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ABSTRACT. An elliptic second-order differential operator A. = b(D)*g(x/)b(D) on Ly(RY) is
considered, where ¢ > 0, g(x) is a positive definite and bounded matrix-valued function periodic
with respect to some lattice, and b(D) is a matrix first-order differential operator. Approximations

for small ¢ of the operator-functions COS(TA;/ *)and AZ 1/2 SiH(TA;/ %) in various operator norms are
obtained. The results can be applied to study the behavior of the solution of the Cauchy problem
for the hyperbolic equation d?u.(x,7) = —A.u.(x, 7).
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1. A class of operators. Let I' be a lattice in R?, and let  be the elementary cell of this
lattice. For functions on R?, we use the notation f*(x) := f(x/¢), € > 0. On Lo(R%; C") we consider
a self-adjoint elliptic second-order differential operator (DO) of the form

A: = b(D)*¢°(x)b(D), e > 0. (1)

Here g(x) is a I-periodic Hermitian (m x m)-matrix-valued function such that g,¢g~' € L, and
g(x) > 0. The operator (D), D = —iV, is the first-order DO given by b(D) = 2?21 b;D;. Here the
b; are constant m X n matrices such that m > n. It is assumed that the symbol b(§) = 2?21 b;&; has

maximal rank: rank b(€) = n for 0 # & € R%. The operator (1) is generated by the closed quadratic
form (¢°b(D)u, b(D)u), gay, u € H' (R4 C).

2. Operator error estimates. Homogenization problems for the operator (1) were studied in
the papers [1]-[3] by Birman and Suslina by using the operator-theoretic (spectral) approach. In
[1] it was shown that, as ¢ — 0, the resolvent (A. + I)~! converges to the resolvent of the effective
operator A in the operator norm on Ly(R% C") and the norm of the difference of the resolvents
is of sharp order O(e). In [2] a more accurate approximation for the resolvent (A. + I)~! with
corrector taken into account was found, the error being of order O(£?). In [3] an approximation for
the resolvent of the operator A. in the “energy” norm (i.e., the (Ly — H')-norm) with corrector
taken into account was obtained, the error being of order O(g). Similar results for the semigroup
e~™ 1 > 0, were obtained in [4]-[7].

Error estimates in operator norms are called operator error estimates in homogenization theory.
A different approach to such estimates was suggested by Zhikov and Pastukhova ([8], [9]; see also
the survey [10]).

The operator-theoretic approach was applied to Schrédinger-type and hyperbolic equations in
—iTA

[11], where the exponential e < and the cosine COS(TA;/Q), 7 € R, were studied. It turned out
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that it is impossible to approximate these operators in the (Ls — L2)-norm. The type of norm must
be changed. The result of [11] for the cosine operator is as follows:

leos(TAL?) = cos((A°) /)|l 2ty Loy < C(L+ [7)e. (2)
An approximation for the operator Az '/ sin(TA;/ 2) was found by Meshkova [12]:
1A 12 sin(rAL?) — (A°) 72 sin(T(A°) )| g1 (o) sy ey < O(L A+ [7])e. (3)

In [13] and [14] it was shown that, in the general case, estimates (2) and (3) are sharp with
respect to both the type of the operator norm and the dependence on the parameter 7. However,
under some additional assumptions (when Condition 1 or Condition 2 specified below holds) the
following improvement was obtained:

I COS(TA;/Q) - COS(T(AO)l/Q)HHS/?(RE!)—>L2(REI)
1A= sin(r AL?) — (A%) 12 sin(7(A%) ) | g/ gty 1y e

Similar results for Schrodinger-type equations were obtained in [15] and [16].

In [17]-[19] the question about approximations of the operator exponential with correctors taken
into account in the (H*— Lg)-norm with an error O(g?) and in the (H*— H')-norm with an error
O(e) (for a fixed 7) was studied. It turned out that it is impossible to obtain such approximations
for the operator e~7<; they were found for the operator e™74=(I 4 ¢A°h(D)IL.) (A and TI. are
defined in Sections 3 and 4 below).

For the operator A, 1/2 sin(TA;/ 2), it is possible to obtain approximations with correctors due
to the presence of the “smoothing” factor A /2, an approximation in the energy norm was found
in [12] (in [14] the sharpness of the result was confirmed and an improvement under additional
assumptions was obtained) and an approximation in the (H® — Ly)-norm with an error O(g?) was
found in [20].

In this paper we present new results on approximations with correctors for the operators
COS(TA;/2)(I +eA®b(D)IL;) and sin(TA;/Q).

3. Effective characteristics. We define a constant m xm matrix ¢° called the effective matriz.
Suppose that an (n x m)-matrix-valued function A(x) is a I'-periodic solution of the problem

b(D)*g(x)(b(D)A(x) + 1,,) =0, /QA(X) dx = 0.

We put g(x) := g(x)(b(D)A(x) + 1,,) and ¢° = [Q]7! [, g(x) dx. It turns out that the matrix ¢ is
positive. The effective operator is given by AY = b(D)*¢°b(D) on the domain H?(R?;C").

By using the unitary Gelfand transform the operator A = b(D)*g(x)b(D) can be decomposed
into the direct integral [5 @A(k)dk of operators A(k) acting on Lo(€2; C™). Here Q is the central
Brillouin zone of the dual lattice T'. The parameter k is called the quasi-momentum. The operator
A(k) is given by the expression A(k) = b(D + k)*g(x)b(D + k) with periodic boundary conditions.

The spectrum of the operator A(k) is discrete. We apply perturbation theory. Obviously,
N = Ker A(0) = {u € Ly(2;C") : u = ¢ € C"}. This means that the number A = 0 is an
isolated eigenvalue of multiplicity n of the “unperturbed” operator A(0). Therefore, for |k| < t, the
“perturbed” operator A(k) has exactly n eigenvalues on the interval [0, 6] (counted with multiplici-
ties), while the interval (9, 39) is free of the spectrum. (We control the numbers § and ¢y explicitly.)
Let k = 10, where t := |k| and @ € S?~!. According to analytic perturbation theory (see [21]),
for t < tp, there exist real-analytic (in ¢) branches of the eigenvalues \;(¢; @) and branches of the
eigenvectors ¢ (t; @) of the operator A(k) =: A(¢;0),1=1,...,n. The vectors ¢;(t;0), 1 =1,...,n,
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form an orthonormal basis in the eigenspace of A(t; @) corresponding to the interval [0, d]. For small
t, we have the convergent power series expansions

N(t;0) = y(0)t2 + 1 (0)t3 + (0t + ..., (4)
@i(t;:0) = wi(0) + ti(0) + ... (5)

for { = 1,...,n. It is easily seen that ;(0) > ¢, > 0. The “embryos” w;(0), { = 1,...,n, form an
orthonormal basis in the subspace 9. The matrix S(0) = b(6)*¢°b(0) is called the spectral germ of
the operator family A(t;0) at ¢t = 0. As shown in [1], the numbers 7;(0) and the elements w;(0) are
eigenvalues and eigenvectors of the germ: S(6)w;(0) = v(0)w;(0), I =1,...,n

We need the operator N () : 9t — 91 given by
N(0)=0b(0)"L(6)b(0), where L(0) := \Q]_l/Q(A(x)*b(O)*E(X) +9(x)*b(0)A(x)) dx.

The operator N(0) can also be described in terms of the coefficients of the power series expansions
(4) and (5): N(0) = No(0) + N.(0), where the first term on the right-hand side is diagonal in the
basis w1 (@), ...,wy(0) and is given by

0) = > m(0)(+,wi(8))1,@wi(6)
=1

and the second term
Z’n s PYi(0)) Ly wi(0) + (-, wi(0)) 1,0 P (0))

has zero diagonal in this basis. Here P is the orthogonal projection onto 1.
We put S(k) := t25(0) = b(k)*¢’b(k), L(k) := tL(0), and N (k) := t3N(0) = b(k)*L(k)b(k)
for k = t0 € R%.

4. Main results. We introduce a smoothing operator II. on Ly(R%; C") defined by
(1)) = )" [ 9 e de
3

where f(£) is the Fourier image of f.

Let G(D) and G(D) be, respectively, the second- and zero-order pseudodifferential operators
with symbols

G&) = | [ (5@ +cDTINES(E +¢nI¢ g,
Gle) =~ [ (5@ + <N es(@) + <
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We put

JOs (1) i= cos(TAY?)(I + eA°b(D)IL) — (I + eA°H(D)IL.) cos(r(A°)/2),
I e (1) == A7 2 sin(TAY?) — (I + eAb(D)IL) (A”) "1/ sin(r(A°) /),

oo () 1= T () ¢ [ cos((r = F)(AY) ) G(D) sin(FAY) %) dr

+s/T sin((r — 7)(A%)Y2)G(D) cos(7(A%)/?) dr,
0
Toine(7) := J%, (1) — eG(D) sin(r(A°)'/?)

—e [0 cos((r = FAN ) GOD) cos(F(4%) )

£ / T(AO)‘l/Z sin((1r — 7)(A%)Y?)G(D) sin(7(A4°%)'/?) dr.
0

Theorem 1. For 7 € R and ¢ > 0,

[ Teos.e (T) | ety Lo ma) < C
[ Jsin,e (7) | 23 (R4) > Ly(Rd) S C
| 0055(7—)”H3 (Rd) 1 (R < C
[T (T 272 ®R)—HI(RY) < C

is in the form of the corrector, which is not uniquely determined). Estimates (6) and (8) are new.
Under some additional assumptions Theorem 1 can be improved.

Condition 1. N(8) =0 for any 6 € ST 1.
Condition 2. No(0) = 0 for any 8 € S¥ ', ie., 1y(@) = 0 for | = 1,...,n. Moreover, the
number p of different eigenvalues of the spectral germ S(0) does not depend on 6.

Theorem 2. Suppose that Condition 1 or 2 is satisfied. Then, for any T € R and £ > 0,

[ Jeos,e (T) | 73 (Rey— Lo ey < C(1+ |7])e?, (10)
1 sine (1)l 12 @ty Loty < C(L A+ |7])e?, (11)
| Te0s e (T o2 R (RY < C(1+ 7)), (12)
” sin,e (T )N grsr2 R H(RY) S C(1l+ ‘7'|)1/25' (13)

Estimate (13) was proved by the authors in [14], and estimates (10)—(12) are new.
Note that under Condition 1 we have Jeose(T) = JOo (1) and Jyne(T) = Jsomg( ). Some
sufficient conditions ensuring the fulfillment of Condition 1 or 2 can be found in [2; Sec. 4].

Proposition 3. 1. Suppose that A. = D*¢°(x)D, where g(x) is a symmetric matriz with real
entries. Then Condition 1 is satisfied.

2. Suppose that the matrices g(x) and b(0) have real entries and the spectrum of the germ S(0)
is simple for any @ € S*"1. Then Condition 2 is satisfied.

Next, we confirm the sharpness of the results with respect to both the type of the norm and the
dependence of the estimates on 7. The following result demonstrates the sharpness of Theorem 1.

Theorem 4. Suppose that No(6g) # 0 for some 8y € S¥! (i.e., 111(80) # 0 for some | and 6y).

1. If 7 # 0 and s < 4, then there does not ezist a constant C(1) > 0 such that, for small €, the
following inequality holds:

[ Jeos,e (T) || s () 1o (re) < C(T)E7. (14)
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2. If T # 0 and s < 3, then there does not exist a constant C(7) > 0 such that, for small ¢, the
following inequality holds:

[ sin,e (T) || s Rty Lo (re) < C(7)E>. (15)

3. If T # 0 and s < 3, then there does not exist a constant C(1) > 0 such that, for small ¢, the
following inequality holds:

[T (T s () 111 (mt) < C(7)e. (16)

4. If 7 # 0 and s < 2, then there does not exist a constant C(7) > 0 such that, for small €, the
following inequality holds:

1T e ()l s Rty 11 (may < C(T)e. (17)

5. If s > 4, then there does not exist a positive function C(1) such that lim, ., C(7)/7% =0
and inequality (14) holds for 7 € R and small ¢.

6. If s = 3, then there does not exist a positive function C (1) such that lim, ., C(7)/7% = 0
and inequality (15) holds for T € R and small ¢.

7. If s > 3, then there does not exist a positive function C(7) such that lim,_,o C(7)/|7| =0
and inequality (16) holds for T € R and small ¢.

8. If s > 2, then there does not exist a positive function C(1) such that lim,_,. C(7)/|7| =0
and inequality (17) holds for 7 € R and small ¢.

Statements 4 and 8 were proved in [14], and the other statements are new. There are examples
of operators satisfying the assumptions of Theorem 4; see [2; Sec. 10.4], [15; Example 8.7|, and [14;
Sec. 14.3].

The following statement shows that Theorem 2 is sharp as well.

Theorem 5. Suppose that No(0) = 0 for any 6 € S (i.e., ;11(8) =0 forl =1,...,n) and
vj(8o) # 0 for some j and 6.

1. If T # 0 and s < 3, then there does not exist a constant C(1) > 0 such that inequality (14)
holds for small €.

2. If 7 # 0 and s < 2, then there does not exist a constant C (1) > 0 such that inequality (15)
holds for small €.

3. If T £ 0 and s < 5/2, then there does not exist a constant C(7) > 0 such that inequality (16)
holds for small ¢.

4. If T # 0 and s < 3/2, then there does not exist a constant C(7) > 0 such that inequality (17)
holds for small ¢.

5. If s > 3, then there does not exist a positive function C (1) such that lim,_,. C(7)/|T| =0
and inequality (14) holds for T € R and small ¢.

6. If s > 2, then there does not exist a positive function C(T) such that lim,; o, C(7)/|7| =0
and inequality (15) holds for T € R and small ¢.

7. If s > 52, then there does not exist a positive function C(7) such that lim, o, C(7)/|7|"/?> =0
and inequality (16) holds for T € R and small ¢.

8. If s > 3/2, then there does not exist a positive function C (1) such that lim, ., C(7)/|7|'/? =0
and inequality (17) holds for T € R and small ¢.

Remark 6. According to [16; Lemma 5.8], in the one-dimensional case, for the operator A, =
— 4 g%(x) ;L . the expansion (4) of A1 (k) takes the form i (k) = vk2+vk*+..., where v # 0, provided
that the periodic function g(x) is nonconstant. The authors believe that, in the multidimensional
case, as a rule, v;(0) # 0.

Remark 7. 1. Using interpolation, we can deduce “intermediate” results from Theorems 1
and 2. For instance, under the assumptions of Theorem 1 we have ||Jeose(7) | gs(rt)— 1, (re) <
Cs(1+ |7])%/%e%/2 for 0 < s < 4.
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2. Theorems 1 and 2 make it possible to deduce qualified error estimates for large values of time
7=0(e"%), where 0 < a < 1 in the general case and 0 < o < 2 if Condition 1 or 2 is fulfilled.

5. Application to the Cauchy problem. The results can be applied to study the behavior
of the solution u.(x,7), x € R%, 7 € R, of the Cauchy problem for the hyperbolic equation with
initial data in a special class:

('ﬁus(x,T) = —Acu(x,7),
u.(x,0) = ¢(x) + A (x)b(D) (I 9)(x), Iruc(x,0) = p(x),

where ¢, € Ly(R?, C"). The solution can be represented as
u.(+,7) = cos(TAY2)(I + eA°H(D)IL)p + AZ Y2 sin(r AL/?)ep. (18)

Representation (18) and Theorems 1 and 2 allow us to obtain approximations for the solution
u.(+,7) in the norm on Lo(R% C") or H'(R?;C"), provided that the functions ¢ and v belong to
suitable Sobolev classes.
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