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Abstract
Conformal Prediction methods have finite-sample distributional-free marginal coverage 
guarantees. However, they generally do not offer conditional coverage guarantees, which 
can be important for high-stakes decisions. In this paper, we propose a novel algorithm 
to train a regression function to improve the conditional coverage after applying the split 
conformal prediction procedure. We establish an upper bound for the miscoverage gap 
between the conditional coverage and the nominal coverage rate and propose an end-to-end 
algorithm to control this upper bound. We demonstrate the efficacy of our method empiri-
cally on synthetic and real-world datasets.
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1  Introduction

A central challenge in supervised machine learning (ML) is the estimation of a target 
variable Y ∈ Y based on a vector of inputs X. This issue involves creating a predic-
tive function f(Y|X), which is constructed based on a dataset D = {(Xi, Yi)}

N
i=1

 , drawn 
independently and identically distributed (i.i.d.) from an unknown distribution P(X, Y). 
This function is then utilized to estimate the target YN+1 for a new data point with inputs 
XN+1 . Even though machine learning typically produces a point estimate of Y, predictive 
inference focuses on a more reliable prediction. It aims to develop a predictive set that 
is probable to include the target that has not been observed yet (Geisser, 2017).

Specifically, conformal prediction is a branch of predictive inference that creates 
algorithms to achieve calibrated coverage probabilities (Papadopoulos et  al., 2002; 
Vovk et al., 2005). Under the assumption that data pairs (Xi, Yi) are i.i.d. from a popula-
tion distribution ℙ(X, Y) , a conformal prediction algorithm proposes a set C�(X) that 
satisfies

Here, � ∈ [0, 1] is a pre-specified miscoverage rate and Ĉ𝛼(X) ⊂ Y is the predictive set. A 
set fulfilling Eq. 1 is called a valid predictive set.

Conformal prediction methods have two desired properties: 1) they do not make 
distributional assumptions on the underlying data-generating process, and 2) they are 
valid with finite-samples. However, conformal prediction algorithms can only sat-
isfy the marginal coverage in Eq.  1 and generally do not offer conditional coverage 
ℙ(Y ∈ Ĉ𝛼(X)|X = x) = 1 − 𝛼 , a stronger condition than the marginal coverage.

The difference between marginal and conditional coverage can be detrimental for 
high-stake decision making tasks since marginal coverage does not guarantee pre-
dictive sets with valid coverage for certain subgroups, especially for rare events or 
minorities. For example, the predictive set can be marginally valid averaged over all 
populations but significantly undercover end-stage patients in survival year estimation, 
or misestimate the risk of minorities in tasks like recidivism prediction. More impor-
tantly, oftentimes we do not have prior knowledge that what subpopulations may be at 
stake, or do not have access to the sensitive attribute information (Chen et al., 2019), 
which makes the conditional coverage guarantee much desired in practice.

Existing conformal prediction methods have considered modifying the calibration 
steps (Guan & Tibshirani, 2022; Lei & Wasserman, 2014; Han et al., 2022) or using 
the quantile estimators (Romano et al., 2019; Sesia & Romano, 2021; Chernozhukov 
et  al., 2021) to improve the conditional coverage of conformal prediction. However, 
these methods all work with a given predictive model in the training stage and mainly 
focus on improving the calibration step afterward. Unlike these approaches, we pro-
pose to optimize the predictive function in the training step given any differentiable 
non-conformity scores. Our approach follows the split conformal prediction frame-
work, and we propose a novel objective to minimize the miscoverage rate and build the 
connection with the Kolmogorov-Smirnov distance.

Our paper makes the following contributions:

•	 We propose a new method to improve the conditional coverage by optimizing the 
predictive function with regularized Kolmogorov-Smirnov distance between the 
marginal and conditional non-conformity score distributions.

(1)ℙX,Y (Y ∈ Ĉ𝛼(X)) ≥ 1 − 𝛼.
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•	 Theoretically, we establish the connection between the proposed KS regularization 
and the conditional coverage objective.

•	 We empirically validate the effectiveness and advantages of our proposed 
approaches using synthetic and real-world data.

2 � Related work

Conformal prediction   We extend the existing body of research on conformal prediction in 
regression problems (Lei et al., 2018; Romano et al., 2019; Sesia & Romano, 2021; Cher-
nozhukov et  al., 2021; Izbicki et  al., 2020; Han et  al., 2022). Many of these approaches 
traditionally depend on a fixed predictive function and focuses on designing better non-
conformity score to improve conditional coverage or sharper intervals. Our method focuses 
on optimizing the predictive function for a given differentiable non-conformity score to 
improve the conditional coverage. In more recent studies, various methods have been intro-
duced to enhance model training with the goal of reducing the size of prediction sets in 
classification problems (Bellotti, 2021; Stutz et  al., 2021), or focusing on lower-dimen-
sional hyperparameters rather than directing the training of all model parameters (Chen 
et al., 2021; Colombo & Vovk, 2020; Yang & Kuchibhotla, 2021). Similar to ours, Ein-
binder et al. (2022) proposes a differentiable objective to improve the conditional coverage 
of deep learning classifiers while our paper focuses on regression tasks and we propose 
a novel Kolmogorov-Smirnov distance-based objective which is a sufficient condition for 
achieving nominal conditional coverage rate.

Approximate conditional coverage  In an early work, Vovk (2012) introduces a number 
of variants of conditional validity and achieves them using a modified inductive confor-
mal prediction. Recently, a series of works aimed to improve the imbalanced coverage of 
conformal prediction. Motivated by fairness concerns, Romano et al. (2020) proposed the 
equalized coverage method that has guaranteed coverage conditional on a group index. The 
coverage, however, is only guaranteed for the subgroups sharing the same value of a pre-
specific sensitive attribute. Feldman et  al. (2021) designed a regularization to encourage 
the independence of a coverage indicator of a miscoverage event and the predictive interval 
length. The regularization is a necessary but not sufficient condition for valid conditional 
coverage, and its effectiveness hinges on empirical validations. Noticing that the condi-
tional coverage is equivalent to a set of moment conditions to hold for all measurable func-
tions, Gibbs et al. (2023) proposes a type of conditional coverage given a class of covari-
ate shifts. It can provide conditional coverage over groups and over multiple pre-specified 
shifts, while the applications are mostly designed for group-conditional coverage with 
pre-specified groups and for coverage under covariate shifts with given tilting functions. 
In contrast, our proposed method does not require the variables to be conditioned on are 
known a priori.

3 � Problem statement

Consider i.i.d. pairs of covariates Xi and a target variable Yi , i.e. D = {(Xi, Yi)}
N
i=1

 , from an 
underlying distribution P. We observe data D and the covariates XN+1 of a new data point. The 
non-conformity score function V ∶ X × Y → ℝ measures how the prediction of our predictive 
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model conforms to the true target Y. For example, given a fitted response function f(x), we can 
take the score to be the absolute residual V(x, y) = |y − f (x)| . In the split conformal prediction 
framework, the dataset is split into a training set for training the function f and a calibration set 
to calculate the non-conformity scores. For the remaining of the paper, we will assume the non-
conformity score is fixed and differentiable, which encompasses many popular choices of non-
conformity scores such as V(x, y) = |y − f (x)| (Gibbs et al., 2023), V(x, y) = |y − f (x)|∕�(x) 
(Angelopoulos & Bates, 2021), or V(x, y) = max{q̂l(x) − y, y − q̂h(x)} (Romano et al., 2019).

Given the non-conformity score function, the conformal prediction algorithm will output 
the regions of y where the scores are small. The threshold q∗ for the nominal miscoverage rate 
� is the ⌊(n + 1)(1 − �)⌋∕n-quantile of the conformity scores on the calibration set. The pre-
dictive set is formally defined as

We can prove that C(⋅) satisfies the marginal coverage guarantee by exchangability:

Theorem  1  (Marginal coverage guarantee (Vovk et  al., 2005)) Assume {(Xi, Yi)}
n
i=1

 are 
independent and identically distributed, then the split conformal prediction set satisfies

If V(Xn+1, Yn+1) has a continuous distribution, then

In practice, we are often more interested in the conditional coverage for any given X = x , 
i.e., ℙ(Y ∈ Ĉ𝛼(X)|X = x) = 1 − 𝛼 . A key observation is that the threshold q∗ is taken as the 
quantile over the marginal distribution of the non-conformity scores. However, the conditional 
coverage ℙ(Y ∈ Ĉ𝛼(X)|X = x) = ℙ(V(X, Y) ≤ q∗|X = x) depends on the conditional distri-
bution of the non-conformity scores. The discrepancy of the score distribution motivates the 
following proposition.

Proposition 1  If P(V) = P(V|X = x) , then ℙ(Y ∈ Ĉ𝛼(X)|X = x) ≥ 1 − 𝛼 . If V(X, Y) has a 
continuous distribution, then P(Y ∈ C(X)|X = x) ≤ 1 − � +

1

n+1
.

Proof  This is a direct result from Theorem 1. 	�  ◻

Proposition 1 reveals that the main reason why conformal prediction cannot achieve good 
conditional coverage is P(V) ≠ P(V|X) . It implies a sufficient condition for achieving perfect 
conditional coverage (for confidence level � ). By this observation, we can train the regression 
function by regularizing the distance between the marginal and conditional non-conformity 
score distribution. Assuming the machine learning model is trained by minimizing mean 
squared error (MSE), then we can optimize the function f�(⋅) by

The positive � is the hyperparameter that balances the mean squared loss and the distance 
constraint. Here we first write d(⋅, ⋅) as a general distance function. In what follows, we 
study what distance metric should be chosen.

(2)C(Xn+1) = {y ∶ V(Xn+1, y) ≤ q∗}.

(3)P(Yn+1 ∈ C(Xn+1)) ≥ 1 − �.

(4)P(Yn+1 ∈ C(Xn+1)) ≤ 1 − � +
1

n + 1
.

(5)min
�

�(y − f�(x))
2 + � sup

x

d(P(V|X = x),P(V)).
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3.1 � Connection with Kolmogorov–Smirnov (KS) distance

We find a proper distance measure to achieve valid conditional coverage is the Kol-
mogorov–Smirnov (KS) distance. The connection is established based on the following 
proposition.

Proposition 2  (Conditional coverage rate) Denote the cumulative distribution functions 
(CDFs) for the marginal and conditional non-conformity score distributions P(V) and 
P(V|X = x) are F(v) and Gx(v) , respectively, then the asymptotic conditional coverage rate 
for the split conformal prediction is Gx(F

−1(1 − �)).

We include all the proofs in Appendix A. For a given nominal level 1 − � , we then mini-
mize the difference between the conditional coverage of the conformal prediction and the 
nominal level |1 − � − Gx(F

−1(1 − �))| to achieve the desired coverage rate. However, this 
requires us to train a separate model for each � , which may create unnecessary computation 
costs. Hence, we choose to minimize the objective over all possible � , and the objective 
becomes

where the first equality comes from setting v = F−1(1 − �) , and
the second equality is by the definition of the KS distance.
We can thus achieve the target conditional coverage by controlling the KS distance 

between the conditional and marginal non-conformity score distributions. Taking the KS 
distance as an additive regularization, the objective in Eq. 5 becomes

Here we use KS distance as the distance function d(⋅, ⋅) in Eq. 5. The supx aims to improve 
the worst conditional coverage for all possible x.

3.2 � Optimizing KS distance

In practice, we do not have access to the true distributions of either marginal or conditional 
non-conformity distributions, which makes estimating the KS distance challenging. We 
thus choose to use empirical CDFs to estimate them. If we have access to random samples 
{Vi}

n
i=1

 and {Vx
i
}n
i=1

 drawn from P(V) and P(V|X = x) respectively. The empirical KS dis-
tance can be written as

However, it cannot be optimized easily since the indicator function is not differentiable. To 
address the optimization problem, we use the sigmoid function with a temperature param-
eter to approximate the indicator function. More specifically,

(6)max
�

|1 − � − Gx(F
−1(1 − �))| =max

v
|F(v) − Gx(v)|

(7)=KS(P(V),P(V|X = x))

(8)min
�

�(y − f�(x))
2 + � sup

x

KS(P(V|X = x),P(V)).

(9)max
t

|
n∑

i=1

1

n
�[Vi ≤ t] −

n∑

i=1

1

n
�[Vx

i
≤ t]|
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where �(x) = 1

1+exp(−x)
 and � is the temperature. Since the score is unidimensional, t can be 

selected from a grid. When � → ∞ , Eq. 10 recovers Eq. 9.
To prevent potential overfitting, we choose to optimize MSE and KS distance on the train-

ing and calibration sets separately. Assume we have a training set {Xi, Yi}
n1
i=1

 , and a calibration 
set {Xi, Yi}

n1+n2
i=n1+1

 , we sample ns samples {Vi}i∈I , I ⊂ {n1 + 1,⋯ , n1 + n2} , |I| = ns.
While we can sample from the marginal non-conformity score distribution, we do not have 

access to the conditional distribution. Therefore, we fit a conditional generative model P�(y|x) 
on the training data and sample Ŷ given X to estimate the KS distance. Specifically, we sam-
ple ŷj

i
∼ P𝜙(y|xi), j = 1,⋯ , ns , from the fitted conditional generative model and compute the 

score Vj,x

i
∶= V(xi, ŷ

j

i
) . Then the empirical objective can be written as

The complete algorithm is included in Algorithm 1.

Algorithm 1   KS-constrained conformal prediction (KS-CP)

Since our algorithm uses the same calibration step as the split conformal prediction frame-
work, we have the same marginal coverage guarantee in Theorem 1. Since we used approxi-
mated conditional non-conformity distribution, we are interested in whether our algorithm can 
still optimize for the conditional miscoverage rate. Next we show that by using a fitted condi-
tional distribution, we will minimize the upper bound of the coverage discrepancy from the 
nominal level. Based on the triangle inequality of KS distance (Johnston & Prochno, 2019), 
we have

(10)K̂S(P(V|X = x),P(V)) = max
t

|
n∑

i=1

1

n
�(�(t − Vi)) −

n∑

i=1

1

n
�(�(t − Vx

i
))|,

(11)

1

n1

n1∑

i=1

(yi − f�(xi))
2

+ � max
n1+1≤i≤n1+n2

{
max

t
|
∑

i�∈I

1

ns
�(�(t − Vi� )) −

ns∑

j=1

1

ns
�(�(t − V

j,x

i
))|
}

(12)
KS(P(V|X),P(V)) ≤ KS(P(V|X),P�(V|X))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Generative Model Error on V

+KS(P�(V|X),P(V))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Our Regularization

.
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The first term is the estimation error of the conditional generative model. Since we use the 
conditional generative model to fit y, ideally we want the upper bound to be dependent on 
the estimation error of y instead of V. Proposition 3 connects the KS distance of the score 
distribution and the KS distance of the outcome distribution. For some non-conformity 
scores, we can then write

Proposition 3  If V(x, Y) = |Y − f (x)| , V(x, Y) = |Y − f (x)|∕�(x) , or 
V(x, Y) = max{f̂𝛼lo − Y , Y − f̂𝛼hi} , assume the distribution PY ,QY ,PV ,QV have CDFs 
FY ,GY ,FV ,GV , respectively, then KS(PV (V),QV (V)) ≤ 2KS(PY (Y),QY (Y)).

Proposition 3 justifies why we only need to fit the conditional generative model on y 
once instead of repeatedly train it on V every time f� is updated, which greatly reduces the 
computation time. The following proposition connects the optimization objective and the 
asymptotic conditional coverage.

Proposition 4  Under the conditions of Proposition 2 and 3, suppose the conditional den-
sity estimator p(y|x) is consistent and the regularization KS(P�(V|X),P(V)) is reduced to 
be below � by optimization, then 1 − 𝛼 − 𝜖 ≤ ℙ(Y ∈ Ĉ𝛼(X)|X = x) ≤ 1 − 𝛼 + 𝜖 as n → ∞.

This implies that asymptotically, if our regularization term converges to a small value 
by optimization, the deviation from the nominal level will also be small, therefore our algo-
rithm can effectively improve the conditional coverage for the predictive set output by con-
formal prediction. In Appendix A, we show the existence of consistent estimator p̂(y|x) 
by nonparametric constructions. Note that the precision � depends on the regularization 
strength � . A large � improves the conditional coverage close to the nominal level but may 
affect the predictive set size due to the potential error of the predictive model. We offer a 
detailed discussion of the impact of � and � in Appendix F. We discuss the computation 
cost of our algorithm compared to traditional conformal prediction algorithm in Appendix 
G. In what follows, we will empirically show the benefit of the proposed method through a 
comprehensive synthetic data example and real-world datasets.

4 � Experiments

We use both synthetic and real-world datasets to validate the proposed method.
Nonconformity score: We use three popular forms of conformity scores in our 

experiments:

•	 Residual: V(x, Y) = |Y − f (x)| . It quantifies the absolute error between the true target 
and the predicted value.

•	 Normalized: V(x, Y) = |Y − f (x)|∕�(x) , where �(x) is the estimated standard deviation 
output by a generated model or a Bayesian neural network. Compared to the residual 
score, the normalized score is adaptive and can form confidence intervals that are wider 

(13)
KS(P(V|X),P(V)) ≤ 2KS(P(Y|X),P�(Y|X))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Generative Model Error on Y

+KS(P�(V|X),P(V))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Our Regularization
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for data points that have higher uncertainty. We use the conditional generative models 
to calculate the standard deviation.

•	 Quantile: V(x, Y) = max{f̂𝛼lo − Y , Y − f̂𝛼hi} , where f̂𝛼lo , f̂𝛼hi are the predicted quan-
tiles output by method like quantile regression. For confidence level � , we choose 
�lo = (1 − �)∕2 and �hi = (1 + �)∕2.

Baseline We compare against the following baselines:

•	 Conformal prediction (CP): We use the standard split conformal prediction method for 
each conformity score.

•	 Orthogonal quantile regression (Feldman et al., 2021) (OQR): OQR improves standard 
quantile regression by regularizing on an objective, which is a necessary condition after 
perfect conditional coverage is achieved. We also compare against the corresponding 
conformalized algorithm Conformal Orthogonal Quantile Regression (COQR).

•	 Generative model: Since our algorithm uses a generative model to improve conditional 
coverage, a natural choice is to use the generative model directly for uncertainty quan-
tification. As we shall see, the generative model generally does not enjoy the marginal 
coverage guarantee and may have worse conditional coverage.

See Appendix B for a detailed discussion about the baselines.

4.1 � Synthetic data

We use two synthetic data-generating processes to illustrate the benefit of our method. We 
use linear regression as the model class for the synthetic data and report the performance 
trained with mean squared loss (MSE) and our algorithm. We report the marginal cover-
age, conditional coverage, set size, and MSE in Table 1 for � = 0.9 . We use the Mixture 
Density Network (Bishop, 1994) as the conditional generative model. We choose � = 1000 
and � = 10 . We use 2000 training samples, 1000 calibration samples, and 10000 test sam-
ples. We repeat the experiment over five runs.

For the first setting, we consider the setting where some subgroups may be undercov-

ered. X ∼ U[−1.5, 2.5] , Y =

{
0 + � if 2 ≤ X ≤ 2.2

2 + � otherwise
 , where � ∼ N(0, 1) , then a linear 

regression model would significantly undercover for the subgroup 2 ≤ X ≤ 2.2 . This corre-
sponds to a case where some small subgroup of the population has a different target 
distribution.

The visualization of the first setup is included in Fig.  1. Since the subgroup has a 
small population, a simple linear regression algorithm trained with MSE loss will 
ignore the subgroup and provide uninformative confidence intervals for this group. 
Therefore, the standard conformal prediction has poor conditional coverage as shown 
in Fig. 1a. By constraining on the worst conditional miscoverage measured by the KS 
distance, KS-CP intentionally outputs a function with worse MSE to achieve a near-
perfect conditional coverage. We can also see while existing methods like OQR and 
COQR improve the conditional coverage, it still has a significantly worse conditional 
coverage for the small subpopulation compared to our method. While our method relies 
on a conditional generative model, a conditional generative model generally does not 
have the finite-sample marginal coverage guarantee as demonstrated in Table  1. Even 
for such a simple toy example, the marginal coverage of the MDN model does not equal 



8355Machine Learning (2024) 113:8347–8370	

the marginal coverage while all conformal prediction methods enjoy the distribution-
ally-free guarantee. Also, we find that MDN has a significantly lower conditional cover-
age than the nominal coverage, which is likely because of the smoothness property of 
neural networks (Grinsztajn et  al., 2022). We also show the conditional coverage for 
our method in Fig. 1f across � for the residual non-conformity score. Compared to the 

Fig. 1   Coverage under synthetic data (Setting I) with linear regression, 1 − � = 90% . Here we show the 
conditional coverage for each method. Our method can achieve the specified conditional coverage while all 
other methods have significantly lower conditional coverage
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standard conformal prediction algorithm, our algorithm significantly improves the con-
ditional coverage across the specified nominal coverages �.

In the visualization, we can see that KS-CP increases the set size globally for all x. We 
would like to note this effect is evitable for some non-conformity scores like residual and 
normalized scores since a different f can only impact q∗ , which globally affect the set size 
(the set size of residual nonconformity score is 2q∗ ). However, for other nonconformity 
scores such as the quantile score, the change in the set size can be adaptive to x, which we 
give an example in Appendix H.

For the second data-generating process, we assume X ∼ U[−1.5, 2.5] , Y = � , where 
� ∼ N(0, 1) . The second synthetic data setting serves as a sanity check when the vanilla 
conformal prediction method can achieve perfect coverage. The visualization and quantita-
tive results are shown in Fig. 5 in Appendix and Table 1, respectively. In this case, almost 
all methods achieve the perfect conditional coverage since the condition in Proposition 1 
is directly satisfied by the MSE minimizing function. In this case, our method also outputs 
the correct function without a significantly larger cost in the set size and MSE.

4.2 � Real‑world data

We use 6 UCI datasets to further validate the proposed method. The complete data sta-
tistics is included in Appendix C. The model class is a three-layer feed-forward neural 

Table 1   Quantitative results for each method with synthetic data. 1 − � = 90% . We report marginal cover-
age (MC), conditional coverage (CC), set size and mean squared error (MSE). KS-CP consistently improves 
conditional coverage over standard conformal prediction across settings. The best method with the same 
non-conformity score is made bold

Bold values indicate the highest conditional coverage or WSLAB within each non-conformity score cat-
egory

Nonconformity score Dataset Method MC CC Set size MSE

Residual Syn I CP 0.90 (0.00) 0.55 (0.01) 3.62 (0.04) 1.17 (0.01)
Residual Syn I KS-CP 0.89 (0.01) 0.87 (0.01) 4.59 (0.10) 2.11 (0.09)
Normalized Syn I CP 0.91 (0.00) 0.44 (0.03) 3.64 (0.03) 1.17 (0.01)
Normalized Syn I KS-CP 0.90 (0.00) 0.65 (0.04) 4.16 (0.15) 1.59 (0.07)
Quantile Syn I CP 0.91 (0.00) 0.69 (0.01) 3.63 (0.03) NA
Quantile Syn I KS-CP 0.90 (0.01) 0.87 (0.01) 4.18 (0.09) NA
Quantile Syn I COQR 0.90 (0.00) 0.53 (0.04) 3.65 (0.05) NA
NA Syn I CDE-MDN 0.87 (0.00) 0.63 (0.04) 3.10 (0.03) 1.03 (0.01)
NA Syn I OQR 0.65 (0.05) 0.24 (0.05) 2.05 (0.22) NA
Residual Syn II CP 0.91 (0.00) 0.90 (0.01) 3.34 (0.03) 1.0 (0.01)
Residual Syn II KS-CP 0.90 (0.01) 0.89 (0.01) 3.93 (0.23) 1.41 (0.14)
Normalized Syn II CP 0.89 (0.00) 0.74 (0.01) 3.22 (0.05) 1.00 (0.01)
Normalized Syn II KS-CP 0.91 (0.00) 0.76 (0.02) 3.88 (0.28) 1.34 (0.20)
Quantile Syn II CP 0.91 (0.00) 0.90 (0.01) 4.03 (0.03) NA
Quantile Syn II KS-CP 0.91 (0.00) 0.94 (0.01) 4.06 (0.07) NA
Quantile Syn II COQR 0.90 (0.00) 0.95 (0.00) 4.02 (0.05) NA
NA Syn II CDE-MDN 0.87 (0.00) 0.68 (0.01) 3.10 (0.03) 1.01 (0.01)
NA Syn II OQR 0.89 (0.00) 0.94 (0.00) 3.89 (0.04) NA
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Table 2   Quantitative metrics of each method with UCI datasets. 1 − � = 90% . We report marginal coverage 
(MC), WSLAB, Set Size and mean squared error (MSE). KS-CP improves conditional coverage over other 
conformal prediction methods across datasets. The best method with the samenon-conformity score is made 
bold

NC score Dataset Method MC WSLAB Set size MSE

Residual Bike CP 0.90 (0.00) 0.73 (0.00) 0.76 (0.00) 0.07 (0.00)
Residual Bike KS-CP 0.90 (0.00) 0.79 (0.01) 2.49 (0.01) 0.60 (0.00)
Normalized Bike CP 0.90 (0.00) 0.75 (0.01) 0.76 (0.00) 0.07 (0.00)
Normalized Bike KS-CP 0.90 (0.00) 0.79 (0.00) 2.36 (0.01) 0.56 (0.00)
Quantile Bike CP 0.90 (0.00) 0.89 (0.02) 0.68 (0.01) NA
Quantile Bike KS-CP 0.91 (0.00) 0.89 (0.02) 2.18 (0.02) NA
Quantile Bike COQR 0.89 (0.00) 0.83 (0.03) 2.10 (0.03) NA
Non-CP Bike CDE-CVAE 0.84 (0.00) 0.69 (0.00) 1.86 (0.01) 0.50 (0.00)
Non-CP Bike OQR 0.89 (0.02) 0.81 (0.02) 2.08 (0.08) NA
Residual Communities CP 0.90 (0.00) 0.80 (0.01) 3.39 (0.06) 1.09 (0.03)
Residual Communities KS-CP 0.89 (0.00) 0.82 (0.06) 3.42 (0.15) 1.20 (0.18)
Normalized Communities CP 0.89 (0.00) 0.81 (0.02) 3.02 (0.05) 1.09 (0.03)
Normalized Communities KS-CP 0.91 (0.00) 0.81 (0.02) 4.15 (0.21) 1.80 (0.16)
Quantile Communities CP 0.90 (0.01) 0.81 (0.03) 2.79 (0.08) NA
Quantile Communities KS-CP 0.89 (0.01) 0.84(0.04) 1.79 (0.09) NA
Quantile Communities COQR 0.91 (0.01) 0.84 (0.02) 2.20(0.09) NA
Non-CP Communities CDE-CVAE 0.74 (0.00) 0.50 (0.00) 1.20 (0.01) 0.39 (0.00)
Non-CP Communities OQR 0.29 (0.14) 0.25 (0.13) 0.45 (0.23) NA
Residual Parkinsons CP 0.90 (0.00) 0.75 (0.01) 0.40 (0.01) 0.03 (0.00)
Residual Parkinsons KS-CP 0.91 (0.00) 0.83 (0.01) 2.89 (0.03) 0.74 (0.02)
Normalized Parkinsons CP 0.89 (0.00) 0.75 (0.01) 0.41 (0.03) 0.03 (0.00)
Normalized Parkinsons KS-CP 0.91 (0.00) 0.79 (0.00) 3.01 (0.09) 0.81 (0.04)
Quantile Parkinsons CP 0.90 (0.00) 0.84 (0.02) 0.35 (0.04) NA
Quantile Parkinsons KS-CP 0.90 (0.00) 0.84 (0.02) 3.03 (0.04) NA
Quantile Parkinsons COQR 0.90 (0.00) 0.82 (0.01) 2.58 (0.08) NA
Non-CP Parkinsons CDE-CVAE 0.89 (0.00) 0.76 (0.01) 2.63 (0.01) 0.72 (0.00)
Non-CP Parkinsons OQR 0.88 (0.01) 0.80 (0.01) 2.46 (0.08) NA
Residual meps19 CP 0.90 (0.00) 0.74 (0.01) 3.27 (0.01) 1.01 (0.01)
Residual meps19 KS-CP 0.91 (0.00) 0.77 (0.01) 2.81 (0.01) 0.76 (0.00)
Normalized meps19 CP 0.91 (0.00) 0.67 (0.01) 3.19 (0.01) 1.01 (0.01)
Normalized meps19 KS-CP 0.91 (0.00) 0.81 (0.00) 2.81 (0.01) 1.00 (0.03)
Quantile meps19 CP 0.90 (0.00) 0.68 (0.03) 2.68 (0.04) NA
Quantile meps19 KS-CP 0.91 (0.00) 0.83 (0.03) 5.30 (0.76) NA
Quantile meps19 COQR 0.91 (0.00) 0.69 (0.03) 2.71 (0.04) NA
Non-CP meps19 CDE-CVAE 0.85 (0.00) 0.75 (0.01) 2.01 (0.00) 0.60 (0.00)
Non-CP meps19 OQR 0.82 (0.02) 0.62 (0.05) 2.15 (0.11) NA
Residual meps20 CP 0.91 (0.00) 0.75 (0.00) 3.08 (0.01) 0.86 (0.00)
Residual meps20 KS-CP 0.91 (0.00) 0.81 (0.00) 2.84 (0.01) 0.72 (0.00)
Normalized meps20 CP 0.91 (0.00) 0.73 (0.01) 2.98 (0.01) 0.86 (0.00)
Normalized meps20 KS-CP 0.91 (0.00) 0.82 (0.00) 2.75 (0.01) 0.75 (0.01)
Quantile meps20 CP 0.91 (0.00) 0.82 (0.02) 2.70 (0.04) NA
Quantile meps20 KS-CP 0.90 (0.00) 0.86 (0.03) 3.92 (0.03) NA
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network with LeakyReLU activation. We choose � = 100 and � = 10 . Since we do not 
have access to the underlying data-generating process using real-world datasets, we use 
the worst-slab coverage (WSLAB) (Cauchois et al., 2021) as the approximated conditional 
coverage. WSLAB measures the worst coverage on randomly sampled slabs on the test 
data, which is a surrogate measure of the worst group coverage. If the WSLAB has a good 
coverage, the method should have a good subgroup coverage over all slabs. Moreover, it 
is efficient to compute with a O(n) time (Chung & Lu, 2005) and has been used in many 
conformal prediction papers as a surrogate measure to examine conditional coverage (Cau-
chois et al., 2021; Feldman et al., 2021; Wang et al., 2022). We use the conditional Vari-
ational AutoEncoder (Sohn et al., 2015) as the conditional generative model. We split the 
data into 50% training, 20% calibration, and 30% test. We repeat the experiment over five 
runs. We bold the entry with the highest conditional coverage or WSLAB within each non-
conformity score category.

We report the marginal coverage, conditional coverage, set size, and MSE in Table 2 for 
� = 0.9 for different methods and non-conformity scores. Our method improves WSLAB 
across different choices of non-conformity scores and datasets. For each non-conformity 
score, our method consistently improves over the standard conformal prediction method. 
We do not observe a consistent improvement in WSLAB for OQR and COQR. Similar to 
the synthetic data set, using the conditional generative model alone for uncertainty quanti-
fication does not have the finite-sample marginal coverage guarantee and empirically may 
have worse WSLAB than our method. We also report WSLAB across � in Fig. 2 for the 
residual non-conformity score. Compared to standard conformal prediction, our method 
consistently improves the worst WSLAB miscoverage among all �.

4.3 � Ablation study

In our objective Eq. 11, we use � to balance the MSE loss and the conditional coverage. 
In this section, we show the results for our synthetic data settings for different values 

Table 2   (continued)

NC score Dataset Method MC WSLAB Set size MSE

Quantile meps20 COQR 0.91 (0.00) 0.78 (0.01) 2.67 (0.03) NA
Non-CP meps20 CDE-CVAE 0.82 (0.00) 0.74 (0.00) 2.15 (0.00) 0.67 (0.00)
Non-CP meps20 OQR 0.84 (0.01) 0.69 (0.03) 2.25 (0.07) NA
Residual meps21 CP 0.91 (0.00) 0.73 (0.01) 3.05 (0.01) 0.87 (0.00)
Residual meps21 KS-CP 0.91 (0.00) 0.80 (0.00) 2.75 (0.01) 0.70 (0.00)
Normalized meps21 CP 0.90 (0.00) 0.79 (0.01) 2.94 (0.01) 0.86 (0.01)
Normalized meps21 KS-CP 0.90 (0.00) 0.84 (0.01) 2.68 (0.02) 0.73 (0.01)
Quantile meps21 CP 0.91 (0.00) 0.77 (0.01) 2.73(0.02) NA
Quantile meps21 KS-CP 0.90 (0.00) 0.84 (0.01) 6.36 (0.48) NA
Quantile meps21 COQR 0.90 (0.00) 0.76 (0.01) 2.72 (0.03) 0.00 (0.00)
Non-CP meps21 CDE-CVAE 0.84 (0.00) 0.82 (0.00) 2.11 (0.01) 0.62 (0.00)
Non-CP meps21 OQR 0.82 (0.02) 0.70 (0.02) 2.26 (0.05) NA

Bold values indicate the highest conditional coverage or WSLAB within each non-conformity score cat-
egory
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of � . We report the Marginal Coverage, Conditional Coverage, Set Size and MSE for 
log(�) = −1, 0, 1, 2, 3 when 1 − � = 90% in Fig. 3.

Since conformal prediction enjoys the marginal coverage guarantee, the marginal cover-
age is not affected by � . As � increases, the confidence intervals of KS-CP get wider, and 
the conditional coverage gets closer to the true specified nominal coverage. As a result of 
this, the MSE of the fitted function also gets worse to get better conditional coverage for the 
worst subgroup. This suggests our regularization can effectively improve the conditional 

Fig. 2   WSLAB for UCI datasets with residual score across � . Our method consistently improves WSLAB 
among all �
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coverage for uncertainty quantification purposes and may sometimes be a competing objec-
tive to the standard MSE loss. We also report the ablation studies for synthetic data set-
ting II in Appendix E. Since the standard conformal prediction method can achieve perfect 
conditional coverage in the second synthetic data setting, the conditional coverage is not 
affected by � . Similarly, the set size and the MSE of the fitted function are also not affected 
much by � , which is desired since we do not want to sacrifice the MSE for conditional cov-
erage when the standard conformal prediction method can achieve perfect conditional cov-
erage. In practice, we can set � to a large number such as 100 or use the validation dataset 
and a surrogate measure such as WSLAB to select the best �.

5 � Conclusion

In this paper, we investigate how to train uncertainty-aware regression functions to improve 
the conditional coverage of the function after applying the conformal prediction proce-
dure by matching the marginal and conditional non-conformity score distribution. We 

Fig. 3   Ablation studies for different choices of � for synthetic data setup I. We report the marginal coverage 
(MC), conditional coverage (CC), set size, and MSE for log(�) = −1, 0, 1, 2, 3 when 1 − � = 90%
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theoretically show that the worst conditional distribution miscoverage is upper bounded by 
the Kolmogorov-Smirnov distance between the marginal and conditional non-conformity 
score distribution and propose a novel algorithm to optimize it by leveraging a conditional 
generative model. We demonstrate the efficacy of the proposed method using synthetic and 
real-world datasets. However, our method still requires the conditional generative model to 
have enough capacity to have an informative upper bound; future work can consider how to 
derive a tighter upper bound for more efficient conditional coverage improvement. It would 
also be interesting to consider how to extend the proposed framework in a causal inference 
setup or non-stationary environment where the exchangeability assumption is violated.

Appendix A proof

Proof for Proposition 2  By Theorem 1, assuming continuous nonconformity score, we have

Take the inverse CDF of p(V),

Then take the CDF of p(V|X),

Thus the asymptotic coverage rate given x is

when n → ∞

Proof for Proposition 3  When V(x, Y) = |Y − f (x)|,

where the inequality is by the triangle inequality.
Similarly, for the normalized non-conformity score when V(x, Y) = |Y − f (x)|∕�(x),

(14)1 − � ≤ P(V(X, Y) ≤ q∗) ≤ 1 − � +
1

n + 1
.

(15)F−1(1 − �) ≤ q∗ ≤ F−1(1 − � +
1

n + 1
).

(16)Gx(F
−1(1 − �)) ≤ P(V(X, Y) ≤ q∗|X = x) = Gx(q

∗) ≤ Gx(F
−1(1 − � +

1

n + 1
)).

(17)Gx(F
−1(1 − �)),

(18)

KS(PV (V),QV (V)) = max
v

|FV (v) − GV (v)|

= max
v

|PV (V ≤ v) − QV (V ≤ v)|

= max
v

|PY (|Y − f (x)| ≤ v) − QY (|Y − f (x)| ≤ v)|

= max
v

|PY (f (x) − v ≤ Y ≤ f (x) + v) − QY (f (x) − v ≤ Y ≤ f (x) + v)|

= max
v

|PY (Y ≤ f (x) + v) − PY (Y ≤ f (x) − v)

− QY (Y ≤ f (x) + v) + QY (Y ≤ f (x) − v)|
≤ max

v
|PY (Y ≤ f (x) + v) − QY (Y ≤ f (x) + v)|

+max
v

|PY (Y ≤ f (x) − v) − QY (Y ≤ f (x) − v)| = 2KS(PY (Y),QY (Y)),
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For the quantile non-conformity score when V(x, Y) = max{f̂𝛼lo − Y , Y − f̂𝛼hi},

	�  ◻

Proof for Proposition 4  Suppose the consistency of the conditional density estimator, i.e. 
limn→∞ KS(p(y|x), p̂(y|x)) = 0 . By Proposition 2 and 3 and the equation above, we have

Hence, for ∀ � , the deviation of conditional coverage from 1 − � is less than � as n → ∞.
Finally, we show the Nadaraya-Watson conditional density estimator (CDE) (Nakayama, 

2011) and the least-squares CDE (Sugiyama et al., 2010) as examples of consistent p̂(y|x)1. 
Consider a kernel density estimation of p(x) = 1

n

∑
i Kh(��x − xi��2) . The Nadaraya-Watson 

estimator is constructed as a density ratio

(19)

KS (PV (V),QV (V)) = max
v

|FV (v) − GV (v)|

= max
v

|PY (|Y − f (x)| ≤ v�(x)) − QY (|Y − f (x)| ≤ v�(x))|

= max
v

|PY (f (x) − v�(x) ≤ Y ≤ f (x) + v�(x))

− QY (f (x) − v�(x) ≤ Y ≤ f (x) + v�(x))|
= max

v
|PY (Y ≤ f (x) + v�(x)) − PY (Y ≤ f (x) − v�(x))

(20)

−QY (Y ≤ f (x) + v�(x)) + QY (Y ≤ f (x) − v�(x))|
≤ max

v
|PY (Y ≤ f (x) + v�(x)) − QY (Y ≤ f (x) + v�(x))|

+max
v

|PY (Y ≤ f (x) − v�(x)) − QY (Y ≤ f (x) − v�(x))|

= 2KS(PY (Y),QY (Y)).

(21)
KS(PV (V),QV (V)) = max

v
|FV (v) − GV (v)|

= max
v

|PY (Y ≤ f̂𝛼hi + v) − PY (Y ≤ f̂𝛼lo − v)

(22)

−QY (Y ≤ f̂𝛼hi + v) + QY (Y ≤ f̂𝛼lo − v)|
≤ max

v
|PY (Y ≤ f̂𝛼hi + v) − QY (Y ≤ f̂𝛼hi + v)|

+max
v

|PY (Y ≤ f̂𝛼lo − v) − QY (Y ≤ f̂𝛼lo − v)|

= 2KS(PY (Y),QY (Y)).

(23)

lim
n→∞

max
𝛼

|p(Y ∈ Ĉ(X)|X) − (1 − 𝛼)|

=max
𝛼

|Gx(F
−1(1 − 𝛼)) − (1 − 𝛼)|

=KS(p(v|x), p(v))
≤2 lim

n→∞
KS(p(y|x), p𝜙(y|x)) + KS(p𝜙(v|x), p(v))

=𝜖

1  We refer to Bilodeau et al. (2023) for the consistency results of a family of conditional density estimators 
bounded by the empirical Hellinger entropy.
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Asymptotic approximations show that if h1 → 0 , h2 → 0 , and nh1h2 → ∞ , then 
p̂(y|x) → p(y|x) for ∀ y as n → ∞ (Holmes et al., 2007). For example, a typical choice of 
h1, h2 ∼ O(n−1∕3) gives |p̂(y|x) − p(y|x)| ∼ O(n−1∕3) . Therefore, we have

The least-square CDE is defined as

The consistency of r̂ is given in Theorem 1 of Sugiyama et al. (2010). 	�  ◻

Appendix B baseline

Here we describe each baseline in detail. T
Conformal prediction (CP): The Conformal Prediction (CP) is the typical split confor-

mal prediction. It randomly splits data into a training set and a validation set. A regres-
sion function ŷ = f𝜃(x) is fit on the training data, and the fitted function is used to com-
pute the nonconformity score on the validation set. The complete algorithm is shown in 
Algorithm 2.

Orthogonal quantile regression (OQR): OQR is based on the observation that a neces-
sary condition for conditional coverage is the independence between the coverage identifier 
V = 1[Y ∈ Ĉ(X)] and the set size L = Ĉ(X) . It proposes an orthogonal regularization based 
on Pearson correlation as R(V , L) = Cov(V ,L)√

Var(V)Var(L)
 , or using Hilbert-Schmidt independence 

criterion (HSIC) to account for nonlinear dependence. The objective function of OQR is an 
additive combination of quantile regression loss and the orthogonal regularization.

(24)p̂(y�x) = p̂(y, x)

p̂(x)
=

∑
i Kh2

(��x − xi��2)Kh1
(y − yi)∑

i Kh2
(��x − xi��2)

.

(25)

lim
n→∞

KS(p(y|x), p̂(y|x)) = lim
n→∞

max
y

|F(y|x) − F̂(y|x)|

≤max
y �

y

−∞

lim
n→∞

|p(y�|x) − p̂(y�|x)|dy�

=0

p̂(y|x) = argmin
r̂

1

2 ∬ (r̂(x, y) − r(x, y))2p(x)dxdy

Table 3   Data statistics of UCI 
datasets

Dataset Number of samples Num-
ber of 
features

Bike 10886 18
Communities 1994 99
Parkinsons 5875 20
MEPS_19 10428 139
MEPS_20 17541 139
MEPS_21 15656 139
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Generative model (MDN): We use mixture density network (MDN) for our toy example. 
MDN models the data likelihood as

�i are the mixture component weights, and �(y;x, �) = N(��i
(x), diag(�2

�i
(x))).

Generative model (CVAE): We use Conditional Variational AutoEncoder (CVAE) in the 
real-world data experiments. For condition c, latent z, and target x, CVAE optimizes the 
variational lower bound

dummy

Algorithm 2   Conformal prediction

Appendix C data statistics

The data statistics of UCI datasets is included in Table 3.
Bike: The bike sharing dataset contains hourly and daily count of rental bikes between 

years 2011 and 2012 in Capital bikeshare system with the corresponding weather and sea-
sonal information. We use the daily count of rental bikes as the predictive target.

Communities: The communities and crime dataset contains the demographic feature 
of a community and its corresponding per capita crime rate.

Parkinsons: The Parkinsons dataset contains biomedical voice measurements from 
42 people with early-stage Parkinson’s disease recruited to a six-month trial of a telem-
onitoring device for remote symptom progression monitoring. The dataset contains 20 
biomedical voice measurements from each patient.

MEPS19, MEPS20, MEPS21: The MEPS datasets contain the medical expenditure 
panel survey data from 2019 to 2021. The datasets contains features like demographics, 
marriage status, health status, and health insurance status. The predictive target is the 
total medical expenditure.

(26)p(y|x) =
M∑

i=1

�i�(y;x, �i).

(27)�[log p(x�c, z)] − KL(q(z�x, c)‖p(z�c)).
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Appendix D additional results on synthetic data

Figure  4 shows the coverage results for the Setting II of synthetic data. Most meth-
ods can achieve nearly perfect conditional coverage in this setting except non-confor-
mal methods like MDN and OQR. Like most methods, KS-CP can achieve near-perfect 

Fig. 4   Coverage under synthetic data (Setting II) with Linear Regression, 1 − � = 90% . Here we show the 
conditional coverage for each method. Like most methods, KS-CP can achieve perfect conditional coverage 
in this case
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conditional coverage in this case while CP can achieve the perfect conditional coverage 
in this case by design.

Compared to traditional conformal prediction method, KS-based method needs to 
estimate the conditional density model. When the conditional density model is not per-
fect (as in Fig. 4e), the regularization term of KS-based method is an upper bound for 
the true conditional coverage. We also like to note while the generative model has a 
relatively poor conditional coverage, KS-method still achieves near-perfect conditional 
coverage in the case.

Appendix E additional results on Ablation studies

We show the results for ablation studies for different choices of � for synthetic data 
setup II in Fig.  5. Since in this setting, the conditional coverage for each method is 
already close to the true specified nominal coverage, the conditional coverage is not 
affected much as � increases. Similarly, the set size and MSE are also not affected 
much as � increases, which is desired in this setting.

Fig. 5   Ablation studies for different choices of � for synthetic data setup II. We report the marginal cover-
age (MC), conditional coverage (CC), set size, and MSE for log(�) = −1, 0, 1, 2, 3 when 1 − � = 90%



8367Machine Learning (2024) 113:8347–8370	

Appendix F discussion on hyperparameter selection

F.1 selection of �

The parameter is used to control the tradeoff between prediction accuracy and the con-
ditional coverage. The selection of � is highly application-dependent and relies on the 
requester’s need on the robustness of the confidence interval. For example, in the appli-
cation of drug discovery, a good conditional coverage may be preferred over prediction 
accuracy, then the requester can set a relatively large � . In practice, the requester can 
set a maximum tolerance level of the predictive accuracy (e.g., the MSE) and tune the 
� such that the conditional coverage can be maximized within the specified tolerance.

When � → ∞ , the objective is equivalent to only minimize the regularization term. 
However, the convergence of the predictive set heavily depends on many factors such 
as the underlying data distribution and the non-conformity scores. In some cases, there 
may be infinitely many equally good solutions (in terms of the regularization term) 
with different predictive sets.

To see why it is the case, we can take a look at our synthetic data setup II. In 
this toy example, any function y ≡ c, c ∈ ℝ can minimize the regularization term 
KS(P(V),P�(V|X)) when P� is perfect. All these solutions will have a perfect condi-
tional coverage, which is the purpose of the regularization.

However, if c is far away from 0, the predictive sets will be very wide. In fact, with 
different values of c, the sizes of the predict sets are generally different. Therefore, the 
final predictive set outputted will be highly dependent on the initial model parameters 
since there are many global optimums. However, all of these solutions will have simi-
lar conditional coverage when � → ∞ while we cannot control the set size since there 
is no penalty for wide confidence intervals. Future work can also consider to penalize 

Fig. 6   Worst conditional cover-
age vs log10(�) . The conditional 
miscoverage rate is relatively 
stable for � between 3 and 50

Table 4   Subgroup set size 
and coverage with quantile 
non-conformity score. KS-CP 
changes the set size adaptively 
and improves subgroup coverage

Black community Non-black 
community

CP set size 2.91 2.81
CP coverage 0.93 0.73
KS-CP set size 2.56 2.21
KS-CP coverage 0.92 0.79
Δ set size 0.35 0.60



8368	 Machine Learning (2024) 113:8347–8370

the interval length in the objective function. In practice, the MSE term can be used to 
control the predictive accuracy of the function, and therefore control the set size of the 
predictive sets.

F.2 selection of 


For the choice of � , intuitively the � should not be too large or too small. If � is too small, the 
objective may be far from the indicator function we hope to approximate. If � is too large, the 
objective will be too similar to the discontinuous indicator function and bring challenges to the 
optimization problem. We empirically demonstrate it using our synthetic data.

We plot the worst miscoverage rate across � with � = 100 under the synthetic data setup 
I with a � grid of [1, 3, 5, 7, 9, 11, 20, 50, 70, 100, 200]. The results are shown in Fig. 6. 
We can see the miscoverage is relatively high with very small and large values of � while 
the miscoverage rate is low and relatively stable when � is between 3 and 50, which justi-
fies our choice of � = 10.

Appendix G discussion on computation cost

Compared to the standard conformal prediction method, our method requires learning a 
separate conditional density model. The computation costs for optimizing the conditional 
density model can vary heavily depending on the model class. For example, the cost of 
estimating the kernel density estimator is O(mn), where m is CDF grid size and n is the 
sample size. The cost of training a deep conditional generative model can vary heavily 
depend on the model architecture and number of parameters. The computation time of esti-
mating the KS distance is also O(mn).

Appendix H discussion on adaptive set size change

First, we would like to note that our method can only lead to global set size change for 
residual and normalized score change. To see why, the set size of the residual non-con-
formity score is 2q∗ and the set size of the normalized non-conformity score is 2�(x)q∗ , 
where q∗ is the quantile of the marginal non-conformity score. By changing the function f 
(our method), we can only influence the set size through q∗ , which leads to a global change 
in the set size.

However, our method can have an adaptive set size change for some non-conformity 
score such as quantile scores (the predictive set is [q̂l(x) − q∗, q̂h(x) + q∗] and the set size is 
q̂h(x) − q̂l(x) + 2q∗ ). To see an example, we segment the community dataset to black commu-
nities (the fraction of black residents is greater than 50%) and non-black communities to check 
the sub-group coverage with the same experimental setup in the paper. The results are shown 
in Table 4. Here KS-CP changes the set size adaptively and improves subgroup coverage.

We have added the discussion above in the revised manuscript.
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