgeo = LO
geo + LF

geo, (6)

where λs are loss weights and supervision of depth D̂i is
only imposed for points over the surface. We also impose
code reconstruction lossLcode = ‖ŵ−w‖2 to regularize the
learning and 2D supervisions Lrec to minimize the recon-
struction error between Ĩ and I as in pSp (Richardson et al.,
2021). The overall loss is L = Lgeo + Lcode + Lrec, which
is detailed in Sec. 6.

4.2 Local Features for High-Fidelity Inversion

To facilitate the discussion in the following sections, we first
take a look at the details of EG3D. The unique design of
EG3D lies in its 3D renderer G0: after a StyleGAN2 genera-
tor, the last layer of the synthesized featuremaps are reshaped
into three orthogonal planes, e.g., tri-plane,where the queried
features over three planes are volume rendered into fea-
ture map F and view-consistent image I0. Specifically, EG0

extracts a global feature fG(x) = EG0(x, w). Based on fG,
φg and φ f compute density σ(x) = φg(fG(x)) and the last-
layer feature f(x, v) = φ f (fG(x), v) of G0, respectively. f

Fig. 2 E3DGE for 3D GAN inversion. (a) We augment the training
of the encoder E0 with 3D supervision Lgeo for plausible 3D shape
prediction. (b) We augment the representation capacity of the global
latent code ŵ with local point-dependent latent feature fL for high-
fidelity texture reconstruction. Both StyleSDF and EG3D samples are
shown here

Fig. 3 Hybrid alignment for high-quality editing. Given code pre-
diction ŵ from encoder E0 pre-trained in stage-I , we aim to generate
high-quality view synthesis over the edited code ŵedit. In (a), the local
details� alongwith the target edited image I′

edit and depthmap ts(ŵ, ξ)

are sent to pre-trained EADA to predict aligned residual �′
edit. The orig-

inal aligned residual � along with the 2D auxiliary residual �′
edit are

processed by E1 to recover latent maps FL and FADA for later fusion.
In (b), the extracted features fL(x) and fADA(x) are first fused together
with a FiLM layer, and the fused result f̂L(x) further serves as condi-
tions to modulate the global feature fG(x). The final modulated feature
f̂(x) contains complete information, globally and locally. The volume
integrated F̂ is sent to G1 for high-resolution synthesis

could be directly transformed to color c(x, v) = φc(f(x, v))

or being volume integrated to F and sent to G1 for high
resolution synthesis. For simplicity, we omit v in the follow-
ing. The volume rendering process is the same as StyleSDF,
which is depicted in the middle of Fig. 1. The main differ-
ence of EG3D-based representation is that fG is decoded from
tri-plane, while StyleSDF decodes the global feature from a
stack of MLP layers.
Local Feature for Detailed Textures The global latent code
ŵ is a compact representation of the predicted scene. How-
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ever, previous works (Chan et al., 2022b; Wang et al., 2022)
have validated that a low-dimensional latent code discards
high-frequency spatial details and fails to reconstruct high-
fidelity outputs. This phenomenon becomes more severe
when lifting the 2D image to a 3D scene, which contains
exponentially more information. Inspired by recent progress
in few-shot 3D reconstruction (Saito et al., 2019, 2020; Yu
et al., 2021; Xiu et al., 2022; Alldieck et al., 2022; Wang et
al., 2021; Chibane et al., 2021), we propose to make up for
the lost information by introducing pixel-aligned (local) fea-
tures. As shown in Fig. 2 (b), rather than conditioning all 3D
points with the same latent code ŵ, we augment the repre-
sentation capacity with local latent codes fL that is dependent
on each point x. We introduce a local hourglass (Newell et
al., 2016) encoder E1 to predict a residual feature map FL

based on the reconstruction residue � = I − Ĩ,

FL = E1(�, ts(ŵ, ξ)), (7)

where ts(ŵ, ξ) is the depth map of the scene derived from
the predicted density σ to serve as 3D context information.
Then, the local latent code of a point x is its corresponding
value in FL:

fL(x) = FL(π(x)) ⊕ PE(x), (8)

where π maps the 3D point x to its corresponding pixel coor-
dinate on 2D feature map FL. Since in 3D scenes, points
along a ray will be projected to the same coordinate on the
2D plane, to differentiate these points, we additionally con-
catenate their positional encoding PE(x) (Mildenhall et al.,
2020) in Eq. (8). In this way, the local feature fL only encodes
the residual information at the projected position π(x) but is
also capable of determining where the residual information
lies in the 3D scene, as well as inpainting the occluded areas
along the ray.

Finally, we fuse the local latent code fL(x)with the global
latent code fG(x) = EG0(x, ŵ) to supplement the miss-
ing high-frequency details. Specifically, the feature fusion
is based on Feature-wise Linear Modulation (FiLM) (Perez
et al., 2018). As shown in Fig. 2, fL(x) is fed into two MLP
layers to obtain the scale and bias modulation parameters
fγ
L (x) and fβ

L (x). Then we modulate fG(x) with FiLM

f̂G(x) =FiLM(fG(x), fL(x))

=fγ
L (x) · fG(x) + fβ

L (x). (9)

The fused f̂G(x) is volume integrated to F̂ and the final high-
fidelity reconstructed image is obtained as Î = G1(F̂).

Note that through point projection π , the reconstruction
with local prior is not limited to the original view, and natu-
rally works for novel views. However, for views with severe

occlusions or additional editing, the residual featuresmay not
fully align with the scene, leading to a failed feature fusion.
We will address this issue in the next subsection with our
hybrid feature alignment.

4.3 Hybrid Alignment for High-Quality Editing

Though we achieve high-fidelity reconstruction with the
aforementioned designs, there is a trade-off between the input
view reconstruction quality and novel view editing perfor-
mance. We first analyze the reasons behind and propose a
hybrid alignment module to address this issue.
Reconstruction Editing Trade-off Given an input image I
with paired reconstruction Ĩ and residual map � extracted
from the input view ξ with the aforementioned method,
the reconstruction performance trade-offs the editing perfor-
mance due to the following two reasons. First, at test time
when the input image is edited Ĩedit or query view ξ ′ �= ξ , the
residual map no longer aligns and is likely to result in wrong
predictions. Second, ifwe supervise themodels to reconstruct
the input itself, the learned features are regressive rather than
generative since all prediction areas are visible in the inputs.
With these above-mentioned challenges, though the model
could yield perfect reconstruction at training, it would result
in noticeable performance degradation when rendering from
novel views at test time.
Hybrid Alignment for High-Quality Editing To address
the first challenge, we propose to infer aligned features
with a 2D-3D hybrid alignment. Specifically, given edited
latent code ŵedit, the initial novel-view edited image Ĩ

′
edit =

G0(ŵedit, ξ
′) is misaligned with�. Inspired by HFGI (Wang

et al., 2022), we leverage a 2D alignment module EADA

to address the misalignment. As shown in Fig. 3 (a), we
first obtain �edit = EADA(�,G0(ŵedit, ξ)), transform it to
residual feature map Fedit

L via Eq. (7) and retrieve the view-
consistent 3D local feature fL via Eq. (8). However, to render
the high-quality edited image Î

′
edit from novel view ξ ′, Fedit

L
might still suffer from occlusion due to large pose variations.
To the end, we propose a hybrid alignment to further refine
Fedit
L with the 2D aligned feature from EADA. Specifically,

we align a 2D residue �′
edit = EADA(�, Ĩ

′
edit) and retrieve

its corresponding fADA with E1, which fills the occlusion in
a 2D manner but lacks 3D consistency. To marry the best of
both, as shown in Fig 3 (b), we modulate fL with fADA,

f̃L(x) = FiLM(fL(x), fADA(x)), (10)

and further fuse f̃L with fG(x) for final prediction,

f̂(x) = FiLM(fG(x), f̃L(x)), (11)

123



International Journal of Computer Vision

where f̂(x) is then integrated to F̂ for rendering the final
novel-view edited image Î

′
edit = G1(F̂).

Novel View Training for Coherent View Synthesis To
address the second challenge and enforce the model to learn
generative features, during training, we sample two views ξ1
and ξ2 for each style code w, and render the corresponding
images Iξ1 and Iξ2 . Then, we train the models to recon-
struct plausible novel views, i.e., G(E(Iξ1), ξ2) ≈ Iξ2 and
G(E(Iξ2), ξ1) ≈ Iξ1 . By end-to-end training the EADA with
this strategy, our method yields a high-quality view synthesis
over edited scenes.

4.4 Pose Estimation for Domain Adaptation

Though the aforementioned strategy could effectively alle-
viate information loss introduced by the capacity limitation
of global latent code, in reality, we observe E1 is likely to
fail when the input pose ξ is noisy. This may occur since
we directly adopt the ground truth pose ξ ∈ X for train-
ing, thus the residual � is calculated over the reconstruction
Ĩ with the perfect pose. However, the pose of real-world
images estimated from COLMAP (Schönberger & Frahm,
2016; Schönberger et al., 2016) or pre-trained model (Deng
et al., 2019b) tends to be noisy. In this way, the encoder E1

could not handle the residual � caused by slight pose mis-
alignment.

To alleviate this issue, we propose to jointly train a pose
estimator Eξ over synthetic samples X and use the predicted
pose ξ̃ to calculate global reconstruction Ĩ

ξ̃
= G(ŵ, ξ̃). The

residual is calculated with � = I − Ĩ
ξ̃
, and the remaining

operations defined in Eqs. (8) and (9) stay the same. Apart
from pose estimation loss Lpose = ||ξ̃ − ξ ||2, all the afore-
mentioned loss functions in Sec. 4.1 are also imposed. We
demonstrate in the experiment that this operation is crucial
for high-fidelity inversion over EG3D.

Although our pose estimator could alleviate the domain
gap between training and testing, we observe that it still
cannot fully derive the camera pose accurately enough.More-
over, in some scenarios, the user trades off better fidelity
with a reasonable time cost. Therefore, we propose to fur-
ther finetune the estimated pose for a few steps in the test
time, where the estimated identity code ŵ could also be fine-
tuned together. Better quality is achieved via both test-time
optimization techniques, as validated in Tab. 1 and Fig. 9.

5 E3DGE-StyleSDF Backbone

E3DGE also supports adopting StyleSDF (Or-El et al.,
2021) as the base inversion model. Different from EG3D,
as shown in the middle of Fig. 1, StyleSDF G0 can be fur-
ther divided into four parts: a 8-layer MLP encoder EG0 , a

SDF decoder φg , a feature decoder φ f and a color decoder
φc. To train E3DGE on StyleSDF, as shown in the upper
half in Fig 1 and Fig. 2(a), we synthesize paired 3D shape
informationS and 2D image I from latent codew and camera
pose ξ using G to train E0. To extract the 3D shape infor-
mation S of each synthetic shape, we first sample a point set
P = {PO,PF} where PO and PF contain points sampled
from the surface and around the surface, respectively. Then,
we calculate the geometry descriptor di and ni for each 3D
point xi ∈ P, and S is defined as the set of geometry descrip-
tors of all 3D point in P:

S = {{di , ni }|P|
i=1 |

xi ∈ P, di = G0(w, xi ), ni = ∇xi di },
(12)

where di is the distance from xi to the shape surface and
ni is the surface normal defined by the gradient of the
distance w.r.t. xi . Note our method is not limited to the
SDF-based shape representation and can be easily extended
to volumetric-based methods (Chan et al., 2021; Pan et al.,
2021b; Chan et al., 2022a).

To achieve 3D supervision, we would like the estimated
Ŝ to approximate the ground truth S. Specifically, for points
over the surface, their distances and normal are both consid-
ered while for points around the surface, we only supervise
their distance following (Park et al., 2019; Alldieck et al.,
2022), leading to geometry loss:

LO
geo = EX

[
1

|PO|
|PO|∑
i=1

λg1 |d̂i | + λg2‖n̂i − ni‖1
]

(13)

LF
geo = EX

[
1

|PF|
|PF|∑
i=1

λg3 |d̂i − di |
]

(14)

Lgeo = LO
geo + LF

geo, (15)

where λs are loss weights and di = 0 for points over the
surface. We also impose code reconstruction loss Lcode =
‖ŵ − w‖2 to regularize the learning and 2D supervisions
Lrec to minimize the reconstruction error between Ĩ and I as
in pSp (Richardson et al., 2021). The overall loss is detailed
in Sec. 6.

Among them, StyleSDF (Or-El et al., 2021) introduces
the signed distance function (SDF) to serve as a proxy for
the density function σ(x) used for the volume rendering in
NeRF. Specifically, StyleSDF usesG0 to predict the distance
d(x) = G0(w, x) between the query point x and the shape
surface, where the density function σ(x) can be transformed
from d(x) for NeRF (Mildenhall et al., 2020) to render. The
incorporation of SDF leads to higher-quality geometry in
terms of expressiveness view-consistency and clear defini-
tion of the surface. StyleSDF also enjoys the flexible style
control for semantic editing as in StyleGAN (Karras et al.,
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2019). Therefore, in this paper, we also use StyleSDF as the
base model for GAN inversion study. Please refer to the con-
ference version (Lan et al., 2023) for the technical details of
our method based on StyleSDF. Note that our method is not
limited to EG3D/StyleSDF and could be easily extended to
other style-based 3D GAN variations (Gu et al., 2021).

6 Training

Reconstruction Loss We briefly introduce the supervision
we adopt in image reconstructions in both training stages.
First, we use the pixel-wise L2 loss,

L2 (I) = ||I − Î||2. (16)

In addition, to learn perceptual similarities, we use the
LPIPS (Zhang et al., 2018) loss, which has been shown to
better preserve image quality compared to the more standard
perceptual loss:

LLPIPS (I) = ||F(I) − F(Î)||2, (17)

where F(·) denotes the perceptual feature extractor.
Finally, a common challenge when handling the specific

task of encoding facial images is the preservation of the input
identity. To tackle this, we incorporate a dedicated recogni-
tion loss measuring the cosine similarity between the output
image and its source,

LId (I) = 1 − 〈
R(I), R(Eg(I))

〉
, (18)

where R is the pretrained ArcFace (Deng et al., 2019a) net-
work. In summary, the total loss function is defined as

Lrec(I) = λ1L2(I) + λ2LLPIPS(I) + λ3LId(I),

where we set λ1 = 1, λ2 = 0.8, λ3 = 0.1 as the defined loss
weights. In E0 training, we supervise images Î0, Î1 of both
resolutions. In E1 training, we only supervise the reconstruc-
tion of high-resolution images since the network weights to
render Î0 is fixed. Here, we also impose the non-saturating
adversarial loss with R1 regularization (Mescheder et al.,
2018) to improve the naturalness of reconstructed images,
which is defined as:

Ladv = −E[log(D(Î))], (19)

LD = E[log(D(Î))] + E[log(1 − D(I))], (20)

LR1 = λ‖∇D(Î; θD)‖2, (21)

where D is initialized with the pre-trained discriminator
paired with the generator and θD is the corresponding param-
eters to optimize. In summary, the overall loss is theweighted

summation of the loss functions described above:

L = Lgeo + Lrec + λadvLadv + λDLD + λR1LR1, (22)

where we set λD = λadv = 0.01 and λR1 = 10 in the
experiments.

7 Experiments

7.1 Implementation Details

Datasets We mainly focus on the human face domain
and use both 2D and 3D datasets for extensive evaluation.
To examine 2D reconstruction quality, we adopt CelebA-
HQ (Karras et al., 2018; Lee et al., 2020) dataset for source
view reconstruction. To further evaluate novel view synthe-
sis performance, we synthesize 100 trajectory videos from
a pretrained generator as a proxy test set. For attribute
editing, we adopt InterfaceGAN (Shen et al., 2020) and
Talk2Edit (Jiang et al., 2021) to search for the editing direc-
tions. To evaluate 3D shape reconstruction quality, we use
NoW benchmark (Sanyal et al., 2019) that provides a rich
variety of face images with ground-truth 3D scans. The 3D
GANs are pre-trained on FFHQ (Karras et al., 2019). Note
that our method does not rely on any external 3D data during
the training process.
Network Architecture Details For E0, a modified version
of the pSp encoder (Richardson et al., 2021) is deployed
here for a fair comparison with existing work. For EG3D,
we introduce 14 prediction heads to the pSp for the latent
code prediction. For StyleSDF, sinceG0 andG1 of StyleSDF
have 9 and 10 latent codes, respectively, we introduce 9+10
extra prediction heads. We observe that early layers of G0

control the geometry of generated samples, and later G0 lay-
ers as well as decoder generator G1 control the texture and
high-frequency details. Thus, we adopt the early pSp feature
map of resolution 32 × 32 to predict the latent code of G0

for geometry control and the pSp feature map of resolution
64 × 64 to predict the latent code of G0 for texture con-
trol. We use the highest resolution feature map of pSp with
resolution 128 × 128 to predict the latent code for G1. We
show our FiLM layer where the input features are modulated
by the input conditions with predicted γ, and β. The MLP is
implemented with twoMLP residual blocks (Yu et al., 2021),
which outputs α and β for modulation, respectively.
Training Details In this work, we directly use the officially
released pre-trainedGANmodels fromEG3D and StyleSDF.
In self-supervised shape inversion learning (Sec. 4.1), due to
GPU memory restriction, we sample 4 shapes per GPU each
iteration for training. After E0 converges, we fix the network
weights and only train the E1 for high-fidelity inversion. The
hybrid alignment module EADA is trained end-to-end along
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Fig. 4 Qualitative comparisons on face reconstruction (Rec) and editing (Edit) under novel views. Rec denotes "Reconstruction" and Edit
denotes "Editing". Our method shows both faithful texture preservation and plausible shape reconstruction compared to the baselines

with the other modules on the FFHQ dataset and supervised
with the training strategy discussed in the last paragraph of
Sec. 4.3 and the loss functions defined in Eq. 22. For all
the parameters, we adopt Adam optimizer with a learning
rate of 5e − 5 to train the models on 4 NVIDIA Tesla V100
GPUs, with a resolution of 5122, batch size of 24, and 48
samples along a ray for the recommended 500K iterations.
Following (Saito et al., 2019),wefilter our invisible 3Dpoints
when training from a certain view.

To train the Pose Estimator Eξ , we directly append a pre-
diction head behind the pre-trained global encoder E0 and
output the spherical pose (θ, φ) of the input image. After the
base inversion model is trained, we fix the remaining param-
eters and train the prediction head over synthetic images
for 50, 000 iterations, which takes four days over 4 V100
GPUs. The training takes 4 days for StyleSDF-E3DGE
and 7 days for EG3D-E3DGE . Code, dataset, and all pre-
trained models are publicly available at https://github.com/
NIRVANALAN/CVPR23-E3DGE.

7.2 Quantitative Evaluation

For comparison, we implement two canonical encoder-based
GAN inversion approaches on StyleSDF (Or-El et al., 2021)
and EG3D (Chan et al., 2022a), i.e., pSp (Richardson et al.,
2021) and e4e (Tov et al., 2021), which stress reconstruc-
tion and editing quality respectively. The feed-forward 3D
head reconstruction method GPAvatar (Chu et al., 2024) is
also included for reference. Furthermore, we also implement
optimization-based methods, including SG2 (Karras et al.,
2019) andPTI (Roich et al., 2021) onEG3DandStyleSDF for
extensive comparison. Besides, the concurrent optimization-

based method SPI (Yin et al., 2022) is also included for
comparison.

We report inversion performance for both source view
reconstruction and novel view synthesis in Tabs 1-2. For
source view reconstruction, the metrics are calculated on the
2, 824 images from CelebA-HQ test set (Lee et al., 2020).
For novel view synthesis, the metrics are averaged from 100
videos generated from pre-trained 3D GANs, each with 250
frames covering ellipsoid camera poses trajectory. For each
video, we randomly pick one image as source view input
and the remaining images as ground truths with labeled
poses as query views. In this way, we could extensively
evaluate the view synthesis ability under occlusions and var-
ied input viewpoints. We also compare E3DGE against
two optimization-based methods, SG2 and PTI. As demon-
strated in Tab. 1, our approach substantially outperforms
encoder-based baselines in terms of reconstruction quality
on two settings and achieves considerably faster inference
speed against optimization-based methods. For SPI, though
it achieves better LPIPS score against our proposed method
due to the optimization-based nature, it is over 1000× slower
compared to E3DGEEG3D. Besides, it is almost 8× slower
compared to E3DGEP+C

EG3D and achieves worse Similarity
score. Besides, SPI is specifically designed for human face
inversion, while E3DGE is a generic solution for any 3D
objectsmodeledwith 3DGAN.Notice that we do not include
EG3D in Tab. 2 due to its camera pose being misaligned with
StyleSDF.
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Table 1 Quantitative performance on CelebA-HQ. ‘T’ and ‘S’ denote
the time for texture and shape inversion, ‘P’ denotes the finetuning esti-
mated pose, and ‘P+C’ denotes the finetuning of both pose and code,
respectively. For the Time(s) column, we show the texture and geometry

inversion time separately. The last two rows describe the performance of
test-time optimization, where fine-tuning the pose (P) and code (C) fur-
ther improves the quality. Note that compared with E3DGE-StyleSDF,
E3DGE-EG3D does not require post-processing to output depth.

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑ Time(s) ↓
SG2StyleSDF .202 ± .063 .650 ± .054 .167 ± .046 .219 ± .106 235

PTIStyleSDF .062 ± .012 .796 ± .017 .027 ± .005 .892 ± .009 246

pSpStyleSDF .150 ± .032 .696 ± .048 .270 ± .059 .498 ± .099 .29

e4eStyleSDF .174 ± .049 .669 ± .049 .226 ± .063 .252 ± .107 .29

E3DGEStyleSDF .103 ± .010 .769 ± .039 .136 ± .039 .881 ± .041 .45/.81

pSpEG3D .163 ± .024 .689 ± .039 .264 ± .049 .455 ± .096 0.29

e4eEG3D .230 ± .021 .658 ± .019 .425 ± .029 .316 ± .068 0.29

SG2EG3D .241 ± .019 .671 ± .014 .288 ± .019 .434 ± .037 100

PTIEG3D .079 ± .005 .769 ± .012 .105 ± .011 .779 ± .027 114

SPIEG3D N/A N/A .086 .947 463.5

E3DGEEG3D .084 ± .012 .768 ± .026 .163 ± .017 .891 ± .027 .38

E3DGEP
EG3D .076 ± .004 .777 ± .008 .153 ± .005 .952 ± .004 45

E3DGEP+C
EG3D .064 ± .003 .795± .009 .115 ± .005 .974 ± .003 60

Table 2 Quantitative
performance on Novel View
Synthesis.

Methods MAE ↓ SSIM ↑ LPIPS ↓ Similarity ↑
SG2StyleSDF .284 ± .025 .572 ± .006 .244 ± .031 .304 ± .036

PTIStyleSDF .186 ±.016 .652 ± .015 .215 ± .045 .795 ± .040

pSpStyleSDF .201 ± .010 .634 ± .005 .285 ± .029 .559 ± .043

e4eStyleSDF .197 ± .016 .597 ± .011 .212 ± .023 .297 ± .058

E3DGE .147 ± .011 .694 ± .018 .151 ± .024 .901 ± .012

Fig. 5 Visual comparisons on optimization-based methods. ‘Rec’
and ‘Edit’ represent reconstruction and editing, respectively. For
editing, we change the ‘Smiling’ attribute for the first instance and
‘Age’ attribute for the second instance. Besides, PTIEG3D (column 7)

with "Smiling" editing shows geometry-texture misalignment over the
teeth, where the geometry fails to show an open mouth after editing.
However, our E3DGEEG3D showsmore coherent geometry and texture
editing
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Fig. 6 Video inversion using E3DGE . As shown here, the EG3D-
based encoder shows better reconstruction texture quality, while
StyleSDF-based E3DGE shows smoother surface prediction. Note that
we also include the depth of EG3D-E3DGE for pose-aligned texture

and shape comparison. Compared to GPAvatar, our proposed method
achieves comparative visual quality with sharper geometry (depth)
inversion, as reflected by the inversion of eyeglasses

Fig. 7 Ablation of Local Features. Our method with pixel-aligned
features shows photorealistic reconstructions

7.3 Qualitative Evaluation

Encoder Baselines We visualize both inversion and editing
results against encoder baselines in Fig. 4. Geometry-wise,
the baseline models without explicit 3D supervision tend to
generate implausible intermediate shapes, a 3D plank that is
only plausible from the input view. Besides, their reconstruc-
tion is not close to the “ground truth", and the reconstructed
surface lacks details.Ourmethod successfully regularizes the
intermediate 3D shapes and generates plausible results with
surface details and a more complete structure. For instance,
ourmethod reconstructs plausible 3Dwithwith faithful iden-
tity preservation. Though pSp also preserves identity well,
the reconstructed 3D depth is more flat. Although e4e shows
better shape reconstruction, its reconstruction fails to main-
tain the input identity. Corresponding metrics in Tab. 4 also
validate the usefulness of the direct geometry supervisions
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and loss designs. Texture-wise, existing methods generate
distorted results and suffer artifacts and identity change.
In contrast, with pixel-aligned features incorporated, our
method ismore robustwith high-fidelity results. In particular,
our method captures more details and preserves the identity
of different input viewpoints.

For editing, we choose the “Smile" attribute for editing.
Beyond plausible shape reconstructionwith high-fidelity tex-
ture inversion, and in-view synthesis over edited results, our
method consistently generates high-quality edited render-
ings in terms of view consistency, details conservation, and
identity preservation. Compared with our method, the base-
lines either fail to render a plausible novel view (column 5)
or maintain input identity after editing (column 6), as cir-
cled. Note that though GPAvatar can achieve high-quality
3D reconstruction, it does not support semantic editing.
Optimization Baselines We also compare our method with
the state-of-the-art optimization-basedmethods PTI and SG2
in Fig. 5. We include the performance of PTI (Roich et al.,
2021) on both EG3D and StyleSDF for extensive evalua-
tion. With more than 100× faster inference, our method
achieves a comparable inversion quality. Also, the editing
results produced by E3DGE successfully preserve the local
details with high-fidelity novel view editing performance.
Note that the inversion result of StyleSDF tends to be infe-
rior on 3D shape plausibility comparedwithEG3D, over both
encoder-based inversion and optimization-based inversion.
Meanwhile, in PTI-based editing, we notice the geometry-
texture misalignment of PTIEG3D (column 7), where the
"Smiling" texture with teeth does not alignwith the geometry
without teeth. However, our E3DGEEG3D shows coherent
geometry and texture editing, which demonstrates our pro-
posed method maintains more consistent semantics during
editing. For SPI, we only include its reconstruction result
since their official released code does not include the seman-
tics editing implementation.
Video InversionThe efficiency of the encoder-basedmethod
also empowers video inversion and editing. Specifically, we
experiment on HDTF (Zhang et al., 2021b) dataset and con-
duct inversion on each frame using E3DGE . To allow for
GAN inversion, we first preprocess the video by cropping
the face from each frame using the original alignment stan-
dard adoptedbyStyleSDFandEG3D, respectively. To reduce
oscillation between frames caused by aligning each frame
individually, we smooth the affine transformation of each
frame within a small sliding window using a mean filter.
This operation effectively improves the visual consistency
of inversed video without violating the alignment bias of
pre-trained GANs.

We visualize the video inversion results in Fig. 6. As
can be seen, E3DGE shows consistent video inversion
with high-quality texture and geometry. Compared with
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Table 4 Effect of 3D Supervisions on the NoW Challenge.

Settings Median↓ Mean↓ Std

pSpStyleSDF 1.97 2.43 2.05

e4eStyleSDF 2.83 3.40 2.67

E3DGEStyleSDF + LO
geo 1.75 2.11 1.72

E3DGEStyleSDF + LF
geo 1.71 2.09 1.70

E3DGEStyleSDF + Lcode 1.66 2.06 1.69

E3DGEEG3D 2.29 2.83 2.31

StyleSDF-based E3DGE , the EG3D-based E3DGE shows
consistently better texture and shape reconstruction quality.

7.4 Ablation Study

Effect of 3D GAN as Supervisions We quantitatively val-
idate the effects of 3D supervision in the NoW Challenge
validation set and report the corresponding metrics in Tab. 4.
Compared with 2D supervision alone, adding 3D supervi-
sion greatly improves the reconstruction quality. We also
validate the benefits of all loss terms in E0 training. Note
that EG3D-based E3DGE achieves worse performance
against StyleSDF-based E3DGE , demonstrating that EG3D
achieves better visual quality at the price of a less accurate
geometry surface.
Effect of Local Features As discussed, the local features
preserve the image details to facilitate high-fidelity recon-
struction. To validate the effectiveness of local features in
texture reconstructions, we show the inversion results in
Fig. 7. With the proposed local-global fusion pipeline, our
model captures more details and guarantees photorealistic
reconstruction. Quantitative results in Tab. 3 also validate the
effectiveness of local features in high-quality inversion. The
results on the video trajectories also show that without del-
icate design, e.g., novel view training, local features would
fully collapse over novel view synthesis.
Effect of Hybrid Alignment We show the view synthesis
achieved by different alignment methods in Fig. 8. To quan-
titatively analyze the effect of hybrid alignment, in Tab. 3
we evaluate the model performance of 3D alignment and
2D alignment individually. For both ablations, novel view
training is enabled. As shown here, the 3D alignment model
shows better view consistency in video prediction measured
by reconstructionmetrics, and the2Dalignmentmodel shows
better identity preservation. The hybrid alignment model
marries the best of both and also enables semantic editing
and yields better reconstruction performance on the video
predictions.
Effect of Introducing Pose Estimator and Hybrid Opti-
mizationWe show the inversion results achieved by different
pipelines in Fig. 9 and quantitative analysis in Tab. 1. Though

Fig. 8 Ablation of Hybrid Alignment. From left to right, we show the
novel view synthesis of 3D-aligned featureswithout novel view training,
3D alignment with novel view training, synthesis achieved using 2D-
aligned features, and the final hybrid features. 3D-aligned features are
view-consistent but suffer from occlusions (circled), while 2D features
are visually plausible but lack some details (e.g., hair color). Our hybrid
fused results share the best of both

Fig. 9 Ablation of Hybrid Alignment. From left to right, we show the
input, inversion with StyleSDF-E3DGE , inversion without the jointly-
trained pose estimator, inversion with jointly trained pose estimator,
the inversion with finetuning camera pose and latent code correspond-
ingly. By introducing the pose estimator and further finetuning the pose
and latent code, E3DGE achieves better inversion with fewer visual
artifacts. Better zoom in

EG3D-E3DGE preserves more texture details compared
with StyleSDF-E3DGE (column 2), adopting EG3D as the
base model introduces more obvious misalignment issues
due to the nature of tri-plane, and introducing a jointly trained
pose estimator could alleviate this issue during inference.
Furthermore, finetuning the predicted camera pose and latent
code could further boost the performance.

7.5 More Results

E3DGE on Other Categories Besides FFHQ in the
paper, we show the performance of our method on AFHQ-
EG3D (Fig. 10), andShapeNet-StyleSDF (Fig. 11).As can be
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Fig. 10 The inversion and view synthesis results of AFHQ cat

Fig. 11 E3DGE qualitative performance on ShapeNet Chair

Table 5 Model parameters and computational cost evaluated with
MACs.

Component E0 (pSp) E1 EADA

Parameters(M) 219.71 14.06 0.60

MACs(G) 62.95 26.07 4.03

seen, E3DGE also achieves high-quality shape and texture
inversion on both cats and chairs, demonstrating the gener-
alizability of our method.
3D Toonification After training the E3DGE encoder, we
show that our method could be directly applied to 3D
stylization. We show 3D toonify-stylized results over real-
world faces using our proposed method in Fig. 12. Follow-
ing (Pinkney & Adler, 2020), we finetune the pre-trained
generator G for 400 iterations with 317 cartoon face images
and use our pre-trained encoder E for inference. Visually
inspected, the toonified results hold the cartoon style and also
preserve the identity of the input image, which demonstrates
the potential of applying our method over downstream tasks.
Moreover, the toonification of StyleSDF-E3DGE shows
richer 3D details compared with EG3D-based E3DGE .
More results are included in the supplementary.
Computational Cost We include the computational cost of
each component in the table below.

7.6 Comparisons of Inversion with MLP and
Triplane-based 3D GANs

In this work, we have extended E3DGE from MLP-based
3D GAN model (Or-El et al., 2021) to triplane-based vari-
ant (Chan et al., 2022a) and demonstrated the generalization
of our design. However, as discussed before, EG3D-based
inversion has its new challenges and does not outperform
StyleSDF in every perspective. Here we provide our com-
parisons of conducting 3D GAN inversion on these two
representative model architectures.

Regarding the advantages of inversion on triplane-based
3D GANs, we conclude that

Fig. 12 Toonification using E3DGE . From left to right, we show the
toonification result of E3DGE based on StyleSDF and EG3D

1) higher fidelity can be achieved on EG3D as the triplane
offers more representation capacity compared to MLP-
based counterparts. As shown in Fig. 5, inversion of the
same input overEG3Dyields better 3Dand texture details
compared with StyleSDF;

2) better 3D inductive bias offers more robust and flexi-
ble inversion. Specifically, noticeable shape artifacts are
observed when applying 2D inversion methods like pSp,
e4e, and PTI on the StyleSDF backbone, as shown in
Fig. 5.

However, thanks to the triplane’s strong 3D inductive bias,
directly applying 2D inversionmethods yields higher-quality
performancewith plausible shape and textures reconstructed.
This also offers the hybrid inversion option, which improves
E3DGE’s prediction by optimizing the inversed latent code
within acceptable overhead without affecting the shape plau-
sibility, which could not be guaranteed by StyleSDF.

However, the superior performance of triplane comes at a
cost with observed limitations as the following:

1) Triplane is more sensitive to pose alignment issues, e.g.,
when the estimated pose is not accurate enough, the inver-
sion of E3DGE is likely to fail, as shown in Fig. 9.
Including an extra pose estimator during training and
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further finetuning the estimated pose can alleviate this
issue.

2) In contrast to StyleSDF, EG3D has more complex latent
space and the accurate latent code cannot be accurately
acquired via a feed-forward prediction. Further optimiza-
tion of the estimated poses and latent codes is required to
achieve the expected performance in some challenging
cases.

3) Training E3DGE on EG3D requires more time to con-
verge, i.e., 7 days compared with 4 days of StyleSDF,
which is reasonable due to the increased model capacity
and fidelity. Once trained, our model can amortize the
inference time on a series of downstream applications.

4) As shown in Tab. 4, EG3D-based E3DGE achieves
worse performance against StyleSDF-based E3DGE ,
which indicates that EG3D achieves better visual quality
at the price of less-accurate geometry surface.

Overall, triplane-based 3D representation has shown great
potential and it is worthwhile to study encoder-based inver-
sion on it. With triplane’s unique advantages and affiliated
limitations, we hope our study could inspire the research and
industry community to choose a suitable representation of
their tasks. We also hope our work could motivate future
research on improved 3D representations.

8 Conclusion and Discussions

We propose a novel 3D GAN inversion framework E3DGE
for 3D GAN inversion and editing. We marry the benefits
of both self-supervised global prior and pixel-aligned local
prior for high-quality shape and texture reconstruction. A
hybrid alignment that bridges the best of 2D and 3D features
is further proposed for view-consistent editing. Benefiting
from the overall system design, the proposed method has
advantages in terms of both high fidelity and editability. As a
pioneer attempt in this direction, we believe this work opens
a new line of research direction and will inspire future works
on 3D GAN inversion, few-shot 3D reconstruction and 3D-
aware learning from 2D images.
Limitations and Future Work First, the fusion of global and
local texture in EG3D sometimes leads to visual artifacts, as
shown in Fig 9. Though we propose to alleviate this issue
with an extra pose estimator and fine-tuning, how to resolve
this challenge in the single stage is worth future investiga-
tion. Besides, the proposed method is affected by data bias
stemming from the use of synthetic data. As the synthetic
data lacks complex details and pose variations comparedwith
real-world data, our method trained with it tends to generate
a simple background and fail on extreme samples. This issue
is particularly noticeable in StyleSDF-E3DGE as shown in
Fig. 6, where all the backgrounds are more blurry compared

to EG3D-E3DGE . A future direction is to leverage real data
for semi-supervised training. Moreover, having two models
(global and local) to model the texture introduces extra com-
putational cost. A potential solution is to leverage the hyper
network (Dinh et al., 2022) for efficient local feature incor-
poration to alleviate the extra computational cost of the 2D
alignment module. Finally, we would explore the potential
of our framework on other 3D GANs and shapes and other
editing methods uniquely designed for 3D GANs. Special
attention should be paid to data bias to avoid social impact
on underrepresented minorities.
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