
Vol.:(0123456789)

Journal of Membrane Computing
https://doi.org/10.1007/s41965-024-00144-1

RESEARCH PAPER

P systems with reactive membranes

Artiom Alhazov1 · Rudolf Freund2 · Sergiu Ivanov3 · David Orellana‑Martín4,5 · Antonio Ramírez‑de‑Arellano4,5 ·
José‑Antonio Rodríguez‑Gallego6

Received: 13 December 2023 / Accepted: 21 March 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Membranes are one of the key concepts in P systems and membrane computing, and a lot of research activities focus on their
properties and possible extensions: membrane division, membrane dissolution, mobile membranes, etc. In this work, we
explore the possibility of using membranes for thinking about the emergence of milieu separations at the origins of life. We
propose a new variant of P systems with reactive membranes, in which every symbol is initially surrounded by an elemen-
tary membrane, and in which membranes can non-deterministically merge and split, leading to the formation of bigger and
more complicated membranes. We show that such non-deterministic splitting and merging does not seem to radically affect
the computational power: P systems with reactive membranes and non-cooperative rules generate at least all semilinear lan-
guages, and cooperative rules allow for simulating partially blind register machines. We briefly discuss using P systems with
reactive membranes for illustrating the emergence of autocatalytic cycles, but actual constructions are left for future work.

Keywords  Origins of life · P systems · Self-assembly · Space and topology

1  Introduction

Membrane systems are a multiset rewriting-based theoreti-
cal construct for natural computing, introduced by Gheo-
rghe Păun in [25], and extensively studied ever since. The
structure of a membrane system—or a P system—mimics
that of a living cell: it is a hierarchical family of nested
membranes, each carrying a multiset of abstract objects and
multiset rewriting rules. The objects can be seen as formal

representations of chemical species, and the rewriting rules
capture the biochemical interactions these species may have.

Beyond the obvious abstraction arrow between biochemi-
cal species and formal objects, membrane computing paral-
lels biological systems in another interesting way. In biol-
ogy, centralization of functions is quite frequent (e.g., central
nervous systems, specialized organs, etc.), but not funda-
mental. Only as a first example, simple organisms carry out
many activities in a decentralized way, weakly orchestrated

 *	 Sergiu Ivanov
	 sergiu.ivanov@universite-paris-saclay.fr

	 Artiom Alhazov
	 artiom@math.md

	 Rudolf Freund
	 rudi@emcc.at

	 David Orellana‑Martín
	 dorellana@us.es

	 Antonio Ramírez‑de‑Arellano
	 aramirezdearellano@us.es

	 José‑Antonio Rodríguez‑Gallego
	 jrodriguez14@us.es

1	 Vladimir Andrunachievici Institute of Mathematics
and Computer Science, State University of Moldova,
Academiei 5, Chişinău, MD 2028, Moldova

2	 Faculty of Informatics, TU Wien, Favoritenstraße 9–11,
1040 Wien, Austria

3	 IBISC, Univ. Évry, Paris-Saclay University, 23, boulevard de
France, 91034 Évry, France

4	 Research Group on Natural Computing, Department
of Computer Science and Artificial Intelligence, Universidad
de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

5	 SCORE Laboratory, I3US, Universidad de Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

6	 Departmento de Construcciones Arquitectónicas I,
Universidad de Sevilla, Avda. Reina Mercedes 2,
41012 Sevilla, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-024-00144-1&domain=pdf

	 A. Alhazov et al.

by interference between related processes. Take unicellular
organisms: a computer scientist may be tempted to consider
the genetic material as the program for the whole cell, but
it is now known (e.g., [12]) that the relationship between
the genotype and the phenotype—its manifestation—is very
far from the clear program–execution duality imbuing com-
puter science. As an abstraction of hierarchically structured
biochemistry, P systems inherit this weakly centralized way
of functioning, which makes them a good candidate for
supporting the thought process about some grand laws of
biology.

In this paper, we lay the groundwork for using P systems
as a tool for thinking about some aspects of the emergence
of life. The particular question we focus on is the emergence
of milieu separations, which played an essential role as they
allowed to isolate and protect relevant processes from the
environment [13]. Since P systems already include mem-
branes as first-class citizens, we will use them as a frame-
work for thinking about the emergence of complex regions
from simpler ones.

The approach we take here is to posit that every copy of a
symbol a is endowed with some elementary space—a mem-
brane which initially only contains the symbol a. Two such
symbols can bond by merging their membranes, thereby
yielding a more complex membrane containing 2 symbols.
Such membranes can further merge, yielding bigger and big-
ger regions. Dually, membranes containing multiple symbols
can split into a pair of simpler membranes, with the contents
of the original larger membrane distributed across its chil-
dren. This is in fact membrane separation (e.g., [9, 23, 24]).

Measuring the complexity of a membrane by the num-
ber of symbols it contains is simultaneously simple and
appropriate: cooperative evolution rules are allowed, so
more symbols means more applicable rules and therefore
more interactions. In the setup, we establish in this paper,
all membranes share the same common set of evolution
rules. The rules can naturally be seen as defining a chemis-
try, while membrane merging and splitting can on the other
hand be seen as some lower-level ground laws governing
who may interact with whom, i.e., the topology of the inter-
actions. The resulting abstract structures featuring merging
and splitting membranes are therefore systems in which
objects interact based on the non-deterministic variations in
their neighborhoods. We call such structures P systems with
reactive membranes.

Before using P systems with reactive membranes as a for-
mal tool, a number of important details have to be sorted out.
In particular, we show that the definition of membrane split-
ting and merging turns out to be rather nontrivial. Choos-
ing when to recover and how to interpret the result impacts
the form of the computations of a P system with reactive
membranes, as well as what kind of results one can expect.
Finally, this P system variant as informally introduced above

and defined in Sect. 3 is very basic and may be extended in
many ways, as we briefly show in Sect. 5.

Note that we do not pretend to faithfully model in any way
the processes which happened at the origins of life. Rather,
we acknowledge the exceptional complexity of these pro-
cesses, as well as the impossibility to experimentally verify
any of the related hypotheses (e.g., [19]). The intended role
of P systems with reactive membranes is to serve as a formal
vehicle for an otherwise abstract thought process, to help
verify the latter in a basic way, and to help the researcher
to deal with complex questions. This approach is similar in
spirit to the works [28, 29], in which sign Boolean networks
are used with a similar purpose.

P systems with reactive membranes are naturally part of
the lineage of P systems with active membranes, and feature
similarities with other variants in this family. Among closely
related variants are P systems with mobile membranes, in
which membranes are allowed to move across the membrane
structure, and thereby change their immediate neighbors [10,
11, 22]. Other variants are P systems with vesicles of multi-
sets, in which multisets are contained in vesicles, which are
contained in membranes, implying that entire multisets of
symbols can travel between different membranes, thereby
activating different sets of rules [7, 17]. A key specificity of
P systems with reactive membranes setting them apart from
the other variants is that membrane splitting and merging
is global, compulsory, and independent of the contents of
the membranes or of the rules. This feature introduces a
basic form of space, through which the entities travel and in
which they interact in their immediate neighborhood. On the
other hand, compulsory splitting and merging modulates the
computational power in interesting ways.

This paper is an improved and extended version of the
works [3, 4], and is structured as follows: In Sect. 2, we
recall some basic concepts from formal languages and P
systems. In Sect. 3, we introduce P systems with reactive
membranes, and define the precise semantics of splitting
and merging of membranes. In Sect. 4, we present some first
results concerning the computational power of P systems
with reactive membranes, with non-cooperative and coop-
erative rules. In Sect. 5, we give some examples of possible
extensions to the new variant. Finally, in Sect. 6, we discuss
the potential of reactive membranes for illustrating some
processes which happened at the origins of life, as well as
some aspects of their computational power.

2 � Preliminaries

For two natural numbers a, b ∈ ℕ , a ≤ b , we use the notation
[a..b] to refer to the interval of natural numbers between a
and b, both included: [a..b] = {a, a + 1,… , b}.

P systems with reactive membranes﻿	

For an alphabet V, a finite non-empty set of abstract sym-
bols, the free monoid generated by V under the operation of
concatenation, i.e., the set containing all possible strings over
V, is denoted by V∗ . The empty string is denoted by � , and
V∗�{�} is denoted by V+ . For a string w ∈ V∗ and a symbol
a ∈ V , by |w| we denote the length of the string and by |w|a the
number of copies of a appearing in w.

A multiset over V is a function w ∶ V → ℕ , assigning the
number of times an element of V appears in w. The infinite set
of all multisets over V is denoted by V◦ . The family of finite
sets of finite multisets over V is denoted by Pf in(V

◦).
Given two multisets w1 and w2 over V, their multiset

union w1 ∪ w2 is defined as (w1 ∪ w2)(a) = w1(a) + w2(a) ,
for all a ∈ V  . As their multiset intersection w1 ∩ w2 , we
define (w1 ∩ w2)(a) = min{w1(a),w2(a)} . A restriction of
the multiset w ∶ V → ℕ to the subset B ⊆ V is the multiset
w|B ∶ V → ℕ with the property that w|B(a) = w(a) if a ∈ B
and w|B(a) = 0 otherwise.

To spell out a multiset w, we will generally write any string
containing exactly the same symbols with the same multiplici-
ties. For example, the strings aab, aba, ba2 will be used to refer
to the same multiset w with the property w(a) = 2 , w(b) = 1 ,
and w(c) = 0 for all c ∈ A ⧵ {a, b} . We denote the empty mul-
tiset by Λ , i.e., ∀a ∈ A ∶ Λ(a) = 0 , and its string representa-
tion is � , the empty string. We will use the notation |w| to refer
to the size of the multiset: �w� =

∑
a∈A w(a).

Given an alphabet V, we define a pair of functions con-
necting the finite strings in V∗ and all finite multisets in V◦ :
𝗌𝗎𝗉𝗉∗ ∶ V∗ → V◦ and 𝗌𝗍𝗋 ∶ V◦ → P(V∗) . Given a string
w ∈ V∗ , w� = ����∗(w) is the multiset containing exactly
the same symbols as w in the same number of copies:
w�(a) = |w|a , for all a ∈ V  . The function ��� is the inverse
of ����∗ , and associates to every multiset the set of strings
containing the same symbols in the same number of copies:
���(w�) = {w ∈ V∗ ∣ ����∗(w) = w�} = (����∗)−1(w�).

The family of regular, context-free, and recursively enu-
merable string languages is denoted by L(REG) , L(CF) , and
L(RE) , respectively. For a family of languages FL , the family
of Parikh images of languages in FL is denoted by PsFL.

As PsL(REG) = PsL(CF) , in the area of multiset rewrit-
ing L(CF) plays no role at all, and in the area of membrane
computing we often only get characterizations of PsL(REG)
and PsL(RE).

For further notions and results in formal language theory,
we refer to textbooks like [14] and [27].

In the rest of this section, we briefly recall P systems and
the related concepts. For more extensive overviews, we refer
the reader to [20, 26].

A (transition) P system is a construct

Π = (O,T ,�,w1,… ,wn,R1,…Rn, �, hi, ho) where

–	 O is the alphabet of objects,
–	 T ⊆ O is the alphabet of terminal objects,
–	 � is the membrane structure injectively labeled by the

numbers from [1..n] and usually given by a sequence
of correctly nested brackets,

–	 wi are the multisets giving the initial contents of each
membrane i, 1 ≤ i ≤ n,

–	 Ri is the finite set of rules associated with membrane i,
1 ≤ i ≤ n,

–	 � is the derivation mode, and
–	 hi and ho are the labels of the input membrane and the

output membrane, respectively; 1 ≤ hi ≤ n , 1 ≤ ho ≤ n.

Taking into account the well-known flattening process
for P systems, which means that computations in a P sys-
tem with an arbitrary (static) membrane structure can be
simulated in a P system with only one membrane, e.g., see
[16], often only simple P systems are considered, i.e., with
the simplest membrane structure of only one membrane
region, and then we write:

Quite often, the rules associated with membranes are multi-
set rewriting rules (or special cases of such rules). Multiset
rewriting rules have the form u → v , with u ∈ O◦ ⧵ {Λ} and
v ∈ O◦ . If |u| = 1 , the rule u → v is called non-cooperative,
otherwise it is called cooperative. In communication P
systems, rules are additionally allowed to send symbols to
the neighboring membranes. In this case, for rules in Ri ,
v ∈ (O × Tari)

◦ , where Tari contains the symbols out (cor-
responding to sending the symbol to the parent membrane),
here (indicating that the symbol should be kept in membrane
i), and inj (indicating that the symbol should be sent into the
child membrane j of membrane i). When writing out the
multisets over O × Tari , the indication here is often omitted.

In P systems, rules are often applied in the maximally
parallel way: in one derivation step, only a non-extendable
multiset of rules can be applied. The rules are not allowed to
consume the same instance of a symbol twice, which creates
competition for objects and may lead to non-deterministic
choices between the maximal collections of rules applica-
ble in one step. The maximally parallel derivation mode is
generally denoted by max. Other derivation modes include
the sequential derivation mode—seq—in which exactly
one rule is applied in every step, the set maximally parallel
derivation mode—smax—only allowing multisets of rules in
which every rule has multiplicity 1, as well as the asynchro-
nous derivation mode—asyn—under which no restriction
is imposed on the applied multiset of rules. We refer to the
papers [5, 6, 8, 18] for an in-depth discussion of the matter.

A configuration of a simple P system is simply the
multiset of objects contained in its only membrane at a

Π = (O,T ,w,R, �)

	 A. Alhazov et al.

given step. A computation of a P system is traditionally
considered to be a sequence of configurations it can suc-
cessively visit, stopping at the halting configuration. A
halting configuration is a configuration in which no rule
can be applied any more, in any membrane. The result
of a computation in a P system Π as defined above is the
contents of the output membrane ho in the halting configu-
ration projected over the terminal alphabet T.

We will use the notations N(Π) and Ps(Π) to refer to the
number language and the language of multisets, respectively,
generated by Π . The notation OPn(�, �) will refer to the fam-
ily of P systems with at most n membranes, operating under
the derivation mode � and relying on the rules of type � ,
where � = coo if cooperative rules are allowed and � = ncoo
if all rules are non-cooperative. Finally, we use the notations
NOPn(�, �) and PsOPn(�, �) to refer to the family of number
languages and multiset languages, respectively, generated
by the P systems in the family OPn(�, �).

Example 1  Fig. 1 shows the graphical representation of the
P system formally given by

In the maximally parallel mode, the inner membrane 2
of Π will apply as many instances of the rules as possible,
thereby doubling the number of objects a, and ejecting a
copy of c into the surrounding (skin) membrane in each step.
The symbol d in the skin membrane is not used. Therefore,
after k steps of evolution, membrane 2 will contain the mul-
tiset a2kb and membrane 1 the multiset ckd . Since all rules
are always applicable in Π , this P system never halts. 	� ◻

3 � Reactive membranes

A P system with reactive membranes is the following
construct:

Π = ({a, b, c, d}, {a, d}, [1[2]2]1, d, ab,R1,R2,max, 1, 1),

R2 = {a → aa, b → b (c, out)},

R1 = �.

–	 O is the alphabet of objects,
–	 T ⊆ O is the alphabet of terminal objects,
–	 W0 ∈ (O◦)◦ is the (finite) initial multiset of multisets

over O,
–	 R ⊆ O◦ × O◦ is the set of evolution rules, and
–	 � is the derivation mode.

For all rules in R, we will require at least one of the sides
to be non-empty, i.e.,

We immediately stress two major features of this definition.
On the one hand, we do not include any membrane struc-
ture. Indeed, as W0 hints, we simply use individual multi-
sets to represent the contents of the individual membranes,
without explicitly representing the membranes themselves.
Incidentally, this means that membranes do not nest in this
model. On the other hand, the evolution of all symbols in
(the multisets in) all the membranes is governed by the same
common set of rules R.

A configuration of Π is any multiset of multisets over O.
Similarly to networked models of computing like networks
of evolutionary processors (e.g., [21]) or tissue P systems
with vesicles of multisets [7], a computation step in P
systems with reactive membranes consists of two stages,
occurring in this order:

1.	 splitting and merging,
2.	 evolution.

Informally, the splitting and merging stage implements the
non-deterministic evolution of the membranes—individual
multisets under this definition—as described in the intro-
duction: any two multisets may merge, and any multiset
may split in two. The evolution stage consists in applying
the evolution rules in R to every multiset of the configura-
tion resulting after splitting and merging, according to the
derivation mode � . In the following paragraphs, we give a
formal description of both stages, applied to a configura-
tion Wi ∈ (O◦)◦.

Splitting and merging stage

1.	 Non-deterministically partition Wi into 3 submultisets:

 such that |Mi| is even, and the multisets Si , Mi , and Ii are
mutually disjoint, i.e., Si ∩Mi = Si ∩ Ii = Mi ∩ Ii = Λ .
The multisets in Mi will be merged pairwise, the

Π = (O,T ,W0,R, �) where

∀u → v ∈ R ∶ u ≠ � or v ≠ �.

Wi = Mi ∪ Si ∪ Ii, Mi, Si, Ii ∈ (O◦)◦,

a → aa
b → b (c, out)

ab
2

d

1

Fig. 1   An example of a simple P system

P systems with reactive membranes﻿	

multisets in Si will be split, and the multisets in Ii will
remain intact.

2.	 Partition Mi into disjoint pairs by picking a string
w1w2 …wk−1wk ∈ ���(Mi) non-deterministically, with
k = |Mi| , pairwise merging the pairs of successive mul-
tisets to obtain the string M̂i = (w1 ∪ w2)… (wk−1 ∪ wk) ,
and then constructing the corresponding multiset of
multisets:

3.	 Define �����(v) to be the set of all possible ways to split
the multiset v into two multisets:

 Consider v1 … vt ∈ ���(Si) , t = |Si| , and non-determin-
istically construct the new string Ŝi = 𝛼1𝛽1 … 𝛼t𝛽t such
that (�i, �i) ∈ �����(vi) , 1 ≤ i ≤ t . Finally, define:

4.	 Compute the new intermediate configuration W �
i
∈ (O◦)◦

as

In the above presentation, we describe merging before
splitting, but the order of the two substeps does not matter
since they occur on disjoint multisets Mi and Si . Further-
more, we stress that multiple intermediate configurations
W ′

i
 may be obtained from the same configuration Wi.
Evolution stage The evolution stage is defined in the

conventional way by applying the rules in R to every mul-
tiset in W ′

i
 individually, according to the derivation mode

� , and respecting the multiplicities of the elements of W ′
i
 .

More concretely, pick any string w�
1
…w�

l
∈ ���(W �

i
) and

construct the new string Ŵ �
i
= ŵ�

1
… ŵ�

l
 with the property

that w′
i

𝛿,R

⇒ŵ′
i
 . Finally, define the new configuration as

A configuration W is halting if no rules are applicable in the
evolution stage, for any intermediate configuration W ′ which
can be obtained from W in the splitting and merging stage.
An n-step halting computation of a P system with reactive
membranes Π is a finite sequence of configurations (Wi)0≤i≤n
such that Wi+1 is obtained from Wi by the computation step
described above, and Wn is a halting configuration.

As the result of a computation in a P system with reac-
tive membranes Π as defined above we take all the ter-
minal objects appearing in the membranes present in a
halting configuration Wn:

M�
i
= ����∗(M̂i).

�����(v) = {(�, �) ∣ � ∪ � = v, �, � ∈ O◦}.

S�
i
= ����∗(Ŝi).

W �
i
= M�

i
∪ S�

i
∪ Ii.

Wi+1 = ����∗(Ŵ �
i
).

where the union
⋃

w∈Wn
 iterates over the elements of Wn

respecting their multiplicities. As for simple P systems, we
will use the notations N(Π) and Ps(Π) to refer to the number
language and the language of multisets, respectively, gener-
ated by the P systems with reactive membranes Π.

In what follows, we will use the set builder notation to
describe configurations which are multisets of multisets. For
example, we will write {ab, ab, c} to refer to a configuration
containing twice the multiset ab and once the multiset c.

To conclude the introduction of P systems with reactive
membranes, we again stress that the splitting and merging
of multisets (or membranes) is non-deterministic, imposed
in every computation step, and independent of the features
of the configuration or of the rules in R. More concretely,
the rules in R cannot directly influence which symbols will
appear next to which after the splitting and merging stage.

Example 2  Consider the following P system with reactive
membranes:

For the first step of the computation, Π may decide to not
split or merge any multisets ( M0 = S0 = Λ , I0 = W0 ), mean-
ing that the evolution rules will be applied directly to sin-
gleton multisets a, b, and c. While no rules are applicable
to b or c individually, the rule a → e will have to be applied
to a, yielding the next configuration W1 = {b, c, e} ∈ (O◦)◦ ,
containing three singleton multisets. We can immediately
conclude that the rules ab → d and abc → f will never be
applicable any more later in this computation, as there is
no way to reintroduce a. In sum, this halting computation
yields the result Λ.

Now suppose that Π decides to merge the multisets a
and b in the first step, yielding the intermediate configura-
tion W �

0
= {ab, c} . In this case, a non-deterministic choice

will appear in the evolution stage between applying the
rule ab → d or a → e (both singleton sets of rules are non-
extendable). As a consequence, the following two possibili-
ties exist for the second configuration: {d, c} and {eb, c} . In
sum, these halting computations yield the results d and Λ ,
respectively.

Finally, note that the rule abc → f will never be applica-
ble with W0 = {a, b, c} , since putting a, b, and c together in
one membrane requires at least two mergers, and a will nec-
essarily be consumed by a → e or ab → d along the way. On

(
⋃

w∈Wn

w

)|||||T
=

⋃

w∈Wn

w|T ,

Π = (O,T ,W0,R,max), where

O = {a, b, c, d, e, f },

T = {d, f },

W0 = {a, b, c},

R = {ab → d, abc → f , a → e}.

	 A. Alhazov et al.

the other hand, if we put together a, b and c in one multiset
from the start, or even if we put ab together and c apart, the
rule abc → f will have a chance to be applied. In particular,
in the case in which the initial configuration is {ab, c} , it suf-
fices to consider the branch of the computation along which
Π decides to merge the two multisets in the first splitting and
merging stage. In sum, with the initial sets {ab, c} and {abc} ,
we can get the results Λ , d, and f. 	� ◻

As indicated by the example discussed above, it makes
a difference in how many multisets the initial multiset
of objects is divided. Thus, we will use the notation
RenOP(�, �) to refer to the family of P systems with reac-
tive membranes starting with n initial multisets, running
under the mode � and using rules of type � ∈ {coo, ncoo} ,
as well as the notations NRenOP(�, �) and PsRenOP(�, �)
to refer to the family of number languages and multiset
languages, respectively, generated by the P systems with
reactive membranes from RenOP(�, �).

Whereas, on the one hand, the previous example shows
the effect of having more than one initial membrane, pro-
hibiting the application of some evolution rules, the next
example shows that the halting condition can be fulfilled
due to the fact that symbols are distributed over several
membranes, although some rule could be applied if all
symbols on its left-hand side could be put into the same
membrane by a merge operation. As merging can only
combine the contents of two membranes, we can already
get the situation that a rule with three symbols in its left-
hand side cannot be applied any more.

Example 3  Consider the following P system with reactive
membranes:

If in the first two steps of the computation, Π decides to
not split or merge any multisets, from W0 = {a1a2a3} with
applying the rules {ai → a�

i
∣ 1 ≤ i ≤ 3} , after the first evolu-

tion step, we obtain W1 = {a�
1
a�
2
a�
3
} , and by then applying the

rules {a�
i
→ a��

i
∣ 1 ≤ i ≤ 3} , after the second evolution step,

we obtain W2 = {a��
1
a��
2
a��
3
} . Keeping {a��

1
a��
2
a��
3
} in the same

membrane then allows for applying the rule a′′
1
a′′
2
a′′
3
→ f  ,

thus obtaining the terminal result W3 = {f } , as W3 is a halt-
ing configuration.

Yet with two splits, but still applying the rules
{ai → a�

i
∣ 1 ≤ i ≤ 3} in the first evolution step and the rules

{a�
i
→ a��

i
∣ 1 ≤ i ≤ 3} in the second evolution step, we get a

two-step halting computation

Π = (O,T ,W0,R,max), where

O = {ai, a
�
i
, a��

i
∣ 1 ≤ i ≤ 3} ∪ {f },

T = {a��
1
, a��

2
, a��

3
, f },

W0 = {a1a2a3},

R = {ai → a�
i
, a�

i
→ a��

i
, a��

1
a��
2
a��
3
→ f }.

yielding the terminal result a′′
1
a′′
2
a′′
3
.

We also mention that with having T = {f } only, this halt-
ing computation yields the result Λ . 	� ◻

4 � Computational power: first results

In this section, we give some first results regarding the com-
putational power of P systems with reactive membranes. We
first show that we one can always pad the initial configura-
tion with empty membranes, a result which holds for non-
cooperative rules and cooperative rules.

Lemma 1  For every Π ∈ Re1OP(�, �) and for every
n > 1 , there exists a P system Π� ∈ RenOP(�, �) , such that
Y(Π) = Y(Π�) , for every Y ∈ {Ps,N}.

Proof  Given a P system with reactive membranes using rules
of type �

an equivalent P system with reactive membranes using rules
of type � with n initial membranes is

In an empty membrane Λ , no non-cooperative rules or coop-
erative rules are applicable. Moreover, merging a membrane
X with Λ yields X again, so no additional applications of
rules can happen. Hence, in any computation in Π� , no mul-
tiset can appear in any of its configurations which not also
can be obtained in a configuration of a computation in Π . 	
� ◻

In what follows, we study the impact of splitting and
merging separately in the cases of cooperative and non-
cooperative rules.

4.1 � Non‑cooperative rules and derivation trees

This subsection explores the formal ramifications of the
following remark stating that the applicability of non-
cooperative rules is not affected by splitting and merging
of membranes.

Remark 1  Recall that in P systems with reactive mem-
branes, all membranes share the same set of rules and
consider a non-cooperative rule r ∶ a → v . Its applicabil-
ity is not affected by the membrane in which a is located,

{a1a2a3} ⟹ {a�
1
, a�

2
a�
3
} ⟹ {a��

1
, a��

2
, a��

3
}

Π = (O,T , {w},R, �),

Π� = (O,T , {w,w2 = Λ,… ,wn = Λ},R, �).

P systems with reactive membranes﻿	

meaning that it can be applied the same number of times
to any configuration containing the same total number of
copies of a, independently of the way in which these cop-
ies are distributed across the membranes. One immediate
consequence is that the halting condition for a configura-
tion W can be checked without considering all possible
splits and mergers and then the non-applicability of the
rules in all membranes. Instead, it suffices to check the
non-applicability of the rules to the objects in

⋃
w∈W w

—the union of the multisets in all the membranes of W.

We now briefly recall the concept of derivation trees, which
we will use to prove the main results of this subsection. We
refer to the [26] for an extensive presentation and discussion.

C o n s i d e r a s i m p l e P s y s t e m
Π = (O,T ,w0,R, �) ∈ OP1(�, ncoo) and the following
computation

in which Π derives the final multiset v from the initial mul-
tiset w by applying at every step the rules from R according
to the mode � . We build the corresponding derivation tree
in the following way. The root of the tree is the empty mul-
tiset Λ , and every copy of a symbol from w0 is a direct child
of the root Λ . For every rule r ∶ a → b1 … bk applied in the
first step w0

�,R

⇒w1 , we add the symbols b1 to bk as the chil-
dren of the symbol a, and we additionally label the node a
with the rule name r, i.e., the corresponding node in the tree
becomes (a, r). We proceed similarly for the rest of the steps
of the computation. In the end, we will obtain a tree whose
leaves are exactly the symbols of wn , in the corresponding
number of copies.

Example 4  Consider the following simple P system:

The following is one of the computations of Π in the deriva-
tion mode max:

Here is the corresponding derivation tree constructed
according to the procedure described above:

w0

�,R

⇒w1

�,R

⇒…
�,R

⇒wn,

Π = (O,T ,w,R,max), where

O = {a, b, c, d}

T = {d},

w = aab,

R = {r1 ∶ a → d, r2 ∶ a → bc, r3 ∶ b → d, r4 ∶ c → d}.

aab
r1r2r3
⇒ dbcd

r3r4
⇒dddd.

The internal nodes of this tree have the form (x, r), where
x ∈ O is a symbol and r ∈ R is the rule which was applied to
x. The leaves of the tree have the form x ∈ O since no rules
are applied to them. Collecting the leaves yields the multiset
dddd, corresponding to the final multiset of the computation
we picked. Since in P systems we are dealing with multiset
rewriting, the levels of the derivation tree are unordered,
i.e., the order in which one writes the children of a particular
node is unimportant.

Derivation trees can be used to prove the following folk-
lore result, stating that simple P systems with non-cooper-
ative rules and without any additional control mechanisms
generate exactly the regular multiset languages.

Proposition 1  ([8, 26]) For any � ∈ {asyn, seq,max, smax}
and Y ∈ {N,Ps} , it holds that YOP1(�, ncoo) = YL(REG).

The idea of derivation trees can be extended to P systems
with reactive membranes with non-cooperative rules without
any change, as the following remark states.

Remark 2  Recall from Remark 1 that in a P system with reac-
tive membranes Πre = (O,T ,W0,R, �) all membranes share
the same set of rules R, and that the applicability conditions
of non-cooperative rules do not depend on how the symbols
are distributed across membranes. Consider now the follow-
ing computation of Πre , �re ∶ W0 ⇒ W1 ⇒ ⋯ ⇒ Wn , where
each computation step Wi ⇒ Wi+1 is carried out according to
the procedure described in Sect. 3. Construct the sequence of
multisets (wi)0≤i≤n such that wi is the union of all membrane
contents of the configuration Wi . Furthermore, let �i be the
union of all multisets of rules applied in all membranes of
Wi in �re . Consider the following object:

It is a sequence of multisets over O, in which wi+1 is obtained
from wi by applying a multiset of applicable rules, and wn is
the halting multiset in the sense that no further rules from
R are applicable to it. In other words, � is a computation of
the simple P system Π = (O,T ,w0,R, asyn) . A derivation
tree can be constructed for � , which will also capture which

� ∶ w0

�0
⇒w1

�1
⇒…

�n−1
⇒wn.

	 A. Alhazov et al.

rules were applied in the original P system with reactive
membranes Πre to obtain the final configuration Wn.

Informally, Remark 2 improves on Remark 1 by high-
lighting that the mutual independence of rule applicability
conditions and splitting and merging allows for constructing
derivation trees for any computation of a P system with reac-
tive membranes. Remark 2 also puts forward the strong con-
nection between the computations of P systems with reactive
membranes and simple P systems working under the asyn-
chronous mode. In order to formalize this connection, we
show how translations between different derivation modes
can be explicitly operated in the case of non-cooperative
rules and simple P systems.

We recall from [18] that Appl(Π,w) refers to the set of
multisets of rules of Π applicable to the configuration w, and
Appl(Π,w, �) refers to the set of multisets of rules applicable
to the configuration w according to the mode �.1

Definition 1  A mode � is called normal if for any two mul-
tisets of objects w1 and w2 the following conditions hold:

1.	 Appl(Π,w1) = Appl(Π,w2) ⟹ Appl(Π,w1, �)
= Appl(Π,w2, �),

2.	 Appl(Π,w1) ≠ � ⟹ Appl(Π,w1, �) ≠ �.

Informally, the way in which a normal mode picks the
multisets of rules to apply out of Appl(Π,w) does not depend
on the configuration w other than via the applicability condi-
tions of the rules. Furthermore, if some rules can be applied
in w ( Appl(Π,w1) ≠ � ), then a normal mode � allows apply-
ing some of them ( Appl(Π,w1, �) ≠ � ). In the case of non-
cooperative rules, this means that all normal modes eventu-
ally result in the same rule applications, as the following
theorem shows.

Theorem 1  Let �1 and �2 be two normal modes, and
Π1 = (O,T ,w,R, �1) and Π2 = (O,T ,w,R, �2) two simple P
systems differing only in the mode. Then Y(Π1) = Y(Π2) , for
any Y ∈ {N,Ps}.

Proof  Consider a computation �1 of Π1 under the mode �1
and take the corresponding derivation tree. In what follows,
we present an algorithm for constructing a derivation �2 of
Π2 under the mode �2 having the same derivation tree. This
algorithm progressively marks the nodes of the derivation
tree, until all of the nodes are marked. We refer to the set of

nodes which are immediate children of marked nodes as the
fringe and denote it by the symbol Fi for step i.

1.	 Set i ← 0 , w0 ← w , �2 ← w0 , and mark the root Λ of the
tree.

2.	 Take the multiset of nodes in the fringe to which a rule
was applied in �1 :

 If � is empty, stop.
3.	 F ind a submul t i s e t �′ o f � s uch t ha t

𝜌̄� = {r ∣ (a, r) ∈ 𝜌�} ∈ R◦ satisfies the mode �2.

4.	 Take a multiset wi+1 ∈ O◦ with the property wi

𝜌̄�

⇒wi+1
(i.e., apply the rules in 𝜌̄′ to wi).

5.	 Add wi+1 to the derivation �2 , mark the nodes of the tree
appearing in �′ , build the new fringe Fi+1 , and increment
i ← i + 1.

6.	 Go to 1..

It follows from the way in which the algorithm above oper-
ates that the fringe always contains the symbols in the cur-
rent configuration wi of the newly constructed derivation �2 ,
i.e., wi = {a ∣ (a, r) ∈ Fi} . �2 is a normal mode and the rules
in R are non-cooperative, it is therefore always possible to
construct �′ which is both a subset of � and 𝜌̄′ satisfies the
conditions of �2 , in particular 𝜌̄′ is applicable to wi . Further-
more, every iteration of the algorithm marks a non-empty set
of nodes of the tree, which guarantees termination. Finally,
in �2 , the same rules are applied to the same symbols, imply-
ing that �1 and �2 have the same (unordered) derivation trees,
and consequently produce the same final multiset. We con-
clude the proof by remarking that the symmetric construc-
tion can be used to translate any derivation of Π2 into a deri-
vation of Π1 . 	� ◻

The derivation �2 in the proof above does not need to con-
tain the same number of steps as �1 . Indeed, if �2 only allows
for smaller multisets than �1 (e.g., �2 = seq and �1 = max ),
then �2 may be longer. Furthermore, a single derivation �1
may translate into different derivations in Π2 , as picking �′
and wi+1 is non-deterministic.

The following corollary follows immediately from Theo-
rem 1 and from the fact that asyn is a normal mode.

Corollary 1  For any normal mode � and any Y ∈ {N,Ps} , it
holds that YOP1(�, ncoo) = YL(REG).

Using the above results, we can now show that the behav-
ior of P systems with reactive membranes under normal
modes and with non-cooperative rules is fundamentally
similar to that of simple P systems. We first show that the
behavior of any simple P system can be faithfully reproduced
by a P system with reactive membranes.

� = {(a, r) ∈ Fi ∣ a ∈ O, r ∈ R}.

1  We directly specialize here the more general definition from [18] to
the case in which the configuration contains exactly one multiset of
symbols.

P systems with reactive membranes﻿	

Lemma 2  For any normal mode � and any simple P sys-
tem Π ∈ OP1(�, ncoo) , there exists a P system with reactive
membranes Πre ∈ RenOP(�, ncoo) such that Y(Π) = Y(Πre) ,
for any Y ∈ {N,Ps}.

Proof  Let Π = (O,T ,w0,R, �) . We claim that the P system
with reactive membranes Πre = (O,T , {w0},R, �) satisfies
the statement of the lemma, i.e., Y(Π) = Y(Πre).

Indeed, Πre can directly reproduce any computation
of Π by never splitting or merging—i.e., Mi and Si from
the splitting and merging stage are always empty—and
applying exactly the same multisets of rules at the same
steps. Since Πre carries out the entire computation in a
single membrane, all multisets of rules applied in Π are
applicable and satisfy the mode �.

Consider on the other hand a computation �re of Πre
under the mode � and translate it into a computation �′
of a P system Π� = (O,T ,w0,R, asyn) working under the
asynchronous mode, following the procedure shown in
Remark 2. Then translate �′ into a computation � of Π
using the construction from the proof of Theorem 1. �
will have the same derivation tree as �re , which proves
the statement of the lemma. 	� ◻

We now show the converse result: the behavior of any
P system with reactive membranes can be faithfully repro-
duced by a simple P system.

Lemma 3  For any normal mode � , any n ≥ 1 , and any P
system with reactive membranes Πre ∈ RenOP(�, ncoo)
there exists a simple system Π ∈ OP1(�, ncoo) such that
Y(Π) = Y(Πre) , for any Y ∈ {N,Ps}.

Proof  Let Πre = (O,T ,W0,R, �) . We claim that the simple
P system Π = (O,T ,w0,R, �) , with w0 =

⋃
w∈W0

w , satisfies
the statement of the lemma, i.e., Y(Π) = Y(Πre).

The proof follows essentially the same reasoning as that
of Lemma 2. The P system Π can simulate any computation
�re of Πre , because �re can be translated into a computation
of Π with the same derivation tree. On the other hand, Πre
can directly reproduce any computation of Π by never split-
ting or merging. 	� ◻

Combining the two previous lemmas yields the follow-
ing result.

Theorem 2  For any normal mode � , any n ≥ 1 , the follow-
ing holds:

YRenOP(�, ncoo) = YOP1(�, ncoo).

An immediate corollary of Theorem 2 and Corollary 1 is
the following characterization.

Corollary 2  For any normal mode � , any n ≥ 1 ,
YRenOP(�, ncoo) = YREG.

4.2 � Cooperative rules

In this subsection, we show that P systems with reac-
tive membranes working under the maximally parallel
mode and using cooperative rules can simulate partially
blind register machines. As a reminder, we mention that
partially blind register machines (PBRM) have programs
consisting of the following two types of instructions for
incrementing and decrementing a register:

–	 (p, ADD(r), q, s) : in state p increment register r and jump
to state q or state s;

–	 (p, SUB(r), q) : in state p try to decrement register r; if
successful, jump to state q, otherwise abort the computa-
tion without producing a result.

Partially blind register machines feature a final zero check:
the register machine only halts with producing a result
if all non-output registers are empty when the machine
reaches the halting instruction uniquely labeled by h.

We will refer to the set of multiset languages generated
by partially blind register machines by PsPBRM.

Theorem 3  For any � ∈ {asyn, seq,max, smax},

Proof  The main idea of the proof is that throughout the
simulation of the partially blind register machine, the
configurations of the P system with reactive membranes
Π always contain exactly one instance of the symbol rep-
resenting the label of the instruction to be carried out
next. The contents of a register r is represented by the
total number of symbols ar in the configurations of Π.

The increment instruction (p, ADD(r), q, s) can be simu-
lated directly by the rules p → qar and p → sar.

The decrement instruction (p, SUB(r), q) can be simulated
by the following two rules: par → q , p → p . Moreover, for
every register symbol ar with r not being an output register,
we add the unit rules ar → ar.

More concretely, this is how we define the components
of Π:

PsPBRM ⊆ PsRe1OP(𝛿, coo).

	 A. Alhazov et al.

where P is the set of instructions of the register machine, Q
is the set of its instruction labels, R is the set of its registers,
Rout ⊆ R is the set of its output registers. We define w0 as
the multiset of the form q0a

r1
r1
… a

rm
rm

 , where q0 ∈ Q is the
initial state of the machine, and ri , 1 ≤ i ≤ m = |R| , are the
initial values of its registers.

In what follows, we describe the behavior of Π and prove
that it indeed faithfully simulates the computations of the
partially blind register machine.

If p and a copy of ar find themselves in the same mem-
brane, then a successful decrement can be simulated: the
total number of copies of ar in the system is reduced by one.

If there are no copies of ar left in the system, then p
only has the chance to be used with the unit rule p → p ;
observe that in any derivation mode at least one rule has
to be applied if the system is not halting, i.e., as long as
there still is a rule which can be applied to some symbol. In
this case, either p → p and/or some unit rule ar → ar can be
applied in every future derivation step, hence, the computa-
tion will never halt.

If copies of ar do appear in the system, but not in the
membrane containing p, then p can use the unit rule p → p ,
and in any derivation mode either only this rule and/or other
unit rules ar → ar can be applied. If in some future step,
p and ar appear in the same membrane, possibly par → q
can be applied. Otherwise, again we obtain just non-halting
computation branches.

However, there must exist another branch in which no
splits and mergers have happened at all, i.e., p and ar appear
together in the same membrane, and in which the simula-
tion therefore will be able to proceed correctly. The same
alternative holds if p and ar share the same membrane, but
the system non-deterministically would choose to only apply
p → p rather than par → p.

As soon as the halting label h appears, we have to use the
final rule h → � . The final zero check is simulated by the
unit rules ar → ar for all non-output registers r, which keep
the computation going on forever if at least one such sym-
bol ar is still present. Observe that this argument does not
depend on the distribution of the symbols in the membranes
of a configuration, since ar → ar is a non-cooperative rule,
and hence Remark 1 applies.

In sum, we conclude that the P system with reactive
membranes Π can simulate the computations of the given

Π = (O,T , {w0},R,max), where

O = Q ∪ {ar ∣ r ∈ R},

T = {ar ∣ r ∈ Rout},

R = {p → qar, p → sar ∣ (p, ADD(r), q, s) ∈ P}

∪ {par → q, p → p ∣ (p, SUB(r), q) ∈ P}

∪ {ar → ar ∣ r ∈ R ⧵Rout}

∪ {h → �}.

partially blind register machine correctly, but on the other
hand cannot yield more results. 	� ◻

Finally, we remark that the construction we show here is
non-deterministic, even if the simulated partially blind reg-
ister machine is deterministic, i.e., all increment instructions
are of the form (p, ADD(r), q, q) , which in a simpler way can
be written as (p, ADD(r), q).

5 � Extensions

Given the motivation to use P systems with reactive mem-
branes for thinking about the emergence of space and space
separations in abiotic environments, and also the richness
of the ecosystem of P systems variants, multiple extensions
can be proposed.

A natural one to be considered would be limiting the size
of individual membranes, as real membranes do not gener-
ally grow very big. Limitations on the number of symbols
have already been considered in P systems [2], but combined
with constant splitting and merging this ingredient may
have a drastically different impact. It would be necessary to
decide what happens when a membrane attains its maximal
capacity. The approach in [2] is to prevent it to accept new
symbols, but in the context of reactive membranes it may
be appropriate to bias the splitting and merging stage of the
computational step to force such full membranes to split.
The contribution of such limitations to the computational
power is yet unclear, but probably in some strong relation to
the size of the left-hand sides of the evolution rules.

An extension in the spirit of generalized P systems [15]
would be to subject the rules to splitting and merging: for
example, a rule u → v could split into two rules u → � and
� → v , which could later merge back into u → v . With such
an extension, membranes would contain objects and rules,
and splitting and merging would affect not only which sym-
bols can interact, but also which rules will ensure their inter-
action. Similarly to splitting and merging of membranes,
splitting and merging of rules may delay some interactions.
Relevance to thinking about the origins of life and the com-
putational power of this variant remain to be explored.

6 � Conclusion and perspectives

This paper is a first attempt at using P systems for thinking
about the origins of life, and in particular about the emer-
gence of individual compartments separated by membranes.
We introduced P systems with reactive membranes, in which
every symbol is conceptually surrounded by elementary
membranes, which then can merge to form bigger mem-
branes, or split. Mimicking biochemistry, the set of rules is

P systems with reactive membranes﻿	

common to all membranes—the differences in the processes
in different membranes should come from the symbols.
Cooperative rules are allowed, and probably even necessary
to meaningfully implement distinctions between membranes.

It is still an open research direction to actually illustrate
some processes believed to have happened during abiogen-
esis in P systems with reactive membranes. Perhaps the most
promising would be to implement autocatalytic cycles (e.g.,
[13]). The next step would be to implement self-replication,
as suggested by José M. Sempere in a discussion. Indeed, in
P systems with reactive membranes the membrane structure
emerges spontaneously, which makes them a promising can-
didate for implementing self-replication of something other
than symbol objects.

A parallel research direction which we started to explore
in this paper is the computational power of P systems with
reactive membranes. We have shown here that splitting and
merging do not affect the computational power of P systems
with reactive membranes using non-cooperative rules—
P systems with reactive membranes using non-cooperative
rules have the same computational power as simple P sys-
tems provided we only start with one singleton multiset, no
matter which derivation mode we use. Based on this result,
we have shown that P systems with reactive membranes
can characterize the family of Parikh sets of semilinear lan-
guages when using only non-cooperative rules in any deri-
vation mode.

Finally, when cooperative rules are allowed, P systems
with reactive membranes can generate all multiset languages
generated by partially blind register machines.

Several questions still remain to be addressed, in particu-
lar: can splitting and merging augment the computational
power? It would indeed be surprising, but it has already been
shown that non-deterministic shuffling of rule right-hand
sides allows for generating non-semilinear languages [1],
meaning that random shuffling of symbol neighborhoods as
described in this paper may boost the power of the variant
in some specific cases.

A subtle aspect which we do not discuss in depth in this
paper is the halting condition and the procedure for retriev-
ing the result. There is an asymmetry between these two:
halting occurs when no more evolution rules are applicable
after all possible splits and mergers. On the other hand, get-
ting out the result essentially happens by merging all mem-
branes into a single one.

Since the computational results we give in this paper
seem to depend directly on the halting condition and on the
procedure for obtaining the result, it would be relevant to
explore how slight variations in these two affect the compu-
tational power of P systems with reactive membranes.

Finally, in Sect. 5, we have suggested several possible
extensions of the new variant. A formal exploration of the
computational power of such extensions would be quite

relevant. Even more importantly, it would be very relevant
to identify which extensions are more useful for using P
systems with reactive membranes in thinking about the ori-
gins of life.

Acknowledgements  The authors would like to thank the Organizing
Committee of the 19th Brainstorming Week on Membrane Comput-
ing (http://​www.​gcn.​us.​es/​19bwmc) (BWMC 2023) for organizing
this fruitful event, which allowed the authors to jointly develop the
ideas presented in this paper. The authors would also like to thank
José M. Sempere for multiple helpful suggestions about self-repli-
cation and emergence of space. Artiom Alhazov acknowledges pro-
ject 20.80009.5007.22 “Intelligent information systems for solving
ill-structured problems, processing knowledge and big data” by the
National Agency for Research and Development. David Orellana-
Martín and Antonio Ramírez-de-Arellano acknowledge the Zhejiang
Lab BioBit Program (Grant No. 2022BCF05).

References

	 1.	 Alhazov, A., Freund, R., & Ivanov, S. (2020). P systems with ran-
domized right-hand sides of rules. Theoretical Computer Science,
805, 144–160.

	 2.	 Alhazov, A., Freund, R., & Ivanov, S. (2021). P systems with
limited number of objects. Journal of Membrane Computing, 3(1),
1–9.

	 3.	 Alhazov, A., Freund, R., Ivanov, S., Orellana-Martín, D., de Arel-
lano, A.R., Rodríguez-Gallego, J.-A. (2023). P systems with reac-
tive membranes. In Proceedings of Nineteenth Brainstorming
Week on Membrane Computing, pages 9–20

	 4.	 Alhazov, A., Freund, R., Ivanov, S., Orellana-Martín, D., de Arel-
lano, A.R., & Rodríguez-Gallego, J.-A. (2023). P systems with
reactive membranes. In Proceedings of the Twenty-fourth Inter-
national Conference on Membrane Computing (CMC2023), pages
27–42

	 5.	 Alhazov, A., Freund, R., Ivanov, S., & Oswald, M. (2022). Vari-
ants of derivation modes for which purely catalytic P systems are
computationally complete. Theoretical Computer Science, 920,
95–112.

	 6.	 Alhazov, A., Freund, R., Ivanov, S., & Verlan, S. (2021). Variants
of derivation modes for which catalytic P systems with one cata-
lyst are computationally complete. Journal of Membrane Comput-
ing, 3(4), 233–245.

	 7.	 Alhazov, A., Freund, R., Ivanov, S., & Verlan, S. (2022). Tissue P
systems with vesicles of multisets. International Journal of Foun-
dations of Computer Science, 33(3 &4), 179–202.

	 8.	 Alhazov, A., Freund, R., Verlan, S. (2016). P systems working in
maximal variants of the set derivation mode. In Alberto Lepo-
rati, Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron,
editors, Membrane Computing – 17th International Conference,
CMC 2016, Milan, Italy, July 25-29, 2016, Revised Selected
Papers, volume 10105 of Lecture Notes in Computer Science,
pages 83–102. Springer

	 9.	 Alhazov, A., Ishdorj, T.-O. (2004). Membrane operations in P
systems with active membranes. Second Brainstorming Week on
Membrane Computing, pages 37–44

	10.	 Aman, B., & Ciobanu, G. (2009). Simple, enhanced and mutual
mobile membranes. Transactions on Computational Systems Biol-
ogy, 11, 26–44.

	11.	 Cardelli, L., & Păun, G. (2006). An universality result for a (mem)
brane calculus based on mate/drip operations. International Jour-
nal of Foundations of Computer Science, 17(1), 49–68.

http://www.gcn.us.es/19bwmc

	 A. Alhazov et al.

	12.	 Cobb, M. (2017). 60 years ago, Francis Crick changed the logic
of biology. PLOS Biology, 15(9):1–8, 09.

	13.	 Damer, B., & Deamer, D. (2020). The hot spring hypothesis for
an origin of life. Astrobiology, 20(4), 429–452.

	14.	 Dassow, J., Păun, G. (1989). Regulated Rewriting in Formal Lan-
guage Theory. Springer

	15.	 Freund, R. (1999). Generalized P-systems. In Gabriel Ciobanu and
Gheorghe Păun, editors, Fundamentals of Computation Theory,
12th International Symposium, FCT ’99, Iasi, Romania, August
30 – September 3, 1999, Proceedings, volume 1684 of Lecture
Notes in Computer Science, pages 281–292. Springer,

	16.	 Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., &
Zandron, C. (2014). Flattening in (tissue) P systems. In Artiom
Alhazov, Svetlana Cojocaru, Marian Gheorghe, Yurii Rogozhin,
Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane Com-
puting, volume 8340 of Lecture Notes in Computer Science, pages
173–188. Springer

	17.	 Freund, R., Oswald, M. (2006). Tissue P systems and (mem)brane
systems with mate and drip operations working on strings. In
Nadia Busi and Claudio Zandron, editors, Proceedings of the First
Workshop on Membrane Computing and Biologically Inspired
Process Calculi, MeCBIC@ICALP 2006, Venice, Italy, July 9,
2006, volume 171 (2) of Electronic Notes in Theoretical Computer
Science, pages 105–115. Elsevier,

	18.	 Freund, R., Verlan, S. (2007). A formal framework for static (tis-
sue) P systems. In George Eleftherakis, Petros Kefalas, Gheorghe
Păun, Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane
Computing, 8th International Workshop, WMC 2007, Thessa-
loniki, Greece, June 25-28, 2007. Revised Selected and Invited
Papers, volume 4860 of Lecture Notes in Computer Science, pages
271–284. Springer

	19.	 Glade, N. (2022).Le Vivant Rare, Faible et Amorphe - Évolution
depuis les Origines jusqu’à la Vie telle qu’elle nous Apparaît.
(Rare, Weak and Amorphous Life – Evolution of Life from the
Origins until Life as it Appears Nowadays). HAL Open Archive

	20.	 Bulletin of the International Membrane Computing Society
(IMCS). http://​membr​aneco​mputi​ng.​net/​IMCSB​ullet​in/​index.​php.

	21.	 Ivanov, S., Rogozhin, Y., & Verlan, S. (2014). Small universal
networks of evolutionary processors. Journal of Automata, Lan-
guages and Combinatorics, 19(1–4), 133–144.

	22.	 Shankara Narayanan Krishna and Gheorghe Păun. (2005). P sys-
tems with mobile membranes. Natural Computing4(3), 255–274.

	23.	 Orellana-Martín, D., Valencia-Cabrera, L., & Pérez-Jiménez, M.J.
(2022). P systems with evolutional communication and separa-
tion rules. In Jérôme Durand-Lose and György Vaszil, editors,
Machines, Computations, and Universality – 9th International
Conference, MCU 2022, Debrecen, Hungary, August 31 – Sep-
tember 2, 2022, Proceedings, volume 13419 of Lecture Notes in
Computer Science, pages 143–157. Springer

	24.	 Pan, L., & Ishdorj, T.-O. (2004). P systems with active membranes
and separation rules. Journal of Universal Computer Science,
10(5), 630–649.

	25.	 Păun, G. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143.

	26.	 Păun, G., Rozenberg, G., Salomaa, A. (2010). editors. The Oxford
Handbook of Membrane Computing. Oxford University Press

	27.	 Rozenberg, G., Salomaa, A. (1997). editors. Handbook of Formal
Languages. Springer

	28.	 Segretain, Rémi, Ivanov, Sergiu, Trilling, Laurent, & Glade,
Nicolas. (2020). A methodology for evaluating the extensibility
of Boolean networks’ structure and function. In Rosa M. Benito,
Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus
Rocha, and Marta Sales-Pardo, editors, Complex Networks
& Their Applications IX - Volume 2, Proceedings of the Ninth
International Conference on Complex Networks and Their Appli-
cations, COMPLEX NETWORKS 2020, 1–3 December 2020,
Madrid, Spain, volume 944 of Studies in Computational Intel-
ligence, pages 372–385. Springer

	29.	 Segretain, Rémi, Trilling, Laurent, Glade, Nicolas, & Ivanov,
Sergiu. (2021). Who plays complex music? On the correlations
between structural and behavioral complexity measures in sign
Boolean networks. In 21st IEEE International Conference on Bio-
informatics and Bioengineering, BIBE 2021, Kragujevac, Serbia,
October 25–27, 2021, pages 1–6. IEEE

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://membranecomputing.net/IMCSBulletin/index.php

	P systems with reactive membranes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Reactive membranes
	4 Computational power: first results
	4.1 Non-cooperative rules and derivation trees
	4.2 Cooperative rules

	5 Extensions
	6 Conclusion and perspectives
	Acknowledgements
	References

