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Abstract. An elliptic second-order differential operator Aε = b(D)∗g(x/ε)b(D) on L2(R
d) is

considered, where ε > 0, g(x) is a positive definite and bounded matrix-valued function periodic
with respect to some lattice, and b(D) is a matrix first-order differential operator. Approximations
for small ε of the operator-functions cos(τA1/2

ε ) and A−1/2
ε sin(τA

1/2
ε ) in various operator norms are

obtained. The results can be applied to study the behavior of the solution of the Cauchy problem
for the hyperbolic equation ∂2τuε(x, τ) = −Aεuε(x, τ).
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1. A class of operators. Let Γ be a lattice in R
d, and let Ω be the elementary cell of this

lattice. For functions on R
d, we use the notation f ε(x) := f(x/ε), ε > 0. On L2(R

d;Cn) we consider
a self-adjoint elliptic second-order differential operator (DO) of the form

Aε = b(D)∗gε(x)b(D), ε > 0. (1)

Here g(x) is a Γ-periodic Hermitian (m × m)-matrix-valued function such that g, g−1 ∈ L∞ and
g(x) > 0. The operator b(D), D = −i∇, is the first-order DO given by b(D) =

∑d
j=1 bjDj . Here the

bj are constant m×n matrices such that m � n. It is assumed that the symbol b(ξ) =
∑d

j=1 bjξj has
maximal rank: rank b(ξ) = n for 0 �= ξ ∈ R

d. The operator (1) is generated by the closed quadratic
form (gεb(D)u, b(D)u)L2(Rd), u ∈ H1(Rd;Cn).

2. Operator error estimates. Homogenization problems for the operator (1) were studied in
the papers [1]–[3] by Birman and Suslina by using the operator-theoretic (spectral) approach. In
[1] it was shown that, as ε→ 0, the resolvent (Aε + I)−1 converges to the resolvent of the effective
operator A0 in the operator norm on L2(R

d;Cn) and the norm of the difference of the resolvents
is of sharp order O(ε). In [2] a more accurate approximation for the resolvent (Aε + I)−1 with
corrector taken into account was found, the error being of order O(ε2). In [3] an approximation for
the resolvent of the operator Aε in the “energy” norm (i.e., the (L2 → H1)-norm) with corrector
taken into account was obtained, the error being of order O(ε). Similar results for the semigroup
e−τAε , τ > 0, were obtained in [4]–[7].

Error estimates in operator norms are called operator error estimates in homogenization theory.
A different approach to such estimates was suggested by Zhikov and Pastukhova ([8], [9]; see also
the survey [10]).

The operator-theoretic approach was applied to Schrödinger-type and hyperbolic equations in
[11], where the exponential e−iτAε and the cosine cos(τA

1/2
ε ), τ ∈ R, were studied. It turned out
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that it is impossible to approximate these operators in the (L2 → L2)-norm. The type of norm must
be changed. The result of [11] for the cosine operator is as follows:

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H2(Rd)→L2(Rd) � C(1 + |τ |)ε. (2)

An approximation for the operator A−1/2
ε sin(τA

1/2
ε ) was found by Meshkova [12]:

‖A−1/2
ε sin(τA1/2

ε )− (A0)−1/2 sin(τ(A0)1/2)‖H1(Rd)→L2(Rd) � C(1 + |τ |)ε. (3)

In [13] and [14] it was shown that, in the general case, estimates (2) and (3) are sharp with
respect to both the type of the operator norm and the dependence on the parameter τ . However,
under some additional assumptions (when Condition 1 or Condition 2 specified below holds) the
following improvement was obtained:

‖ cos(τA1/2
ε )− cos(τ(A0)1/2)‖H3/2(Rd)→L2(Rd) � C(1 + |τ |)1/2ε,

‖A−1/2
ε sin(τA1/2

ε )− (A0)−1/2 sin(τ(A0)1/2)‖H1/2(Rd)→L2(Rd) � C(1 + |τ |)1/2ε.

Similar results for Schrödinger-type equations were obtained in [15] and [16].
In [17]–[19] the question about approximations of the operator exponential with correctors taken

into account in the (Hs→L2)-norm with an error O(ε2) and in the (Hs→H1)-norm with an error
O(ε) (for a fixed τ) was studied. It turned out that it is impossible to obtain such approximations
for the operator e−iτAε ; they were found for the operator e−iτAε(I + εΛεb(D)Πε) (Λ and Πε are
defined in Sections 3 and 4 below).

For the operator A−1/2
ε sin(τA

1/2
ε ), it is possible to obtain approximations with correctors due

to the presence of the “smoothing” factor A−1/2
ε : an approximation in the energy norm was found

in [12] (in [14] the sharpness of the result was confirmed and an improvement under additional
assumptions was obtained) and an approximation in the (Hs → L2)-norm with an error O(ε2) was
found in [20].

In this paper we present new results on approximations with correctors for the operators
cos(τA

1/2
ε )(I + εΛεb(D)Πε) and sin(τA

1/2
ε ).

3. Effective characteristics. We define a constantm×mmatrix g0 called the effective matrix.
Suppose that an (n×m)-matrix-valued function Λ(x) is a Γ-periodic solution of the problem

b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,

∫

Ω
Λ(x) dx = 0.

We put g̃(x) := g(x)(b(D)Λ(x) + 1m) and g0 = |Ω|−1
∫
Ω g̃(x) dx. It turns out that the matrix g0 is

positive. The effective operator is given by A0 = b(D)∗g0b(D) on the domain H2(Rd;Cn).
By using the unitary Gelfand transform the operator A = b(D)∗g(x)b(D) can be decomposed

into the direct integral
∫
˜Ω
⊕A(k) dk of operators A(k) acting on L2(Ω;C

n). Here Ω̃ is the central
Brillouin zone of the dual lattice Γ̃. The parameter k is called the quasi-momentum. The operator
A(k) is given by the expression A(k) = b(D+ k)∗g(x)b(D+ k) with periodic boundary conditions.

The spectrum of the operator A(k) is discrete. We apply perturbation theory. Obviously,
N := KerA(0) = {u ∈ L2(Ω;C

n) : u = c ∈ C
n}. This means that the number λ = 0 is an

isolated eigenvalue of multiplicity n of the “unperturbed” operator A(0). Therefore, for |k| � t0, the
“perturbed” operator A(k) has exactly n eigenvalues on the interval [0, δ] (counted with multiplici-
ties), while the interval (δ, 3δ) is free of the spectrum. (We control the numbers δ and t0 explicitly.)
Let k = tθ, where t := |k| and θ ∈ S

d−1. According to analytic perturbation theory (see [21]),
for t � t0, there exist real-analytic (in t) branches of the eigenvalues λl(t;θ) and branches of the
eigenvectors ϕl(t;θ) of the operator A(k) =: A(t;θ), l = 1, . . . , n. The vectors ϕl(t;θ), l = 1, . . . , n,
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form an orthonormal basis in the eigenspace of A(t;θ) corresponding to the interval [0, δ]. For small
t, we have the convergent power series expansions

λl(t;θ) = γl(θ)t
2 + μl(θ)t

3 + νl(θ)t
4 + . . . , (4)

ϕl(t;θ) = ωl(θ) + tψl(θ) + . . . (5)

for l = 1, . . . , n. It is easily seen that γl(θ) � c∗ > 0. The “embryos” ωl(θ), l = 1, . . . , n, form an
orthonormal basis in the subspace N. The matrix S(θ) = b(θ)∗g0b(θ) is called the spectral germ of
the operator family A(t;θ) at t = 0. As shown in [1], the numbers γl(θ) and the elements ωl(θ) are
eigenvalues and eigenvectors of the germ: S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n.

We need the operator N(θ) : N → N given by

N(θ)=b(θ)∗L(θ)b(θ), where L(θ) := |Ω|−1

∫

Ω
(Λ(x)∗b(θ)∗g̃(x) + g̃(x)∗b(θ)Λ(x)) dx.

The operator N(θ) can also be described in terms of the coefficients of the power series expansions
(4) and (5): N(θ) = N0(θ) +N∗(θ), where the first term on the right-hand side is diagonal in the
basis ω1(θ), . . . , ωn(θ) and is given by

N0(θ) =

n∑

l=1

μl(θ)( · , ωl(θ))L2(Ω)ωl(θ)

and the second term

N∗(θ) =
n∑

l=1

γl(θ)(( · , Pψl(θ))L2(Ω)ωl(θ) + ( · , ωl(θ))L2(Ω)Pψl(θ))

has zero diagonal in this basis. Here P is the orthogonal projection onto N.
We put S(k) := t2S(θ) = b(k)∗g0b(k), L(k) := tL(θ), and N(k) := t3N(θ) = b(k)∗L(k)b(k)

for k = tθ ∈ R
d.

4. Main results. We introduce a smoothing operator Πε on L2(R
d;Cn) defined by

(Πεf)(x) = (2π)−d/2

∫

˜Ω/ε
ei〈x,ξ〉f̂(ξ) dξ,

where f̂(ξ) is the Fourier image of f .
Let G(D) and G̃(D) be, respectively, the second- and zero-order pseudodifferential operators

with symbols

G(ξ) =
1

π

∫ ∞

0
(S(ξ) + ζI)−1N(ξ)(S(ξ) + ζI)−1ζ1/2 dζ,

G̃(ξ) = − 1

π

∫ ∞

0
(S(ξ) + ζI)−1N(ξ)(S(ξ) + ζI)−1ζ−1/2 dζ.
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We put

J0
cos,ε(τ) := cos(τA1/2

ε )(I + εΛεb(D)Πε)− (I + εΛεb(D)Πε) cos(τ(A
0)1/2),

J0
sin,ε(τ) := A−1/2

ε sin(τA1/2
ε )− (I + εΛεb(D)Πε)(A

0)−1/2 sin(τ(A0)1/2),

Jcos,ε(τ) := J0
cos,ε(τ) + ε

∫ τ

0
cos((τ − τ̃)(A0)1/2)G(D) sin(τ̃ (A0)1/2) dτ

+ ε

∫ τ

0
sin((τ − τ̃)(A0)1/2)G(D) cos(τ̃(A0)1/2) dτ,

Jsin,ε(τ) := J0
sin,ε(τ)− εG̃(D) sin(τ(A0)1/2)

− ε

∫ τ

0
(A0)−1/2 cos((τ − τ̃)(A0)1/2)G(D) cos(τ̃ (A0)1/2) dτ

+ ε

∫ τ

0
(A0)−1/2 sin((τ − τ̃)(A0)1/2)G(D) sin(τ̃(A0)1/2) dτ.

Theorem 1. For τ ∈ R and ε > 0,

‖Jcos,ε(τ)‖H4(Rd)→L2(Rd) � C(1 + |τ |)2ε2, (6)

‖Jsin,ε(τ)‖H3(Rd)→L2(Rd) � C(1 + |τ |)2ε2, (7)

‖J0
cos,ε(τ)‖H3(Rd)→H1(Rd) � C(1 + |τ |)ε, (8)

‖J0
sin,ε(τ)‖H2(Rd)→H1(Rd) � C(1 + |τ |)ε. (9)

Estimate (9) was obtained in [12], an analogue of estimate (7) was found in [20] (the difference
is in the form of the corrector, which is not uniquely determined). Estimates (6) and (8) are new.

Under some additional assumptions Theorem 1 can be improved.
Condition 1. N(θ) = 0 for any θ ∈ S

d−1 .
Condition 2. N0(θ) = 0 for any θ ∈ S

d−1 , i.e., μl(θ) ≡ 0 for l = 1, . . . , n. Moreover, the
number p of different eigenvalues of the spectral germ S(θ) does not depend on θ .

Theorem 2. Suppose that Condition 1 or 2 is satisfied. Then, for any τ ∈ R and ε > 0,

‖Jcos,ε(τ)‖H3(Rd)→L2(Rd) � C(1 + |τ |)ε2, (10)

‖Jsin,ε(τ)‖H2(Rd)→L2(Rd) � C(1 + |τ |)ε2, (11)

‖J0
cos,ε(τ)‖H5/2(Rd)→H1(Rd) � C(1 + |τ |)1/2ε, (12)

‖J0
sin,ε(τ)‖H3/2(Rd)→H1(Rd) � C(1 + |τ |)1/2ε. (13)

Estimate (13) was proved by the authors in [14], and estimates (10)–(12) are new.
Note that under Condition 1 we have Jcos,ε(τ) = J0

cos,ε(τ) and Jsin,ε(τ) = J0
sin,ε(τ). Some

sufficient conditions ensuring the fulfillment of Condition 1 or 2 can be found in [2; Sec. 4].
Proposition 3. 1. Suppose that Aε = D∗gε(x)D, where g(x) is a symmetric matrix with real

entries. Then Condition 1 is satisfied.
2. Suppose that the matrices g(x) and b(θ) have real entries and the spectrum of the germ S(θ)

is simple for any θ ∈ S
d−1 . Then Condition 2 is satisfied.

Next, we confirm the sharpness of the results with respect to both the type of the norm and the
dependence of the estimates on τ . The following result demonstrates the sharpness of Theorem 1.

Theorem 4. Suppose that N0(θ0) �= 0 for some θ0 ∈ S
d−1 (i.e., μl(θ0) �= 0 for some l and θ0).

1. If τ �= 0 and s < 4, then there does not exist a constant C(τ) > 0 such that, for small ε, the
following inequality holds:

‖Jcos,ε(τ)‖Hs(Rd)→L2(Rd) � C(τ)ε2. (14)
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2. If τ �= 0 and s < 3, then there does not exist a constant C(τ) > 0 such that, for small ε, the
following inequality holds:

‖Jsin,ε(τ)‖Hs(Rd)→L2(Rd) � C(τ)ε2. (15)

3. If τ �= 0 and s < 3, then there does not exist a constant C(τ) > 0 such that, for small ε, the
following inequality holds:

‖J0
cos,ε(τ)‖Hs(Rd)→H1(Rd) � C(τ)ε. (16)

4. If τ �= 0 and s < 2, then there does not exist a constant C(τ) > 0 such that, for small ε, the
following inequality holds:

‖J0
sin,ε(τ)‖Hs(Rd)→H1(Rd) � C(τ)ε. (17)

5. If s � 4, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/τ2 = 0
and inequality (14) holds for τ ∈ R and small ε.

6. If s � 3, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/τ2 = 0
and inequality (15) holds for τ ∈ R and small ε.

7. If s � 3, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/|τ | = 0
and inequality (16) holds for τ ∈ R and small ε.

8. If s � 2, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/|τ | = 0
and inequality (17) holds for τ ∈ R and small ε.

Statements 4 and 8 were proved in [14], and the other statements are new. There are examples
of operators satisfying the assumptions of Theorem 4; see [2; Sec. 10.4], [15; Example 8.7], and [14;
Sec. 14.3].

The following statement shows that Theorem 2 is sharp as well.

Theorem 5. Suppose that N0(θ) = 0 for any θ ∈ S
d−1 (i.e., μl(θ) ≡ 0 for l = 1, . . . , n) and

νj(θ0) �= 0 for some j and θ0 .
1. If τ �= 0 and s < 3, then there does not exist a constant C(τ) > 0 such that inequality (14)

holds for small ε.
2. If τ �= 0 and s < 2, then there does not exist a constant C(τ) > 0 such that inequality (15)

holds for small ε.
3. If τ �= 0 and s < 5/2, then there does not exist a constant C(τ) > 0 such that inequality (16)

holds for small ε.
4. If τ �= 0 and s < 3/2, then there does not exist a constant C(τ) > 0 such that inequality (17)

holds for small ε.
5. If s � 3, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/|τ | = 0

and inequality (14) holds for τ ∈ R and small ε.
6. If s � 2, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/|τ | = 0

and inequality (15) holds for τ ∈ R and small ε.
7. If s � 5/2, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/|τ |1/2 = 0

and inequality (16) holds for τ ∈ R and small ε.
8. If s � 3/2, then there does not exist a positive function C(τ) such that limτ→∞C(τ)/|τ |1/2 = 0

and inequality (17) holds for τ ∈ R and small ε.

Remark 6. According to [16; Lemma 5.8], in the one-dimensional case, for the operator Aε =
− d

dxg
ε(x) d

dx , the expansion (4) of λ1(k) takes the form λ1(k) = γk2+νk4+. . . , where ν �= 0, provided
that the periodic function g(x) is nonconstant. The authors believe that, in the multidimensional
case, as a rule, νj(θ) �= 0.

Remark 7. 1. Using interpolation, we can deduce “intermediate” results from Theorems 1
and 2. For instance, under the assumptions of Theorem 1 we have ‖Jcos,ε(τ)‖Hs(Rd)→L2(Rd) �
Cs(1 + |τ |)s/2εs/2 for 0 � s � 4.
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2. Theorems 1 and 2 make it possible to deduce qualified error estimates for large values of time
τ = O(ε−α), where 0 < α < 1 in the general case and 0 < α < 2 if Condition 1 or 2 is fulfilled.

5. Application to the Cauchy problem. The results can be applied to study the behavior
of the solution uε(x, τ), x ∈ R

d, τ ∈ R, of the Cauchy problem for the hyperbolic equation with
initial data in a special class:

∂2τuε(x, τ) = −Aεuε(x, τ),

uε(x, 0) = φ(x) + εΛε(x)b(D)(Πεφ)(x), ∂τuε(x, 0) = ψ(x),

where φ,ψ ∈ L2(R
d;Cn). The solution can be represented as

uε( · , τ) = cos(τA1/2
ε )(I + εΛεb(D)Πε)φ+A−1/2

ε sin(τA1/2
ε )ψ. (18)

Representation (18) and Theorems 1 and 2 allow us to obtain approximations for the solution
uε( · , τ) in the norm on L2(R

d;Cn) or H1(Rd;Cn), provided that the functions φ and ψ belong to
suitable Sobolev classes.

Funding. This work was supported by the Russian Science Foundation under grant no. 22-11-
00092, https://rscf.ru/project/22-11-00092/.

Conflict of Interest. The author of this work declares that he has no conflicts of interest.

References

[1] M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 15:5 (2003), 1–108; English transl.:
St. Petersburg Math. J., 15:5 (2004), 639–714.

[2] M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 17:6 (2005), 1–104; English transl.:
St. Petersburg Math. J., 17:6 (2006), 897–955.

[3] M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 18:6 (2006), 1–130; English transl.:
St. Petersburg Math. J., 18:6 (2007), 857–955.

[4] T. A. Suslina, Funkts. Anal. Pril., 38:4 (2004), 86–90; English transl.: Functional Anal. Appl.,
38:4 (2004), 309–312.

[5] T. A. Suslina, Amer. Math. Soc. Transl. Ser. 2, no. 220, Amer. Math. Soc., Providence, RI,
2007, pp. 201–233.

[6] E. S. Vasilevskaya, Algebra i Analiz, 21:1 (2009), 3–60; English transl.: St. Petersburg Math.
J., 21:1 (2010), 1–41.

[7] T. A. Suslina, Math. Model. Nat. Phenom., 5:4 (2010), 390–447.
[8] V. V. Zhikov and S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524.
[9] V. V. Zhikov and S. E. Pastukhova, Russ. J. Math. Phys., 13:2 (2006), 224–237.

[10] V. V. Zhikov and S. E. Pastukhova, Uspekhi Matem. Nauk, 71:3 (2016), 27–122; English
transl.: Russian Math. Surveys, 71:3 (2016), 417–511.

[11] M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 20:6 (2008), 30–107; English transl.:
St. Petersburg Math. J., 20:6 (2009), 873–928.

[12] Yu. M. Meshkova, J. Spectr. Theory, 11:2 (2021), 587–660.
[13] M. A. Dorodnyi and T. A. Suslina, J. Differential Equations, 264:12 (2018), 7463–7522.
[14] M. A. Dorodnyi and T. A. Suslina, Algebra i Analiz, 32:4 (2020), 3–136; English transl.:

St. Petersburg Math. J., 32:4 (2021), 605–703.
[15] T. A. Suslina, J. Math. Anal. Appl., 446:2 (2017), 1466–1523.
[16] M. A. Dorodnyi, Appl. Anal., 101:16 (2022), 5582–5614.
[17] T. A. Suslina, Funkts. Anal. Pril., 56:3 (2022), 93–99; English transl.: Functional Anal. Appl.,

56:3 (2022), 229–234.
[18] T. A. Suslina, Algebra i Analiz, 35:3 (2023), 138–184; English transl.: St. Petersburg Math. J.,

35:3 (2024).
[19] T. A. Suslina, Uspekhi Matem. Nauk, 78:6 (2023), 47–178; English transl.: Russian

Math. Surveys, 78:6 (2023).

369



[20] Yu. M. Meshkova, Homogenization of Periodic Hyperbolic Systems with Corrector Taken into
Account in the L2(R

d)-Norm, DOI: 10.13140/RG.2.2.15658.08643, manuscript (in Russian),
2018.

[21] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin–New York, 1976.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

M. A. Dorodnyi
St. Petersburg State University, St. Petersburg, Russia
E-mail : mdorodni@yandex.ru

T. A. Suslina
St. Petersburg State University, St. Petersburg, Russia
E-mail : t.suslina@spbu.ru

Translated by T. A. Suslina

370


