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Abstract
Membranes are one of the key concepts in P systems and membrane computing, and a lot of research activities focus on their 
properties and possible extensions: membrane division, membrane dissolution, mobile membranes, etc. In this work, we 
explore the possibility of using membranes for thinking about the emergence of milieu separations at the origins of life. We 
propose a new variant of P systems with reactive membranes, in which every symbol is initially surrounded by an elemen-
tary membrane, and in which membranes can non-deterministically merge and split, leading to the formation of bigger and 
more complicated membranes. We show that such non-deterministic splitting and merging does not seem to radically affect 
the computational power: P systems with reactive membranes and non-cooperative rules generate at least all semilinear lan-
guages, and cooperative rules allow for simulating partially blind register machines. We briefly discuss using P systems with 
reactive membranes for illustrating the emergence of autocatalytic cycles, but actual constructions are left for future work.

Keywords  Origins of life · P systems · Self-assembly · Space and topology

1  Introduction

Membrane systems are a multiset rewriting-based theoreti-
cal construct for natural computing, introduced by Gheo-
rghe Păun in [25], and extensively studied ever since. The 
structure of a membrane system—or a P system—mimics 
that of a living cell: it is a hierarchical family of nested 
membranes, each carrying a multiset of abstract objects and 
multiset rewriting rules. The objects can be seen as formal 

representations of chemical species, and the rewriting rules 
capture the biochemical interactions these species may have.

Beyond the obvious abstraction arrow between biochemi-
cal species and formal objects, membrane computing paral-
lels biological systems in another interesting way. In biol-
ogy, centralization of functions is quite frequent (e.g., central 
nervous systems, specialized organs, etc.), but not funda-
mental. Only as a first example, simple organisms carry out 
many activities in a decentralized way, weakly orchestrated 
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by interference between related processes. Take unicellular 
organisms: a computer scientist may be tempted to consider 
the genetic material as the program for the whole cell, but 
it is now known (e.g., [12]) that the relationship between 
the genotype and the phenotype—its manifestation—is very 
far from the clear program–execution duality imbuing com-
puter science. As an abstraction of hierarchically structured 
biochemistry, P systems inherit this weakly centralized way 
of functioning, which makes them a good candidate for 
supporting the thought process about some grand laws of 
biology.

In this paper, we lay the groundwork for using P systems 
as a tool for thinking about some aspects of the emergence 
of life. The particular question we focus on is the emergence 
of milieu separations, which played an essential role as they 
allowed to isolate and protect relevant processes from the 
environment [13]. Since P systems already include mem-
branes as first-class citizens, we will use them as a frame-
work for thinking about the emergence of complex regions 
from simpler ones.

The approach we take here is to posit that every copy of a 
symbol a is endowed with some elementary space—a mem-
brane which initially only contains the symbol a. Two such 
symbols can bond by merging their membranes, thereby 
yielding a more complex membrane containing 2 symbols. 
Such membranes can further merge, yielding bigger and big-
ger regions. Dually, membranes containing multiple symbols 
can split into a pair of simpler membranes, with the contents 
of the original larger membrane distributed across its chil-
dren. This is in fact membrane separation (e.g., [9, 23, 24]).

Measuring the complexity of a membrane by the num-
ber of symbols it contains is simultaneously simple and 
appropriate: cooperative evolution rules are allowed, so 
more symbols means more applicable rules and therefore 
more interactions. In the setup, we establish in this paper, 
all membranes share the same common set of evolution 
rules. The rules can naturally be seen as defining a chemis-
try, while membrane merging and splitting can on the other 
hand be seen as some lower-level ground laws governing 
who may interact with whom, i.e., the topology of the inter-
actions. The resulting abstract structures featuring merging 
and splitting membranes are therefore systems in which 
objects interact based on the non-deterministic variations in 
their neighborhoods. We call such structures P systems with 
reactive membranes.

Before using P systems with reactive membranes as a for-
mal tool, a number of important details have to be sorted out. 
In particular, we show that the definition of membrane split-
ting and merging turns out to be rather nontrivial. Choos-
ing when to recover and how to interpret the result impacts 
the form of the computations of a P system with reactive 
membranes, as well as what kind of results one can expect. 
Finally, this P system variant as informally introduced above 

and defined in Sect. 3 is very basic and may be extended in 
many ways, as we briefly show in Sect. 5.

Note that we do not pretend to faithfully model in any way 
the processes which happened at the origins of life. Rather, 
we acknowledge the exceptional complexity of these pro-
cesses, as well as the impossibility to experimentally verify 
any of the related hypotheses (e.g., [19]). The intended role 
of P systems with reactive membranes is to serve as a formal 
vehicle for an otherwise abstract thought process, to help 
verify the latter in a basic way, and to help the researcher 
to deal with complex questions. This approach is similar in 
spirit to the works [28, 29], in which sign Boolean networks 
are used with a similar purpose.

P systems with reactive membranes are naturally part of 
the lineage of P systems with active membranes, and feature 
similarities with other variants in this family. Among closely 
related variants are P systems with mobile membranes, in 
which membranes are allowed to move across the membrane 
structure, and thereby change their immediate neighbors [10, 
11, 22]. Other variants are P systems with vesicles of multi-
sets, in which multisets are contained in vesicles, which are 
contained in membranes, implying that entire multisets of 
symbols can travel between different membranes, thereby 
activating different sets of rules [7, 17]. A key specificity of 
P systems with reactive membranes setting them apart from 
the other variants is that membrane splitting and merging 
is global, compulsory, and independent of the contents of 
the membranes or of the rules. This feature introduces a 
basic form of space, through which the entities travel and in 
which they interact in their immediate neighborhood. On the 
other hand, compulsory splitting and merging modulates the 
computational power in interesting ways.

This paper is an improved and extended version of the 
works [3, 4], and is structured as follows: In Sect. 2, we 
recall some basic concepts from formal languages and P 
systems. In Sect. 3, we introduce P systems with reactive 
membranes, and define the precise semantics of splitting 
and merging of membranes. In Sect. 4, we present some first 
results concerning the computational power of P systems 
with reactive membranes, with non-cooperative and coop-
erative rules. In Sect. 5, we give some examples of possible 
extensions to the new variant. Finally, in Sect. 6, we discuss 
the potential of reactive membranes for illustrating some 
processes which happened at the origins of life, as well as 
some aspects of their computational power.

2 � Preliminaries

For two natural numbers a, b ∈ ℕ , a ≤ b , we use the notation 
[a..b] to refer to the interval of natural numbers between a 
and b, both included: [a..b] = {a, a + 1,… , b}.
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For an alphabet V, a finite non-empty set of abstract sym-
bols, the free monoid generated by V under the operation of 
concatenation, i.e., the set containing all possible strings over 
V, is denoted by V∗ . The empty string is denoted by � , and 
V∗�{�} is denoted by V+ . For a string w ∈ V∗ and a symbol 
a ∈ V , by |w| we denote the length of the string and by |w|a the 
number of copies of a appearing in w.

A multiset over V is a function w ∶ V → ℕ , assigning the 
number of times an element of V appears in w. The infinite set 
of all multisets over V is denoted by V◦ . The family of finite 
sets of finite multisets over V is denoted by Pf in(V

◦).
Given two multisets w1 and w2 over  V, their multiset 

union w1 ∪ w2 is defined as (w1 ∪ w2)(a) = w1(a) + w2(a) , 
for all a ∈ V  . As their multiset intersection w1 ∩ w2 , we 
define (w1 ∩ w2)(a) = min{w1(a),w2(a)} . A restriction of 
the multiset w ∶ V → ℕ to the subset B ⊆ V  is the multiset 
w|B ∶ V → ℕ with the property that w|B(a) = w(a) if a ∈ B 
and w|B(a) = 0 otherwise.

To spell out a multiset w, we will generally write any string 
containing exactly the same symbols with the same multiplici-
ties. For example, the strings aab, aba, ba2 will be used to refer 
to the same multiset w with the property w(a) = 2 , w(b) = 1 , 
and w(c) = 0 for all c ∈ A ⧵ {a, b} . We denote the empty mul-
tiset by Λ , i.e., ∀a ∈ A ∶ Λ(a) = 0 , and its string representa-
tion is � , the empty string. We will use the notation |w| to refer 
to the size of the multiset: �w� =

∑
a∈A w(a).

Given an alphabet V, we define a pair of functions con-
necting the finite strings in V∗ and all finite multisets in V◦ : 
𝗌𝗎𝗉𝗉∗ ∶ V∗ → V◦ and 𝗌𝗍𝗋 ∶ V◦ → P(V∗) . Given a string 
w ∈ V∗ , w� = ����∗(w) is the multiset containing exactly 
the same symbols as w in the same number of copies: 
w�(a) = |w|a , for all a ∈ V  . The function ��� is the inverse 
of ����∗ , and associates to every multiset the set of strings 
containing the same symbols in the same number of copies: 
���(w�) = {w ∈ V∗ ∣ ����∗(w) = w�} = (����∗)−1(w�).

The family of regular, context-free, and recursively enu-
merable string languages is denoted by L(REG) , L(CF) , and 
L(RE) , respectively. For a family of languages FL , the family 
of Parikh images of languages in FL is denoted by PsFL.

As PsL(REG) = PsL(CF) , in the area of multiset rewrit-
ing L(CF) plays no role at all, and in the area of membrane 
computing we often only get characterizations of PsL(REG) 
and PsL(RE).

For further notions and results in formal language theory, 
we refer to textbooks like [14] and [27].

In the rest of this section, we briefly recall P systems and 
the related concepts. For more extensive overviews, we refer 
the reader to [20, 26].

A (transition) P system is a construct

Π = (O,T ,�,w1,… ,wn,R1,…Rn, �, hi, ho) where

–	 O is the alphabet of objects,
–	 T ⊆ O is the alphabet of terminal objects,
–	 � is the membrane structure injectively labeled by the 

numbers from [1..n] and usually given by a sequence 
of correctly nested brackets,

–	 wi are the multisets giving the initial contents of each 
membrane i, 1 ≤ i ≤ n,

–	 Ri is the finite set of rules associated with membrane i, 
1 ≤ i ≤ n,

–	 � is the derivation mode, and
–	 hi and ho are the labels of the input membrane and the 

output membrane, respectively; 1 ≤ hi ≤ n , 1 ≤ ho ≤ n.

Taking into account the well-known flattening process 
for P systems, which means that computations in a P sys-
tem with an arbitrary (static) membrane structure can be 
simulated in a P system with only one membrane, e.g., see 
[16], often only simple P systems are considered, i.e., with 
the simplest membrane structure of only one membrane 
region, and then we write:

Quite often, the rules associated with membranes are multi-
set rewriting rules (or special cases of such rules). Multiset 
rewriting rules have the form u → v , with u ∈ O◦ ⧵ {Λ} and 
v ∈ O◦ . If |u| = 1 , the rule u → v is called non-cooperative, 
otherwise it is called cooperative. In communication P 
systems, rules are additionally allowed to send symbols to 
the neighboring membranes. In this case, for rules in Ri , 
v ∈ (O × Tari)

◦ , where Tari contains the symbols out (cor-
responding to sending the symbol to the parent membrane), 
here (indicating that the symbol should be kept in membrane 
i), and inj (indicating that the symbol should be sent into the 
child membrane j of membrane i). When writing out the 
multisets over O × Tari , the indication here is often omitted.

In P systems, rules are often applied in the maximally 
parallel way: in one derivation step, only a non-extendable 
multiset of rules can be applied. The rules are not allowed to 
consume the same instance of a symbol twice, which creates 
competition for objects and may lead to non-deterministic 
choices between the maximal collections of rules applica-
ble in one step. The maximally parallel derivation mode is 
generally denoted by max. Other derivation modes include 
the sequential derivation mode—seq—in which exactly 
one rule is applied in every step, the set maximally parallel 
derivation mode—smax—only allowing multisets of rules in 
which every rule has multiplicity 1, as well as the asynchro-
nous derivation mode—asyn—under which no restriction 
is imposed on the applied multiset of rules. We refer to the 
papers [5, 6, 8, 18] for an in-depth discussion of the matter.

A configuration of a simple P system is simply the 
multiset of objects contained in its only membrane at a 

Π = (O,T ,w,R, �)
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given step. A computation of a P system is traditionally 
considered to be a sequence of configurations it can suc-
cessively visit, stopping at the halting configuration. A 
halting configuration is a configuration in which no rule 
can be applied any more, in any membrane. The result 
of a computation in a P system Π as defined above is the 
contents of the output membrane ho in the halting configu-
ration projected over the terminal alphabet T.

We will use the notations N(Π) and Ps(Π) to refer to the 
number language and the language of multisets, respectively, 
generated by Π . The notation OPn(�, �) will refer to the fam-
ily of P systems with at most n membranes, operating under 
the derivation mode � and relying on the rules of type � , 
where � = coo if cooperative rules are allowed and � = ncoo 
if all rules are non-cooperative. Finally, we use the notations 
NOPn(�, �) and PsOPn(�, �) to refer to the family of number 
languages and multiset languages, respectively, generated 
by the P systems in the family OPn(�, �).

Example 1  Fig. 1 shows the graphical representation of the 
P system formally given by

In the maximally parallel mode, the inner membrane 2 
of Π will apply as many instances of the rules as possible, 
thereby doubling the number of objects a, and ejecting a 
copy of c into the surrounding (skin) membrane in each step. 
The symbol d in the skin membrane is not used. Therefore, 
after k steps of evolution, membrane 2 will contain the mul-
tiset a2kb and membrane 1 the multiset ckd . Since all rules 
are always applicable in Π , this P system never halts. 	� ◻

3 � Reactive membranes

A P system with reactive membranes is the following 
construct:

Π = ({a, b, c, d}, {a, d}, [1[2]2]1, d, ab,R1,R2,max, 1, 1),

R2 = {a → aa, b → b (c, out)},

R1 = �.

–	 O is the alphabet of objects,
–	 T ⊆ O is the alphabet of terminal objects,
–	 W0 ∈ (O◦)◦ is the (finite) initial multiset of multisets 

over O,
–	 R ⊆ O◦ × O◦ is the set of evolution rules, and
–	 � is the derivation mode.

For all rules in R, we will require at least one of the sides 
to be non-empty, i.e.,

We immediately stress two major features of this definition. 
On the one hand, we do not include any membrane struc-
ture. Indeed, as W0 hints, we simply use individual multi-
sets to represent the contents of the individual membranes, 
without explicitly representing the membranes themselves. 
Incidentally, this means that membranes do not nest in this 
model. On the other hand, the evolution of all symbols in 
(the multisets in) all the membranes is governed by the same 
common set of rules R.

A configuration of Π is any multiset of multisets over O. 
Similarly to networked models of computing like networks 
of evolutionary processors (e.g., [21]) or tissue P systems 
with vesicles of multisets [7], a computation step in P 
systems with reactive membranes consists of two stages, 
occurring in this order: 

1.	 splitting and merging,
2.	 evolution.

Informally, the splitting and merging stage implements the 
non-deterministic evolution of the membranes—individual 
multisets under this definition—as described in the intro-
duction: any two multisets may merge, and any multiset 
may split in two. The evolution stage consists in applying 
the evolution rules in R to every multiset of the configura-
tion resulting after splitting and merging, according to the 
derivation mode � . In the following paragraphs, we give a 
formal description of both stages, applied to a configura-
tion Wi ∈ (O◦)◦.

Splitting and merging stage

1.	 Non-deterministically partition Wi into 3 submultisets: 

 such that |Mi| is even, and the multisets Si , Mi , and Ii are 
mutually disjoint, i.e., Si ∩Mi = Si ∩ Ii = Mi ∩ Ii = Λ . 
The multisets in Mi will be merged pairwise, the 

Π = (O,T ,W0,R, �) where

∀u → v ∈ R ∶ u ≠ � or v ≠ �.

Wi = Mi ∪ Si ∪ Ii, Mi, Si, Ii ∈ (O◦)◦,

a → aa
b → b (c, out)

ab
2

d

1

Fig. 1   An example of a simple P system
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multisets in Si will be split, and the multisets in Ii will 
remain intact.

2.	 Partition Mi into disjoint pairs by picking a string 
w1w2 …wk−1wk ∈ ���(Mi) non-deterministically, with 
k = |Mi| , pairwise merging the pairs of successive mul-
tisets to obtain the string M̂i = (w1 ∪ w2)… (wk−1 ∪ wk) , 
and then constructing the corresponding multiset of 
multisets: 

3.	 Define �����(v) to be the set of all possible ways to split 
the multiset v into two multisets: 

 Consider v1 … vt ∈ ���(Si) , t = |Si| , and non-determin-
istically construct the new string Ŝi = 𝛼1𝛽1 … 𝛼t𝛽t such 
that (�i, �i) ∈ �����(vi) , 1 ≤ i ≤ t . Finally, define: 

4.	 Compute the new intermediate configuration W �
i
∈ (O◦)◦ 

as 

In the above presentation, we describe merging before 
splitting, but the order of the two substeps does not matter 
since they occur on disjoint multisets Mi and Si . Further-
more, we stress that multiple intermediate configurations 
W ′

i
 may be obtained from the same configuration Wi.
Evolution stage The evolution stage is defined in the 

conventional way by applying the rules in R to every mul-
tiset in W ′

i
 individually, according to the derivation mode 

� , and respecting the multiplicities of the elements of W ′
i
 . 

More concretely, pick any string w�
1
…w�

l
∈ ���(W �

i
) and 

construct the new string Ŵ �
i
= ŵ�

1
… ŵ�

l
 with the property 

that w′
i

𝛿,R

⇒ŵ′
i
 . Finally, define the new configuration as

A configuration W is halting if no rules are applicable in the 
evolution stage, for any intermediate configuration W ′ which 
can be obtained from W in the splitting and merging stage. 
An n-step halting computation of a P system with reactive 
membranes Π is a finite sequence of configurations (Wi)0≤i≤n 
such that Wi+1 is obtained from Wi by the computation step 
described above, and Wn is a halting configuration.

As the result of a computation in a P system with reac-
tive membranes Π as defined above we take all the ter-
minal objects appearing in the membranes present in a 
halting configuration Wn:

M�
i
= ����∗(M̂i).

�����(v) = {(�, �) ∣ � ∪ � = v, �, � ∈ O◦}.

S�
i
= ����∗(Ŝi).

W �
i
= M�

i
∪ S�

i
∪ Ii.

Wi+1 = ����∗(Ŵ �
i
).

where the union 
⋃

w∈Wn
 iterates over the elements of Wn 

respecting their multiplicities. As for simple P systems, we 
will use the notations N(Π) and Ps(Π) to refer to the number 
language and the language of multisets, respectively, gener-
ated by the P systems with reactive membranes Π.

In what follows, we will use the set builder notation to 
describe configurations which are multisets of multisets. For 
example, we will write {ab, ab, c} to refer to a configuration 
containing twice the multiset ab and once the multiset c.

To conclude the introduction of P systems with reactive 
membranes, we again stress that the splitting and merging 
of multisets (or membranes) is non-deterministic, imposed 
in every computation step, and independent of the features 
of the configuration or of the rules in R. More concretely, 
the rules in R cannot directly influence which symbols will 
appear next to which after the splitting and merging stage.

Example 2  Consider the following P system with reactive 
membranes:

For the first step of the computation, Π may decide to not 
split or merge any multisets ( M0 = S0 = Λ , I0 = W0 ), mean-
ing that the evolution rules will be applied directly to sin-
gleton multisets a, b, and c. While no rules are applicable 
to b or c individually, the rule a → e will have to be applied 
to a, yielding the next configuration W1 = {b, c, e} ∈ (O◦)◦ , 
containing three singleton multisets. We can immediately 
conclude that the rules ab → d and abc → f  will never be 
applicable any more later in this computation, as there is 
no way to reintroduce a. In sum, this halting computation 
yields the result Λ.

Now suppose that Π decides to merge the multisets a 
and b in the first step, yielding the intermediate configura-
tion W �

0
= {ab, c} . In this case, a non-deterministic choice 

will appear in the evolution stage between applying the 
rule ab → d or a → e (both singleton sets of rules are non-
extendable). As a consequence, the following two possibili-
ties exist for the second configuration: {d, c} and {eb, c} . In 
sum, these halting computations yield the results d and Λ , 
respectively.

Finally, note that the rule abc → f  will never be applica-
ble with W0 = {a, b, c} , since putting a, b, and c together in 
one membrane requires at least two mergers, and a will nec-
essarily be consumed by a → e or ab → d along the way. On 

(
⋃

w∈Wn

w

)|||||T
=

⋃

w∈Wn

w|T ,

Π = (O,T ,W0,R,max), where

O = {a, b, c, d, e, f },

T = {d, f },

W0 = {a, b, c},

R = {ab → d, abc → f , a → e}.
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the other hand, if we put together a, b and c in one multiset 
from the start, or even if we put ab together and c apart, the 
rule abc → f  will have a chance to be applied. In particular, 
in the case in which the initial configuration is {ab, c} , it suf-
fices to consider the branch of the computation along which 
Π decides to merge the two multisets in the first splitting and 
merging stage. In sum, with the initial sets {ab, c} and {abc} , 
we can get the results Λ , d, and f. 	�  ◻

As indicated by the example discussed above, it makes 
a difference in how many multisets the initial multiset 
of objects is divided. Thus, we will use the notation 
RenOP(�, �) to refer to the family of P systems with reac-
tive membranes starting with n initial multisets, running 
under the mode � and using rules of type � ∈ {coo, ncoo} , 
as well as the notations NRenOP(�, �) and PsRenOP(�, �) 
to refer to the family of number languages and multiset 
languages, respectively, generated by the P systems with 
reactive membranes from RenOP(�, �).

Whereas, on the one hand, the previous example shows 
the effect of having more than one initial membrane, pro-
hibiting the application of some evolution rules, the next 
example shows that the halting condition can be fulfilled 
due to the fact that symbols are distributed over several 
membranes, although some rule could be applied if all 
symbols on its left-hand side could be put into the same 
membrane by a merge operation. As merging can only 
combine the contents of two membranes, we can already 
get the situation that a rule with three symbols in its left-
hand side cannot be applied any more.

Example 3  Consider the following P system with reactive 
membranes:

If in the first two steps of the computation, Π decides to 
not split or merge any multisets, from W0 = {a1a2a3} with 
applying the rules {ai → a�

i
∣ 1 ≤ i ≤ 3} , after the first evolu-

tion step, we obtain W1 = {a�
1
a�
2
a�
3
} , and by then applying the 

rules {a�
i
→ a��

i
∣ 1 ≤ i ≤ 3} , after the second evolution step, 

we obtain W2 = {a��
1
a��
2
a��
3
} . Keeping {a��

1
a��
2
a��
3
} in the same 

membrane then allows for applying the rule a′′
1
a′′
2
a′′
3
→ f  , 

thus obtaining the terminal result W3 = {f } , as W3 is a halt-
ing configuration.

Yet with two splits, but still applying the rules 
{ai → a�

i
∣ 1 ≤ i ≤ 3} in the first evolution step and the rules 

{a�
i
→ a��

i
∣ 1 ≤ i ≤ 3} in the second evolution step, we get a 

two-step halting computation

Π = (O,T ,W0,R,max), where

O = {ai, a
�
i
, a��

i
∣ 1 ≤ i ≤ 3} ∪ {f },

T = {a��
1
, a��

2
, a��

3
, f },

W0 = {a1a2a3},

R = {ai → a�
i
, a�

i
→ a��

i
, a��

1
a��
2
a��
3
→ f }.

yielding the terminal result a′′
1
a′′
2
a′′
3
.

We also mention that with having T = {f } only, this halt-
ing computation yields the result Λ . 	�  ◻

4 � Computational power: first results

In this section, we give some first results regarding the com-
putational power of P systems with reactive membranes. We 
first show that we one can always pad the initial configura-
tion with empty membranes, a result which holds for non-
cooperative rules and cooperative rules.

Lemma 1  For every Π ∈ Re1OP(�, �) and for every 
n > 1 , there exists a P system Π� ∈ RenOP(�, �) , such that 
Y(Π) = Y(Π�) , for every Y ∈ {Ps,N}.

Proof  Given a P system with reactive membranes using rules 
of type �

an equivalent P system with reactive membranes using rules 
of type � with n initial membranes is

In an empty membrane Λ , no non-cooperative rules or coop-
erative rules are applicable. Moreover, merging a membrane 
X with Λ yields X again, so no additional applications of 
rules can happen. Hence, in any computation in Π� , no mul-
tiset can appear in any of its configurations which not also 
can be obtained in a configuration of a computation in Π . 	
� ◻

In what follows, we study the impact of splitting and 
merging separately in the cases of cooperative and non-
cooperative rules.

4.1 � Non‑cooperative rules and derivation trees

This subsection explores the formal ramifications of the 
following remark stating that the applicability of non-
cooperative rules is not affected by splitting and merging 
of membranes.

Remark 1  Recall that in P systems with reactive mem-
branes, all membranes share the same set of rules and 
consider a non-cooperative rule r ∶ a → v . Its applicabil-
ity is not affected by the membrane in which a is located, 

{a1a2a3} ⟹ {a�
1
, a�

2
a�
3
} ⟹ {a��

1
, a��

2
, a��

3
}

Π = (O,T , {w},R, �),

Π� = (O,T , {w,w2 = Λ,… ,wn = Λ},R, �).
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meaning that it can be applied the same number of times 
to any configuration containing the same total number of 
copies of a, independently of the way in which these cop-
ies are distributed across the membranes. One immediate 
consequence is that the halting condition for a configura-
tion W can be checked without considering all possible 
splits and mergers and then the non-applicability of the 
rules in all membranes. Instead, it suffices to check the 
non-applicability of the rules to the objects in 

⋃
w∈W w

—the union of the multisets in all the membranes of W.

We now briefly recall the concept of derivation trees, which 
we will use to prove the main results of this subsection. We 
refer to the [26] for an extensive presentation and discussion.

C o n s i d e r  a  s i m p l e  P  s y s t e m 
Π = (O,T ,w0,R, �) ∈ OP1(�, ncoo) and the following 
computation

in which Π derives the final multiset v from the initial mul-
tiset w by applying at every step the rules from R according 
to the mode � . We build the corresponding derivation tree 
in the following way. The root of the tree is the empty mul-
tiset Λ , and every copy of a symbol from w0 is a direct child 
of the root Λ . For every rule r ∶ a → b1 … bk applied in the 
first step w0

�,R

⇒w1 , we add the symbols b1 to bk as the chil-
dren of the symbol a, and we additionally label the node a 
with the rule name r, i.e., the corresponding node in the tree 
becomes (a, r). We proceed similarly for the rest of the steps 
of the computation. In the end, we will obtain a tree whose 
leaves are exactly the symbols of wn , in the corresponding 
number of copies.

Example 4  Consider the following simple P system:

The following is one of the computations of Π in the deriva-
tion mode max:

Here is the corresponding derivation tree constructed 
according to the procedure described above:

w0

�,R

⇒w1

�,R

⇒…
�,R

⇒wn,

Π = (O,T ,w,R,max), where

O = {a, b, c, d}

T = {d},

w = aab,

R = {r1 ∶ a → d, r2 ∶ a → bc, r3 ∶ b → d, r4 ∶ c → d}.

aab
r1r2r3
⇒ dbcd

r3r4
⇒dddd.

The internal nodes of this tree have the form (x, r), where 
x ∈ O is a symbol and r ∈ R is the rule which was applied to 
x. The leaves of the tree have the form x ∈ O since no rules 
are applied to them. Collecting the leaves yields the multiset 
dddd, corresponding to the final multiset of the computation 
we picked. Since in P systems we are dealing with multiset 
rewriting, the levels of the derivation tree are unordered, 
i.e., the order in which one writes the children of a particular 
node is unimportant.

Derivation trees can be used to prove the following folk-
lore result, stating that simple P systems with non-cooper-
ative rules and without any additional control mechanisms 
generate exactly the regular multiset languages.

Proposition 1  ([8, 26]) For any � ∈ {asyn, seq,max, smax} 
and Y ∈ {N,Ps} , it holds that YOP1(�, ncoo) = YL(REG).

The idea of derivation trees can be extended to P systems 
with reactive membranes with non-cooperative rules without 
any change, as the following remark states.

Remark 2  Recall from Remark 1 that in a P system with reac-
tive membranes Πre = (O,T ,W0,R, �) all membranes share 
the same set of rules R, and that the applicability conditions 
of non-cooperative rules do not depend on how the symbols 
are distributed across membranes. Consider now the follow-
ing computation of Πre , �re ∶ W0 ⇒ W1 ⇒ ⋯ ⇒ Wn , where 
each computation step Wi ⇒ Wi+1 is carried out according to 
the procedure described in Sect. 3. Construct the sequence of 
multisets (wi)0≤i≤n such that wi is the union of all membrane 
contents of the configuration Wi . Furthermore, let �i be the 
union of all multisets of rules applied in all membranes of 
Wi in �re . Consider the following object:

It is a sequence of multisets over O, in which wi+1 is obtained 
from wi by applying a multiset of applicable rules, and wn is 
the halting multiset in the sense that no further rules from 
R are applicable to it. In other words, � is a computation of 
the simple P system Π = (O,T ,w0,R, asyn) . A derivation 
tree can be constructed for � , which will also capture which 

� ∶ w0

�0
⇒w1

�1
⇒…

�n−1
⇒wn.
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rules were applied in the original P system with reactive 
membranes Πre to obtain the final configuration Wn.

Informally, Remark 2 improves on Remark 1 by high-
lighting that the mutual independence of rule applicability 
conditions and splitting and merging allows for constructing 
derivation trees for any computation of a P system with reac-
tive membranes. Remark 2 also puts forward the strong con-
nection between the computations of P systems with reactive 
membranes and simple P systems working under the asyn-
chronous mode. In order to formalize this connection, we 
show how translations between different derivation modes 
can be explicitly operated in the case of non-cooperative 
rules and simple P systems.

We recall from [18] that Appl(Π,w) refers to the set of 
multisets of rules of Π applicable to the configuration w, and 
Appl(Π,w, �) refers to the set of multisets of rules applicable 
to the configuration w according to the mode �.1

Definition 1  A mode � is called normal if for any two mul-
tisets of objects w1 and w2 the following conditions hold: 

1.	 Appl(Π,w1) = Appl(Π,w2) ⟹ Appl(Π,w1, �)
= Appl(Π,w2, �),

2.	 Appl(Π,w1) ≠ � ⟹ Appl(Π,w1, �) ≠ �.

Informally, the way in which a normal mode picks the 
multisets of rules to apply out of Appl(Π,w) does not depend 
on the configuration w other than via the applicability condi-
tions of the rules. Furthermore, if some rules can be applied 
in w ( Appl(Π,w1) ≠ � ), then a normal mode � allows apply-
ing some of them ( Appl(Π,w1, �) ≠ � ). In the case of non-
cooperative rules, this means that all normal modes eventu-
ally result in the same rule applications, as the following 
theorem shows.

Theorem  1  Let �1 and �2 be two normal modes, and 
Π1 = (O,T ,w,R, �1) and Π2 = (O,T ,w,R, �2) two simple P 
systems differing only in the mode. Then Y(Π1) = Y(Π2) , for 
any Y ∈ {N,Ps}.

Proof  Consider a computation �1 of Π1 under the mode �1 
and take the corresponding derivation tree. In what follows, 
we present an algorithm for constructing a derivation �2 of 
Π2 under the mode �2 having the same derivation tree. This 
algorithm progressively marks the nodes of the derivation 
tree, until all of the nodes are marked. We refer to the set of 

nodes which are immediate children of marked nodes as the 
fringe and denote it by the symbol Fi for step i. 

1.	 Set i ← 0 , w0 ← w , �2 ← w0 , and mark the root Λ of the 
tree.

2.	 Take the multiset of nodes in the fringe to which a rule 
was applied in �1 : 

 If � is empty, stop.
3.	 F ind  a  submul t i s e t  �′  o f  �  s uch  t ha t 

𝜌̄� = {r ∣ (a, r) ∈ 𝜌�} ∈ R◦ satisfies the mode �2.

4.	 Take a multiset wi+1 ∈ O◦ with the property wi

𝜌̄�

⇒wi+1 
(i.e., apply the rules in 𝜌̄′ to wi).

5.	 Add wi+1 to the derivation �2 , mark the nodes of the tree 
appearing in �′ , build the new fringe Fi+1 , and increment 
i ← i + 1.

6.	 Go to 1..

It follows from the way in which the algorithm above oper-
ates that the fringe always contains the symbols in the cur-
rent configuration wi of the newly constructed derivation �2 , 
i.e., wi = {a ∣ (a, r) ∈ Fi} . �2 is a normal mode and the rules 
in R are non-cooperative, it is therefore always possible to 
construct �′ which is both a subset of � and 𝜌̄′ satisfies the 
conditions of �2 , in particular 𝜌̄′ is applicable to wi . Further-
more, every iteration of the algorithm marks a non-empty set 
of nodes of the tree, which guarantees termination. Finally, 
in �2 , the same rules are applied to the same symbols, imply-
ing that �1 and �2 have the same (unordered) derivation trees, 
and consequently produce the same final multiset. We con-
clude the proof by remarking that the symmetric construc-
tion can be used to translate any derivation of Π2 into a deri-
vation of Π1 . 	�  ◻

The derivation �2 in the proof above does not need to con-
tain the same number of steps as �1 . Indeed, if �2 only allows 
for smaller multisets than �1 (e.g., �2 = seq and �1 = max ), 
then �2 may be longer. Furthermore, a single derivation �1 
may translate into different derivations in Π2 , as picking �′ 
and wi+1 is non-deterministic.

The following corollary follows immediately from Theo-
rem 1 and from the fact that asyn is a normal mode.

Corollary 1  For any normal mode � and any Y ∈ {N,Ps} , it 
holds that YOP1(�, ncoo) = YL(REG).

Using the above results, we can now show that the behav-
ior of P systems with reactive membranes under normal 
modes and with non-cooperative rules is fundamentally 
similar to that of simple P systems. We first show that the 
behavior of any simple P system can be faithfully reproduced 
by a P system with reactive membranes.

� = {(a, r) ∈ Fi ∣ a ∈ O, r ∈ R}.

1  We directly specialize here the more general definition from [18] to 
the case in which the configuration contains exactly one multiset of 
symbols.
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Lemma 2  For any normal mode � and any simple P sys-
tem Π ∈ OP1(�, ncoo) , there exists a P system with reactive 
membranes Πre ∈ RenOP(�, ncoo) such that Y(Π) = Y(Πre) , 
for any Y ∈ {N,Ps}.

Proof  Let Π = (O,T ,w0,R, �) . We claim that the P system 
with reactive membranes Πre = (O,T , {w0},R, �) satisfies 
the statement of the lemma, i.e., Y(Π) = Y(Πre).

Indeed, Πre can directly reproduce any computation 
of Π by never splitting or merging—i.e., Mi and Si from 
the splitting and merging stage are always empty—and 
applying exactly the same multisets of rules at the same 
steps. Since Πre carries out the entire computation in a 
single membrane, all multisets of rules applied in Π are 
applicable and satisfy the mode �.

Consider on the other hand a computation �re of Πre 
under the mode � and translate it into a computation �′ 
of a P system Π� = (O,T ,w0,R, asyn) working under the 
asynchronous mode, following the procedure shown in 
Remark 2. Then translate �′ into a computation � of Π 
using the construction from the proof of Theorem 1. � 
will have the same derivation tree as �re , which proves 
the statement of the lemma. 	�  ◻

We now show the converse result: the behavior of any 
P system with reactive membranes can be faithfully repro-
duced by a simple P system.

Lemma 3  For any normal mode � , any n ≥ 1 , and any P 
system with reactive membranes Πre ∈ RenOP(�, ncoo) 
there exists a simple system Π ∈ OP1(�, ncoo) such that 
Y(Π) = Y(Πre) , for any Y ∈ {N,Ps}.

Proof  Let Πre = (O,T ,W0,R, �) . We claim that the simple 
P system Π = (O,T ,w0,R, �) , with w0 =

⋃
w∈W0

w , satisfies 
the statement of the lemma, i.e., Y(Π) = Y(Πre).

The proof follows essentially the same reasoning as that 
of Lemma 2. The P system Π can simulate any computation 
�re of Πre , because �re can be translated into a computation 
of Π with the same derivation tree. On the other hand, Πre 
can directly reproduce any computation of Π by never split-
ting or merging. 	�  ◻

Combining the two previous lemmas yields the follow-
ing result.

Theorem 2  For any normal mode � , any n ≥ 1 , the follow-
ing holds:

YRenOP(�, ncoo) = YOP1(�, ncoo).

An immediate corollary of Theorem 2 and Corollary 1 is 
the following characterization.

Corollary 2  For any normal mode � , any n ≥ 1 , 
YRenOP(�, ncoo) = YREG.

4.2 � Cooperative rules

In this subsection, we show that P systems with reac-
tive membranes working under the maximally parallel 
mode and using cooperative rules can simulate partially 
blind register machines. As a reminder, we mention that 
partially blind register machines (PBRM) have programs 
consisting of the following two types of instructions for 
incrementing and decrementing a register:

–	 (p, ADD(r), q, s) : in state p increment register r and jump 
to state q or state s;

–	 (p, SUB(r), q) : in state p try to decrement register r; if 
successful, jump to state q, otherwise abort the computa-
tion without producing a result.

Partially blind register machines feature a final zero check: 
the register machine only halts with producing a result 
if all non-output registers are empty when the machine 
reaches the halting instruction uniquely labeled by h.

We will refer to the set of multiset languages generated 
by partially blind register machines by PsPBRM.

Theorem 3  For any � ∈ {asyn, seq,max, smax},

Proof  The main idea of the proof is that throughout the 
simulation of the partially blind register machine, the 
configurations of the P system with reactive membranes 
Π always contain exactly one instance of the symbol rep-
resenting the label of the instruction to be carried out 
next. The contents of a register r is represented by the 
total number of symbols ar in the configurations of Π.

The increment instruction (p, ADD(r), q, s) can be simu-
lated directly by the rules p → qar and p → sar.

The decrement instruction (p, SUB(r), q) can be simulated 
by the following two rules: par → q , p → p . Moreover, for 
every register symbol ar with r not being an output register, 
we add the unit rules ar → ar.

More concretely, this is how we define the components 
of Π:

PsPBRM ⊆ PsRe1OP(𝛿, coo).
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where P is the set of instructions of the register machine, Q 
is the set of its instruction labels, R is the set of its registers, 
Rout ⊆ R is the set of its output registers. We define w0 as 
the multiset of the form q0a

r1
r1
… a

rm
rm

 , where q0 ∈ Q is the 
initial state of the machine, and ri , 1 ≤ i ≤ m = |R| , are the 
initial values of its registers.

In what follows, we describe the behavior of Π and prove 
that it indeed faithfully simulates the computations of the 
partially blind register machine.

If p and a copy of ar find themselves in the same mem-
brane, then a successful decrement can be simulated: the 
total number of copies of ar in the system is reduced by one.

If there are no copies of ar left in the system, then p 
only has the chance to be used with the unit rule p → p ; 
observe that in any derivation mode at least one rule has 
to be applied if the system is not halting, i.e., as long as 
there still is a rule which can be applied to some symbol. In 
this case, either p → p and/or some unit rule ar → ar can be 
applied in every future derivation step, hence, the computa-
tion will never halt.

If copies of ar do appear in the system, but not in the 
membrane containing p, then p can use the unit rule p → p , 
and in any derivation mode either only this rule and/or other 
unit rules ar → ar can be applied. If in some future step, 
p and ar appear in the same membrane, possibly par → q 
can be applied. Otherwise, again we obtain just non-halting 
computation branches.

However, there must exist another branch in which no 
splits and mergers have happened at all, i.e., p and ar appear 
together in the same membrane, and in which the simula-
tion therefore will be able to proceed correctly. The same 
alternative holds if p and ar share the same membrane, but 
the system non-deterministically would choose to only apply 
p → p rather than par → p.

As soon as the halting label h appears, we have to use the 
final rule h → � . The final zero check is simulated by the 
unit rules ar → ar for all non-output registers r, which keep 
the computation going on forever if at least one such sym-
bol ar is still present. Observe that this argument does not 
depend on the distribution of the symbols in the membranes 
of a configuration, since ar → ar is a non-cooperative rule, 
and hence Remark 1 applies.

In sum, we conclude that the P system with reactive 
membranes Π can simulate the computations of the given 

Π = (O,T , {w0},R,max), where

O = Q ∪ {ar ∣ r ∈ R},

T = {ar ∣ r ∈ Rout},

R = {p → qar, p → sar ∣ (p, ADD(r), q, s) ∈ P}

∪ {par → q, p → p ∣ (p, SUB(r), q) ∈ P}

∪ {ar → ar ∣ r ∈ R ⧵Rout}

∪ {h → �}.

partially blind register machine correctly, but on the other 
hand cannot yield more results. 	�  ◻

Finally, we remark that the construction we show here is 
non-deterministic, even if the simulated partially blind reg-
ister machine is deterministic, i.e., all increment instructions 
are of the form (p, ADD(r), q, q) , which in a simpler way can 
be written as (p, ADD(r), q).

5 � Extensions

Given the motivation to use P systems with reactive mem-
branes for thinking about the emergence of space and space 
separations in abiotic environments, and also the richness 
of the ecosystem of P systems variants, multiple extensions 
can be proposed.

A natural one to be considered would be limiting the size 
of individual membranes, as real membranes do not gener-
ally grow very big. Limitations on the number of symbols 
have already been considered in P systems [2], but combined 
with constant splitting and merging this ingredient may 
have a drastically different impact. It would be necessary to 
decide what happens when a membrane attains its maximal 
capacity. The approach in [2] is to prevent it to accept new 
symbols, but in the context of reactive membranes it may 
be appropriate to bias the splitting and merging stage of the 
computational step to force such full membranes to split. 
The contribution of such limitations to the computational 
power is yet unclear, but probably in some strong relation to 
the size of the left-hand sides of the evolution rules.

An extension in the spirit of generalized P systems [15] 
would be to subject the rules to splitting and merging: for 
example, a rule u → v could split into two rules u → � and 
� → v , which could later merge back into u → v . With such 
an extension, membranes would contain objects and rules, 
and splitting and merging would affect not only which sym-
bols can interact, but also which rules will ensure their inter-
action. Similarly to splitting and merging of membranes, 
splitting and merging of rules may delay some interactions. 
Relevance to thinking about the origins of life and the com-
putational power of this variant remain to be explored.

6 � Conclusion and perspectives

This paper is a first attempt at using P systems for thinking 
about the origins of life, and in particular about the emer-
gence of individual compartments separated by membranes. 
We introduced P systems with reactive membranes, in which 
every symbol is conceptually surrounded by elementary 
membranes, which then can merge to form bigger mem-
branes, or split. Mimicking biochemistry, the set of rules is 
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common to all membranes—the differences in the processes 
in different membranes should come from the symbols. 
Cooperative rules are allowed, and probably even necessary 
to meaningfully implement distinctions between membranes.

It is still an open research direction to actually illustrate 
some processes believed to have happened during abiogen-
esis in P systems with reactive membranes. Perhaps the most 
promising would be to implement autocatalytic cycles (e.g., 
[13]). The next step would be to implement self-replication, 
as suggested by José M. Sempere in a discussion. Indeed, in 
P systems with reactive membranes the membrane structure 
emerges spontaneously, which makes them a promising can-
didate for implementing self-replication of something other 
than symbol objects.

A parallel research direction which we started to explore 
in this paper is the computational power of P systems with 
reactive membranes. We have shown here that splitting and 
merging do not affect the computational power of P systems 
with reactive membranes using non-cooperative rules—
P systems with reactive membranes using non-cooperative 
rules have the same computational power as simple P sys-
tems provided we only start with one singleton multiset, no 
matter which derivation mode we use. Based on this result, 
we have shown that P systems with reactive membranes 
can characterize the family of Parikh sets of semilinear lan-
guages when using only non-cooperative rules in any deri-
vation mode.

Finally, when cooperative rules are allowed, P systems 
with reactive membranes can generate all multiset languages 
generated by partially blind register machines.

Several questions still remain to be addressed, in particu-
lar: can splitting and merging augment the computational 
power? It would indeed be surprising, but it has already been 
shown that non-deterministic shuffling of rule right-hand 
sides allows for generating non-semilinear languages [1], 
meaning that random shuffling of symbol neighborhoods as 
described in this paper may boost the power of the variant 
in some specific cases.

A subtle aspect which we do not discuss in depth in this 
paper is the halting condition and the procedure for retriev-
ing the result. There is an asymmetry between these two: 
halting occurs when no more evolution rules are applicable 
after all possible splits and mergers. On the other hand, get-
ting out the result essentially happens by merging all mem-
branes into a single one.

Since the computational results we give in this paper 
seem to depend directly on the halting condition and on the 
procedure for obtaining the result, it would be relevant to 
explore how slight variations in these two affect the compu-
tational power of P systems with reactive membranes.

Finally, in Sect. 5, we have suggested several possible 
extensions of the new variant. A formal exploration of the 
computational power of such extensions would be quite 

relevant. Even more importantly, it would be very relevant 
to identify which extensions are more useful for using P 
systems with reactive membranes in thinking about the ori-
gins of life.
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