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Abstract
Automated brain disorder classification for convenient treatment is one of the most complicated and widely spread

problems. With the help of cutting-edge hardware, deep learning approaches are outperforming conventional brain disorder

classification techniques in the medical image field. To solve this problem researchers have developed various transfer

learning-based techniques. Pre-trained deep learning architectures are used here for feature extraction. This paper proposes

a deep learning framework that includes a pre-trained fine-tuned EfficientNet B1 model to classify three different types of

brain disorder and a normal category with 93% of test accuracy. In order to evaluate the proposed framework, the dataset

was trained and validated using additional deep learning models Inception V3 and ResNet50 V2 for feature extraction

using softmax and support vector machine (SVM) classifiers and employing three primary optimizers: stochastic gradient

descent (SGD), root mean squared propagation (RMSProp), and Adam. The EfficientNet B1 with softmax classifier and

Adam optimizer outperformed the other two state-of-the-art models and achieved the best results.
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1 Introduction

The human brain is a vital organ and is extremely complex

in its structure. One of the most important organs for

connecting every part of the human anatomy is the brain.

Brain disorders are considered to be a serious disease in

humans and have the potential to reduce overall brain

function (https://www.cancer.net/cancer-types/brain-

tumor/statistics). Multiple researches on signal and image

analysis methods are being performed in order to learn

more about this structure. Magnetic resonance imaging

(MRI) is a convenient method in these studies (Deepak and

Ameer 2021; Anaraki et al. 2019). MRI is a noninvasive

and painless method for generating high-quality 2D and 3D

images. Magnetic fields and radio waves are used to create

MRI samples rather than radiation. In this regard, it differs

from Computed Tomography scans (CT-scan) and X-ray

images Haq et al. (2021). Brain MRI has significant sym-

metry when viewed from coronal and axial perspectives.

The asymmetric structure indicated by axial images clearly

indicate the existence of an abnormality. To detect abnor-

malities, a contrast substance or dye can be used Anaraki

et al. (2019).

Machine learning and deep learning are two modern

techniques that are being employed in a wide range of

application areas Deepak and Ameer (2021), Rane et al.

(2021). Many research initiatives are currently being car-

ried out to advance the field of medical image processing,

which has huge potential. This research area is also con-

cerned with automating brain abnormalities classification.

MRI with no radiation produces images with high contrast

and resolution. It is therefore the most effective imaging

technique for non-invasively diagnosing disease in patients

with brain abnormalities Haq et al. (2021). Compared to

biopsy specimens, computer-aided screening is quicker,

easier, and may provide outcomes that are more reliable
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and consistent Anaraki et al. (2019). Computer-aided

devices and deep learning architectures can expedite the

classification of brain abnormalities. The primary goal of

these frameworks is to create a structure that will assist

physicians Brima et al. (2021). As a result, an automatic

and precise diagnosis is possible. Today, MRI-based brain

image classification methods have been extensively studied

in published research Kibriya et al. (2022). These studies

indicate that deep learning architectures can be used to

classify brain diseases.

The deep learning model consists of hidden layers,

inputs, outputs, loss, activation functions, and so on O’Shea

and Nash (2015). Any deep learning model uses an algo-

rithm to generalise the data by making predictions based on

previously unexplored data. We need both an optimisation

algorithm along with a procedure that maps the instances of

the input data to instances of output data Veni and Manjula

(2022). An optimisation method specifies weights or fac-

tors whose values minimise errors generated by the input-

to-output mapping. These optimizers or optimisation

approaches have a significant impact on the deep learning

model’s efficiency (Polat and Güngen 2021; Poyraz et al.

2022). Optimizers can also affect the model’s training

speed. The weights for each epoch must be modified and

the loss function must be decreased while training the deep

learning model. An optimizer is a method or algorithm that

modifies neural network parameters such as weights and

learning rates Mehrotra et al. (2020). As a result, it con-

tributes to lower overall loss and increased accuracy. It is

challenging to decide on appropriate weights for deep

learning models because they have millions of parameters.

It emphasizes the necessity of specifying an optimisation

algorithm that is suitable for a particular problem.

This study proposes a classification pipeline of brain

MRI data for multiple types of brain disorders such as

Atrophy, Ischemia, Normal, and WMI. The MRI dataset

used in this work is publicly available in Kaggle TUNCER

(2023). The classification was accomplished using fine-

tuned deep-learning techniques. Fine-tuned transfer learn-

ing Inception V3, ResNet50 V2, and EfficientNet B1 have

been used for feature extraction, and as a classifier softmax

and SVM have been used, and performance comparison

has been carried with three actively used optimizers SGD,

RMSProp, and Adam. The primary contributions of this

paper are given below:

• To address the classification of multiple types of brain

disorders, three transfer learning-based fine-tuned deep

feature extraction models, ResNet50 V2, Inception V3,

and EfficientNet B1, were used and their performance

was compared.

• In the fine-tuned architectures, the feature map pro-

duced by the final layer of deep networks has been

generalized using a global average pooling layer.

• Comparison of the performance has been explored by

two classifiers softmax and SVM.

• Three popularly used optimization techniques Stochas-

tic Gradient Descent (SGD), RMSProp, and Adam with

different learning rates (0.1 and 0.001) have been used

for the experimental analysis.

• The effectiveness of the proposed pipeline has been

compared with previously published brain disease

classification state-of-the-art works.

The research article is organised as follows: Sect. 2 high-

lights some existing related work, Sect. 3 addresses the

background study, Sect. 4 describes the proposed

methodology, Sect. 5 presents the results, analysis, and

discussions, the conclusion and future scope are discussed

in Sect. 6.

2 Related Works

This section provides information about existing related

works using various deep learning and machine learning

techniques. Using a modified AlexNet model, Khawaldeh

et al. (2017), addressed the classification problem among

healthy, low-grade, and high-grade tumors on the TCIA

dataset. Their proposed method achieved 91:16% accuracy.

Different types of tumor grade, classification system was

developed by Sajjad et al. (2019), using cascaded CNN and

VGG 19 architecture on Radiopeadia, brain tumor data set

and their proposed approach improved performance on

both the data set. The dataset that has 121 numbers of MRI

samples with four tumor grading. The dataset has less

number of samples to train a heavyweight CNN model

VGG-19 which has 144 million parameters for feature

extraction that is computationally costly and time-con-

suming. A fine-tuned GoogleNet-based classification

technique has been proposed by Deepak and Ameer (2019),

to classify different types of brain tumors using the Fig-

share dataset and achieved 98% classification accuracy.

However, their model suffers from overfitting issues when

they use less data for training.

Alyami et al. (2023), proposed a framework for tumor

localization and classification that includes AlexNet and

VGG19 concatenated features, a slap swarm algorithm for

optimal feature selection, and various SVM kernels for

classification. Using a cubic SVM kernel, the proposed

framework achieved 99:1% test accuracy on a binary brain

tumor data set. However, the proposed method has not

been validated on multiple types of brain tumors. Deepa

et al. (2023), proposed a hybrid optimization algorithm for
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brain tumor segmentation and classification that incorpo-

rates the Jaya algorithm, honey badger algorithm (HBA),

and the chronological theory on a deep residual network.

The proposed work is only validated for binary classifica-

tion. Usmani et al. (2023), examined the impact of hyper-

parameters and their interconnections on residual deep

models using a cartesian product matrix-based approach.

The effects have been evaluated by three well-known

optimizers: Adam, root mean squared propagation

(RMSProp), and stochastic gradient descent with momen-

tum (SGDM). Other optimizers can be used to achieve

better performance.

To solve the binary brain tumor classification problem

Mehrotra et al. (2020), trained AlexNet, ResNet50,

ResNet101, GoogleNet, and SqueezeNet on the cancer

imaging archive (TCIA) brain tumor MRI data using dif-

ferent optimizers and achieved the highest performance

using AlexNet with SGDM. Two convolution neural net-

work (CNN) models were developed by Haq et al. (2021),

to classify various tumor grades on the multimodal brain

tumor image segmentation benchmark (BraTS) dataset and

different brain tumor types on the Figshare dataset and

achieved improved results. A hard swish rectified linear

unit (ReLU) activation function was incorporated with the

CNN model by Alhassan and Zainon (2021), to classify

multiple brain tumor types. Thirteen-layer convolution

network was proposed by Kibriya et al. (2022), to solve

multiple brain tumor classes, and a 97:2% classification

accuracy rate was achieved. Using the transfer learning

approach Aurna et al. (2022), proposed a two-stage feature

ensemble method on three brain tumor data sets along with

a combination of three data sets and promising perfor-

mance attained by their proposed approach. The binary

brain tumor classification issue was solved by Alyami et al.

(2023), using a framework that includes the slap swarm

algorithm feature selection method. The feature was

selected from AlexNet and VGG19 concatenated features.

Analysis of different SVM kernels has been reported and

cubic SVM achieved the highest classification accuracy

among them. From the above-studied literature, we can

conclude that further research study is required to classify

multiple types of brain disorders, and using a fine-tuned

transfer learning approach will allow us to investigate this

classification problem.

The existing literature emphasizes the critical signifi-

cance of accurate classification of brain disorders using

MRI datasets. Timely and precise diagnoses play a pivotal

role in effective treatment planning and patient manage-

ment. A significant portion of the literature focuses on the

emergence and effectiveness of deep learning models like

various CNNs. CNN shows remarkable capabilities in

automatically learning complex hierarchical features from

MRI data. Some studies used transfer learning, utilizing

pre-trained models on large-scale datasets to extract fea-

tures. This approach allows for improved generalization

and performance, especially when dealing with limited

data. So, there is scope for utilizing the transfer learning

approaches and exploring the SVM classification layer

combined with the transfer learning architecture. This

study explores three extensively popular transfer learning

models Inception V3, ResNet50 V2, and EfficientNet50 V2

for feature extraction and softmax, SVM for classification.

3 Background Study

This section provides information about the background

analysis of the dataset used in the experiments and different

deep learning concepts applied in this work.

3.1 Dataset Description

The brain disorder dataset was obtained from the Depart-

ment of Radiology of Firat University Hospital Poyraz

et al. (2022). This corpus contains 444 transverse T2

weighted magnetic resonance (MR) scans of three different

brain disorders and a normal class. Atrophy, ischemia, and

white matter intensity (WMI) are the different brain dis-

order classes. The number of images in each of the cate-

gories is given in Table 1. These images are saved as JPG

files from the PACS of the Firat University Hospital. The

MRI samples of the corpus are also shown in Fig. 1.

3.2 Transfer Learning

In contrast to conventional machine learning, which learns

features from scratch, the transfer learning theory includes

new learning tasks with earlier extracted features from a

large data set Weiss et al. (2016). In this case, feature

learning happens much faster compared to traditional

machine learning tasks. Transfer learning is an important

deep learning technique due to its ability to achieve better

results with much less data (Polat and Güngen 2021;

Usmani et al. 2023). When there is a scarcity of labeled

training data, the traditional machine learning framework

struggles to achieve state-of-the-art performance. Transfer

learning strategy can manage small training data; the

Table 1 Details of Brain

Disorder dataset Poyraz et al.

(2022)

Disorder type No. of samples

Atrophy 100

Ischemia 102

Normal 150

WMI 92
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benefit is that features from previously labeled information

gathered from certain relevant tasks can be used Ghosh

et al. (2022). Transfer learning involves leveraging the

knowledge gained by a pre-trained model on a large dataset

(often from a related task) and fine-tuning it on a smaller

dataset for a specific task of interest. The early layers of a

pre-trained CNN are excellent at capturing low-level fea-

tures such as edges, textures, and shapes. These layers are

typically frozen during the fine-tuning process, and their

outputs are treated as high-level features. In the case of

CNNs, this typically involves using the pre-trained layers

as feature extractors and adding a few additional layers for

task-specific classification. Feature extraction techniques

based on transfer learning include,

• Train a classifier, on a pre-trained feature extraction

model.

• Fine-tune the pre-trained network while preserving the

learned weight values as initial parameters.

The weights generated by training on the ImageNet data set

contain features that can aid in identifying shapes, edges,

and various other critical elements required for image

classification. The ImageNet data was utilised for training

Inception V3, ResNet50 V2, and EfficientNet B1 base

model on over 14 million images from 1000 various cat-

egories Tan and Le (2019). Because our chosen task could

not be completed using baseline transfer learning archi-

tectures, fine-tuning was required. Figure 2 depicts the

transfer learning framework. In this work, three transfer

learning model ResNet50 V2, Inception V3, and Effi-

cientNet B1 has been used for brain disorder classification.

3.3 Optimizer

The goal of optimisation techniques in neural networks is

to minimize the loss function, defined as the difference

between the data that is predicted and the expected output

values. In this experiment, three commonly used optimiz-

ers SGD, RMSProp, and Adam are discussed.

1. Stochastic gradient descent (SGD) uses a subset of the

samples for each iteration, instead of using the entire

data set Ruder (2016). In each iteration, the parameters

are updated in the direction of the negative gradient of

the loss function with respect to the parameters. It uses

a fixed learning rate for all parameters. Equation 1

defines the SGD optimizer update rule, where g is the

learning rate and h is the model parameter function.

hiþ1 ¼ hi � g
oh
ohi

ð1Þ

2. RMSProp is another prevalent gradient-based optimi-

sation algorithm for training neural networks Ruder

(2016). RMSProp adapts the learning rate for each

parameter by dividing it by the square root of the

exponentially weighted moving average of the squared

gradients. RMSProp was designed as a stochastic mini-

batch learning method. It tries to resolve the problems

by normalising the gradient using the moving average

of squared gradients. The update rule of RMSProp is

mentioned in Eq. 2.

hjþ1 ¼ h� g
oh

o
ffiffiffi

t
p

þ e
ð2Þ

In Eq. 2, t is the bias-corrected weight parameter, g is

the learning rate and � is a small positive constant 10�8

used to avoid the error.

3. The working principle of Adam optimizer is a com-

bination of the ‘‘Gradient descent with momentum’’

and ‘‘RMSProp’’ algorithms Ruder (2016). It maintains

both the exponentially decaying average of past

gradients and their squared values. Equation 3 provides

the updated equation for the Adam optimizer.

hiþ1 ¼ hi �
g
ffiffiffi

bt
p

þ e
bmt ð3Þ

where, h is the weight vector, bmt and bt are the bias-

corrected first and second weight parameters.

Fig. 1 Sample of collected MRI brain tumor slices. a Atrophy; b Ischemia; c Normal; d WMI
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4 Proposed Methodology

The proposed method includes several general steps for

investigating the correctness of various types of brain

disorders. Figure 3 depicts the proposed workflow, which

includes data pre-processing, augmentation, feature

extraction, and classification.

4.1 Problem Definition

In this study, we can consider a brain disorder dataset D ¼
Ai; bif gpi¼1 with p labeled image. The ith sample image of

the dataset D can be represented as Ai 2 Sh�w�c where c is

considered as number of channels and h� w is the height

and width of MRI image sample. The corresponding

classification classes are bi where 0: Atrophy, 1: Ischemia,

2: Normal and 4: WMI. The aim of the proposed system is

to predict bi for each Ai.

4.2 Data Pre-processing

The primary goal of image pre-processing is to prepare the

MRI samples for reading by the model and processing it for

better analysis. The MRI samples are re-sized to

‘‘224� 224’’ as working with a larger size will require

more parameters to handle in order to examine the entire

training set in a consistent manner. The neural network can

process the inputs with small weight values faster than

inputs with large integer values, which can slow down the

learning process. As a result, the pixel values in the [0-1]

Fig. 2 The transfer learning

working principle

Fig. 3 Proposed workflow of the brain disorder classification framework
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range have been standardised using the min-max method.

The min-max normalisation formula is given in Eq. 4.

vi ¼
ai � minðaÞ

maxðaÞ � minðaÞ ð4Þ

The normalized pixel value is vi where the maximum and

minimum pixel values are defined as maxðaÞ and minðaÞ
respectively.

4.3 Data Augmentation

Image augmentation is the process of applying different

transformations to an original image, resulting in multiple

replicas of that image. While using simple geometric

transformations such as rotation shift various augmented

data have been used to change the width/height range,

shear and zoom range, horizontal/vertical flip, and bright-

ness change. Keras ImageDataGenerator is used in real-

time data augmentation for our work. We have iterated

over the data in batches when using the Keras image data

generator module. Table 2 summarises the augmentation

parameters and Fig. 4 provides the visualization of aug-

mented output.

4.4 Network Training

This section contains details about network training and

fine-tuning. Initially from the Keras library ImageNet pre-

trained base deep learning models Inception V3, ResNet50

V2, and EfficientNet B1 have been imported. The base

model was able to instantly improve its image recognition

performance by employing pre-trained weights from Ima-

geNet features. CNN with feed-forward training strategies

is used in the pre-trained models. Equation 5 describes the

network training process from the input layer to the clas-

sification stage. As soon as one pass is finished, error

backpropagation starts from the classification phase to the

initial input layer. Equation 5 demonstrates the information

flow from a neuron in the previous layer to a neuron in the

subsequent one, where W stands for the weight of the

connections between the two neurons.

Inputlp ¼
X

n

q¼1

Wl
pqaq þ biasp ð5Þ

Following this phase, fine-tuning was required because the

base deep learning structure was unable to accomplish our

classification problem. As a result, feature extraction by the

final convolution layer generates a feature map that was

generalised by using the global average pooling over flat-

tening layers. It averages each generated feature and feeds

the resulting vector into the classification layer. One

advantage of global average pooling over fully connected

layers is that it enforces correlations between feature maps

and categories, which makes it more similar to the con-

volution structure Lin et al. (2013). The over-fitting prob-

lem is reduced by adding a drop-out layer subsequent to the

global average pooling layer.

For a robust model, choosing the hyperparameter’s

optimum value is an essential task. The hyperparameter

values have a significant impact on the model training

process’s ability to rapidly converge to a local minima

using the most effective transfer learning-based features

extraction strategy and classification methods. During the

training of the model, a large number of hyper-parameter

values were arbitrarily tested with the data set. The train,

validation, and test ratios, epochs, drop-out rate, learning

rate, loss, batch size, and optimization algorithm have all

been taken into consideration. Each time, the dropout rate,

the batch size, and the number of epoch parameters are

changed, beginning with the lowest dropout rate (0.1), the

lowest epochs (10), and the largest batch size (256), till the

desired result is obtained. The hyper-parameter values are

given in Table 3. For the optimizers the default learning

rate has been fixed and given in Table 4.

4.5 Proposed Model

The proposed model includes EfficientNet B1 architecture

with a global average pooling layer. The EfficientNet

architecture has been developed by Tan and Le (2019)

using a compound coefficient to scale the convolution

neural network structure consistently in all dimensions of

depth, width, and resolution. This convolution neural net-

work network scaling strategy improved the architecture’s

performance. As a deep learning architecture, the design of

the EfficientNet model demonstrates a remarkable balance

between model size, computational resources, and accu-

racy. EfficientNet B1 architecture consists of a baseline

network that incorporates inverted bottleneck blocks,

similar to MobileNet V2, as well as depth-wise separable

convolutions Tan and Le (2019). These components help

reduce the number of parameters in the network while

retaining its ability to capture complex features. The

Table 2 Data augmentation

parameters
Transformations Values

Rotation range 25

Width shift range 0.2

Height shift range 0.2

Zoom range 0.2

Horizontal flips True

Vertical flips True

Brightness range [0.2, 0.8]
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modification on EfficientNet B1 is fine-tuning of the net-

work. In the state-of-the-art EfficientNetB1 network, a

flatten layer is at the end of the final convolution layer in

the feature extraction module and 1000 dense nodes with a

softmax classification layer are used. However, in the

proposed fine-tuned EfficientNet B1 the global average

pooling layer has been included for generalization of the

generated feature map after the feature extraction from the

final convolution layer of the EfficientNetB1. Additionally,

instead of using max pooling or other forms of pooling

with fixed-size pooling windows, in the proposed network

a global average pooling is used which takes the average of

all values in each feature map, resulting in a single value

for each channel. In the classification module, 4 dense

nodes with softmax and SVM layer have been used and the

performance is compared for both classification functions.

The proposed algorithm of the framework of the model

training has been stated in Algorithm 1.

4.5.1 Working Principles of Global Average Pooling

In the proposed EfficientNet B1 architecture, the Global

average pooling (GAP) layer commonly used in as a

method for reducing the spatial dimensions of feature maps

while retaining important information. The primary pur-

pose of a global average pooling layer is to condensing the

information in the feature maps into a single value per

feature map channel. This process helps in reducing the

number of parameters in the network and aids in preventing

over fitting. By computing the average value of each fea-

ture map channel, the spatial dimensions are collapsed into

a single value. This reduces the overall number of

parameters in the subsequent layers, making the network

more computationally efficient. The final feature map

generated by GAP layer are less sensitive to the precise

location of features within the input data. So, by averaging

feature value across the entire feature map, GAP ensures

that the presence of important features is captured irre-

spective of their spatial position.

Algorithm 1 Finetuned EfficientNetB1

4.6 Classification

The brain disorder classification probability will be com-

puted after training networks and feature extraction by the

classification layer. Apart from accuracy, the minimization

of the loss function is highly beneficial in improving the

efficiency of a model used for classification. As a result, the

loss during back-propagation should be minimised. The

SVM and softmax classification layers have been used to

classify four types of brain disorders. The working

Original image
Flipping width shift Rotate

Zooming Brightness

Fig. 4 The sample images after performing data augmentation
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principle of both the classification function has been given

below:

1. The softmax classifier is a widely used classification

function for multi-class classification problems

Nwankpa et al. (2018). It is a mathematical function

that converts a vector of real numbers into a probability

distribution. This distribution assigns probabilities to

each class in a way that the sum of probabilities adds

up to 1. The loss function used here is the categorical

cross-entropy used by the softmax classifier, as stated

in Eq. 6. The softmax function value as well as the

truth value of the xth point are represented by f ðsxÞ and
tx, respectively.

LossCE ¼�
X

c

x

txlogðf ðsxÞÞ

f ðsxÞ ¼
esx

PC
y e

sy

ð6Þ

2. SVM was selected for our study as a result of previous

work Deepak and Ameer (2021) in which SVM

showed effective performance in classifying complex

features. The combination of SVM classifiers with

transfer learning-based CNN models is a powerful

technique for tasks in computer vision. It leverages the

strengths of both approaches to achieve high accuracy,

particularly when labeled data is limited. SVM needs

to identify the best hyperplane for dividing classes in a

dataset Cortes and Vapnik (1995). Equation 7 states

the Squared Hinge Loss as a loss function. This loss

function is used for ‘‘maximum margin’’ classification

problems.

Lossðp; p̂Þ ¼
X

N

i¼0

maxð0; 1� pi � p̂iÞ2
� �

ð7Þ

The squared hinge loss value will be 0 when the truth

and predicted values are equal, p̂ > 1 and it will

increase in a quadratic way with the error if the truth

and predicted values are not equal, p̂ 6 1.

5 Results and Discussion

This section contains in-depth details regarding the

experimental results based on optimizers, as well as an

analysis of the deep learning architectures using SVM and

softmax layers. All the experiments are performed on an

Intel(R) Xeon(R) Silver 4108 CPU @ 1.80 processor, 64

GB RAM, and 8 GB GPU.

5.1 Evaluation Measures

The evaluation measures used for the experiments are

based on the confusion matrix as shown in Table 5. Table 6

describes the mathematical equation for the evaluation

parameters precision, f1-score, recall, and accuracy. In a

tabular format, the confusion matrix contains both the

correct and incorrect classification.

5.2 Results

In this work, transfer learning-based fine-tuned deep

learning models Inception V3, ResNet50 V2, and

Table 3 Hyper-parameter

values for model training
Hyper-parameter Value

Classifier Softmax, SVM

Loss Categorical cross-entropy, Squared hinge loss

Dropout 0.3

Batch size 16

No. of epochs 60

Early stopping patience 2

monitor val_accuracy

Train: Val: Test 70 : 10 : 20

Table 4 Optimization algorithms and corresponding learning rate

value for model training

Optimizer Learning rate

SGD 0.01(default), 0.001

RMSProp 0.001(default), 0.01

Adam 0.001(default), 0.01

Table 5 Confusion Matrix Format

Predicted true Predicted false

Actual true True positive(TP) False positive(FP)

Actual false False negative(FN) True negative(TN)
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EfficientNet B1 are used for feature extraction. The opti-

mization techniques SGD, RMSProp, and Adam are used

for training the deep learning models, and the last layer of

the proposed model includes softmax and SVM classifiers

with four neurons as the data has four types of brain dis-

order classes. The SVM classifier’s kernel regularizer is set

to l2(0.01). We used 70% of the total data set for training in

this work, with 16 batch sizes, so the model took 20 iter-

ations to complete each epoch. Tables 7, 8 and 9 shows the

performance of each optimisation algorithm using softmax

classifier, and Tables 10, 11 and 12 shows the performance

of each optimisation algorithm using SVM classifier. The

confusion matrices of the proposed framework are pro-

vided in Figs. 5, 6, and 7. The training-validation accuracy/

loss graphs of the EfficientNet B1 model are given in 8, 9

and 10. The average precision, recall, and F1-score of the

model is provided in Fig. 13. Figure 11 shows the receiver

operating characteristic (ROC) curve of the proposed

framework. The comparison of the validation accuracy of

EfficientNet B1 with SGD, RMSProp, and Adam optimizer

using softmax and SVM is provided in Fig. 14. The visu-

alization of the proposed framework is given in Fig. 15.

The optimized EfficientNet B1 in the suggested framework

has been trained and tested with varying batch sizes,

ranging from the maximum 256 to 16. The best results

were seen at batch size 16. The batch size results are dis-

played in Fig. 11. The larger batches require more memory

for both model parameters and intermediate activations

during backpropagation. However, smaller batches con-

sume less memory, allowing for training complex models

with limited memory resources. Sometimes, larger batches

may provide a more accurate estimate of the gradient of the

loss function, but they might lead to a more deterministic

update, potentially causing the model to converge to a

sharp minimum and overfit and smaller batches introduce

more stochasticity in the optimization process, which can

help the model generalize better and find more robust

solutions. We have experimented with different learning

rates for SGD (0.001), RMSProp (0.01), and Adam (0.01),

in addition to changing the default value of optimizers. The

outcomes are given in Fig. 15.

5.3 Ablation Analysis

This section presents the implications based on optimizer

behaviors on the test set, as well as its evaluation

employing softmax and SVM classifiers.

5.3.1 Effect of Optimizers

SGD, RMSProp, and Adam are popular optimization

algorithms used in training neural networks. Each of these

optimizers has distinct characteristics that affect the train-

ing process and performance of the model. SGD is

straightforward and computationally efficient. The path to

the minimum can be unpredictable due to its random nature

(stochastic), which can lead to more rapid convergence in

some cases but also makes it susceptible to getting stuck in

local minima. The learning rate can impact the perfor-

mance of SGD as a very high learning rate may lead to

oscillation and a very smaller rate may result in slow

convergence. RMSProp adjusts the learning rates individ-

ually for each parameter, which can lead to faster con-

vergence. It helps to smooth out the oscillations in the

parameter updates, making convergence more stable.

Adam adapts the learning rates individually for each

parameter and includes a momentum term, making it par-

ticularly effective for complex high-dimensional problems.

From the reported results in Tables 7, 8 and 9 we can see

that using softmax classifier the performance of each

optimizer with each deep learning model achieved more

than 80% accuracy. The training and validation accuracy

for ResNet50 V2 of each optimizer using softmax

increased till 10th epoch and then it achieved a stable po-

sition. For EfficientNet B1 using softmax function and

SGD optimizer the training and validation accuracy

increased till 20th epoch and then it got reduced after that

again it increased from 40th epoch and then got a

stable position. The accuracy of EfficientNet B1 for Adam

and RMSProp optimizer increased till 10th epoch and then

achieved a stable position. For Inception V3, the accuracy

achieved the highest position for each optimizer after 10th

epoch and after that it got stable. For each deep learning

model and Adam optimizer we can see the convergence of

both training and validation accuracy was better compared

to the other two optimizer.

5.3.2 Effect of Classifier

SVM and softmax are typically equivalent in practice.

Researchers will have different opinions about which

classification technique performs better, but there is typi-

cally not much of a performance difference between the

two. The more significant local objectivity of SVM

Table 6 Equation of evaluation

parameters
Metrics Equation

Precision ðTPÞ
ðTPþFPÞ

Recall ðTPÞ
ðTPþFNÞ

F1-score 2�ðP�RÞ
ðPþRÞ

Accuracy ðTPþTNÞ
ðTPþTNþFPþFNÞ
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compared to the softmax classifier can be considered both

an advantage and a drawback. This classifier works by

finding the optimal hyperplane that best separates the

classes. It aims to maximize the margin between classes

while minimizing classification errors. However, the SVM

is satisfied once the margins have been met and does not

actively handle accurate scores afterward. After the feature

extraction from transfer learning models, the parameters of

Table 7 Performance analysis

of transfer learning architectures

on SGD optimizer using

softmax classifier

Architecture class Precision Recall F1-Score Accuracy

ResNet 50V2 Atrophy 0.96 0.96 0.96 89%

Ischemia 0.95 0.86 0.90

Normal 0.78 0.93 0.85

WMI 0.93 0.76 0.84

Inception V3 Atrophy 0.84 0.91 0.87 88%

Ischemia 0.87 0.91 0.89

Normal 0.86 0.93 0.89

WMI 1.00 0.71 0.83

EfficientNet B1 Atrophy 0.88 0.96 0.92 83%

Ischemia 0.89 0.77 0.83

Normal 0.77 0.85 0.81

WMI 0.80 0.71 0.75

Table 8 Performance analysis

of transfer learning architectures

on RMSProp optimizer using

softmax classifier

Architecture Class Precision Recall F1-Score Accuracy

ResNet 50V2 Atrophy 0.86 0.78 0.82 81%

Ischemia 0.77 0.77 0.77

Normal 0.78 0.93 0.85

WMI 0.86 0.71 0.77

Inception V3 Atrophy 0.88 0.91 0.89 87%

Ischemia 0.89 0.77 0.83

Normal 0.79 1.00 0.89

WMI 1.00 0.71 0.83

EfficientNet B1 Atrophy 0.91 0.91 0.91 85%

Ischemia 0.86 0.86 0.86

Normal 0.77 0.89 0.83

WMI 0.92 0.71 0.80

Table 9 Performance analysis

of transfer learning architectures

on Adam optimizer using

softmax classifier

Architecture Class Precision Recall F1-Score Accuracy

ResNet 50V2 Atrophy 0.95 0.78 0.86 87%

Ischemia 0.85 1.00 0.92

Normal 0.81 0.93 0.86

WMI 0.92 0.71 0.80

Inception V3 Atrophy 0.84 0.91 0.87 87%

Ischemia 0.87 0.91 0.89

Normal 0.86 0.89 0.87

WMI 0.92 0.71 0.80

EfficientNet B1 Atrophy 0.90 1.00 0.95 93%

Ischemia 1.00 0.82 0.90

Normal 0.92 0.96 0.94

WMI 0.95 0.90 0.93
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the SVM classifier are fine-tuned using the training data.

This step involves adjusting the weights and biases to

better fit the specific classification problem. Transfer

learning allows the model to leverage knowledge from a

broader dataset. The SVM then refines these features for

the specific task, which can lead to better generalization.

SVMs provide more interpretable results compared to some

deep learning models. The decision boundary is determined

Table 10 Performance analysis

of transfer learning architectures

on SGD optimizer using SVM

classifier

Architecture Class Precision Recall F1-Score Accuracy

ResNet 50V2 Atrophy 0.83 0.87 0.85 82%

Ischemia 0.94 0.77 0.85

Normal 0.70 0.96 0.81

WMI 1.00 0.59 0.74

Inception V3 Atrophy 0.90 0.78 0.84 83%

Ischemia 0.79 0.86 0.83

Normal 0.76 0.93 0.83

WMI 1.00 0.71 0.83

EfficientNet B1 Atrophy 0.88 0.61 0.72 67%

Ischemia 0.85 0.60 0.63

Normal 0.57 0.96 0.71

WMI 0.64 0.53 0.58

Table 11 Performance analysis

of transfer learning architectures

on RMSProp optimizer using

SVM classifier

Architecture Class Precision Recall F1-Score Accuracy

ResNet 50V2 Atrophy 0.50 0.26 0.34 52%

Ischemia 0.67 0.45 0.54

Normal 0.47 0.89 0.62

WMI 0.55 0.35 0.43

Inception V3 Atrophy 0.86 0.78 0.82 81%

Ischemia 0.76 0.86 0.81

Normal 0.81 0.93 0.86

WMI 0.83 0.59 0.69

EfficientNet B1 Atrophy 0.81 0.91 0.86 83%

Ischemia 0.88 0.68 0.77

Normal 0.77 1.00 0.87

WMI 1.00 0.65 0.79

Table 12 Performance analysis

of transfer learning architectures

on Adam optimizer using SVM

classifier

Architecture Class Precision Recall F1-Score Accuracy

ResNet 50V2 Atrophy 0.95 0.87 0.91 81%

Ischemia 0.84 0.73 0.78

Normal 0.71 0.89 0.79

WMI 0.80 0.71 0.75

Inception V3 Atrophy 0.95 0.78 0.86 76%

Ischemia 0.62 0.82 0.71

Normal 0.79 0.85 0.82

WMI 0.75 0.53 0.62

EfficientNet B1 Atrophy 0.80 0.87 0.83 82%

Ischemia 0.94 0.68 0.79

Normal 0.74 0.96 0.84

WMI 0.92 0.71 0.80
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by a subset of the training data called support vectors.

However, it’s worth noting that the effectiveness of this

approach can vary depending on the specific task and

dataset. The softmax classification layer in transfer learning

models has been used to solve a multi class classification

problem. The advantage of softmax classification is that it

provides a smooth, differentiable transition from assigning

high probability to one class to assigning lower

Fig. 5 Confusion matrix of the proposed method using Inception V3 architecture. a SGD?softmax, b RMSProp?softmax, c Adam?softmax,

d SGD?SVM, e RMSProp?SVM, f Adam?SVM

Fig. 6 Confusion matrix of the proposed method using ResNet50 V2 architecture. a SGD?softmax, b RMSProp?softmax, c Adam?softmax,

d SGD?SVM, e RMSProp?SVM, (f) Adam?SVM
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probabilities to others. As a result, we can conclude from

our experimental results in Tables 7, 8, 9, 10, 11 and 12

that the softmax classification layer performed well. We

can see from the confusion matrix of EfficientNet B1 using

the SVM classifier and Adam in Fig. 7 that the ‘‘Ischce-

mia’’ class has 0.68 accuracy whereas using the softmax

function it has 0.82 accuracy.

5.4 Time Complexity

The computation of time complexity can be calculated

using Big O notation.

1. Pre-processing: If we consider i number of image

samples than time complexity will be Big OðiÞ.
2. Feature extraction: If we have f number of feature map

and p complexity of the processing of EfficientNet B1

based on its parameters than time complexity will be

Big OðfpÞ.
3. Classification: If we consider the complexity of

classifier is c than time complexity will be Big OðcÞ.
So the total time complexity will be

TðnÞ ¼ BigOðiÞ þ BigOðfpÞ þ BigOðcÞ ð8Þ

The Eq. 8, provides a clear understanding of the time

complexity associated with each stage of the EfficientNet

B1 pipeline and it has a linear time complexity. For our

experiments, we noticed that for each iteration it has taken

4 seconds per step.

5.5 Comparative Analysis with Existing Work

This section compares the proposed framework with the

state-of-the-art works. Table 13 refers to some similar kind

of classification framework. Cheng et al. (2015), used the

Figshare dataset for brain tumor classification where the

classifier differentiates among three different types of brain

tumors glioma, meningioma, pituitary, and using bag of

word (BoW) and support vector machine (SVM) classifier.

Helwan et al. (2018), used a stacked autoencoder for brain

hemorrhage classification using CT scan brain dataset and

other auto encoder architecture for comparing their pro-

posed model for binary class classification. Sajjad et al.

(2019), used modified VGG on the Radiopedia dataset and

achieved 90:6% accuracy. They performed the experiments

on other brain tumor datasets and achieved superior per-

formance. In this paper, the proposed approach fine-tuned

EfficientNet B1 using Adam optimizer and softmax clas-

sifier achieved 93% test accuracy on brain disorder clas-

sification problem where it can classify four different types

of brain disorder.

Fig. 7 Confusion matrix of the proposed method using EfficientNetB1 architecture. a SGD?softmax, b RMSProp?softmax, c Adam?softmax,

d SGD?SVM, e RMSProp?SVM, f Adam?SVM

Iranian Journal of Science and Technology, Transactions of Electrical Engineering

123



5.5.1 Analysis of Work on Same Dataset

This subsection provides an analytical review of previously

published papers that used the same brain disorder dataset.

The paper by Poyraz et al. (2022), proposed a pipeline that

includes pre-processing, feature generator, iterative neigh-

borhood component analysis (INCA) feature selection, and

classification using pre-trained architectures. MobileNet

V2 with the SVM classification layer achieved the highest

classification accuracy for brain disorder classification

problems. But the INCA feature extraction technique is

very complex and the iterative feature selection process

selects 877 features from 21000 features and classification

has been done using the 877 features. As we can see fewer

features are selected by an automatic iterative feature

selection method As here we can see less features are

selected by an automatic iterative feature selection method

so the accuracy of the classification is significantly

impacted by the chosen features, resulting in the achieve-

ment of improved accuracy. Higher-level feature maps

typically contain abstract and complex features that are

important for discriminating between different classes. By

Fig. 8 Training and Validation Accuracy-Loss graph of EfficientNetB1 using softmax. a SGD, b RMSProp
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selecting only a few features, it may lose critical infor-

mation for the classification. And the framework may

become more sensitive to noise or irrelevant patterns in the

data. This can lead to overfitting. Moreover, their method

focused only to increase the accuracy using Iterative

Neighborhood Component Analysis (INCA) dimensional-

ity reduction technique that iteratively refines the embed-

ding of data points by considering their local

neighborhoods. INCA’s performance heavily relies on the

choice of neighborhood size and the method used to define

neighborhoods. If the neighborhood selection is sub opti-

mal, it may lead to a poor-quality embedding, resulting in

loss of important information or distorted representations.

The iterative nature of INCA involves repeatedly updating

the embeddings of data points until convergence is

achieved. This iterative process can be computationally

expensive, especially for large datasets or high-dimen-

sional data, making it less practical for real-time or large-

scale applications. But as the size of the dataset was small

it worked well for this but for larger dataset it will be

computationally expensive. INCA aims to capture local

data structures by iteratively adjusting the embedding of

each data point. However, this iterative refinement process

may lead to over fitting a concern which the paper Poyraz

Fig. 9 Training and Validation Accuracy-Loss graph of EfficientNetB1 using SVM. a SGD, b RMSProp
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et al. (2022) notably does not address in terms of how

potential over fitting is mitigated. Although INCA provides

a potent method for dimensionality reduction by utilizing

local neighborhood information, it is crucial to thoroughly

assess its limitations and suitability for particular

applications.

Tasci (2023) adopted a novel approach utilizing pre-

trained CNN architectures for feature extraction and iter-

ative feature selection methods INCA (Iterative Neigh-

borhood Component Analysis) and ImRMR (Iterative

Minimum Redundancy Maximum Relevance). Remark-

ably, their methodology achieved impressive accuracy

more than 97% for all the brain disease datasets. Notably,

for the brain disorder dataset, a remarkable accuracy of

99:3% was attained using the ImRMR method. However,

it’s important to note that this high accuracy was achieved

with a relatively sparse selection of features. Specifically,

out of 32,928 feature vectors, only 302 features were

chosen. The result of this could be potentially impacted by

the selected features, contributing to the exceptional per-

formance observed. The iterative nature of feature selec-

tion methods like ImRMR aims to select features that are

highly relevant to the target variable while minimizing

redundancy. But, this iterative optimization process can be

computationally expensive, particularly when dealing with

a large number of features. Moreover, scalability becomes

Fig. 10 Training and Validation Accuracy-Loss graph of EfficientNet using Adam optimizer. a Softmax, b SVM
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a concern, as the algorithm’s complexity increases with

larger datasets or higher-dimensional feature spaces. These

challenges may limit the method’s practical applicability in

certain computational environments or with particularly

large datasets. Despite its principled approach to feature

selection, offering a balance between relevance and

redundancy, it’s essential to consider the computational

complexities and scalability limitations associated with

ImRMR. Although ImRMR offers a better approach to

feature selection by maximizing the relevance and mini-

mizing the redundancy of selected features, it is important

to consider its computational complexity and scalability

limitations challenges, and potential for over fitting when

applying it to larger datasets.

Fig. 12 The performance of

optimizers SGD, RMSProp, and

Adam with learning rate 0.01

and 0.001(1E-3) using finetuned

EfficientNet B1 a softmax

classifier

Fig. 11 a ROC-AUC curve and b batch size-accuracy variation of EfficentNet B1 with Adam optimizer default learning rate (0.001)
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While our proposed method may exhibit only marginal

accuracy compared to existing approaches, it offers sig-

nificant advantages in terms of computational efficiency

and improved generalization through the use of a global

average pooling layer. Additionally, our model shows

robustness against over fitting problems. However, we

recognize that there is opportunity for improvement,

specifically by incorporating larger training samples or

employing larger datasets, that could potentially result in

higher accuracy. Our future studies will focus on inte-

grating a larger brain disease dataset to improve the per-

formance of our model.

Fig. 13 Average Precision, Recall, F1-score of EfficientNetB1 architecture using SGD, RMSProp and Adam optimizer

Fig. 14 Comparison of validation accuracy of EfficientNetB1 architecture using SGD, RMSProp and Adam optimizer
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6 Conclusion and Future Work

This article focuses on developing a deep learning frame-

work for various types of brain disorder classification. The

proposed framework includes Inception V3, ResNet50 V2,

and EfficientNet B1 which has been fine-tuned using

transfer learning for feature extraction and classification

performance compared using softmax and SVM. Stochastic

gradient descent, RMSProp, and Adam are three popular

activation functions that are used and compared. Transfer

learning can produce optimistic results as large amounts of

brain disorder data are difficult to collect. Employing the

EfficientNet B1 architecture for brain disorder classifica-

tion represents a significant advancement in the field of

medical image analysis. This powerful deep learning

model, characterized by its efficient use of computational

resources and impressive performance, has demonstrated

its efficacy in accurately classifying multiple types of brain

disorders from brain MRI datasets. Furthermore, the effi-

ciency of EfficientNet B1 in terms of computational

resources and memory requirements makes it a practical

choice for deployment in resource-constrained environ-

ments, ensuring that the model can be readily applied in

clinical practice without excessive hardware demands.

However, it is important to note that the success of any

classification model, including EfficientNet B1, is depen-

dent on the availability of high-quality, well-curated data-

sets. The quality and diversity of data play a pivotal role in

training models that generalize well to real-world clinical

scenarios. The performance evaluation of other feature

extraction and transfer learning techniques will be part of

future research for brain disorder classification by utilizing

a larger dataset. Moreover, utilization of transfer learning

techniques beyond the pre-trained models is another area of

research that can be explored.

Fig. 15 The predicted visualization of classification result on brain disorder test dataset using proposed architecture

Iranian Journal of Science and Technology, Transactions of Electrical Engineering

123



Data Availability For this study the publicly available Brain disorder

dataset Poyraz et al. (2022), TUNCER (2023).

Declarations

Conflict of interest The authors declare that they do not have any

Conflict of interest.

References

Alhassan AM, Zainon WMNW (2021) Brain tumor classification in

magnetic resonance image using hard swish-based relu activa-

tion function-convolutional neural network. Neural Comput

Appl 33(15):9075–9087

Alyami J, Rehman A, Almutairi F, Fayyaz AM, Roy S, Saba T,

Alkhurim A (2023) Tumor localization and classification from

MRI of brain using deep convolution neural network and salp

swarm algorithm. Cognit Comput 1–11

Anaraki AK, Ayati M, Kazemi F (2019) Magnetic resonance

imaging-based brain tumor grades classification and grading

via convolutional neural networks and genetic algorithms.

Biocybern Biomed Eng 39(1):63–74

Aurna NF, Yousuf MA, Taher KA, Azad A, Moni MA (2022) A

classification of MRI brain tumor based on two stage feature

level ensemble of deep CNN models. Comput Biol Med

146:105539

Brima Y, Tushar MHK, Kabir U, Islam T (2021) Deep transfer

learning for brain magnetic resonance image multi-class classi-

fication. arXiv preprint arXiv:2106.07333

Cancernet, brain tumor: statistics. https://www.cancer.net/cancer-

types/brain-tumor/statistics.’’

Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q

(2015) Enhanced performance of brain tumor classification via

tumor region augmentation and partition. PLoS ONE

10(10):e0140381

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

Deepak S, Ameer P (2019) Brain tumor classification using deep

CNN features via transfer learning. Comput Biol Med

111:103345

Deepak S, Ameer P (2021) Automated categorization of brain tumor

from MRI using CNN features and SVM. J Ambient Intell

Humaniz Comput 12(8):8357–8369

Deepa S, Janet J, Sumathi S, Ananth J (2023) Hybrid optimization

algorithm enabled deep learning approach brain tumor segmen-

tation and classification using MRI. J Digital Imaging 36:1–22

Ghosh A, Soni B, Baruah U, Murugan R (2022) Classification of brain

hemorrhage using fine-tuned transfer learning. Advanced

machine intelligence and signal processing. Springer, Berlin,

pp 519–533

Haq EU, Jianjun H, Li K, Haq HU, Zhang T (2021) An MRI-based

deep learning approach for efficient classification of brain

tumors. J Ambient Intell Humaniz Comput 14:1–22

Helwan A, El-Fakhri G, Sasani H, Uzun Ozsahin D (2018) Deep

networks in identifying CT brain hemorrhage. J Intell Fuzzy Syst

35(2):2215–2228

Khawaldeh S, Pervaiz U, Rafiq A, Alkhawaldeh RS (2017) Nonin-

vasive grading of glioma tumor using magnetic resonance

imaging with convolutional neural networks. Appl Sci 8(1):27

Kibriya H, Masood M, Nawaz M, Nazir T (2022) Multiclass

classification of brain tumors using a novel CNN architecture.

Multimed Tools Appl 81:1–17

Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint

arXiv:1312.4400

Table 13 Comparative results analysis of brain disorder classification system with existing related state-of-the-art systems

Paper Approach Dataset Training

Sample

Accuracy Limitations

Cheng et al.

(2015)

BoW ? SVM Figshare 80% 91:2% Discriminative visual dictionary learning techniques can be

used to improvement of BoW’s performance.

Helwan

et al.

(2018)

Stacked

Autoencoder

Brain CT

Hemorrhage

85% 90:9% Only two-class classification problem has been solved.

Sajjad et al.

(2019)

modified VGG Radiopedia

data

50% 90:6% Used a heavy-weight CNN architecture to achieve the highest

accuracy which is time-consuming.

Khawaldeh

et al.

(2017)

modified AlexNet TCIA dataset 69% 91:16% Only Flair type of MRI samples are used for training

purposes.

Poyraz

et al.

(2022)

MobileNet V2 Brain

disorder

dataset

10-fold

validation

99:1% The INCA feature selection method is complex to use and

fewer features are selected for classification by this method.

So the performance is highly biased towards the selected

features for classification accuracy.

Tasci

(2023)

Pre-trained CNN 4 different

brain

disease

dataset

10-fold

validation

more than

97% for each

datasets

The ImRMR method included for feature selection achived

highest accuracy by its iterative technique but it selects

very sparse features that may result bias towards the

selected features.

Proposed Fine-tuned

EfficienNetB1 ?

Adam ? Softmax

Brain

disorder

dataset

70% 93% This method is lightweight and computationally inexpensive

and achieves better generalization on the feature map by

global average pooling layer but the dataset has less

number of MRI samples and with larger data set the

framework can achieve better results.

Iranian Journal of Science and Technology, Transactions of Electrical Engineering

123

http://arxiv.org/abs/2106.07333
https://www.cancer.net/cancer-types/brain-tumor/statistics
https://www.cancer.net/cancer-types/brain-tumor/statistics
http://arxiv.org/abs/1312.4400


Mehrotra R, Ansari M, Agrawal R, Anand R (2020) A transfer

learning approach for AI-based classification of brain tumors.

Machine Learn Appl 2:100003

Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation

functions: comparison of trends in practice and research for deep

learning. arXiv preprint arXiv:1811.03378

O’Shea K, Nash R (2015) An introduction to convolutional neural

networks. arXiv preprint arXiv:1511.08458
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