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ON THE SHAPES OF RATIONAL LEMNISCATES

Christopher J. Bishop, Alexandre Eremenko, and

Kirill Lazebnik

Abstract. A rational lemniscate is a level set of |r| where r : ̂C→ ̂C is rational. We
prove that any planar Euler graph can be approximated, in a strong sense, by a
homeomorphic rational lemniscate. This generalizes Hilbert’s lemniscate theorem;
he proved that any Jordan curve can be approximated (in the same strong sense) by
a polynomial lemniscate that is also a Jordan curve. As consequences, we obtain a
sharp quantitative version of the classical Runge’s theorem on rational approxima-
tion, and we give a new result on the approximation of planar continua by Julia sets
of rational maps.

1 Introduction

1.1 Rational lemniscates and Euler graphs.

Definition 1.1. A rational lemniscate is a set of the form

Lr(c) := {z ∈ ̂C : |r(z)|= c},

where 0 < c < ∞, r is a rational function and ̂C is the Riemann sphere; in other
words, a rational lemniscate is a level set of |r|. The constant c is often omitted from
the notation, since by rescaling r we can always take c = 1, and for brevity we will
write Lr = Lr(1).

Definition 1.2. A lemniscate graph is a set G⊂ ̂C so that there is a finite set V ⊂G

(called the vertices of G), so that:

(1) G \ V has finitely many components (these are called the edges of G), each
of which is either a (closed) Jordan curve, or else an (open) simple arc γ

satisfying γ \ γ ⊂ V .
(2) The degree of each vertex is even and at least four, where the degree of a

vertex v is defined as the number of edges γ satisfying v ∈ γ \ γ, and we count
an edge γ twice if {v} = γ \ γ.

See Fig. 1. It is not hard to prove that every rational lemniscate is a lemniscate
graph (see Proposition 2.4) and our main result will show that every lemniscate
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Figure 1: Pictured are three examples of lemniscate graphs, together with 2-colorings of their faces.
For each example, the unbounded face is colored grey. The leftmost example consists of five disjoint
Jordan curves and has no vertices. The center example has six connected components and six
vertices (two of degree six and four of degree four). The right hand example has three connected
components and one vertex of degree eight.

graph is homeomorphic to, and can be approximated by, a rational lemniscate. Before
stating the precise result, we need a few more definitions.

A lemniscate graph need not be a graph in the usual sense, since it can have
Jordan curve components with no vertices (see Fig. 1). However, if we add a vertex
(of degree two) to each such curve component, we create an Euler graph in the usual
sense (an Euler graph is one where every vertex has even degree; an Eulerian graph
is a connected Euler graph). Thus as closed subsets of the plane (forgetting the ver-
tex/edge structure), lemniscate graphs and Euler graphs are the same. In particular,
the faces of the graph (that is, the connected components of the complement of the
graph) are the same.

Definition 1.3. Let G be a lemniscate graph. A 2-coloring of the faces of G assigns
one of two colors to each face (we will use white and grey) so that any two faces
sharing a common edge have different colors.

The fact that the faces of a planar Euler graph can be 2-colored is well known
in graph theory. Moreover, there are exactly two such colorings, obtained from each
other by swapping the colors. Similarly, the faces of a rational lemniscate have a
natural 2-coloring where the components of {z ∈ ̂C : |r(z)| < 1} are colored white,
and the components of {z ∈ ̂C : |r(z)|> 1} are colored grey (we can swap colors by
replacing r by 1/r). Clearly the poles of r must lie in the grey components. It turns
out that this is the only restriction for the following type of approximation to hold.

Definition 1.4. Let ε > 0. Two sets E, F ⊂ ̂C are said to be ε-homeomorphic if
there exists a homeomorphism φ : ̂C→ ̂C satisfying φ(E) = F and sup

z∈̂C d(φ(z), z)<
ε, where d(·, ·) denotes the spherical metric on ̂C.

Theorem A. Let G be a lemniscate graph, let ε > 0, fix a 2-coloring of the faces of

G, and suppose that P ⊂ ̂C contains exactly one point in each grey face of G. Then

there exists a rational mapping r : ̂C→ ̂C so that G and Lr are ε-homeomorphic and

r−1(∞) = P .
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Remark 1.5. We might have called two sets E and F δ-homeomorphic if there is
homeomorphism φ : E → F so that supz∈E |φ(z) − z| < δ, but this is weaker than
Definition 1.4. However, we shall prove in Sect. 3 that if G is a lemniscate graph
and φ : G→G� is a δ-homeomorphism in this weaker sense, then it can be extended
to an ε-homeomorphism of ̂C, assuming that δ is sufficiently small depending on G

and ε (this is false for more general sets). Thus to prove Theorem A, it will suffice
to verify that for every δ > 0 there is a rational function r, so that G and Lr are
δ-homeomorphic in the weaker sense.

1.2 Hilbert’s lemniscate theorem. Hilbert [Hil97] proved that any closed Jordan
curve is ε-homeomorphic to a polynomial lemniscate. This is not how the result is
usually stated, but it is an equivalent formulation, and it makes it easy to see that
Theorem A generalizes Hilbert’s result. More precisely, since a Jordan curve is a
lemniscate graph (one edge, no vertices) with exactly two faces, we can choose the
unbounded face to be colored grey, and place the pole in Theorem A at infinity. Thus
the approximating rational lemniscate is actually a polynomial lemniscate, giving
Hilbert’s theorem. More generally, any finite collection of disjoint Jordan curves that
are not nested (no curve separates another one from infinity) is ε-homeomorphic
to a polynomial lemniscate, since we can color the bounded faces white and the
unbounded face grey. This case is due to Walsh and Russell [WR34], and generalizing
their result to arbitrary families of disjoint Jordan curves (i.e., allowing nesting) was
the original motivation for the current paper. In addition to recovering the theorems
of Hilbert and Walsh-Russell, Theorem A also gives the following new result about
polynomial lemniscates.

Corollary 1.6. If G is a lemniscate graph that is the boundary of its unbounded

face, then G is ε-homeomorphic to a polynomial lemniscate for every ε > 0. If a

lemniscate graph is not the boundary of its unbounded face, then it is not the image

of a polynomial lemniscate under any homeomorphism of the plane.

Both Hilbert’s lemniscate theorem and Theorem A say that every topological
version of some object (a Jordan curve or lemniscate graph) is ε-homeomorphic to
an algebraic version of the same object.

1.3 Quantitative approximation by rational functions.

Theorem B. Let K ⊂ ̂C be compact, let P contain exactly one point from each com-

ponent of ̂C \K, and suppose f is holomorphic in a neighborhood U of K. Then

there exist constants A,B ∈ (1,∞) and a sequence of rational mappings Rn of degree

≤ n satisfying R−1
n (∞)⊂ P and such that

sup
z∈K

|f(z)−Rn(z)| ≤
A

Bn
for all n. (1.1)

Replacing the geometric rate of convergence in (1.1) with o(1) is exactly Runge’s
classical approximation theorem. When the neighborhood U in Theorem B is a disc,
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we can take Rn to be the degree n truncation of the Taylor series for f in U . We
then see that Theorem B generalizes the well-known fact that the Taylor series of an
analytic function f converges geometrically fast to f on compact subsets of the disc
of convergence. For more general open sets U , we will first choose a rational map r

whose lemniscate Lr separates K from ∂U , and then choose the maps Rn so that
their derivatives, R(k)

n , agree with the derivatives f (k) up to some order (depending
on n) at the zeros of r. See Sect. 7 for details. To prove Theorem B, we will only need
Theorem A in the case when the lemniscate graph has no vertices, i.e., it consists
only of disjoint Jordan curves. We shall see that this case is much easier than the
general case of graphs with vertices.

We will also show that the geometric decay in Theorem B is sharp in general: if
K has positive logarithmic capacity, and if there is a sequence of rational approxima-
tions that converge to f faster than geometrically along some subsequence of degrees,
then f extends holomorphically to ̂C \ P . See Sect. 8 for the precise statement and
proof.

In the case that ̂C \K is connected, ∞∈ ̂C \K, and P = {∞}, Theorem B is
exactly Theorem I of [WR34]. All other cases of Theorem B (namely, whenever
̂C \K is not connected) are new, to the best of our knowledge.

1.4 Approximation by Julia sets. If a rational map r has exactly two attracting
cycles, and if the Fatou set F(r) is equal to the union of the two corresponding
attracting basins, A1 and A2, then the sphere decomposes as (here � denotes disjoint
union)

̂C=A1 �A2 �J (r),

where J (r) is the Julia set of r, and ∂A1 = ∂A2 = J (r). See, for instance, Corol-
lary 4.12 of [Mil06]. Note that each attracting basin is an open set, but need not
be connected. Our next result implies that any disjoint pair of open sets sharing
a common boundary can be approximated by a pair of attracting basins for some
rational map.

Theorem C. Let ε > 0 and A1, A2 ⊂ ̂C be open, non-empty, disjoint sets with com-

mon boundary J satisfying ̂C =A1�A2�J . Then there is a hyperbolic rational map r

with two attracting basins, A1 and A2, sharing a common boundary J (r), satisfying
̂C=A1 �A2 �J (r), so that

dH(Ai,Ai)< ε for i = 1,2 and dH(J,J (r))< ε, (1.2)

where dH denotes Hausdorff distance. Moreover, if A1 has finitely many components,

P contains one point from each component of A1, and p ∈ P , then we may choose r

so that r(p) = p, r−1(p) = P and A1 is the basin of attraction for p.

In the case when A1 is connected, contains ∞ and P = {∞}, this result is essen-
tially the same as Theorem 1.2 of [LY19] by Lindsey and Younsi. They show that
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a compact set K not separating the plane can be approximated by the filled Julia
set of a polynomial. Moreover, they show that such a polynomial approximation is
possible only if the interior of K does not separate the plane; see Theorem 1.4 of
[LY19]. Thus when A1 is not connected in Theorem C, it is necessary to consider
rational maps having finite poles.

Lindsey and Younsi give two proofs of their Theorem 1.2. The first argument does
not seem to extend to the case that A1 is disconnected, but their second proof is
a short application of Hilbert’s Lemniscate Theorem, and replacing Hilbert’s result
with our Theorem A yields a quick proof of Theorem C. See Sect. 9 for details. Like
Theorem B, the proof of Theorem C only requires Theorem A in the easier case when
the lemniscate graph has no vertices.

1.5 Related work. Hilbert’s interest in lemniscates seems to have arisen from
a study of polynomial approximation [Hil97], where he used his lemniscate theorem
to establish the special case of Theorem B in which K has simply-connected com-
plement. Later, Walsh and Russell [WR34] also studied lemniscates in the course of
their proof of Theorem B in the case that K ⊂C has a connected complement.

Hilbert’s theorem has been generalized to higher complex dimensions by Bloom,
Levenberg and Lyubarskii [BLL08], and by Nivoche [Niv09]. Rashkovskii and Za-
kharyuta [RZ11] prove that every bounded polynomially convex poly-circular region
in C

n can be approximated by regions {|pk(z)| < 1,1 ≤ k ≤ n}, where pk are ho-
mogeneous polynomials of the same degree with a unique single common zero at 0.
Nagy and Totik consider placing a lemniscate between tangent curves in [NT05]. The
rate of convergence in Hilbert’s theorem has been studied by Andrievskii [And00],
[And18], and Kosukhin [Kos05]. Results on generalized lemniscates for resolvents
of operators are surveyed by Putinar in [Put05]. Lemniscate approximations via
Runge’s theorem are given in [Sta75] and [ANV22], and applied to various problems
in functional analysis.

There has also been recent interest in rational lemniscates and Hilbert’s theo-
rem stemming from work of Ebenfelt, Khavinson, and Shapiro [EKS11], in which
they propose coordinates on the space of Jordan curve polynomial lemniscates. By
Hilbert’s Lemniscate Theorem, this lemniscate space is dense in the larger space of
smooth Jordan curves, and this larger space of smooth Jordan curves is the central
object of study in the approaches of Kirillov [Kir87], Sharon and Mumford [SM06]
and others to computer vision and pattern recognition. The results in [EKS11] led
to a study of the conformal properties of lemniscates by Fortier Bourque and Younsi
[FY15], by Younsi [You16], and by Frolova, Khavinson and Vasil’ev [FKV18].

A well-known question of Erdős, Herzog, and Piranian [EHP58] asks what is
the maximum length of a lemniscate of a monic polynomial: zn − 1 is conjectured
to be the extreme case. This problem is still open, but related results are given by
Borwein in [Bor95], by the second author and Hayman in [EH99], and by Nazarov and
Fryntov in [FN09]. Other recent work on lemniscates includes a study of the expected
length of random rational lemniscates as considered by Lerario and Lundberg in
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[LL15], [LL16]. Random polynomial lemniscates are considered by Lundberg and
Ramachandran [LR17], and by Epstein, Hanin and Lundberg [EHL20]. There has
been work on the possible topologies of rational lemniscates, the tree structure of
nested components, and the comparison of functions whose level sets are topologically
equivalent, e.g., [CP91], [RY19], [Ric16], [RY17], [Ste86]. For a survey of recent results
on lemniscates and level sets, see [Ric21].

The geometry of higher dimensional, real polynomial lemniscates is a very active
field, e.g. the “polynomial ham sandwich theorem” of Stone and Tukey [ST42] gave
rise to the “polynomial method” in discrete geometry and combinatorics, as described
by Guth in [Gut13]. Recently, real variable polynomial lemniscates have been used
to separate data points in the context of machine learning, e.g., [KLL+] and [MP19].

We also mention again the recent work of Lindsey and Younsi [LY19] explaining
the connection between lemniscates and the approximation of continua by polynomial
Julia sets, a problem also studied by Lindsey in [Lin15], and by the first author
and Pilgrim in [BP15]. Bok-Thaler [BT21] and Marti-Pete, Rempe and Waterman
[MRW22] consider analogous problems in the setting of transcendental (i.e., non-
polynomial) entire functions.

A slightly different, but related, problem is the study of pullbacks r−1(Γ) where
Γ is a Jordan curve passing through the critical values of r (in our case, Γ is always
a Euclidean circle, and need not contain all the critical values of r). Such pullbacks
are called nets, and have been studied by the second author and Gabrielov [EG02],
Thurston [Thu10], Koch and Lei [KL20], Tomasini [Tom15], and the third author
[Laz23].

1.6 Proof sketch. In Sect. 2, we show that any lemniscate graph is ε-
homeomorphic to a graph with analytic edges making equal angles at each vertex.
Thus Theorem A is reduced to this case, and this simplifies various arguments. In
Sect. 3 we show that a homeomorphism moving points of a lemniscate graph G less
than δ = δ(ε,G) can be extended to an ε-homeomorphism of the sphere; this fact
further simplifies the proof of Theorem A.

In Sect. 4, we prove Theorem A in the case that G has no vertices (it is a union
of disjoint Jordan curves). This case is much easier, but introduces several of the
key ideas. Briefly, we consider Green’s functions on the grey faces with poles at
the points of P (one point per grey face), and note that G can be approximated
by the level lines of a function u that is the sum of these Green’s functions. This
function u can be written as a convolution of the logarithmic kernel with the sum of
harmonic measures for the grey faces, and negative point masses at the poles in P .
The harmonic measures are then approximated by sums of point masses, and this
leads to a rational function r so that log |r| approximates u away from G; thus Lr

approximates the given level line of u, and hence it also approximates G.
The case when G has vertices is more difficult, and requires some new ideas.

Given a lemniscate graph G with vertices, we claim that there is a graph H , without
vertices, and a corresponding function u as above, so that a certain level set of u
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is ε-homeomorphic to G. The proof of this claim is postponed to Sects. 10 and 11.
Assuming the claim holds, we prove Theorem A in Sects. 5 and 6: in Sect. 5 we place
the poles of the rational functions as close to P as we wish, and in Sect. 6 we give a
fixed point argument to position them exactly on P . Sections 7 and 9 are devoted to
deducing Theorems B and C, and the sharpness of Theorem B is proven in Sect. 8.

As noted above, the proof of Theorem A is much shorter when G has no vertices,
and this special case is sufficient for the proofs of Theorems B and C. The reader
who is only interested in this case can skip the proof of Theorem 2.2, and the proofs
in Sects. 5, 6, 10 and 11; this will omit about half of the paper. We also note that
only the first half of Sect. 11 is needed when all vertices of G have degree four.

1.7 Notation. We will generally use boldfaced symbols for vectors, e.g., x =
(x1, . . . , xn) or θ = (θ1, . . . , θn). An open disk of radius r centered at z will be denoted
by D(z, r). When A and B are both quantities that depend on a common parameter,
then we use the usual notation A = O(B) to mean that the ratio A/B is bounded
independent of the parameter. We write A�B if both A=O(B) and B =O(A). The
notation A = o(B) means A/B → 0 as the parameter tends to infinity. We will use
G to denote general lemniscate graphs and H to denote lemniscate graphs without
vertices (finite unions of disjoint closed Jordan curves). A G with a subscript, such as
GW , will denote the Green’s function for the domain W , and we define such functions
to be zero off of W . In general, we use A := B to mean that A is being defined in
terms of B, and A=B to show equality between two (already) defined quantities.

2 From topological graphs to analytic graphs

In the introduction, we defined lemniscate graphs so that the edges are just Jordan
arcs; no smoothness is assumed. However, we will show every topological graph is ε-
homeomorphic (for every ε > 0) to an analytic version of itself, that is, a graph with
analytic edges. This allows us to reduce the proof of Theorem A to the case when the
lemniscate graph has smooth edges, and this simplifies some of the arguments. We
can think of this as a “stepping stone” to the main result of this paper, that every
lemniscate graph is ε-homeomorphic to an algebraic version of itself, i.e., a rational
lemniscate.

By an analytic edge e, we mean the image of the line segment [0,1] under a
locally injective holomorphic map defined on some neighborhood of [0,1] (the map is
conformal on a neighborhood of [0,1] if the endpoints of e are distinct). In particular,
such an edge is a subset of a slightly longer analytic curve (the image of a longer
segment [−ε,1 + ε] under the same map), and hence it has a well defined direction
at each endpoint, and it has uniformly bounded curvature.

Theorem 2.1. Suppose that H is a closed Jordan curve. For any ε > 0, H is ε-

homeomorphic to an analytic Jordan curve, and the homeomorphism may be taken

to be the identity outside an ε-neighborhood of H .
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Theorem 2.2. Suppose that G is a connected lemniscate graph. Then for any ε > 0,
G is ε-homeomorphic to a lemniscate graph whose edges are analytic, and so that the

edges meeting at any vertex form equal angles. The homeomorphism may be taken

to be the identity outside an ε-neighborhood of G.

Clearly, the first result is a special case of the second, but in the proof it is
convenient to first deal with the case when there are no vertices (and Theorem 2.2
is not needed for the proofs of Theorems B and C).

For disconnected graphs, we can apply one of these results to each of the connected
components. If ε is less than half the minimal distance between components, then
the composition of these maps gives an ε-homeomorphism of the entire graph to an
analytic version of itself (each map in the composition only moves points that all
the other maps fix). Our proof gives a new edge e� that is disjoint from the edge e it
replaces (except for the endpoints), and can place it inside either of the two faces of
G bounded by e.

Proof of Theorem 2.1. Let φ : D→ Ω denote a Riemann map onto one of the com-
plementary components of H . The map φ extends continuously to a map φ : T→H ,
and this extension further extends to a homeomorphism φ : ̂C→ ̂C by the Jordan-
Schönflies theorem. Let ρδ be an increasing homeomorphism from Iδ = [1−2δ,1+2δ]
to itself so that ρδ(1) = 1− δ. Since ρδ is increasing, it fixes both endpoints of Iδ, and
we can extend ρδ to the complex plane by ρδ(z) = ρδ(|z|)z/|z| if 1−2δ < |z|< 1+2δ,
and as the identity otherwise. We claim that the homeomorphism

ψδ := φ ◦ ρδ ◦ φ−1 : ̂C→ ̂C

satisfies the conclusions of the theorem if δ > 0 is small enough. Indeed, we have
ψδ(H) = φ((1− δ)T) is an analytic Jordan curve, and

dist(ψδ(z), z) = dist(φ(ρδ(φ−1(z))), z) for all z ∈ ̂C, (2.1)

where we use dist to denote spherical distance. Since ρδ tends to the identity as δ↘ 0
and φ is uniformly continuous on ̂C (since φ is continuous on the compact set ̂C),
we conclude that ψδ is an ε-homeomorphism for δ close enough to 0. □

To prove Theorem 2.2, we first need to modify the graph near each vertex.

Lemma 2.3. Let G� be a lemniscate graph and ε > 0. Then there exists an ε-

homeomorphism of G� onto a lemniscate graph G having the property that in a

neighborhood of each vertex of degree 2n, the graph G is a union of 2n straight line

segments each terminating at v, and making equal angles. The homeomorphism may

be taken to be the identity outside an ε-neighborhood of G�.

Proof. Let v be a vertex of G� of degree 2n, and D a Jordan domain containing v so
that G� intersects ∂D at exactly 2n points. We will define G by replacing G� in D

with 2n Jordan arcs which start at the points G� ∩ ∂D, and in a small ball around
v consist of straight lines terminating at v and making equal angles. Doing this for
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Figure 2: We modify γ near each vertex v so it contains a line segment centered at v.

each vertex v of G� defines the graph G. Suppose each D has diameter < ε. Define
a homeomorphism as the identity outside of each D, and inside each D by first
mapping the Jordan arcs G� ∩D onto the corresponding Jordan arcs in G∩D, and
then extending by the Jordan-Schönflies theorem throughout D (e.g., Corollary 12.15
in [Mar19]). The result is an ε-homeomorphism of ̂C mapping G� to G. □

Proof of Theorem 2.2. We may assume that G has the form given in Lemma 2.3,
but that G is not a Jordan curve, since that case is covered by Theorem 2.1. Thus
G has vertices and every vertex has even degree at least four. It suffices to replace
each edge e of G by a new edge that is analytic (in the sense discussed earlier) and
tangent to e at their common endpoints. There are two cases, depending on whether
the endpoints of e are two distinct points (e is an arc) or a single point (e is a loop).

For any edge e in a lemniscate graph G, we claim that there is a Jordan curve
γ ⊂G containing e. We can prove this by forming a directed path in G that starts
with the edge e (choose either orientation). Since every vertex has even degree the
path can be continued until it returns to the initial vertex of e. For any vertex v on
this path, we erase the sub-path between the first and last visits to v. This gives a
Jordan curve γ containing e. If e has distinct endpoints, then γ strictly contains e. If
both ends of e are the same point, then we can take γ = e, but for the proof below,
it will be more convenient to consider a different curve. If we remove e from G, we
still have an Eulerian graph, so there is a Jordan curve γ� in G containing v but not
e. Then γ = e∪ γ� is a figure-8 curve contained in G.

First assume the endpoints of e are two different points. Fix an endpoint v of e.
The curve γ contains two line segments, s1 and s2, each with endpoint v. If these two
segments lie on the same line, then their union is a line segment with v in its interior.
In this case, we do nothing. If the two segments are not on the same line, then we
modify γ by extending the segment s1 a short distance past v, and then connect the
end of this extended segment by a circular arc (centered at v) to an interior point of
s2. See Fig. 2. This gives a new Jordan curve that contains a segment with midpoint
v, and that equals γ outside a small neighborhood of v. Do this replacement, if
necessary, at both endpoints of e, and call the new curve γ also.

Let Ω denote a component of ̂C\γ (it does not matter which component we pick).
Let φ : D→ Ω denote a Riemann map. Since ∂Ω is locally connected, φ extends to
a homeomorphism φ : T→ γ. We may choose φ so that the points −1 and 1 map
to the two endpoints of e, and so that e = φ(Γ0), where Γ0 is the upper half-circle,
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Figure 3: We define a neighborhood U of the upper half circle as a union of elliptical arcs, and
define a homeomorphism of U to itself by shifting the arcs. This is the identity outside U . When
conjugated by φ this becomes an ε-homeomorphism of G to G′ taking e to e′, that is the identity
on G \ e.

Γ0 = T ∩H. Because γ contains line segments centered at each of the endpoints of
e, there is some η > 0 so that φ extends analytically to a η-neighborhood around
each of −1 and 1 by Schwarz reflection. Extend φ from D ∪D(−1, η)∪D(1, η) to a
homeomorphism φ : ̂C→ ̂C by the Jordan-Schönflies Theorem.

For |δ| small, consider the rational map Rδ(z) = (z + δ/z)/(1 + δ). On the unit
circle 1/z = z, so

R(x+ iy) = (x+ iy + δ(x− iy))/(1 + δ) = x+ iy/μ,

where μ= (1 + δ)/(1− δ). Thus R maps the unit circle onto the ellipse

Eδ = {(x, y) ∈R
2 : x2 + μ2y2 = 1}.

When δ ∈ (0,1), we have μ > 1, which implies this ellipse is contained in the open
unit disk, except at the points −1,1 where it is tangent to the unit circle. Thus φ

is analytic on a neighborhood of Eδ and φ(Eδ) is an analytic closed curve that is
tangent to e at both of its endpoints. We define the replacement edge to be e� = φ(Γδ),
where Γδ =Eδ ∩H is the upper half of Eδ.

Let G� be the lemniscate graph obtained from G by replacing the edge e by
e�. We want to show these two graphs are ε-homeomorphic by a map that is the
identity off a neighborhood of e (recall that edges are open arcs and do not contain
their endpoints). As above, let Γt = Et ∩ H = Rt(Γ0), and let Uδ be the union of
Γt for t ∈ I = [−2δ,2δ]. See Fig. 3. For z ∈ Uδ, define t(z) = s if z ∈ Γs. Let ρ :
I → I be a homeomorphism that fixes each endpoint and satisfies ρ(0) = δ. Then
hδ(z) = Rρ(t(z))(R−1

t(z)(z)) is a homeomorphism of Uδ that is the identity on ∂Uδ and
maps Γ0 to Γδ. It moves points in Uδ by at most O(δ). Set Wδ := φ(Uδ) and define
ψδ(z) = φ(hδ(φ−1(z))) if z ∈Wδ and ψ(z) = z elsewhere. For δ small enough, ψδ is a
ε-homeomorphism of the sphere taking G to G�, and it is the identity on every edge
of G except e.

Next, suppose the endpoints of e are the same point v. This case can be reduced
to the previous one. See Figs. 4 and 5. As noted earlier, in this case e is part of a
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Figure 4: Using linear fractional transformations and a square root, we can map the non-Jordan
face of γ to a Jordan domain. The inverse of this map is a rational map.

Figure 5: If both endpoints of e are the same, we can find a figure-8 curve γ containing e and use a
branch of f−1 to map the non-Jordan face of γ to a Jordan domain. Then the earlier construction
gives an analytic approximation to f(e) and applying the rational map f gives the an analytic
approximation to e.

figure-8 curve γ = e∪γ� ⊂G. The curve γ has three complementary components: one
with boundary e, one with boundary γ�, and a third component Ω with boundary
γ. Choose points a and b in the first two, and let τ(z) = (z − a)/(z − b); this is a
linear fractional transformation sending a to 0 and b to ∞. Define f(z) = τ−1(τ(z)2)
(we could write the formula explicitly, but we don’t need it). This is rational map of
degree 2, and we can define a branch of f−1 on Ω by taking a branch of z1/2 on τ(Ω)
(which is simply connected and omits both 0 and ∞). Then f−1 has two different
values at v and it maps Ω to a Jordan region Ω�, and v corresponds to two points
on the boundary of Ω�. See Fig. 4.

We repeat the earlier construction for Jordan faces given above to find an analytic
curve σ that approximates f−1(e), and that is tangent to f−1(e) at its endpoints.
Then apply the rational map f to σ and obtain an analytic curve e� approximating
e. See Fig. 5.

Thus we may proceed edge by edge, replacing edges which have not previously
been replaced, and leaving previously altered edges fixed. Each graph we obtain is
ε-homeomorphic to the previous one, and since at most one of these homeomor-
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phisms moves any given point of ̂C, the composition is an ε-homeomorphism of ̂C,
as desired. □

The following result was promised in the introduction.

Proposition 2.4. Let L be a rational lemniscate. Then L is a lemniscate graph.

Proof. We will show L satisfies Definition 1.2. We set V := {z ∈ Lr : r�(z) = 0}.
Recall the local normal form for holomorphic maps (see for instance Theorem 1.59
in [Zak21]); namely that for any z0 ∈ C, up to holomorphic changes of coordinates
in the domain and co-domain, r is locally given by z 
→ zn near z0, and n = 1 if and
only if r�(z) �= 0. Thus each component of Lr \ V is a connected 1-manifold. The
only connected 1-manifolds are (closed) Jordan curves or (open) simple arcs (see for
instance [Mil97]). This shows that L satisfies condition (1) in Definition 1.2. The
fact that L satisfies condition (2) in Definition 1.2 also follows from the local normal
form for holomorphic mappings near critical points. □

3 Extending ε-homeomorphisms

Next, we record a fact that we will use several times later in the paper.

Lemma 3.1. Let G be a lemniscate graph and ε > 0. Then there exists δ > 0 so that

if h : G→G� is any homeomorphism satisfying supz∈G |h(z)− z|< δ, then h admits

an ε-homeomorphic extension h : ̂C→ ̂C.

This fact is probably well known, but we are not aware of a reference, so we give
a proof for completeness. The main difficulty is not that the extension exists, but
that it can be chosen to move points very little.

Definition 3.2. We will call a domain Ω a lemniscate domain iff Ω is simply con-
nected and ∂Ω is a lemniscate graph.

Lemniscate domains include Jordan domains, but also include non-Jordan do-
mains such as the unbounded complementary component of a figure-8 curve in the
plane. Lemniscate graphs are locally connected, and so Carathéodory’s Theorem
implies that any Riemann map φ : D→ Ω onto a lemniscate domain Ω extends con-
tinuously to T.

Lemma 3.3. Let Ω be a lemniscate domain, z0 ∈Ω and set γ := ∂Ω. Assume (δn)∞n=1
is a positive sequence converging to 0, and hn : γ → hn(γ) is a sequence of δn-

homeomorphisms. Let Ωn be the component of ̂C \ hn(γ) containing z0. Denote by

φ : D → Ω, φn : D → Ωn the Riemann maps normalized to map 0 to z0 and have

positive derivative at 0. Then φn → φ uniformly on D.

Proof. It is straightforward to check that the domains Ωn converge to Ω in the
Carathéodory kernel sense (see Sect. 1.4 of [Pom92]), and so Carathéodory’s conver-
gence theorem implies that φn → φ uniformly on compact subsets of D; in particular
φn → φ pointwise on D.
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Thus, by Corollary 2.4 of [Pom92], in order to conclude that φn → φ uniformly
on D, it suffices to check that the sets ̂C \ Ωn are uniformly locally connected (see
Sect. 2.2 of [Pom92]); that is, it suffices to check that for all ε > 0, there exists δ > 0
(independent of n) so that any two points a, b ∈ ̂C \Ωn satisfying |a− b|< δ can be
joined by a continuum K ⊂ ̂C \Ωn of diameter < ε.

Fix ε > 0. Since γ = ∂Ω is a lemniscate graph, γ is locally connected and hence
there exists δγ > 0 so that any two points a, b ∈ γ satisfying |a − b| < δγ can be
joined by a continuum K ⊂ γ of diameter < ε/2. Set δ = δγ/2. Let z,w ∈ hn(γ). For
n large enough so that δn < δγ/4, we have that |z−w|< δ implies that a = h−1

n (z), b=
h−1
n (w) ∈ γ satisfy |a−b|< δγ . Thus (by our choice of δγ) there is a continuum K ⊂ γ

of diameter < ε/2 joining a, b, and so hn(K) ⊂ hn(γ) is a continuum of diameter
< ε/2 + 2δn joining z, w. Since ε/2 + 2δn < ε for large n, we have demonstrated
that the (hn(γ))∞n=1 are uniformly locally connected. The (hn(γ))∞n=1 being uniformly
locally connected implies, in turn, that the ̂C \ Ωn are uniformly locally connected
(see Theorem 2.1 of [Pom92]). □

Corollary 3.4. Let Ω be a lemniscate domain, z0 ∈ Ω, set γ := ∂Ω and let ε > 0.
Then there exists a δ > 0 so that if h : γ → h(γ) is a δ-homeomorphism, and Ωh

is the component of ̂C \ h(γ) containing z0, then the Riemann maps φh : D→ Ωh,

φ : D→ Ω (normalized as in Lemma 3.3) satisfy supz∈D |φ(z)− φh(z)|< ε.

Proof. If there existed Ω, z0, ε for which the corollary failed, then extracting se-
quences hn, φn from the counterexamples arising from δn := 1/n would contradict
Lemma 3.3. □

Lemma 3.5. Let Ω be a lemniscate domain with γ := ∂Ω, ε > 0 and U a neighborhood

of γ. Then there exists δ > 0 so that any δ-homeomorphism h : γ → h(γ) admits an ε-

homeomorphic extension h : Ω → Ωh satisfying h(z) = z for z /∈ U , where Ωh denotes

the component of ̂C \ h(γ) containing z0.

Proof. Fix z0 ∈ Ω and ε > 0. By the Riemann Mapping Theorem, there exists a
conformal map φ : D→ Ω satisfying φ(0) = z0 and φ�(0) > 0. For a homeomorphism
h : γ → h(γ), let φh :D→ Ωh denote a conformal map also normalized so that φh(0) =
z0, φ�h(0)> 0.

Consider the following composition (for now defined only in a formal sense, not
as a mapping):

f := φ−1
h ◦ h ◦ φ. (3.1)

The map φh is not injective on T whenever γ (and hence h(γ)) has at least one
vertex; thus φ−1

h may be multi-valued on h(γ). We claim that the expression (3.1)
nevertheless gives a well-defined homeomorphism f : T→ T for δ small enough. In-
deed, for δ small, we have that v is a vertex of γ having n accesses from z0 (within Ω)
if and only if h(v) is a vertex of h(γ) having n accesses from z0 (within Ωh). More-
over, the degrees of the vertices occur in the same order counterclockwise around γ,
h(γ) (as seen from z0). Thus, for δ small, the mapping f is a homeomorphism off
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of the φ-images of the vertices of γ, and extends continuously to a homeomorphism
f : T→ T.

For all η > 0, Corollary 3.4 implies that there exists a δ > 0 so that if h is a
δ-homeomorphism of γ, then

sup
z∈D

|φ(z)− φh(z)|< η. (3.2)

Thus, for all η > 0, there exists δ > 0 so that if h is a δ-homeomorphism of γ, then
the homeomorphism

f := φ−1
h ◦ h ◦ φ : T→ T

is an η-homeomorphism.
Let r < 1 satisfy that φ(rT) ⊂ U . We claim that f : T→ T extends to a homeo-

morphism f :D→D satisfying f(z) = φ−1
h ◦φ(z) for z ∈ rD. In order to verify this, we

need to define f on the annulus {z : r < |z|< 1}. First note that φ−1
h ◦φ is uniformly

close to the identity and is conformal in a neighborhood of rT. Thus the Cauchy
estimates imply that the derivative of φ−1

h ◦ φ is as close to 1 as we wish (by taking
δ small enough) on a smaller neighborhood of rT. Hence the image of this circle is
close to perpendicular to each radial segment it touches, and hence the Jordan curve
φ−1
h ◦ φ(rT) intersects any radial line {z : arg(z) = θ} in at most one point.

Thus, we may define a homeomorphism R of the annulus with boundary com-
ponents T, φ−1

h ◦ φ(rT) onto the annulus {z : r < |r| < 1} by specifying R pre-
serves (set-wise) radial lines, R is the identity on T, and R maps each point
ζ ∈ φ−1

h ◦ φ(rT) to the point on rT having the same argument as ζ. We can in-
terpolate between f : T→ T and R◦φ−1

h ◦φ : rT→ rT to give a homeomorphism we
call g : {z : r < |z|< 1}→ {z : r < |z|< 1} by using the interpolation which is linear
in logarithmic coordinates (i.e. when g is lifted by the exponential to give a self-map
of a horizontal strip, this lift maps straight line segments to straight line segments).
The homeomorphism g is close to the identity as long as h is close to the identity.
Then f := R−1 ◦ g gives the desired homeomorphic interpolation between f : T→ T

and φ−1
h ◦ φ : rT→ φ−1

h ◦ φ(rT), and f is close to the identity as long as δ is small.
Thus, for δ small enough (depending on ε, φ), if h is any δ-homeomorphism of γ,

the map

φh ◦ f ◦ φ−1 : Ω→ Ωh

is an ε-homeomorphic extension of h : γ → h(γ), which is the identity on φ(rD). By
our choice of r, this means h is the identity outside of U . □

Proof of Lemma 3.1. For each component E of G, take a neighborhood UE of E

which is disjoint from all other components of G. Then by Lemma 3.5, there exists
a δ > 0 (depending on E, UE , and ε) so that if h|E is a δ-homeomorphism, then h|E
extends to an ε-homeomorphism of ̂C which is the identity outside of U . Taking δ

to be the smallest value that works for all components G, we see that the desired
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extension of any δ-homeomorphism h may be defined piecewise in a neighborhood
of each component of G and the identity outside of these neighborhoods; this gives
the desired ε-homeomorphic extension of h. □

4 Approximating graphs without vertices

We are now ready to start the proof of our main result, Theorem A. The results
in Sect. 2 show that it suffices to consider lemniscate graphs that have analytic
edges, and form equal angles at each vertex. In this section, we prove Theorem A
for lemniscate graphs with no vertices, so it suffices to assume H is a union of
pairwise disjoint analytic Jordan curves. This special case is sufficient for the proofs
of Theorems B and C (and its proof only uses Theorem 2.1, not Theorem 2.2).

We recall the convention that general lemniscate graphs (possibly with vertices)
will be denoted by G, and lemniscate graphs without vertices will be denoted by H .

For any lemniscate graph G, the boundary of each face is a finite union of non-
trivial continua, so each face is regular for the Dirichlet problem. Thus for each face
B and each point p ∈ B, we can define the harmonic measure ωp = ω(·, p,B) with
base point p. This is a probability measure on ∂B that satisfies

u(p) =
∫

∂B
f(ζ)dωp(ζ),

where u is the harmonic extension of f ∈C(∂B) to B (e.g., on the unit disk harmonic
measure is given by the Poisson kernel). For a bounded face B of G, the Green’s
function for B with pole at p is defined as

GB(z, p) =
∫

log |ζ − p|dωz(ζ)− log |z − p|, for z ∈B,(4.1)

and we set it to zero outside B, by convention. This is the unique harmonic function
on B \ {p} that vanishes on ∂B and has a logarithmic pole at p. For the basic
properties of harmonic measure and Green’s function see, e.g., Chapters II and III
of [GM08].

Notation 4.1. Suppose that H is a lemniscate graph without vertices, and that
P ⊂ ̂C is a finite set that contains at least one point in each grey face of H . If B is
a grey face of H , we set PB := P ∩B. For a grey face B of H , we define the signed
measure μB :=

∑

p∈PB
(ωp − δp) where (as above) ωp is harmonic measure for B with

base point p and δp is a unit mass at p. Note that μB has total mass zero.

For lemniscate graphs H without vertices, the proof of Theorem A will only
require considering sets of poles that have one element in each grey face of H .
However, we will need to consider multiple poles per face when proving Theorem A
for graphs with vertices (see Sect. 5), so we allow this possibility here. Throughout
this section, we fix a lemniscate graph H without vertices, a 2-coloring of the faces
of H , and a (non-empty) finite set of points PB ⊂B for each grey face B of H . We
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will assume ∞ is contained in a white face of H . Set P := ∪BPB . For p ∈ P , let B(p)
denote the face of H containing p.

Notation 4.2. Given H and P , define a [0,∞]-valued function

u(z) = uH,P (z) :=
∑

p∈P
GB(p)(z, p)

for z ∈ ̂C, where GB(p)(z, p) denotes the Green’s function for B(p) with pole at p. As
above, we set GB(p)(z, p) = 0 for z /∈B(p).

The following two formulas are immediate from the definitions above.

Proposition 4.3. For each grey face B of H , and all z ∈ ̂C,

∑

p∈PB

GB(z, p) =
∫

̂C

log |z − ζ|dμB(ζ). (4.2)

For all z ∈ ̂C,

uH,P (z) =
∑

B

∫

̂C

log |z − ζ|dμB(ζ). (4.3)

Next, we approximate harmonic measure by δ-masses at points (ζBj )mj=1 ∈ ∂B.

Definition 4.4. First consider the case that ∂B consists of a single Jordan curve.
We fix some large m ∈N and a point ζB1 ∈ ∂B, and for j > 1 we define points {ζBj }m2
so that the segment Ij ⊂ ∂B from ζBj−1 to ζBj oriented positively with respect to B,
satisfies

∑

p∈PB

ω(Ij , p,B) =
|PB|
m

,

where |PB| denotes the number of elements in the set PB .
When ∂B has more than one component, we follow a similar procedure, now

placing on each component γ of ∂B either �m · ∑p∈PB
ω(γ,B, p)� points or �m ·

∑

p∈PB
ω(γ,B, p)�+ 1 points, so that each edge connecting two adjacent points on γ

has measure = |PB|/m, except, possibly, for one edge which has measure < |PB|/m.
Define {ωB

m} by placing mass |PN |/m at each point constructed above, and define
μB
m = ωB

m −∑

p∈PB
δp.

We claim that the measures {ωB
m} converge weak-∗ to

∑

P∈PB
ωp. This follows

because harmonic measure is non-atomic, i.e., single points always have harmonic
measure zero (this is true for general domains in R

n, n ≥ 2, but we only need it
for finitely connected domains in the plane). Because of this, the maximum size δm
of the arcs I connecting adjacent points in Definition 4.4 tends to zero as m tends
to infinity. Any continuous function g on the graph H is uniformly continuous and
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hence |x− y| ≤ δm implies |g(x)− g(y)| ≤ εm for some sequence εn tending to zero.
Thus

∣

∣

∣

∣

∣

∣

∫

g
∑

P∈PB

dωp −
∫

gdωB
m

∣

∣

∣

∣

∣

∣

≤ εm

for any continuous function g, which is the definition of weak convergence of mea-
sures.

For future reference, we note that this convergence also holds for g(z) = log |z− ζ|
when ζ ∈H but z /∈H , since g is uniformly continuous outside any neighborhood
of the pole. Moreover, if z ∈K for some compact set K disjoint from H , then we
have a uniform modulus bound for the family {log |z − ζ|}z∈K,ζ∈H depending only
on dist(K,H). Thus

∫

log |z − ζ|dωB
m(ζ)→

∫

log |z − ζ|
∑

P∈PB

dωp(ζ),

uniformly on K.

Definition 4.5. Given the points {ζBj }mj=1 from Definition 4.4, define the rational
function

rm(z) :=
∏

j,B(z − ζBj )|PB |
∏

p∈P (z − p)m
, (4.4)

where the product in the numerator is over all grey faces B and 1≤ j ≤m, and the
product in the denominator is over P = ∪BPB . Set

um(z) :=
1
m

log |rm(z)|. (4.5)

Proposition 4.6. For all m ∈N and all c ∈R, we have r−1
m (emc

T) = u−1
m (c).

Proof. This is easy since |rm|= ecm implies um = 1
m log |rm| = 1

m log ecm = c. □

Theorem 4.7. The sequence (um)∞m=1 converges uniformly to uH,P on compact sub-

sets of ̂C \ (H ∪ P ).

Proof. Recall from Notation 4.2 that uH,P denotes the sum over P of the Green’s
functions GB(p)(x, p). Also recall that we defined μB

m = ωB
m −∑

p∈PB
δp; this is the

discrete measure with mass −1 at each p ∈ PB , and mass |PB|/m at each point ζBj
which lies on ∂B. A computation using this definition shows that

um(z) =
∑

B

⎛

⎝

∑

p∈PB

log
∣

∣

∣

∣

1
z − p

∣

∣

∣

∣

+
m
∑

j=1

|PB|
m

log
∣

∣

∣z − ζBj

∣

∣

∣

⎞

⎠

=
∑

B

(∫

̂C

log |z − ζ|dμB
m(ζ)

)

.
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Our remarks following Definition 4.4 imply the measures (ωB
m)∞m=1 converge weak-∗

to the measure μB for each B. This fact and Equation (4.3) imply the theorem. □

Proof of Theorem A for lemniscate graphs with no vertices. Theorem 2.1 says that
for any ε > 0, H is ε-homeomorphic to a union of analytic closed curves, so without
loss of generality, we may assume H has this form. Under this assumption, the
function u = uH,p has an analytic extension across the boundary of each face, and
these extensions have non-zero gradients on the boundary, since u is a sum of Green’s
functions, each of which have positive inward pointing normal derivative. Hence the
gradient of u is non-zero in a neighborhood of the boundary of each face. (But note
that the analytic extension of u across the boundary of a face does not equal u on the
adjacent face; u is always non-negative, but the analytic extension becomes negative
when we cross the boundary.)

Thus for c > 0 small enough, the level set Hc = {z : u(z) = c} has n components
that are Jordan curves approximating the n components of H . For such c, there
is a homeomorphism from Hc to H given by the steepest descent curves of u (i.e.,
following the vector field −∇u), and we may assume maximum diameter of these
connecting curves is as small as we wish, by taking c small enough. Thus by Corol-
lary 3.1, the level set Hc and H are ε-homeomorphic if c > 0 is small enough.

For 0 < s < t let Hs,t = {z : s ≤ uH,P (z) ≤ t}. As m↗∞, the functions um uni-
formly approximate u on the compact set Hc/4,4c. Hence for m large enough, the level
set Hm

c = {z : um(z) = c} lies inside Hc/2,2c. Suppose δ is the distance from Hc/2,2c to
the complement of Hc/4,4c. Since the functions um are harmonic, the uniform conver-
gence of um → u on a δ-neighborhood of Hc/2,2c implies the gradients of um converge
uniformly to the gradient of u on Hc/2,2c. Hence for large enough m, we have

sup |∇um −∇u| ≤ 1
2

inf |∇u|,

where both the supremum and infimum are take over the set Hc/2,2c. This inequality
implies ∇um is never zero and is never perpendicular to ∇u anywhere on Hc/2,2c.
Thus following the gradient line of u through a point z ∈ Hc will reach a unique
point of Hm

c before leaving Hc/2,2c. This defines a homeomorphism Hc →Hm
c . Hence

by Corollary 3.1, Hc and Hm
c are ε-homeomorphic if m is large enough, and hence

Hm
c is 2ε-homeomorphic to H . □

5 Graphs with vertices: approximate pole placement

In this section, we will show that any lemniscate graph is ε-homeomorphic to a
rational lemniscate whose poles can be prescribed with error at most ε. The fixed
point argument that proves we can place the poles exactly is given in the next section.

The proof for lemniscate graphs with no vertices (given in the previous section) is
easier than the general case because we were free to choose any small enough value
c > 0 to define a level line. All small enough choices gave level sets whose components
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Figure 6: On the left is a 2-colored lemniscate graph G and on the right is a vertex-free graph H
that approximates G. Note that the grey face of H contains every grey face of G. Here the grey
face of H equals the grey faces of G, together with disks centered at the vertices of G. The actual
construction involves other steps, and is explained in Sect. 11.

were Jordan curves, and thus they automatically have the same topology as the
components of H .

In the general case, the union of disjoint curves H is replaced by a lemniscate
graph G that can have vertices, and to mimic this graph with level sets of a harmonic
function u requires the level sets to run through critical values of u, of which there
are only finitely many. Moreover, we need to use the same critical value in every face.
Thus only very particular values of c will work, and only after we have made delicate
adjustments to the shape of the lemniscate G. The description of these adjustments
is delayed to Sect. 11, but we now state the needed result and finish the proof of
Theorem A using it. Recall from Notation 4.2 that the function uH,P is a sum of
Green’s functions with poles in the set P inside the grey faces (with possibly more
than one pole per face).

Theorem 5.1. Let G be a lemniscate graph, and fix ε > 0. Then there exists a lem-

niscate graph H without vertices and δ > 0 so that each grey face of G is contained

in a grey face of H , and so that Hδ = u−1
H,P (δ) and G are ε-homeomorphic to each

other.

See Fig. 6. In Sect. 11, H is constructed by modifying G in a small neighborhood
of each vertex, and then taking a quasiconformal image of the result. Assuming
Theorem 5.1 for now, we continue with the proof of Theorem A.

Notation 5.2. Throughout the remainder of this section, we will fix ε > 0 and a
lemniscate graph G (perhaps with vertices). We also fix a 2-coloring of the faces of
G, and a point pB in each grey face B of ̂C \G. Set P := ∪BpB . Apply Theorem 5.1
to G and ε to obtain δ > 0, H and Hδ. Set u := uH,P . Since H has no vertices, the
results and definitions of Sect. 4 apply to u. Note that several distinct grey faces
of G may be contained in a single grey of H , so there may be several points in P

contained in a single grey face of H . Let X denote the set of vertices of Hδ. For each
x ∈X we denote by Dx :=D(x, rx) a Euclidean disc centered at x of sufficiently small
radius rx > 0 so that D(x,2rx)∩ (H ∪P ) = ∅, and the collection {D(x,2rx)}x∈X are
pairwise disjoint.
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Let {rm}∞m=1 be as in Definition 4.5, and let (um)∞m=1 = ( 1
m log |rm|)∞m=1. By The-

orem 4.7, um → u uniformly on compact subsets of ̂C \ (H ∪ P ).

Proposition 5.3. For each m ∈ N and x ∈ X , there exists a branch of the loga-

rithm log(rm) in Dx so that hm := (1/m) log(rm) converges uniformly to an analytic

function h in Dx, as m→∞.

Proof. Given a sequence of holomorphic functions fn = un + ivn, it is a general fact
that if the real parts un converge uniformly on a closed disk, then so do the imaginary
parts vn, assuming they converge at the center of the disk. This holds because the
partial derivatives of un converge by the Cauchy estimates, and hence so do the
partials of vn by the Cauchy-Riemann equations. Thus to prove the proposition, it
is enough to verify that {vn} converges at x.

For large m, the map rm does not have any zeros in Dx since for z ∈Dx,

(1/m) log |rm(z)|= um(z)→ u(z)> 0.

Thus for m large enough, a branch of log(rm) exists in Dx. Next, for z ∈Dx we have

Im
( 1
m

log(rm(z))
)

=
1
m

arg(rm(z)) =
∑

B

∑

p∈PB

m
∑

j=1

1
m

arg
(

z − ζBj
z − p

)

, (5.1)

where the first sum
∑

B is over all grey components B of ̂C \H . As in the proof of
Theorem 4.7, consider the discrete measure μB

m defined by having mass −1 at each
p ∈ PB , and mass |PB|/m at each of the points (ζBj )mj=1. Thus, the right-hand side of
(5.1) can be rewritten as

∑

B

∫

̂C

arg (z − ζ)dμB
m(ζ). (5.2)

Let μB =
∑

p∈PB
(ωp − δp) be the measure from Notation 4.1, and recall the points

ζBj were chosen in Definition 4.4 so that μB
m → μB weak-∗. Thus

∑

B

∫

̂C

arg (z − ζ)dμB
m(ζ)→

∑

B

∫

̂C

arg(z − ζ)dμB(ζ). (5.3)

Combining (5.1)-(5.3), we see that the imaginary part of (1/m) log(rm) converges
uniformly in Dx, as desired. □

For each x ∈ X and large m ∈ N, we define a set Xm(x) as follows. Note that
since x ∈ X is a vertex of Hδ, it follows that x is a critical point of u of degree
deg(x)/2 − 1; here we are using deg(x) to denote the degree of x as a vertex of
Hδ (see Definition 1.2). So, for instance, degree 4 vertices are simple (= degree 1)
critical points of u. Since (um)∞m=1 converges to u uniformly on compact subsets
of ̂C \ (H ∪ P ), we have that for each x ∈ X , there is a set Xm(x) consisting of
deg(x)/2 − 1 many critical points (counted with multiplicity) of um, so that each
xm ∈Xm(x) converges to x as m→∞.
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Definition 5.4. We set hm := (1/m) log(rm) and h := limm→∞ hm in Dx (see Propo-
sition 5.3). As usual, let D(h(x), s) denote the Euclidean disc centered at h(x) of
radius s > 0. Fix s sufficiently small so that for all sufficiently large m,

(1) D(h(x),4s)⊂ h(Dx),
(2) h−1

m (D(h(x),2s))∩Dx is a Jordan domain containing Xm(x), and
(3) hm : h−1

m (D(h(x),2s)∩Dx)→D(h(x),2s) is a proper map.

By taking s smaller, if necessary, we can ensure (1)-(3) also hold when h replaces
hm (and X replacing Xm(x) in (1)). For large m, let Ax

m be the topological annulus
with outer boundary h−1

m (∂D(h(x),2s)) and inner boundary h−1(∂D(h(x), s)). Note
Ax

m ⊂Dx, and that there will be corresponding annuli around each point of X .

We have used h to define the inner boundary of Ax
m and have used hm to define its

outer boundary. Our next proposition will show that Ax
m is “very close” to the annulus

obtained when we use h to define both boundaries. The measure of closeness is given
by quasiconformal maps. For the definitions and basic results about quasiconformal
mappings see e.g., [Ahl06] or [LV73]. The dilatation of a quasiregular map g is μg =
gz/gz and we set k = ‖μf‖∞ < 1. The quasiconformal constant of g is K = K(g) =
(k + 1)/(k − 1) ≥ 1. Geometrically, Kg(z) = (1 + |μg(z)|)/(1 − |μg(z)|) bounds the
eccentricity of the ellipse that is the image of a circle centered at zero under the
tangent map of g, at almost every point z. When K(g) is close to 1, then g is close
to holomorphic.

Proposition 5.5. For all large m, there exists a quasiconformal mapping

ψm :Ax
m → h−1({z : s < |z − h(x)|< 2s})

so that ψm(z) = z on the inner boundary of Ax
m, and h ◦ψm(z) = hm(z) on the outer

boundary of Ax
m. Moreover, K(ψm) → 1 as m↗∞.

Proof. One would like to define ψm := h−1 ◦ hm on the outer boundary of Ax
m, but

since h is not injective near x, the expression h−1 ◦hm is not a well-defined mapping.
We will address this issue by lifting the relevant maps to vertical strips in what
follows.

Consider the sets Ax
m,

U := h−1({z : s < |z − h(x)|< 2s}),

and

A(s,2s) := {z : s < |z − h(x)|< 2s}.

The sets U and A(s,2s) are topological annuli, and Ax
m is also a topological annulus

for large enough m. Without loss of generality we may assume that x = h(x) = 0.
Then the exponential map is a covering from the vertical strip

H := {z : log(s)<Re(z)< log(2s)}
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onto the round annulus A(s,2s). Similarly, there are “curved”, but 2πi-periodic ver-
tical strips HA and HU so that exp is a covering map from these domains to Ax

m

and U , respectively. Although the boundary components of HA and HU need not be
straight lines, the left boundary component of HA coincides with the left boundary
component of HU (since the inner boundary of Ax

m coincides with the inner boundary
of U ).

Let RA denote the right boundary component of HA. By the lifting property,

hm : h−1
m (∂D(h(x),2s))→ ∂D(h(x),2s)

lifts to a periodic homeomorphism

̂hm :RA →{z : Re(z) = log(2s)},

and h : U →A(s,2s) lifts to a periodic homeomorphism ̂h :HU →H . Since hm → h as
m→∞, the lifts may be chosen so that the map ̂h−1 ◦ ̂hm (defined on RA) converges
to the identity as m→∞. Thus there exists a periodic quasiregular interpolation
fm : HA →HU so that fm interpolates between ̂h−1 ◦ ̂hm on RA and the identity on
the left boundary component of HA, and satisfies K(fm)→ 1 as m→∞. The map

ψm := exp◦fm ◦ log :Ax
m → U (5.4)

is well-defined and satisfies the conclusions of the proposition. □

Remark 5.6. In Sect. 6, we will need a little extra information about ψm. In the
construction above, we can take the quasiregular interpolating map fm to be smooth
and to equal the identity in a neighborhood of the left boundary of HA, and to
equal the analytic map ̂h−1 ◦ ̂hm on the right boundary, RA. This implies that the
dilatation of ψm is continuous in Ax

m and vanishes near the boundary of Ax
m, and thus

the dilatation extends to be uniformly continuous on the whole plane. In Sect. 6, we
will replace the holomorphic function h by a parameterized family of holomorphic
functions hq that depend analytically on a vector q inside some open set in C

n (n
is the number of poles in P ). The annulus Ax

m is replaced by a family of annuli Ax,q
m

that move analytically with q, and the map ψm becomes a parameterized family ψq
m.

In the proof of Theorem 6.5, we will use the fact that the uniform continuity of the
dilatation of ψq

m implies that the dilatations of these maps move continuously in the
supremum norm metric as functions of q, i.e., that q → μψq

m
is a continuous map

from a neighborhood in C
n into the unit ball of L∞(C).

Definition 5.7. We define a map gm : ̂C→ ̂C as follows.

gm(z) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

rm(z) for z in the unbounded component of ̂C \ ∪xA
x
m,

exp(m · h(z)) for z in a bounded component of ̂C \ ∪xA
x
m,

exp(m · h(ψm(z))) for z ∈Ax
m.

(5.5)
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Proposition 5.8. The map gm : ̂C → ̂C is quasiregular, satisfies K(gm) → 1 as

m ↗ ∞, and has a degree deg(x)/2 − 1 critical point at each x ∈ X satisfying

|gm(x)|= emδ.

Proof. We claim that the definitions of gm agree on both components of ∂Ax
m. For z

on the inner boundary component of ∂Ax
m, this follows from Proposition 5.5 (since

ψm(z) = z on the inner boundary). For z on the outer boundary of ∂Ax
m, Proposi-

tion 5.5 says h ◦ψm(z) = hm(z), and so for such z we have

exp(m · h(ψm(z))) = exp(m · hm(z)) := exp(m
1
m

log(rm(z))) = rm(z),

which says that the definitions of gm agree on the outer boundary of ∂Ax
m.

The components of ∂Ax
m are analytic curves, and hence they removable for

quasiregular mappings. (e.g., Theorem I.8.3 of [LV73]). Since gm is holomorphic in
̂C \∪xA

x
m, quasiregular in each Ax

m, and continuous across each ∂Ax
m, we can deduce

that gm is quasiregular on ̂C with K(gm) = K(ψm), and K(ψm) → 1 as m↗∞ by
Proposition 5.5.

Recall that Re(h) = u by definition in Proposition 5.3. Since u has a degree
deg(x)/2− 1 critical point at each x ∈X , and since gm(z) = exp(mh(z)) in a neigh-
borhood of each x ∈X , the map h also has a degree deg(x)/2 − 1 critical point at
each x ∈X . Moreover, by the definition of gm, we have that for any x ∈X ,

|gm(x)|= | exp(mh(x))|= exp(Re [mh(x)]) = exp (mu(x)) = exp(mδ). □

Theorem 5.9. Let ε > 0. Then, for all sufficiently large m, we have that g−1
m (emδT)

is ε-homeomorphic to Hδ.

Proof. The homeomorphism f of g−1
m (emδ

T) onto Hδ may be described as follows.
Since gm(z) = exp(mh(z)) in a neighborhood of each x ∈X and Re(h) = u, we have
|gm(z)|= exp(mu(z)) in a neighborhood of each x ∈X . Thus the sets g−1

m (emδ
T) and

Hδ in fact coincide in a neighborhood of each x ∈X . Thus we may set f(z) = z for
z in such a neighborhood.

Moreover, x, x̃ ∈X are connected by an edge in Hδ if and only if x, x̃ are connected
by an edge in g−1

m (emδ
T). We claim that for any η > 0, if m is large enough, then

f extends to a homeomorphism f : g−1
m (emδ

T) → Hδ satisfying d(f(z), z) < η for
all z ∈ g−1

m (emδ
T). This map can be constructed by following the steepest gradient

descent lines of uH,P , just as in the proof at the end of Sect. 4; the details are the
same, since H consists of disjoint Jordan curves. Using Theorem 2.2, this proves that
for any ε > 0, Hδ and g−1

m (emδ
T) are ε-homeomorphic if m is large enough. □

Theorem 5.10. For every m ∈ N there exists a quasiconformal mapping φm so that

gm ◦ φ−1
m : ̂C→ ̂C is holomorphic (and hence a rational mapping), and moreover as

m↗∞,

sup
z∈̂C

d(φm(z), z)→ 0, (5.6)

where, as usual, d(·, ·) denotes the spherical metric on ̂C.
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Proof. The first statement follows from the Measurable Riemann Mapping theorem.
The map φm is uniquely determined once we choose a normalization; we may choose
to normalize φm so that φm(z) = z +O(1/|z|) as z →∞, or else to normalize φm so
as to fix 3 distinct points in X (either normalization will work in what follows). With
either choice, the relation (5.6) follows since K(gm)→ 1 by Proposition 5.8. □

Definition 5.11. We set Rm := gm ◦ φ−1
m where φm is as in Theorem 5.10, so that

Rm is a rational mapping.

Proposition 5.12. Let ε > 0. For all large m, we have that the rational lemniscate

R−1
m (emc

T) is ε-homeomorphic to Hδ.

Proof. We already know that g−1
m (emcT) is (ε/2)-homeomorphic to Hδ if m is

sufficiently large, and we know that the quasiconformal map φm is an (ε/2)-
homeomorphism if m is large enough. Thus R−1

m (emc
T) = φm(g−1

m (emc
T)) is ε-

homeomorphic to Hδ. □

We have now proved (assuming Theorem 5.1) that any lemniscate graph is ε-
homeomorphic to a rational lemniscate with one pole in each grey component, and
that these poles may be specified with error at most ε. Indeed, three of the poles of
Rm can be placed exactly by applying a linear fractional transformation. In the next
section, we show that all the poles can be prescribed exactly.

6 Exact placement of poles

To place the poles exactly, we will apply a fixed point argument. More precisely,
given a desired set of n poles P , and fixing a large integer m (that determines a
discrete approximation to harmonic measure), we introduce a parameterized family
Rq

m of rational functions, where q ranges over a neighborhood of P , considered as a
point in C

n. We will show that if m is sufficiently large, then there exists a value of
q so that the poles of Rq

m are exactly P .
Throughout this section we will fix G, ε and P as in Theorem A. By applying a

Möbius transformation, we may assume without loss of generality that the union of
the grey components of ̂C \G is contained in D(0,1/2). It will be convenient to list
the points in P as p := (p1, . . . , pn) ∈ C

n, so that ∪j{pj} = P . Let H , δ, u := uH,P

be as in Notation 5.2; namely H is a lemniscate graph without vertices whose grey
faces properly contain the grey faces of G, and Hδ := u−1(δ) is ε-homeomorphic to
G.

The index m will denote the parameter of rm, the rational function defined in
Equation (4.4). As the reader may recall, rm was defined by cutting the boundary
of each grey face of H into approximately m arcs of approximately equal harmonic
measure. In this section, n (the number of points in P ) will remain fixed, but we
shall take m as large as is needed to make our arguments work.
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Lemma 6.1. Given a set of n distinct points P = {p1, . . . , pn} ⊂ D(0,1/2), there

exists ρ > 0 so that for each q = (q1, . . . , qn) ∈
∏n

j=1D(pj , ρ), there exists an injective,

holomorphic mapping ψq :D→ ψq(D) satisfying:

(1) ψq(qj) = pj for 1≤ j ≤ n.

(2) ψp(z) = z for all z ∈D, and

(3) ψq depends continuously on q.

Proof. This is stated without proof as Lemma 1 in [Roy54], but we will give a proof
for the sake of completeness.

Set ψq(z) := z+fq(z) where fq is the Lagrange interpolating polynomial for data
fq(qj) = pj − qj for 1≤ j ≤ n. More explicitly,

fq(z) =
n
∑

j=1
(pj − qj)

∏

k �=j

z − qk
qj − qk

,(6.1)

is a polynomial of degree at most n− 1 that takes the n given values {pj − qj}n1 at
the n specified distinct points {qj}n1 . It is easy to check from this definition that (1)
and (2) hold, and that ψq depends continuously on q as long as the components of
q are distinct. Let δ be half the minimal distance between distinct points of P . If
ρ < δ/2 and |qj − pj |< ρ for all j = 1, . . . , n, then the components of q are distinct
and we even have |qj − qk| ≥ δ for j �= k.

It only remains to verify that ψq is injective. Our assumption that ρ < δ/2 implies
that for z ∈D(0,3/2) each of the n products on the right side of (6.1) is bounded
by (2/δ)n. By the Cauchy estimates, this implies |f �q| = O(ρ · n(2/δ)n) on D. Let
ρ be sufficiently small (depending on δ and n) so that |f �q(z)| < 1 for z ∈ D. Then
integration gives the inequality:

|ψq(z1)−ψq(z2)|=
∣

∣

∣

∣

∫ z2

z1

(1 + f �q)
∣

∣

∣

∣

≥ |z1 − z2| −
∫ z2

z1

|f �q|> 0, (6.2)

for z1, z2 ∈D. This proves the injectivity of ψq. □

We henceforth fix ρ > 0 as in the conclusion of Lemma 6.1.

Definition 6.2. For each q ∈ ∏n
j=1 D(pj , ρ), we introduce parameterized versions

Gq, Hq, uq of the objects G, H , u as follows. Set Gq := ψ−1
q (G), Hq := ψ−1

q (H),
Pq := ψ−1

q (P ) and define uq by setting uq(z) := uH,P ◦ ψq(z) for z in a grey face of
Hq, and uq(z) := 0 otherwise. As before, we set u := uH,P to simplify notation.

It will be useful to note that Gp =G, Hp =H , and up = u by Lemma 6.1(2). More-
over, u−1

q (δ) = ψ−1
q (u−1(δ)) = ψq(G) is ε-homeomorphic to G for all q ∈∏n

j=1 D(pj , ρ)
after taking ρ smaller if need be. On the other hand, Notation 5.2 defines the function
uHq ,ψq(P ) for each q ∈∏n

j=1 D(pj , ρ). In fact, we have the following.

Proposition 6.3. For each q ∈∏n
j=1 D(pj , ρ), we have uq = uHq ,Pq .
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Proof. Both functions vanish except in the grey faces of Hq, where they are both
harmonic except for logarithmic poles at Pq. The result follows from the maximum
principle. □

Proposition 6.3 implies that the definitions of Sect. 5 apply to each uq to produce
parameterized families

ψq
m, g

q
m, φ

q
m, and Rq

m := gqm ◦ (φq
m)−1 (6.3)

so that

ψp
m = ψm, g

p
m = gm, φ

p
m = φm, and Rp

m =Rm. (6.4)

Moreover, the results of Sect. 5 apply to the maps listed in (6.3) for each q ∈
∏n

j=1D(pj , ρ). The important point is that all these functions depend continuously
on the parameter q.

Definition 6.4. For each m ∈ N, define a mapping Ψm :
∏n

j=1 D(pj , ρ) → ̂Cn by
setting

Ψm(q) := ((φq
m)−1(p1), . . . , (φq

m)−1(pn)).

Note that

(gqm)−1(∞) = q, (6.5)

where we are abusing notation slightly in (6.5) by setting (q1, . . . , qn) = {q1, . . . , qn}.
So if q is a fixed point of Ψm then Ψm(q) = q, or equivalently

(φq
m)−1(pj) = qj , j = 1, . . . , n,

or

pj = φq
m(qj), j = 1, . . . , n,

or

p= φq
m((gqm)−1(∞)).

Therefore, if we can prove that Ψm has a fixed point q, and we set Rm = gqm ◦ (φq
m)−1,

then Rm is a rational function with poles equal to

R−1
m (∞) = φq

m((gqm)−1(∞)) = p.

Assuming Ψm has a fixed point q if m is large enough (Theorem 6.5 below), and
assuming Theorem 5.1 (proven in Sect. 11) we can complete the proof of our main
result.
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Proof of Theorem A. The map Rq
m with m and q chosen as above satisfies the conclu-

sions of Theorem A. Indeed, we just showed that (Rq
m)−1(∞) = P and the remaining

conclusions of Theorem A were already verified in Sect. 5 (see Proposition 5.12). □

Let us now prove that Ψm does, indeed, have a fixed point.

Theorem 6.5. Let ρ > 0 be as given in Lemma 6.1. If m ∈N is sufficiently large, then

Ψm :
∏n

j=1D(pj , ρ)→ ̂C
n has a fixed point.

Proof. By Brouwer’s fixed point theorem [Bro11], it suffices to verify that:

(1) Ψm(
∏n

j=1 D(pj , ρ))⊂
∏n

j=1 D(pj , ρ) for sufficiently large m,
(2) Ψm is continuous.

By (5.6), the image set Ψm(
∏n

j=1 D(pj , ρ)) converges to the point p as m↗∞, so it
is certainly contained inside

∏n
j=1 D(pj , ρ) for sufficiently large m.

To prove the continuity of Ψm, we write it as the composition Ψm = Ψ1
m ◦ Ψ2

m,
where

Ψ1
m : {μ ∈ L∞(̂C) : ||μ||< 1}→ ̂C

n is defined by Ψ1
m(μ) := (φ−1

μ (p1), . . . , φ−1
μ (pn)).

and

Ψ2
m :

n
∏

j=1
D(pj , ρ)→{μ ∈ L∞(̂C) : ||μ||< 1} is defined by Ψ2

m(q) := (gqm)z/(gqm)z

Here φμ is the unique quasiconformal mapping (normalized so φ(z) = z + O(1/|z|)
as z →∞) so that (φμ)z/(φμ)z = μ. The map Ψ1

m is continuous by a standard result
saying that pointwise evaluation of quasiconformal maps depends continuously on
the dilatation, e.g., Theorem I.7.5 of [CG93].

The continuity of Ψ2
m is the claim that the complex dilatation of gqm moves contin-

uously in the supremum norm as a function of q. By Definition 5.7, gqm is holomorphic
except where it equals gqm = exp◦(m ·hq)◦ψq

m. Since post-composing by holomorphic
maps does not change the dilatation of a quasiregular map, the dilatation of gqm is
the same as the dilatation of ψq

m, and the latter dilatation moves continuously in L∞

as a function of q; this was explained in Remark 5.6. □

7 Proof of Theorem B: quantitative Runge’s theorem

The proof of Theorem B roughly follows the proof of Theorem I in [WR34] (which
assumes the set K is connected, and P = {∞}⊂ ̂C\K), except that we replace their
application of a weaker polynomial lemniscate result with our Theorem A. There are
also some other non-trivial adjustments to handle the case of disconnected K.

Let K, P and f be as in the statement of Theorem B. Let U be the neighborhood
of K in which f is holomorphic.



C.J. BISHOP ET AL. GAFA

Figure 7: Replacing K and U by regions with smooth Jordan curve boundaries. If δ � dist(K,∂U)
we can take all squares from a δ-grid that lie inside U , and then round the corners of the resulting
polygon to get an open set U ′ ⊂ U that covers K and has smooth boundaries. A similar construction
gives a smooth set K′ containing K.

Lemma 7.1. Given K, U and P as above, we can find K � ⊃K, U � ⊂ U , and P � ⊂ P ,

so that both K � and U � are bounded by finitely many pairwise disjoint smooth Jordan

curves, and that P � contains exactly one point in each connected component of ̂C\K �.

Proof. First replace U by a subset U � that still covers K and that is bounded by
finitely many disjoint smooth curves. For example, take a union of sufficiently small
grid squares and round the corners of the resulting polygon, as in Fig. 7. Then U �

and the connected components of ̂C \K cover ̂C. This is an open cover of a compact
space, so U � and a finite subcollection {Ωk}n1 of the components of ̂C \K also cover
̂C. Let P � ⊂ P be the n points contained in these finitely many open sets. Since
K has positive distance from ̂C \ U �, we see that Ωj \ U � is a compact subset of
Ωj . Replace each Ωj by a connected subset Ω�j that is bounded by finitely many
smooth curves, and that contains the compact set P ∪ (Ωj \U �) (again we may take
a union of small squares and round the remaining corners). Let K � = ̂C \ ∪n

j=1Ω�j .
Then K ⊂K � ⊂ U � ⊂ U , and P � contains exactly one point in each complementary
component of K �. Thus the claim is verified. □

It suffices to prove Theorem B for these new sets K �,U �, P �; this immediately im-
plies the same result for the original sets K,U,P . To simplify notation, we henceforth
refer to the new sets simply as K, U and P (dropping the prime notation).

Considering ∂K as a lemniscate graph, each of its faces either contains points
of K or a single point of P , and we color these faces white and grey respectively.
Consider the function u∂K,P as in Notation 4.2. Recall that inside each grey face of
∂K, this is the Green’s function for that face with pole at the corresponding point of
P (there is one such point per grey face), and u∂K,P is zero outside all the grey faces.
If S > 1, set CS := {z : u∂K,P (z) = logS}. Then fix some R> 1 so that CR separates
K from ∂U . When R is close to one, CR is a union of level lines of Green’s functions
for all the grey faces, and this union is as close to ∂K as we wish, so such a choice
is possible.
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Lemma 7.2. For every ρ ∈ (1,R), there exists a rational mapping r so that the lem-

niscates Lr(1) = {z : |r(z)|= 1} and Lr((R/ρ)d) = {z : |r(z)|= (R/ρ)d} both separate

K from CR, where d = deg(r).

Proof. Fix ρ ∈ (1,R) and consider Cρ = {z : u∂K,P (z) = logρ}. By Theorem A, there
exists a rational mapping r with r−1(∞) = P so that the lemniscate Lr(1) separates
K from Cρ. Note that

uLr ,P (z) =
1
d

log |r(z)| (7.1)

and

uCρ,P (z) = u∂K,P (z)− log(ρ) (7.2)

for all z. Since Lr separates K from Cρ, we have that uCρ,P − uLr ,P < 0 on Cρ and
hence by the maximum principle

uCρ,P − uLr ,P < 0 on {z : 0 < uCρ,P (z)<∞}. (7.3)

Now assume z ∈ Lr((R/ρ)d), i.e., assume that |r(z)| = (R/ρ)d. Then by (7.1) we
have that uLr ,P (z) = log(R/ρ), and so by (7.3) we conclude uCρ,P (z) < log(R/ρ).
Thus (7.2) implies that for z ∈ Lr((R/ρ)d)

u∂K,P (z) = uCρ,P (z) + log(ρ)< log(R/ρ) + logρ = log(R).

Hence the lemniscate Lr((R/ρ)d) separates K from CR. Since we already arranged
for the lemniscate Lr(1) to separate K from Cρ (and it separates K from CR since
1< ρ<R), the proof of the lemma is finished. □

Recall that we have fixed R > 1 so that CR separates K from ∂U . For the re-
mainder of this section, we fix some ρ ∈ (1,R) and fix a rational map r by applying
Lemma 7.2 using this ρ. After applying a Möbius transformation, if necessary, we
may assume that ∞ /∈K and ∞∈ P . Thus if r(z) = p(z)/q(z), where p and q are
polynomials, then r has a pole at ∞ and hence deg(r) = deg(p)> deg(q).

We will refer to the interior of CR as the union of the components of ̂C \ CR

which do not contain a point of P . Equivalently, this is the union of components
where u∂K,P < R, and hence these are the components that contain points of K.
If we orient the individual curves in CR so the interior regions (shown as white
in Fig. 8) are on the left, and note that the unbounded component is not in the
interior of CR, then any white point is surrounded by an odd number of nested
boundary curves, with alternating orientations. The outermost curve is oriented in
the counterclockwise direction, so the total winding number of CR around any white
point must equal one. Similarly, the winding number around any grey point is zero.

We can now define the rational maps that will prove Theorem B.
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Figure 8: The white regions are the interior of CR, and the gray regions each contain a point of P
(black dots, plus ∞). Each component of CR is oriented with the interior on the left, and the total
winding number of CR around any white point is one.

Definition 7.3. For n≥ 1, d = deg(r), and z in the interior of CR, define

Rdn−1(z) := f(z)− 1
2πi

∫

CR

f(ζ)
ζ − z

[

r(z)
r(ζ)

]n

dζ. (7.4)

Lemma 7.4. For each n, Rdn−1 is a rational map of degree ≤ dn−1 with R−1
dn−1(∞)⊆

P .

Proof. Assume z is interior to CR. By the remarks above, CR has winding number one
around z. By the homology version of Cauchy’s integral theorem (e.g., Theorem 2.41
of [Zak21]), we have that

f(z) =
1

2πi

∫

CR

f(ζ)
ζ − z

dζ. (7.5)

Thus, (7.4) and (7.5) combine to give

Rdn−1(z) =
1

2πi

∫

CR

f(ζ)
[ 1
ζ − z

− rn(z)
(ζ − z)rn(ζ)

]

dζ.

Recall that r(z) = p(z)/q(z), where p and q are polynomials with deg(p) > deg(q).
Observe

1
ζ − z

− rn(z)
(ζ − z)rn(ζ)

=
1

qn(z)
pn(ζ)qn(z)− pn(z)qn(ζ)

(ζ − z)pn(ζ)
,

and hence

Rdn−1(z) =
1

2πi
1

qn(z)

∫

CR

f(ζ)
[

pn(ζ)qn(z)− pn(z)qn(ζ)
(ζ − z)pn(ζ)

]

dζ. (7.6)

Since pn(ζ)qn(z)− pn(z)qn(ζ) vanishes when ζ = z, we see that for fixed ζ,

pn(ζ)qn(z)− pn(z)qn(ζ)
(ζ − z)pn(ζ)
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is a polynomial in z of degree at most dn− 1. Therefore
∫

CR

f(ζ)
[

pn(ζ)qn(z)− pn(z)qn(ζ)
(ζ − z)pn(ζ)

]

dζ (7.7)

is a linear combination of polynomials with degrees at most dn− 1, and hence is a
polynomial of degree at most dn− 1. From (7.6) and (7.7) we conclude that Rdn−1
is a rational map, whose numerator has degree at most dn− 1, and whose denomi-
nator has degree ndeg(q)< ndeg(p)≤ dn− 1. Thus the degree of Rdn−1 is ≤ dn− 1.
Moreover, from (7.6) and (7.7) we also see that the poles of Rdn−1 are a subset of
the poles of r (the zeros of q). □

Proof of Theorem B. Let z ∈K. From (7.4), we see that

|Rdn−1(z)− f(z)| ≤ 1
2π

∫

CR

|f(ζ)|
|ζ − z|

∣

∣

∣

∣

r(z)
r(ζ)

∣

∣

∣

∣

n

|dζ| (7.8)

Note that
∫

CR

|dζ|
|ζ − z| <

length(CR)
dist(K,CR)

. (7.9)

Furthermore, Lemma 7.2 implies that for all z ∈K and ζ ∈CR we have
∣

∣

∣

∣

r(z)
r(ζ)

∣

∣

∣

∣

n

<
1

(R/ρ)dn
. (7.10)

Combining (7.8) with (7.9) and (7.10), we see that

|Rdn−1(z)− f(z)| ≤ supw∈K |f(w)| · length(CR)
2π · dist(K,CR)

· 1
(R/ρ)dn

.

Thus, setting

A :=
supw∈K |f(w)| · length(CR)

2π · dist(K,CR) · (R/ρ)
and B := (R/ρ),

we see that

|Rdn−1(z)− f(z)| ≤ A

Bdn−1 (7.11)

as desired. Since Rdn−1 is a rational map of degree ≤ dn − 1 with poles at P by
Lemma 7.4, the inequality (7.11) proves Theorem B for the subsequence (Rdn−1)∞n=1.
Setting

Rm :=Rdn−1 for dn− 1≤m< d(n+ 1)− 1

and increasing A by a factor of Bd in (7.11), we readily deduce the desired estimate
for all m ∈N. □
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Remark 7.5. It is worth noting that in the special case when f is analytic on a disk
U centered at p, we may take r(z) = (z− p), and take CR ⊂ U to be a circle centered
at p. Then the residue theorem shows that (7.6) computes the degree n truncation
of the power series for f around p. Thus our calculation mimics the well known fact
that these truncations converge geometrically fast to f on compact subsets of the
disk of convergence.

The following fact is not needed for the proof of Theorem B, but it illustrates the
structure of the approximants Rdn−1 quite clearly, and explains how they generalize
Taylor series approximations. We let R(k) denote the kth derivative of R.

Proposition 7.6. The map Rdn−1 is a rational map of degree ≤ dn− 1 satisfying

R−1
dn−1(∞) ⊆ P and

if r(a) = 0 then R
(k)
dn−1(a) = f (k)(a) for each 0≤ k ≤ n− 1. (7.12)

Moreover, if R is another rational map of degree ≤ dn− 1 with the same poles of the

same order as Rdn−1 so that R also satisfies (7.12), then R≡Rdn−1.

Proof. The fact that Rdn−1 satisfies (7.12) follows from (7.4) and the quotient rule
(it shows the first n− 1 derivatives of the integral in (7.4) are all zero). The other
conclusions about Rdn−1 were proven in Lemma 7.4. If R(z) is another rational map
satisfying (7.12), then the difference Rdn−1(z)−R(z) is a rational function of degree
≤ dn−1 that has dn zeros counted with multiplicity (since (7.12) has dn equations).
Hence Rdn−1(z)−R(z) must be identically 0. □

8 Geometric decay in Theorem B is sharp

For finite sets K, we can interpolate any function on K exactly by a finite degree
rational function, but for larger sets the geometric decay rate in Theorem B is sharp.

Theorem 8.1. Suppose K ⊂C is a compact set with positive logarithmic capacity, and

that P and f are as in Theorem B. Assume f does not admit a holomorphic extension

to ̂C\P . Then there exists a constant D ∈ (1,∞) with the following property. For any

C ∈ (0,∞) and any sequence of rational maps Rn of degree ≤ n satisfying R−1
n (∞)⊆

P , we have that

sup
z∈K

|f(z)−Rn(z)|>
C

Dn

for all sufficiently large n.

Consider the function u∂K,P , defined as follows. In any face F of K (i.e., a com-
plementary component of K) that contains a point in P we set u∂K,P to be Green’s
function for F with pole at that point in P , and we set u∂K,P = 0 otherwise. Set
CS := {z : u∂K,P (z) = logS} for S > 1. As in the previous section, the interior of CS ,
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denoted int(CS), refers to the union of the components of ̂C \CS which do not con-
tain a point of P . Although u∂K,P need not be continuous at irregular points of K,
it only blows up at points of P , and so for S sufficiently large, CS consists of finitely
many closed loops, all disjoint from K. After applying a Möbius transformation, if
need be, we may assume that ∞ /∈K and ∞∈ P .

Lemma 8.2. Suppose Q is a rational map satisfying Q−1(∞) ⊆ P and

supz∈K |Q(z)| ≤ M for some constant M < ∞. Let p ∈ P , let d denote the local

degree of Q at the pole p, and let F denote the face of ∂K containing p. Then for

any S > 1 we have |Q(z)| ≤M · Sd for z ∈
∫

(CS)∩ F .

Proof. Set u := u∂K,P . We have that (1/d)log |Q| − u is subharmonic on the face F

(including at the point p), and so by the maximum principle,

max
z∈F

( log |Q(z)|
d

− u(z)
)

≤ lim sup
z∈F,z→K

( log |Q(z)|
d

− u(z)
)

.

Recalling that u≥ 0 and that |Q(z)| ≤M for z ∈K by assumption, we conclude that

log |Q(z)|
d

− u(z)≤ log(M)
d

for z ∈ F.

In particular, we have that

log |Q(z)|
d

− log(S)≤ log(M)
d

for z ∈CS ∩ F , and hence by the maximum principle, for S > 1 we have that

log |Q(z)|
d

≤ log(S) +
log(M)

d
(8.1)

for z ∈ int(CS)∩ F . Inequality (8.1) implies the lemma. □

Proof of Theorem 8.1. Since we have assumed that f does not admit a holomorphic
extension to ̂C \P , there exists some S <∞ so that f does not admit a holomorphic
extension to the interior of CS . We set D := S. Now suppose there were a C ∈ (0,∞)
and a sequence of rational maps Rn of degree ≤ n with poles only in P , so that

sup
z∈K

|f(z)−Rn(z)| ≤
C

Dn
(8.2)

for some subsequence in n. To simplify notation, assume that (8.2) holds for all n,
and not just along a subsequence {nk}∞1 (in general, just replace n by nk in what
follows).

We will show that the sequence Rn(z) converges uniformly on compact subsets
of the interior of CD; this will be a contradiction since such a limit would necessarily
constitute a holomorphic extension of f to the interior of CD. Note that

|Rn+1(z)−Rn(z)| ≤ |Rn+1(z)− f(z)|+ |f(z)−Rn(z)| ≤ C

Dn+1 +
C

Dn
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for all z ∈K and n ∈N. Let F be a face of ∂K containing a point p ∈ P . The local
degree of Rn+1 −Rn at p is ≤ n+ 1. Thus Lemma 8.2 implies that for any D1 <D,
we have

|Rn+1(z)−Rn(z)| ≤Dn+1
1

(

C

Dn
+

C

Dn+1

)

=
(

D1

D

)n

CD1

(

1 +
1
D

)

for z ∈ int(CD1)∩ F . As F was arbitrary, it follows that

|Rn+1(z)−Rn(z)| ≤
(

D1

D

)n

CD1

(

1 +
1
D

)

for z ∈ int(CD1). The right-hand side is summable in n, and so the sequence (Rn)∞n=1
is uniformly Cauchy and hence uniformly convergent on int(CD1), as desired. □

9 Proof of Theorem C: approximation by Julia sets

Our proof of Theorem C follows the second of the two proofs that Lindsey and
Younsi give for their Theorem 1.2 in [LY19], except that we replace their application
of Hilbert’s lemniscate theorem with an application of our Theorem A. We provide
the details here for the convenience of the reader. As with Theorem B, we only need
to use Theorem A in the easier case of lemniscate graphs without vertices.

Proof of Theorem C. For E ⊂ ̂C, denote the ε-neighborhood of E by

Nε(E) := {z ∈ ̂C : d(z,E)< ε}.

As usual, d denotes the spherical metric. Note that for any ε > 0, the open set Nε(E)
has finitely many connected components, even if E has infinitely many. This holds
since each such component contains a distinct point of any (ε/2)-dense set in ̂C and
such a set can be finite.

After applying a Möbius transformation, we may assume without loss of generality
that p = ∞∈A1 and 0 ∈A2. By Theorem A, there exists a lemniscate Lr ⊂Nε(A2)
so that Lr consists of a union of pairwise disjoint Jordan curves, and Lr separates
∂Nε(A2) from A2. Since each component is a Jordan curve, we know that r has no
critical points on Lr.

We may color white exactly those faces of Lr which contain at least one component
of A2, and arrange for r(∞) =∞. Furthermore, if A1 has finitely many components,
and P contains ∞ as well as one point from each bounded component of A1, we may
arrange (by taking ε smaller) for r to satisfy r−1(∞) = P .

Consider the map rn, where rn denotes the product r with itself n times, not
the nth iteration of r. Since r has a pole at ∞, we know rn has a super-attracting
fixed point at ∞. Since 0 ∈ A2, we must have |r|< 1 on some disk D(0, δ), and so
|r|n < δ/2 on D(0, δ) if n is large enough. This implies rn maps D(0, δ) into D(0, δ/2)
and hence rn has an attracting fixed point in D(0, δ)⊂A2.
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Denote the corresponding basins of attraction by An(∞) and An(0), where we
emphasize the dependence on n. Since A2 is compactly contained in r−1(D) (the
union of the white faces), we have that A2 ⊂An(0) for large n. Similarly, any compact
subset of r−1(̂C \D) is contained in An(∞) for large enough n. As a consequence we
have An(0)⊂Nε(A2) for large n. This proves

dH(A2,An(0))< ε,

and the other two inequalities in Theorem C follow by similar considerations. Thus,
rn and A1 := An(∞) and A2 := An(0) satisfy the conclusions of the theorem for all
large enough n.

We note the fact that F(rn) =A1�A2 for large n follows since all critical values of
rn lie in A1 �A2 for large enough n (since r has no critical points on Lr := {|r|= 1},
all the critical values of rn have very large or very small absolute value if n is large).
This observation uses some standard but deep facts: by Sullivan’s “no wandering do-
mains” theorem (e.g., [Sul85], Theorem IV.1.3 of [CG93] or Theorem F.1 of [Mil06]),
every Fatou component is eventually periodic, and it is known that every periodic
Fatou component has an associated critical orbit in the domain or that accumulates
on the boundary of the component (e.g. Theorems 8.6 and 11.17, Corollary 10.11
and Lemma 15.7 of [Mil06]). In our case, every critical orbit is attracted to fixed
points in A1 or A2, so there can be no other Fatou components except those that
eventually land on one of these two. □

10 A topological lemma

Recall that the proof of our main result (Theorem A) relied on Theorem 5.1, but
that Theorem 5.1 has not yet been proven in general (only in the case when there
are no vertices). Section 11 is devoted to establishing this result. In this section, we
give a topological result that will be used in Sect. 11.

The n-dimensional simplex Δn is the convex hull of the standard unit vectors
{ek}n+1

1 ⊂ R
n+1; ek is 1 in the kth coordinate and zero elsewhere. These points are

called the vertices of the simplex. A face of Δn is a convex hull of some non-empty
subset of its vertices. A facet is a face of dimension n− 1 (the convex combination
of all but one vertex). Every face is the intersection of facets that contain it, so a
continuous map f : Δn → Δn that maps each facet into itself must also map each face
into itself. Every point x ∈ Δn is in the interior of some face, where interior means
that x does not lie in any strictly lower dimensional face (the vertices are interior
points of themselves).

The following is Lemma 2.1 of [JR76], but was probably known much earlier.

Theorem 10.1. Suppose f : Δn → Δn is a continuous map that sends each facet of

Δn into itself. Then f is surjective.
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Proof. For completeness, we recall the proof from [JR76]. Since n is fixed, we write
Δ := Δn, to simplify notation. Since f(Δ) is compact and the interior of Δ is dense in
Δ, it suffices to show that every interior point is in f(Δ). By way of contradiction,
suppose p is an interior point that is not in the image, and let g be the radial
projection of Δ \ {p} onto ∂Δ. This map is continuous and fixes each point of the
boundary. Let h : Δ→ Δ be the linear map extending the cyclic permutation

(x1, x2, . . . , xn)→ (x2, . . . , xn, x1)

of the vertices. Then φ := h ◦ g ◦ f : Δ→ ∂Δ is clearly continuous.
We will show φ has no fixed point, contradicting Brouwer’s theorem [Bro11] (that

a continuous self-map of a compact, convex set in R
n must have a fixed point). This

proves that p ∈ f(Δ), and hence that f is surjective. Since φ(Δ) ⊂ ∂Δ, any fixed
point x must be in ∂Δ, and hence in the interior of some face F1. By assumption
f(x) is also in F1, and so g(f(x)) = f(x) ∈ F1, since g is the identity on ∂Q. But h

maps each face of Δ to a distinct face (every subset of vertices is sent to a different
subset by the cyclic permutation). Hence h maps the interior of F1 to the interior of
some different face F2, and hence φ(x) = h(f(x)) �= x. Thus φ has no fixed points. □

By projecting en+1 to zero, the simplex Δn ⊂R
n+1 can identified with Xn ⊂R

n,
the convex hull of {0} and the n unit vectors in Rn. Note that Δn−1 ⊂Xn is the
unique facet of Xn that does not contain the origin. Let us denote projection from R

n

onto the jth coordinate by πj(x1, . . . , xn) := xj for 1 ≤ j ≤ n, and denote the vector
(x1..., xn) ∈R

n by x.

Theorem 10.2. Let F :Xn → [0,∞)n be a continuous mapping satisfying

Fj(x) = 0 iff xj = 0. (10.1)

Then εXn ⊂ F (Xn) for some ε > 0.

Proof. The condition in the theorem says that each facet of Xn, except for Δn−1, is
mapped into the hyperplane containing that facet. Because our assumptions imply
F−1(0) = 0, F (Δn−1) is a compact set that does not contain zero, and so it has a
positive distance ε from the origin. Let R denote the radial retraction of [0,∞)n onto
ε ·Xn, i.e.,

R(x) := ε · (x1, . . . , xn)
x1 + · · ·+ xn

.

if x1 + · · · + xn ≥ ε, and R(x) = x if x1 + · · · + xn ≤ ε. Then x→ (R ◦ F (x))/ε is a
continuous map of the simplex Xn into itself, and every facet of Xn maps into itself.
Hence (R ◦ F )/ε is surjective by Theorem 10.1, or equivalently, εXn = R(F (Xn)).
Since R maps [0,∞)n \ εXn onto εΔn−1 ⊂ ∂(εXn), an interior point of εXn can’t be
in R(F (Xn)) unless it is in F (Xn). Thus F (Xn) contains the interior of εXn. Since
F (Xn) is compact, it must contain all of εXn, as desired. □
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Corollary 10.3. Let F : [0,1]n → [0,∞)n be a continuous mapping satisfying

Fj(x) = 0 iff xj = 0. (10.2)

Then there exists δ > 0 so that {y ∈R
n : y1 = · · ·= yn and 0≤ y1 < δ} ⊂ F ([0,1]n).

Proof. Restrict F to Xn ⊂ [0,1]n and apply Theorem 10.2. If δ < ε/n, then the
diagonal segment is inside εXn ⊂ F (Xn)⊂ F ([0,1]n), and so the corollary follows. □

11 Proof of Theorem 5.1: harmonic level sets

In this section, we prove Theorem 5.1. Recall that if H is a colored lemniscate graph
with no vertices, and if P is a finite set of points from the grey faces, then the
function uH,P was defined in Notation 4.2 as the sum of Green’s functions for faces
of H with the poles in the set P , i.e.,

uH,P (z) :=
∑

p∈P
GB(p)(z, p),

where B(p) denotes the face of H containing p (we define the Green’s function of
a domain to be zero off that domain). In this section, we will say that two positive
functions f, g are relatively close if |f − g|/g is close to zero. In other words, f/g is
uniformly close to 1.

For the convenience of the reader, we re-state the desired result.

Theorem 11.1. Let G be a 2-colored lemniscate graph, ε > 0, and P a set of points

consisting of one point in each grey face of G. Then, for all δ > 0 sufficiently small,

there exists a lemniscate graph H without vertices so that each grey face of G is

contained in a grey face of H , and so that u−1
H,P (δ) and G are ε-homeomorphic.

The proof breaks into several steps:

(1) Modify G near each vertex v to consist of straight segments meeting at v and
making equals angles there.

(2) We further modify G so that the Green’s function for each grey face of G

takes the same value at every point of a certain finite set (d points are chosen
a fixed distance from every vertex of degree 2d).

(3) Define a vertex-free lemniscate graph H by adding disks around each vertex
v of G. See Fig. 10.

(4) Define a harmonic function wv on the faces of H near each vertex v, so that
wv has a single critical point of order d− 1 at v, where 2d is the degree of v
as a vertex of G.

(5) Use a partition of unity to combine wv and uG,P in an annulus around each
vertex v. We make this new function harmonic using the measurable Riemann
mapping theorem, but this correction causes the poles to move slightly.
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(6) Use a fixed point argument to show that the poles can be placed precisely
on P . This gives the desired harmonic function with poles in P , and with a
critical level set that is ε-homeomorphic to G.

Step 1: modifying G to be straight near its vertices. By Theorem 2.2 we can assume
that G has analytic edges that form equal angles at each vertex. It is easy to modify
such a graph G so that its edges are smooth arcs and are straight line segments near
each vertex. In other words, we may assume there is a ρ0 > 0 so that for every vertex
v of G, G ∩D(v,2ρ0) consists of line segments making equal angles at v. Thus ρ0
represents a scale below which G looks like line segments around each vertex. Note
that ρ0 is the same value at every vertex. We also assume that ρ0 is so small that
no point of P lies inside any of the disks D(v,2ρ0).

A sector S with vertex v ∈ C, radius r ∈ (0,∞] and angle θ ∈ (0,2π] is a set of
the form

S := v + {z : 0 < |z|< r, |arg z − θ0| ≤ θ/2}

for some θ0 ∈ [0,2π) and a truncated sector is a set of the form

v + {z : s < |z|< r, |arg z − θ0| ≤ θ/2}

for some 0< s< r <∞.
By our choice of G and ρ0, for each grey face B of G and vertex v ∈ ∂B, B ∩

D(v, ρ0) is a union of sectors of radius ρ0. If v has degree 2d in G, then each sector
at v has angle π/d. Each such sector can be conformally mapped to the half-disk
W :=D∩H= {z : |z|< 1, Im(z)> 0} by a power map τ(z) := a(z− v)d, for some a ∈
C\{0}. Then U(z) := uG,P ◦τ−1(z) is harmonic on the half-disk W and it vanishes on
I := [−1,1], so U extends harmonically across I by the Schwarz reflection principle.
Thus

U(z) = U(x+ iy) = by +O(y2) +O(xy) = b ·Re(z) +O(|z| ·Re(z)),

as z approaches zero, where b > 0 is the normal derivative of U at zero. The normal
derivative is positive since U positive on W , for if ∂U

∂n (0) ≤ 0, then U would take
negative values somewhere in W . This implies that uG,P is asymptotically equal to
c · Re((λ(z − v))d) as z → v through the sector, for some |λ| = 1 and c > 0. More
precisely, we have

cS := lim
z→v,z∈S

uG,P (z)
Re(λ(z − v)d)

∈ (0,∞).(11.1)

Step 2: modifying G to equalize the Green’s function. In this step we use the
topological fact recorded in Corollary 10.3. For the remainder of this section we use
a plain G to denote a lemniscate graph and a G with a subscript, e.g., GW , to denote
Green’s function for a domain W .

We will choose η, ρ > 0 so that η� ρ� ρ0. Given a grey face B of G, let v be a
vertex on the boundary of B. Let 2d be the degree of v. Then ∂D(v, η)∩B consists
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Figure 9: By “pinching” the sectors that lead to a vertex v, we can decrease the harmonic measure
near v. Hence we can make Green’s function as small as we wish at the base points (black dots),
and make the values at all the base points as close to each other as we wish.

of d arcs each of angle measure π/d. We call the center of each such arc a “base
point” b. See Fig. 9. We claim that we can modify G to obtain a new graph G� so
that uG′,P (b) has the same positive value at every base point b.

Figure 9 shows the case where the vertex v has degree eight, so d = 4 and
B ∩D(v, ρ0) consists of four sectors. Let S be one of these sectors. We modify its
boundary inside the annulus {ρ/2 ≤ |z| ≤ ρ}. Let γ be one of the radial sides of the
sector S. We modify γ as illustrated in Fig. 9. The part of γ between the circles
{|z|= ρ} and {|z|= ρ/2} is replaced by a new arc consisting of three parts: one sub-
arc on each of these two circles, and a radial segment joining them. The circular arcs
lie inside S and both have angle measure θ ∈ (0, π/2d). The second radial segment in
∂S is modified symmetrically. Doing this for every sector associated to every vertex
of G gives a new lemniscate graph G� that has the same vertices as G.

Let {Sk}m1 be a listing of all the sectors of radius ρ0 associated to G, and let
S�k ⊂ Sk be the subregion obtained after the modification. This list is over all sectors
of all grey faces of G; since half the sectors at any vertex v are grey, the number
of sectors is 1

2
∑

v deg(v). Let θk be the angular width of the channel in S�k. We let
vk denote the vertex of Sk; observe that we can have vk = vj even if j �= k (different
sectors can share a vertex). Also, S�k∩D(v, ρ/4) is still a sector and it contains exactly
one base point, which we denote bk.

As we continuously change the value of θk, the value of uG′,P (bk) changes contin-
uously, and it tends to zero as θk tends to zero (this is intuitively clear, and it is an
immediate consequence of the Ahlfors distortion theorem, e.g., Theorem IV.6.2 of
[GM08]). By Corollary 10.3 there is a choice of θ = (θ1, . . . , θm) so that uG′,P takes
the same positive value at every base point.

Step 3: constructing the vertex-free approximation. To simplify notation we refer
to G� as just G; we will have no further need to refer to the previous versions of the
graph.
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Figure 10: We modify G near each vertex v by removing radial segments and adding cir-
cular arcs, so that d different sectors are now joined by a disk centered at v. We let
A(v, η) := {z : η/2 < |z − v|< 2η}.

We want to modify G inside even smaller neighborhoods of each vertex v to
obtain a vertex free graph H . For each v we will choose a value δv > 0, remove the
segments G ∩D(v, δv), and add the d arcs of ∂D(v, δv) that are outside the grey
faces of G. This construction is illustrated in Fig. 10. The new lemniscate graph H

has no vertices (we just removed all of them) and H equals G outside the δv-disks
around each vertex of G. We shall see later that δv is the same for vertices with the
same degree, although this is not crucial to the argument. More important is that
we will be able to choose every δv to be as small as we wish, say all smaller than
some δ0 � η.

Remark 11.2. Fig. 10 also shows that each grey face of H is the union of some
grey faces of G, together with disks centered at all the vertices on the boundaries
of these faces. If G is connected, then so is the closure of it grey faces, and hence
H has only one grey face (although H itself may be disconnected). Similarly, if G is
disconnected, but has no multiply connected white faces, then the closure of its grey
faces is still connected, and hence H has a single grey face in this case too.

Remark 11.3. The construction in the following Steps 4-6 is not needed if all the
vertices of G have degree four. In that case, one can show that if the δv’s are all
small enough, then uH,P must have a simple critical point near each of the vertices
v of G. Then Corollary 10.3 lets us choose the δv’s so that these critical values are
all the same. One can then prove that the level set of uH,P passing through these
critical points is ε-homeomorphic to G.

However, a more complicated argument seems necessary for higher degree vertices.
Although it is not too hard to show that uH,P has d− 1 critical points (counted with
multiplicities) near each vertex v of degree 2d, it is not obvious whether these points
form a single critical point of order d − 1; probably they do not. Instead, we will
construct a function that has most of the necessary properties: it is zero on H ,
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Figure 11: The domain Ωd can be mapped to a half-plane by a composition fd of explicit maps: the
power map zd, the linear fractional transformation (1 + z)/(1 − z), the power map eiπ/6z2/3, and
another linear fractional transformation (4/3)/(1 + z) (chosen so that fd(∞) = ∞).

has logarithmic poles at P , has critical points of the correct orders at the vertices
of G, and it is “nearly harmonic”, i.e., it fails to be harmonic only in the annuli
A(v, η) := {z : η/2< |z−v|< 2η}. Using the measurable Riemann mapping theorem,
we will obtain a quasiconformal map ψ : C→C that is close to the identity, and so
that pre-composing our nearly harmonic function with ψ gives a function V that is
harmonic on the faces of H � := ψ−1(H) and has its poles at P � := ψ−1(P ). The final
step will be to show the poles can be placed exactly at P .

Step 4: adding high degree critical points. To start the construction described in
the previous paragraph, let Ωd := D(0,1)∪ {Im(zd) < 0}. This is an infinite domain
that is symmetric under rotation by 2π/d. (It looks like the right side of Fig. 10: a
union of the unit disk and d evenly spaced infinite sectors of angle π/d.) Let fd be
the holomorphic map from Ωd to the right half-plane that is given by the following
composition of four maps (see Fig. 11):

(1) the power map zd sending Ωd to W1 := {z : Im(z)< 0} ∪ {z : |z|< 1},
(2) the linear fractional map (1 + z)/(1− z) sending W1 to W2 := {−π < arg z <

π/2},
(3) the power map eiπ/6z2/3 sending W2 to the right half-plane,
(4) the linear fractional map (4/3)/(z + i) (this preserves the right half-plane).

The pole of the final map is chosen so that fd(∞) = ∞. The last three maps define
a conformal map from a perturbed version of the lower half-plane to the right half-
plane that fixes ∞, and it is easy to check that this map is asymptotically linear
near infinity, and the “4/3” is chosen so that this map (the composition of the last
three maps in Fig. 11) is asymptotic to iz. Thus fd is asymptotic to izd near infinity
(for z ∈Ωd).

Set wd(z) := Re(fd(z)). This is a positive harmonic function on Ωd that is zero
on ∂Ωd, and is asymptotic to Re(izd) as z tends to infinity in Ωd. More precisely,

lim
z→∞,z∈Ωd

wd(z)
Re(i(z − v)d)

= 1.(11.2)

It is easy to check that wd has a critical point of order d− 1 at the origin and no
other critical points. Figure 12 shows contour plots of wd for d = 2,3,4,5,6,10.
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Figure 12: Contour plots of the function wd when d = 2,3,4,5,6 and 10. These were computed as
wd = Re(fd(z)), where fd is the holomorphic map shown in Fig. 11 sending Ωd to the right half-
plane. Since f ′

d only has a zero at 0, the only critical point of wd is at the origin.

Suppose B is a grey face of H . For each vertex v of G that is in B, we define a
function by translating, rotating and rescaling wd, i.e., on B ∩D(v,2η) we set

wv(z) := cv ·wd(λv(z − v)/δv)(11.3)

where |λv| = 1 is chosen to rotate the sectors of B at v to match the “arms” of Ωd,
and the constant cv is chosen so that wv(b) = uG,P (b) at each of the base points b

surrounding v (recall uG,P has the same value at each of these points).
Then wv is a harmonic function that has a critical point of the correct degree

located at the correct point. However, this function is only defined near each vertex,
not on entire faces of H . On the other hand, the function uG,P is not harmonic
on B ∩D(v, δv) = D(v, δv) for each vertex v (inside this disk, uG,P is positive and
harmonic on half of the sectors touching v and vanishes on the other sectors). Thus
neither wv nor uG,P can be uH,P , but we will construct uH′,P for some H � ≈ H

by combining these two functions with a partition of unity, and then applying the
measurable Riemann mapping theorem.

Step 5: merging two harmonic functions. By our earlier remarks, (11.1) holds if
η � ρ and (11.2) holds if δv � η. If both these conditions hold then uG,P (z) and
wv(z) are both relatively close to multiples of the same function in B ∩A(v, η), and
hence are relatively close to each other. In other words, uG,P (z)/wv(z) is uniformly
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Figure 13: The functions wv and uG,P are harmonic on different parts of the grey faces of H , but
they are both defined on the intersection of these faces with the annuli A(v, η) around each vertex.
On Ω, a connected component of this intersection, we combine them using a partition of unity.
Since both functions extend analytically to a neighborhood W ′ of Ω, and are very close there, the
Cauchy estimates imply their partial derivatives are close in Ω, and thus the merged function is
“nearly” harmonic.

close to a constant on B ∩A(v, η). Previously, we had multiplied wv by a constant
to make it agree with uG,P at the basepoints around each vertex, so we must have
uG,P (z)/wv(z)≈ 1. That is, for any ε > 0 we can ensure

1− ε≤ uG,P (z)
wv(z)

≤ 1 + ε

on B ∩ A(v, η) by choosing ρ, η and δ0 all sufficiently small (and each sufficiently
smaller than the previous one).

Note that when we decrease δv by a factor of t, the constant cv in (11.3) has to
decrease by a factor of approximately td, in order to maintain the equality wv(b) =
uG,P (b). Thus as δv tends to zero, so does cv, and to make the values of wv(v) the
same for every v, we must take cv to have the same value for all vertices with the
same degree. Since each point v is a critical point of wv, this implies that all the
critical values are the same.

Suppose S = Sk is one of the sectors we are considering, and suppose f1 is
a holomorphic function in W := S ∩ {η/3 < |z − v| < 3η} that has real part wv;
this truncated sector is simply connected, so wv has a harmonic conjugate on W .
Similarly suppose f2 is holomorphic on W with real part uG,P . By Schwarz reflec-
tion, both these functions extend analytically across both radial sides of W and
define a holomorphic function on the union W � of W and its reflections. Now
let Ω := S ∩ {η/2 < |z − v| < 2η} ⊂ W . This is compactly contained in W � and
dist(∂W �,Ω)� η. See Fig. 13.
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To simplify notation, assume v = 0. By our remarks above, both the functions
f1, f2 are very close to a multiple of zd, and hence we can write

f1(z) = czd(1 + ε1(z)), f2(z) = czd(1 + ε2(z)),

where ε1 and ε2 are holomorphic functions on W � that are both as small
as we wish, say |ε1|, |ε2| < ε. By the Cauchy estimates, |ε�1|, |ε�2| = O(ε/η) on
Ω. Take a smooth, decreasing function ϕ on [0,∞) → [0,1] so that ϕ = 1 on
[0, η/2] and ϕ = 0 on [2η,∞) and extend it to the plane by ϕ(z) := ϕ(|z|).
We can choose ϕ so that its partial derivatives are bounded by O(η−1). De-
fine

F (z) = ϕ(z)f1(z) + (1−ϕ(z))f2(z)

= ϕ(z)czd(1 + ε1(z)) + (1−ϕ(z))czd(1 + ε2(z))

= c · zd[1 + ε2(z) +ϕ(z)(ε1(z)− ε2(z))].

Since |z| � η on A(0, η) we have

∂zF (z) = czd (∂zϕ(z)(ε1(z)− ε2(z))) = czdO(η−1ε) = czd−1O(ε)

and

∂zF (z) = c · d · zd−1[1 + ε2(z) +ϕ(z)(ε1(z)− ε2(z))]

+czd[∂zε2(z) + ∂zϕ(z)(ε1(z)− ε2(z)) +ϕ(z)(∂zε1(z)− ∂zε2(z))

= c · d · zd−1[1 +O(ε) +O(|z|(η−1ε))]

= c · d · zd−1[1 +O(ε)],

so

∂zF

∂zF
(z) =

c · zd−1O(ε)
c · dzd−1[1 +O(ε)]

=O(ε).

Next we use the measurable Riemann mapping theorem to find a quasiconformal map
ψ of the plane to itself whose dilatation is Fz/Fz on Ω and zero elsewhere. Then ψ

is conformal off Ω and F ◦ψ−1 is holomorphic on Ω. The dilatation of ψ is bounded
O(ε), which is as small as we wish. Thus we can take ψ to be an ε-homeomorphism
for any ε > 0 that we want.

Now define

V =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Re(F ◦ψ−1), on Ω,

wv ◦ψ−1, on B ∩∪vD(v, η/2),
uG,P ◦ψ−1, on B \ ∪vD(v,3η).

Then V is positive and harmonic on the grey faces of H � := ψ(H) with logarithmic
poles at P � := ψ(P ), and it vanishes on H � and on the white faces of H � (V is harmonic
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in the regions of the form Ω because the quasiconformal map ψ was chosen to make
this happen; elsewhere ψ is conformal so V harmonic since Re(F ) is harmonic.) Thus
V = uH′,P ′ . Also, V has critical points at the images under ψ of the vertices of G,
and the critical values of V at these points are not changed by pre-composition with
ψ−1. Thus V has the same critical values as Re(F ), and so the degree of the critical
level set (as a graph) at its vertex ψ(v) equals the degree of v in G. Using this and
Lemma 3.1, it is easy to prove that the level set is ε-homeomorphic to G.

Step 6: placing the poles precisely. The one problem that remains is that the new
poles P � = ψ(P ) are not the same as P . However, this can be dealt with as follows.
Suppose P has n points and we think of this as a vector in C

n. Let B(P,σ) be
a small ball of radius σ > 0 around P in C

n, and for Q ∈ B(P,σ) we repeat the
construction above, obtaining a harmonic function VQ that has logarithmic poles at
Q� := ψQ(Q). In the construction, when we move P continuously, the value of uG,P at
each base point changes continuously, so our choices of the channel angles (θ1, . . . , θm)
also change continuously. Thus the values of uG,P and its partial derivatives on each
A(v, η) change continuously with P , which implies the same for F (wd and ϕ do
not change), and hence so does our solution of the Beltrami equation ψ (properly
normalized). Thus the dependence of Q� on Q is continuous, and we can make |Q−Q�|
as small as we wish, say < σ/2, by choosing ε to be small enough. Then the following
lemma shows that there exists a Q so that Q� = P .

Lemma 11.4. Let Bn denote the unit ball in C
n and suppose that F : Bn → C

n is a

continuous map with the property that |F (x)−x|< 1/2. Then 0 ∈ F (Bn).

Proof. Suppose 0 /∈ F (Bn). Choose a continuous, increasing function φ : [0,1]→ [0,1]
so that φ(t) = 0 if t ∈ [0,1/2] and φ(1) = 1. Then G(x) := (1−φ(|x|))F (x)+φ(|x|)x
is continuous on Bn, equals F on 1

2B
n, and is the identity on ∂Bn. If |x| ≤ 1/2, then

G(x) = F (x) �= 0. If |x|> 1/2, then the ball B(x,1/2) does not contain 0, but it does
contain both x and F (x), and hence it contains G(x), which is on the line segment
from x to F (x). Therefore G is never zero on B

n. Taking R(x) := x/|x| to be the
radial projection of Cn \ {0} onto ∂Bn, we see that R ◦G : Bn → ∂Bn is continuous
and equals the identity on ∂Bn, i.e., it is a retraction of Bn onto ∂Bn. But following
such a retraction by the antipodal map x → −x on ∂Bn gives a continuous map
of the closed ball into itself with no fixed point, contradicting Brouwer’s theorem.
Therefore we must have 0 ∈ F (Bn). □

This completes the proof of Theorem 11.1, and hence the proof of Theorem A.
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