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Preface

Welcome to the 30th International Conference on Neural Information Processing
(ICONIP2023) of theAsia-PacificNeural Network Society (APNNS), held in Changsha,
China, November 20–23, 2023.

The mission of the Asia-Pacific Neural Network Society is to promote active inter-
actions among researchers, scientists, and industry professionals who are working in
neural networks and related fields in the Asia-Pacific region. APNNS has Governing
BoardMembers from 13 countries/regions – Australia, China, Hong Kong, India, Japan,
Malaysia, New Zealand, Singapore, South Korea, Qatar, Taiwan, Thailand, and Turkey.
The society’s flagship annual conference is the International Conference of Neural Infor-
mation Processing (ICONIP). The ICONIP conference aims to provide a leading inter-
national forum for researchers, scientists, and industry professionals who are working
in neuroscience, neural networks, deep learning, and related fields to share their new
ideas, progress, and achievements.

ICONIP2023 received 1274 papers, of which 394 papers were accepted for publi-
cation in Communications in Computer and Information Science (CCIS), representing
an acceptance rate of 30.93% and reflecting the increasingly high quality of research
in neural networks and related areas. The conference focused on four main areas, i.e.,
“Theory and Algorithms”, “Cognitive Neurosciences”, “Human-Centered Computing”,
and “Applications”. All the submissions were rigorously reviewed by the conference
Program Committee (PC), comprising 258 PC members, and they ensured that every
paper had at least two high-quality single-blind reviews. In fact, 5270 reviews were
provided by 2145 reviewers. On average, each paper received 4.14 reviews.

We would like to take this opportunity to thank all the authors for submitting their
papers to our conference, and our great appreciation goes to the Program Committee
members and the reviewers who devoted their time and effort to our rigorous peer-
review process; their insightful reviews and timely feedback ensured the high quality of
the papers accepted for publication. We hope you enjoyed the research program at the
conference.

October 2023 Biao Luo
Long Cheng

Zheng-Guang Wu
Hongyi Li
Chaojie Li



Organization

Honorary Chair

Weihua Gui Central South University, China

Advisory Chairs

Jonathan Chan King Mongkut’s University of Technology
Thonburi, Thailand

Zeng-Guang Hou Chinese Academy of Sciences, China
Nikola Kasabov Auckland University of Technology, New Zealand
Derong Liu Southern University of Science and Technology,

China
Seiichi Ozawa Kobe University, Japan
Kevin Wong Murdoch University, Australia

General Chairs

Tingwen Huang Texas A&M University at Qatar, Qatar
Chunhua Yang Central South University, China

Program Chairs

Biao Luo Central South University, China
Long Cheng Chinese Academy of Sciences, China
Zheng-Guang Wu Zhejiang University, China
Hongyi Li Guangdong University of Technology, China
Chaojie Li University of New South Wales, Australia

Technical Chairs

Xing He Southwest University, China
Keke Huang Central South University, China
Huaqing Li Southwest University, China
Qi Zhou Guangdong University of Technology, China



viii Organization

Local Arrangement Chairs

Wenfeng Hu Central South University, China
Bei Sun Central South University, China

Finance Chairs

Fanbiao Li Central South University, China
Hayaru Shouno University of Electro-Communications, Japan
Xiaojun Zhou Central South University, China

Special Session Chairs

Hongjing Liang University of Electronic Science and Technology,
China

Paul S. Pang Federation University, Australia
Qiankun Song Chongqing Jiaotong University, China
Lin Xiao Hunan Normal University, China

Tutorial Chairs

Min Liu Hunan University, China
M. Tanveer Indian Institute of Technology Indore, India
Guanghui Wen Southeast University, China

Publicity Chairs

Sabri Arik Istanbul University-Cerrahpaşa, Turkey
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Abstract. To address the issue of discrepancies between online query data and
offline training data in code search research, we propose a novel code searchmodel
calledmulti intent description keyword extension-based code search (MDKE-CS).
Our model utilizes offline training data to expand query data, thereby mitigating
the impact of insufficient query data and intention differences between training and
query data on search results. Furthermore, we construct a multi-intention descrip-
tion keyword vocabulary library based on developers, searchers, and discussants
from the StackOverflow Q&A library to further expand the query. To evaluate
the effectiveness of MDKE-CS in code search tasks, we conducted comparative
experimental analyses using two baseline models, DeepCS and UNIF, as well as
WordNet and BM25 extension methods. Our experimental results demonstrate
that MDKE-CS outperforms the baseline models in terms of R@1, R@5, R@10,
and MRR values.

Keywords: Code search ·Multi-intention · Expand query

1 Introduction

With the increasing number of developers who upload and share their code fragments
on open source communities, the code resources available in these communities have
become increasingly abundant. [1] This continuous enrichment of open source commu-
nity resources has provided a vital foundation for the development of code search [2]. By
searching for existing code fragments in open source communities, software developers
can modify and reuse them, thereby improving the utilization of existing code, saving
development time, and enhancing software development efficiency [3]. Consequently,
the rapid and accurate search for existing code fragments (i.e., code search) has become
a crucial area of research in software engineering.

Currently, deep learning-based code search research is mainly divided into offline
training andonline search [4]. In the offline training phase, a deep learning networkmodel
is employed to learn features from a large dataset, and the network model parameters
are acquired through learning [5]. During feature learning, the data primarily consists of
CodeDescription pairs,whereCode represents the source code fragment andDescription
corresponds to the statement that describes the function of the source code fragment [6].
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The deep learning network model is primarily utilized to learn the syntax and semantic
relationships between code language (Code) and natural language (Description), ulti-
mately determining the network model parameters that can map Code and Description.
In the online search stage, developers input query content (describing code fragments or
representing code functions), and the query content is matched with the code fragments
in the dataset to obtain the highest matching results [7]. While Code Description pairs
are employed for feature learning in offline training, Query instead of Description is used
to match Code in online search. However, there are two differences between Query and
Description. Firstly, there is a difference in length, with Query usually being shorter than
Description [8]. According to statistics, the average query length entered by search per-
sonnel is 2–3, while the average description length for code is 20–30 [9]. Secondly, there
are semantic differences between Query and Description. Description refers to the way
code developers describe code fragments from their perspective, while Query represents
the description of code fragments based on the needs of search personnel, from their own
perspective. These differences lead to significant differences in the descriptions of the
same code fragment by developers and searchers [10]. Nevertheless, existing research
often treats Query and Description equally, ignoring their differences, which can have a
significant impact on search results [11].

To address the differences between Query and Description in existing code search
research, researchers have proposed query extension studies. Query extension research
aims to design extension methods and sources to expand Query, reduce the differences
between Query and Description, and improve the accuracy of code search results [12].
Existing research on query extension primarily focuses on two aspects: extension meth-
ods and extension sources [13]. Extension methods are primarily divided into keyword
extension and source code API extension methods [14]. Keyword extension involves
using words in a query statement as keywords, matching them with words in a vocabu-
lary, and extending the query statement with words that have high similarity [15]. The
source code API extension method involves using APIs in code fragments as exten-
sion sources, matching query statement keywords with API keywords, and extending
query statements with API keywords that have high similarity [16]. Existing research
on extension sources mainly relies on Q&A pairs (Stack Overflow Q&A) and WordNet
as extension sources in question answering libraries [17]. However, existing extension
methods and sources for query extension research are still unable to effectively reduce
the differences betweenQuery andDescription, and cannot effectively improve the query
extension effect, resulting in lower code search results. Overall, there are still three main
issues with existing research on query extension. (1) The current datasets available for
research in code search primarily focus on code search itself, and there is a lack of spe-
cialized datasets for query extension research. (2) Disregarding the differences between
Query and Description makes it challenging to map Query and Description effectively.
(3) The lack of consideration for query intent results in an inability to accurately express
search intent.

In order to enhance the effectiveness of query expansion, we propose a multi-intent
description of keyword expansion model for code search, abbreviated as MDKE-CS.
Firstly, we construct a Query Code Description keyword dataset from the perspectives
of code developers, searchers, and reviewers based on the Q&A of Stack Overflow.
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Secondly, we utilize a deep learning model to train Query Code data pairs to obtain the
best matching Code for Query. Then, we use multiple types of Keywords corresponding
to the matched Code and residual information Description to compensate for keyword
features and extend the Query, obtaining the first extended Query-1. We repeat the best
extension times for the extended model to obtain the final Query-n. Finally, we match
Query-n with the Code in the database one by one to obtain the best code fragment.
Our proposed model, MDKE-CS, provides an approach to improve the accuracy of
code search results by accounting for the differences between Query and Description
while considering multiple intent descriptions for keyword expansion. By leveraging the
deep learning model and multi-intent keyword expansion strategy, MDKE-CS enables
effective query expansion and improves the accuracy of code search results.

In this research, we make the following contributions:

a. We create a Query-Code-Description-Keyword dataset for query extension research
and demonstrate its effectiveness through experimental analysis based on existing
code search models.

b. We propose a query extension code searchmodel,MDKE-CS, which utilizes multiple
intention description keywords to improve the accuracy of code search results.

c. We conduct a comparative experimental analysis on the code search performance of
MDKE-CS based on the Query-Code-Description-Keyword dataset and verify the
effectiveness of the proposed model in improving the accuracy of code search results.
Our research provides a novel approach to enhancing the accuracy of code search by
utilizing a multi-intent keyword expansion strategy and deep learning techniques in
a query extension model.

The remaining sections of the paper are organized as follows: Sect. 2 introduces
our proposed MDKE-CS model for query extension in code search. Section 3 presents a
detailed analysis of the experimental results, including experimental preparation, dataset
construction, and analysis of the experimental results. Section 4 provides a summary of
our work and outlines the contributions of our research. By organizing the paper in this
manner, we aim to provide a clear and structured presentation of our proposed model
and experimental results, and to provide readers with a comprehensive understanding of
our research.

2 Model Method

In order to make up for the shortcomings of existing query extensions, we propose a
query extension code search model MDKE-CS based on multiple intention description
keywords. The overall framework of the MDKE-CS model is shown in Fig. 1.

The MDKE-CS model consists of two main parts: offline training and online search.
In the offline training section, the primary objective is to learn the Query-Code mapping
relationship and obtain the parameters of the feature extraction model. Conventional
code search training methods are utilized, and the Query-Code dataset is used for model
training. A deep learning model is utilized to extract and learn the feature information
of Query and Code, and similarity calculation is employed for matching analysis. The
loss function is utilized as the basis for adjusting model parameters. By adjusting the
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Fig. 1. The Framework of MDKE-CS

parameters of the model through a large amount of Query-Code data, the final model
parameters are obtained. Finally, the Code-Description Keyword data pairs in the dataset
are embedded using the model to obtain the Code-Description Keyword vector dataset
pairs. The online search part primarily involves expanding the query through the expan-
sion method to obtain the expanded query and taking the expanded query statement as
the search to obtain the best search results. In the online search, the new query statement
is first vectorized using the trained model, and then matched with Code to obtain the best
Description vector and Keyword vector. The Description vector and Keyword vector are
then extended to the query statement. The search and expansion process is repeated until
the best results are achieved.

2.1 Training Model Selection

Although our research focuses on code search, our focus is on query extension methods,
without studying the heterogeneous representation models between code language and
natural language. Therefore, during the research process, we adopted the Bidirectional
Long Short Memory Network (BiLSTM) (as shown in Fig. 2) as a deep learning model
for heterogeneous feature extraction. The reason for choosing the Bidirectional Long
Short Memory Network (BiLSTM) is because it is based on the manuscript “Deep Code
Search” studied by Gu et al. and proposes a DeepCS code search model. The proposal
of the DeepCS model represents the beginning of the introduction of deep learning into
code search research, aimed at bridging the semantic gap between code language and
natural language. Moreover, the DeepCS model has been recognized by a large number
of researchers, and research on code search based on “Deep Code Search” and deep
learning has developed rapidly.

Figure 2 depicts the structure of the BiLSTM model, which consists of three layers:
the Data layer, the LSTM extraction layer, and the feature information hiding layer (h).
The Data layer contains n units of data, denoted as Datan. The LSTM extraction layer is
composed of a forward LSTM and a reverse LSTM. The forward LSTM1-n is determined
not only by the current input data Datan, but also by the preceding LSTM1-(n-1) output. In
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Fig. 2. Structure of the BiLSTM model

contrast, the reverse LSTM2-(n-1) output is influenced not only by the preceding output
LSTM2-n, but also by the output of the forward LSTM1-(n-1). The hidden layer hn is
jointly obtained by LSTM1-n and LSTM2-n and serves as the output layer, representing
the feature information of the input data Datan.

2.2 Joint Embedding

As source code belongs to programming languages and query statements belong to nat-
ural languages, there exists a significant semantic gap between the two. Joint embedding
is a technique that utilizes a deep learning model to embed source code and query state-
ments into the same vector space. By embedding the two types of data in the same vector
space, cosine similarity can be used to calculate the similarity between them, thereby
reducing the semantic gap between the two. This technique is commonly employed in
code search models to improve the accuracy of search results by accounting for both the
programming language and natural language aspects of the query.

As previously mentioned, we constructed a Query-Code-Description-Keyword
dataset suitable for code search query extension research. During offline training, our
training objectives differ from those of “Deep Code Search.“ In our training, our goal
is to train the mapping relationship between Query and Code in the quad metadata
set. Therefore, we replaced the Description in “Deep Code Search” with Query. The
Description and Keyword in the quad metadata set serve as query extension data. In
our study, sequence preprocessing was performed on the source code to obtain M =
{m1,m2,m3…mM}, A= {a1,a2,a3…aA}, T= {t1,t2,t3…tT},Q= {t1,t2,t3…tQ}, respec-
tively. The Methodname sequence contains M words, the API sequence contains A
words, the Token sequence contains T words, and the Query sequence contains Qwords.
To better illustrate joint embedding, we will use A = {a1,a2,a3…aA} as an example.
Using BiLSTM for feature extraction and learning of the A sequence, the API sequence
corresponds to the Data layer in Fig. 3. If the API sequence contains a total of A words,
it corresponds to n Data values in Fig. 3. The LSTM layer performs feature extraction on
the API sequence to obtain the output layer feature vector values (as shown in formula
1).

{h1, h2, h3...hA} = BiLSTM({a1, a2, a3...aA}) (1)
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To effectively characterize data features and reduce the impact of noise, we utilize
a maximum pooling network to select the extracted features. The maximum pooling
network is used to select the optimal hidden layer and obtain feature information. The
maximum pooling calculation is shown in formula 2.

a = max pooling([h1, h2, h3, ...hA]) (2)

After performing the maximum pooling calculation, the final feature information hat
is obtained (as shown in formula 3).

hat = tanh(WM [ht−1; atA]) (3)

where,WM is the parameter matrix of the API sequence in the BiLSTMnetwork, and atA
is the vector corresponding to the words in the sequence. After feature extraction in the
LSTMlayer, the output sequence of the hidden layer of themodel ish= {h1,h2,h3,…,hA}.

Similarly, we utilize BiLSTM to extract features from the other three sequences,
obtaining the feature hiding layer vectors of the Methodname sequence vector (m), the
Tokens sequence vector (t), and theQuery vector (q), respectively. Assuming the number
of words in the Methodname sequence is M, the number of words in the Token sequence
is T, and the number of words in the Query sequence is Q (as shown in formula 4).

m = max pooling([h1, h2, h3, ...hm])
t = max pooling([h1, h2, h3, ...hT ])
q = max pooling([h1, h2, h3, ...hQ])

(4)

During the model training process, our goal is to train the mapping relationship
between Code and Query. To achieve this, we use the concatenation network “concat”
to concatenate vectors a, m, and t to obtain the source code vector c).

2.3 Extended Research

Toaddress the limitations of existing query expansionmethods,wepropose amulti-intent
description keyword expansion model. Our approach integrates the intention descrip-
tion keywords of developers, searchers, and reviewers to improve the accuracy of exten-
sion and reduce the semantic gap between queries and descriptions. The multi-intent
description keyword expansion method is illustrated in Fig. 3.

Figure 3 illustrates the three-step process of the multi-intent description keyword
expansion method. First, a similarity matching is performed with the code database to
obtain n sorted best matching codes. Second, from the n best matching codes, the first k
keywords corresponding to the code are selected as the extension words for the Query.
To compensate for the loss of contextual semantics during the extraction of multi-intent
description keywords, we use the Description as residual to supplement the lost semantic
information. Finally, the multi-intent description keyword expansion is repeated on the
Query until the decision maker meets the set requirements, and outputs the final code
sorting result.

The multi-intent description keyword expansion method offers three advantages for
code search tasks. First, we utilize the Stack Overflow Q&A dataset, which contains real
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Fig. 3. Extension method

Queries and Descriptions. Queries are proposed by searchers and express their require-
ments, while Descriptions are provided by code developers and third-party researchers,
expressing their descriptions of the requirements. Hence, our data selection is more
aligned with real-world code search tasks. Second, we use extended kezywords derived
from Descriptions, and use Descriptions as residuals to compensate for any lost infor-
mation. As the extended information comes from the code, it can match the Query more
accurately during the search. Third, we adopt amulti-intent fusion extensionmethod that
better considers the intentions of searchers, developers, and other researchers, thereby
improving the accuracy of code search.

3 Experimental Analysis

To evaluate the effectiveness of the proposed model in code search tasks, we conducted a
comparative experimental analysis on a Linux server. The experimental analysis includes
three parts: description and query difference analysis, extension module effect analysis,
and extension comparison analysis. Due to the large size of our model parameters and
experimental dataset, a separate CPU cannot calculate our model parameters separately.
Therefore, we used a Linux server with two Nvidia GTX 2080Ti GPUs, each with 11GB
of memory. For the experiments, we implemented the proposed model using Python
(version 3.6+) and the PyTorch (version 0.4) experimental simulation platform.

3.1 Experimental Preparation

To address the lack of suitable datasets in existing query extension research, we con-
structed a four-metadata set [Query-Code-Description-Keyword] based on the Q&A
library of the Stack Overflow platform. We defined this dataset as CSExpansion. Query
is a question raised by researchers on the Stack Overflow platform regarding the required
code. The Description includes not only the explanation of the code developer, but also
the explanation of other researchers who participated in the discussion of the code. Key-
words are extracted from the Description, using the top 10 words of TFIDF in each
Description. To account for the varying length of each Description, we set less than 10
keywords and fill them with 0. If there are more than 10 keywords, we sort the top 10
keywords and delete the remaining ones. Due to the limited data resources and model
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characteristics of the Stack Overflow platform, our CSExpansion dataset currently only
includes Python and Java languages. Table 1 shows the composition of the CSExpansion
dataset.

Table 1. CSExpansion Dataset

Data Python Java Total

Number 37234 31297 68531

During the experimental analysis, we used four basic models: DeepCS, UNIF,Word-
Net, and BM25. DeepCS and UNIF models were used as the basic code search models
for feature extraction and data training. WordNet and BM25 models were used as query
extension models for comparative analysis. The four basic models used in our experi-
mental analysis are DeepCS [10], UNIF [18],WordNet [19] extensionmodel, and BM25
[20] extended model.

Our research on the proposed model is based on the basic code search models,
DeepCS and UNIF. To analyze the effectiveness of the proposed model in code search
tasks, we evaluated the search performance of the model using R@k (k = 1, k = 5, and
k = 10) and MRR metrics. These metrics are commonly used in information retrieval
to evaluate the accuracy of ranking algorithms. R@k measures the percentage of correct
results in the top k returned results, while MRR measures the average rank of the first
correct result. By using these metrics, we can quantitatively evaluate the effectiveness
of the proposed model in improving the accuracy of code search.

3.2 Difference Analysis

The study of query extension focuses on reducing the differences between Query and
Description in the code search process, thereby improving the accuracy of code search.
To analyze these differences, we used the CSExpansion dataset and conducted a com-
parative experimental analysis using three metadata pairs (Query, Code, Description).
We compared and analyzed the Query-Code and Code-Description data pairs in the
experimental study. To evaluate the effectiveness of code search, we used the DeepCS
and UNIF basic code search models for comparative analysis. We divided the CSEx-
pansion dataset into training, validation, and testing sets in a 6:3:1 ratio, and conducted
the experimental analysis. The comparative experimental results are shown in Table 2.

The experimental results in Table 2 show that using Description as the search object
has better search performance than Query for the DeepCS and UNIF models on the
CSExpansion dataset. For the Python language, using Description instead of Query in
the DeepCS model resulted in an increase of 61.16%, 32.31%, 12.23%, and 12.12%
for R@1, R@5, R@10, and MRR, respectively, while in the UNIF model, the increase
was 15.07%, 8.21%, 12.67%, and 6.08%, respectively. For the Java language, using
Description instead of Query in the DeepCS model resulted in an increase of 81.65%,
15.27%, 17.53%, and 71.89% for R@1, R@5, R@10, and MRR, respectively, while in
the UNIF model, the increase was 23.44%, 17.05%, 36.52%, and 60.70%, respectively.
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Table 2. Difference Analysis Results

Model Input Python Java

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

DeepCS Description 0.195 0.258 0.367 0.222 0.198 0.234 0.342 0.318

Query 0.121 0.195 0.327 0.198 0.109 0.203 0.291 0.185

UNIF Description 0.084 0.224 0.329 0.175 0.237 0.453 0.572 0.413

Query 0.073 0.207 0.292 0.148 0.192 0.387 0.419 0.257

From the experimental results, we can conclude that there are significant differences
between Description and Query in code search tasks, and using Description instead of
Query yields better code search results. Moreover, the Java language showed a more
significant improvement when using Description, possibly due to its widespread use in
engineering and the involvement of more researchers in discussions, leading to more
accurate Descriptions.

3.3 Comparative Experimental Analysis

We used the CSExpansion dataset and the widely usedWordNet and BM25 query exten-
sion models to verify the effectiveness of our proposed MDKE-CS in code search tasks.
While there are various existing query extension methods, fair comparative analysis is
currently not possible due to the lack of publicly available source code from the authors.
The experimental results are shown in Table 3.

Table 3. Comparative Analysis Results

Model Input Python Java

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

DeepCS WordNet 0.081 0.176 0.280 0.127 0.117 0.209 0.384 0.234

BM25 0.088 0.181 0.288 0.137 0.180 0.339 0.405 0.254

MDKE-CS 0.351 0.501 0.687 0.301 0.357 0.511 0.698 0.477

UNIF WordNet 0.120 0.198 0.245 0.148 0.210 0.401 0.511 0.319

BM25 0.147 0.178 0.225 0.158 0.221 0.429 0.577 0.380

MDKE-CS 0.178 0.241 0.539 0.297 0.405 0.725 0.843 0.549

The experimental results in Table 3 show that the proposed MDKE-CS has better
search performance for the DeepCS and UNIF models compared to the comparative
models WordNet and BM25 on the CSExpansion dataset. For the Python language,
using MDKE-CS instead of WordNet and BM25 in the DeepCS model resulted in an
increase of 333.33% and 298.86%, 184.66% and 176.80%, 145.36% and 138.54%,
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137.00% and 119.71% for R@1, R@5, R@10, and MRR, respectively, while in the
UNIF model, the increase was 48.33% and 21.09%, 21.72% and 35.39%, 120.00% and
139.56%, 100.68% and 87.97%, respectively. For the Java language, using MDKE-CS
instead of WordNet and BM25 in the DeepCS model resulted in an increase of 205.13%
and 98.33%, 104.14% and 50.74%, 81.77% and 72.35%, 103.85% and 87.80% for
R@1, R@5, R@10, and MRR, respectively, while in the UNIF model, the increase was
92.86% and 83.26%, 80.80% and 69.00%, 64.97% and 46.10%, 72.10% and 44.47%,
respectively. The experimental results indicate that MDKE-CS has a more significant
effect in the Python language, possibly due to better training and the suitability of the
extended model for the language, improving the accuracy of description. Moreover, the
proposedMDKE-CS outperforms the comparative models,WordNet and BM25, in code
search tasks.

3.4 Analysis of Ablation Experiments

To analyze the structural rationality of the MDKE-CS model, we conducted a sepa-
rate analysis of the roles of each module in the model. Specifically, we focused on
the Keyword extension and Description residual effects in the MDKE-CS model. We
compared four models: using Query search alone, using Query+Keyword search, using
Query+Description, and usingMDKE-CS (Query+Description+Keyword), based on the
CSExpansion dataset. The experimental results are shown in Table 4.

The experimental results inTable 4 lead to two conclusions. Firstly, usingDescription
or Keyword for extension results in better search performance than using Query alone,
indicating that extending the Query can improve the accuracy of code search. Secondly,
using Keyword for extension has a better effect than using Description for extension.
Additionally, using both Description and Keyword for extension (MDKE-CS) yields the
best results, indicating that the proposed MDKE-CS model can effectively improve the
accuracy of code search.

Table 4. Model Structure Analysis

Model Input Python Java

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

DeepCS Query 0.121 0.195 0.327 0.198 0.109 0.203 0.291 0.185

Query+Keyword 0.317 0.487 0.601 0.287 0.337 0.498 0.684 0.416

Query+Description 0.297 0.417 0.579 0.259 0.309 0.457 0.611 0.409

MDKE-CS 0.351 0.501 0.687 0.301 0.357 0.511 0.698 0.477

UNIF Query 0.073 0.207 0.292 0.148 0.192 0.387 0.419 0.257

Query+Keyword 0.161 0.379 0.478 0.271 0.350 0.668 0.798 0.495

Query+Description 0.124 0.324 0.429 0.225 0.347 0.643 0.772 0.483

MDKE-CS 0.178 0.241 0.539 0.297 0.405 0.725 0.843 0.549
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4 Conclusion

In this research, we focused on code search query extension and proposed an MDKE-
CS code search model. Through experimental analysis, we have shown that the pro-
posedMDKE-CSmodel effectively improves the accuracy of code search. Based on our
research, we have drawn the following conclusions:

a. There are significant differences between Query and Description during the code
search process.

b. The CSExpansion dataset, which we constructed, is suitable for code search research
and can improve the accuracy of query expansion.

c. The use of multiple intent keywords and residual descriptions to extend Query can
effectively reduce the differences between Description and Query, and improve the
accuracy of code search.
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Abstract. In the field ofmarine ecological named entity recognition (NER), chal-
lenges arise due to limited domain-specific text, weak semantic representations of
input vectors and the neglect of local features. To address these challenges of NER
in a low-resource environment, a deep learning-based few-shot NER model was
proposed. Firstly, Sequence Generative Adversarial Nets (SeqGAN) was utilized
to train on the original text and generated new text, thereby expanding the original
corpus. Subsequently, BERT-IDCNN-BiLSTM-CRF was introduced for extract-
ing marine ecological entities. BERT (Bidirectional Encoder Representation from
Transformers) was pre-trained on the expanded corpus. The embeddings produced
by BERT were then fed into Iterative Dilation Convolutional Networks (IDCNN)
and Bidirectional Long Short-Term Memory Networks (BiLSTM) to facilitate
feature extraction. Finally, Conditional Random Fields (CRF) was employed to
enforce label sequence constraints and yielded the final results. For the proposed
few-shotNERmethod based on deep learning, comparative experimentswere con-
ducted horizontally and vertically against BiLSTM-CRF, IDCNN-CRF, BERT-
IDCNN-CRF and BERT-BiLSTM-CRFmodels on both the original and expanded
corpora. The results show that BERT-IDCNN-BiLSTM-CRF outperforms BERT-
BiLSTM-CRF by 2.48 percentage points in F1-score on the original corpus. On
the expanded corpus, BERT-IDCNN-BiLSTM-CRF achieves a F1-score 2.65 per-
centage points higher than that on the original corpus. This approach effectively
enhances entity extraction in the domain of marine ecology, laying a foundation
for downstream tasks such as constructing marine ecological knowledge graphs
and ecological governance.

Keywords: Few-Shot · Marine Ecology · NER · SeqGAN · IDCNN · BiLSTM

1 Introduction

The deep learning-based NER methods comprise three modules: distributed representa-
tions for input, context encoder and tag decoder [1]. The framework of deep learning-
based NER is illustrated in Fig. 1. The distributed representations for input are fur-
ther divided into three types: word-level representation [2], character-level representa-
tion [3] and hybrid representation [4]. These representations automatically learn both
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semantic and syntactic features of words from the text, enabling representation with
low-dimensional real-valued dense vectors. Context encoders use Convolutional Neural
Networks (CNN) [5], Recurrent Neural Networks (RNN) [6] or Transformers to capture
contextual dependencies. Tag decoders predict sequences derived from the features and
generate corresponding tag sequences. Common tag decoders include SoftMax [7], CRF
[8] and Capsule Networks.

Fig. 1. NER Framework Based on Deep Learning

Deep learning-basedNER requires training on a large-scale labeled corpus. In practi-
cal applications, due to the scarcity of training data, it’s common to employ methods that
generate or synthesize data to augment the text. Scale drives machine learning progress
[9]. Obtaining a larger corpus can enhance the performance of deep learning, and aug-
menting the performance can also be achieved by introducing generated or synthesized
data. To address the issue of subpar results caused by sparse entity distribution in fishery
standard entity recognition tasks, Yang [10] used multivariate combination algorithms
involving deletion, insertion and joint replacement to augment the corpus, effectively
mitigating the problem of sparse samples for certain entities.

In the field of marine ecology, not only is there a shortage of annotated data but also
an insufficiency of overall corpus, thereby presenting challenges for deep learning mod-
els to perform at their anticipated level. Furthermore, the marine ecology domain faces
challenges such as varying lengths of entity names and unclear entity boundaries lead-
ing to polysemy. These challenges make traditional methods inadequate for effectively
representing semantic features and ignoring local contextual features [11].

This study constructed a dataset by collecting the Bulletin on the Status of China’s
Marine Ecology and Environment and conducted research on NER in marine ecology
based on this dataset. A deep learning-based few-shot NER model was designed to
improve the recognition effect of named entities in marine ecology. The specific work
and contributions are as follows:
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(1) To address the issue of insufficient marine ecological corpora, SeqGAN [12], utiliz-
ing the synergy of reinforcement learning and adversarial concepts, is adopted for
dataset augmentation. It can solve the problem of generating discrete sequences,
introducing a novel avenue for data augmentation for small-sample texts and
effectively alleviating the problems stemming from corpus scarcity and data sparsity.

(2) BERT-IDCNN-BiLSTM-CRF is proposed in response to the issues of varying
lengths of entity names and the ambiguity caused by unclear entity boundaries in
marine ecology. Thismodel leverageBert’s enhanced semantic representations capa-
bilities to tackle the challenge posed by traditional embeddings struggling to capture
marine ecological entities with unclear boundaries. Moreover, IDCNN-BiLSTM is
used to address the difficulty of extracting features from marine ecological entities
with varying lengths.

The remaining structure of the article is as follows: Sect. 2 introduces the proposed
deep learning-based few-shot NER method. Section 3 presents the data preprocessing
and evaluation metrics. Section 4 provides a comprehensive analysis of experiments and
results. Section 5 summarizes existing work and outlines prospects for future research.

2 Few-Shot NER Based on Deep Learning

The few-shot NER based on deep learning proposed in this study is depicted in Fig. 2.
The overall structure of this model comprises two major components. The first part is
SeqGAN, addressing the sparsity of marine ecological data through augmentation. This
model generates data by training on the original corpus, thus expanding the dataset. The
second part is BERT-IDCNN-BiLSTM-CRF for marine ecological NER. It consists of
three layers, corresponding to the three modules of deep learning-based NER.

The first layer is BERT Input. BERT is pre-trained on a large-scale corpus to
extract word vector representations enriched with semantic features. The second layer is
IDCNN-BiLSTM Encoder. This layer combines IDCNNwith BiLSTM, effectively fus-
ing feature vectors and extracting contextual features. The third layer is CRF Decoder.
CRF uses the Viterbi algorithm to decode the output vectors from the previous layer,
yielding the optimal label sequence.

This method uses SeqGAN for data augmentation of marine ecological corpora.
It uses BERT to better extract embeddings from the input. The fusion of IDCNN and
BiLSTM allows for a more comprehensive information extraction compared to a single
model. CRF effectively addresses the problem of predicting illegal label sequences. This
method demonstrates favorable performance in few-shot NER.

2.1 Text Generation Using SeqGAN

SeqGAN views the sequence generation problem as a sequence decision problem [13].
It introduces policy gradient and Monte Carlo search from reinforcement learning to
address the challenges of using GAN for discrete data generation.

Figure 3 illustrates the training process of SeqGAN. Firstly, the generator is pre-
trained using real corpus. Subsequently, the discriminator is pre-trained using both real
and generated data. Then, adversarial training follows. The generator is trained with
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Fig. 2. Structure of SeqGAN and BERT-IDCNN-BILSTM-CRF

Fig. 3. The training process of SeqGAN. Left: The discriminator D is trained on both real data and
data generated by the generator G. Right: G is trained using policy gradient, with the final reward
signal coming from D and being retroactively passed to the intermediate action value through
Monte Carlo search.

rewards derived from the discriminator’s feedback. Simultaneously, the discriminator is
retrained using the updated generator.
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Taking the example of generating word sequences, assume a word sequence is
denoted as Y1:T = (y1, . . . , yt, . . . , yT ), where yt ∈ Y , and Y represents the candi-
date vocabulary. The current state is the generated word sequence (y1, . . . , yt−1). The
next action involves selecting the next generated word yt . This choice depends on the t-1
words previously generated. The generator uses the first t-1 words andmodel parameters
to start sampling from the t-th position. ThroughMonte Carlo search, N alternative word
sequences Yt:T , are generated to formN complete word sequences Y1:T . These sequences
are scored by the discriminator and based on these scores, the optimal strategy is selected
and policy gradient are adjusted.

2.2 Distributed Representations for Input Using BERT

In distributed representations for input, BERT [14] is used to embed vector representa-
tions. BERT, a pre-trained language representationmodel, is primarily composed of deep
bidirectional Transformer encoders. This encoder integrates a self-attention mechanism
capable of automatically assigning weights to both long and short sequence entities.

The BERT’s embeddings are derived as the summation of token embeddings, seg-
mentation embeddings and position embeddings, as depicted in Fig. 4. Token embed-
dings represent the vector representation of words, segmentation embeddings differen-
tiate between two sentences in a sentence pair, and position embeddings indicate the
sequential order of the input sequence. The combination of these embeddings enables
BERT to be trained on a large-scale unlabeled dataset, performing tasks such as masked
language modeling and next sentence prediction. The pre-trained BERT is fine-tuned
for NER task in the marine ecology domain. The resulting embeddings effectively mit-
igate the limitations observed in traditional embeddings, as they insufficiently capture
the varying length of entity names and unclear boundaries.

Fig. 4. BERT input representation
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2.3 Context Encoder Using IDCNN

In context encoder, the first layer employs IDCNN [15]. In a typical CNN, convolution
kernels slide across continuous positions of the input matrix, extracting features by
convolution and thenutilizing pooling to reduce parameters andprevent overfitting, albeit
at the cost of resolution loss. DCNN [16] introduces dilation rates within the network.
This means that during feature extraction with convolutional kernels, data between the
dilation rates is skipped, expanding the model’s receptive field without altering kernel
size.

From the comparison shown in Fig. 5, for the same sequence of text, with the same
convolution kernel of size 3 and two convolutional layers, traditional convolution cap-
tures 5 characters, while dilated convolution extends the contextual scope to 7 characters.
The advantage of dilated convolution lies in its ability to expand the receptive field by
introducing dilation rates in the convolutional kernels, thereby allowing each convolu-
tional output to encompass more information without resorting to pooling and losing
information.

Standard convolution Dilated convolution

Fig. 5. Difference of text extraction between standard convolution and dilated convolution

2.4 Context Encoder Using BiLSTM

In the second layer of the context encoder, BiLSTM is employed. LSTM [17] control
memory cells using input gates, forget gates and output gates to learn and retain long-
term dependencies. This enables LSTM to acquire and retain long-term dependencies,
addressing the issue of short-termmemory. Among them, the input gate is used to update
the cell state, the forget gate decides what information to discarded or retain, and the
output gate determines the value of the next hidden state. The hidden state contains
relevant information from the previous inputs. The operations of the three gates and the
memory cell are illustrated in Eqs. (1)–(5):

it = σ
(
Wi ×

[
xt, ht−1, ct−1

] + bi
)

(1)
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ft = σ
(
Wf × [

xt, ht−1, ct−1
] + bf

)
(2)

ot = σ
(
Wo × [

xt, ht−1, ct
] + bo

)
(3)

ct = ft ∗ ct−1 + it ∗ tanh
(
Wc × [

xt, ht−1
] + bc

)
(4)

ht = ot ∗ tanh(ct) (5)

where it, ft, ot,ct, ht represent the input gate, forget gate, output gate, cell vectors, and
hidden state at time t respectively. The sigmoid activation function is denoted by σ , W
represents the weight matrix, and b is the bias term.

In sequence labeling task, BiLSTM can be used to extract both past and future
features from sentences. As depicted in Fig. 6, BiLSTM consists of two layers of LSTM
with opposite directions, which can effectively utilize past features through the forward
state and future features through the backward state.

Fig. 6. Architecture of BiLSTM. fi represents the forward state of character i, bi represents the
backward state of character i. By concatenating these two vectors, the representation ci of character
i in its contextual is obtained.

2.5 Tag Decoder Using CRF

In tag decoder, CRF is utilized. After the previous stage, the output of the context encoder
represents the sequence of the highest probabilities at each time step. Treating each label
as an independent entity might lead to illegal sequences in the decoded labels. However,
CRF is a probabilistic model that outputs a sequence of labels conditioned on a set
of input sequences. By introducing custom feature functions, it can capture not only
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dependencies between observations but also complex dependencies between the current
observation and multiple preceding and succeeding states, effectively addressing the
issue of label constraints faced by statistical models.

For an input sequence x = (x1, x2, . . . , xn),P represents the emission matrix output
from the context encoder, where pi,j corresponds to the score of the j-th tag for the i-th
word in the sentence. The predicted sequence y = (y1, y2, . . . , yn) has a score as shown
in formula (6). A is the transition score matrix for labels, where Ai,j represents the score
of transitioning from the tag i to tag j.

s(X , y) =
∑n

i=1
pi,yi +

∑n

i=0
Ayi,yi+1

(6)

3 Data Processing and Evaluation Metrics

3.1 Data Preprocessing

Due to the lack ofmature NER corpora in the field ofmarine ecology, this study collected
the Bulletin of Marine Ecology and Environment Status of China from 2001 to 2021. An
initial marine ecological corpuswas formed after applying regular expressions, character
formatting normalization and removing unnecessary non-textual and irrelevant textual
data related to marine ecology. According to statistics, the cleaned corpus comprises
approximately 240,000 characters.

For the annotation process in the initial marine ecological corpus, manual labeling
was required due to the customized nature of labels. Annotating entities demands sub-
stantial domain-specific knowledge. To address this, the study consulted experts and
referred to relevant literature to classify named entities into categories such as marine
pollution factors, marine animals and marine plants based on existing marine ecological
environmental texts.

Furthermore, to handle mislabeling issues present in the corpus, the most frequently
labeled category for each entity in the corpus was chosen as the corrected category. This
process aimed to rectify mislabeled entities. Additionally, to address cases of missing
labels, text matching techniques were employed to identify and label entities that were
not originally labeled. Thesemeasures were taken to reduce data noise, optimize training
and improve the overall quality of the corpus.

The self-constructed marine ecological corpus was used as the original dataset.
According to the characteristics of the corpus, the preprocessed texts were input into
SeqGAN for training, resulting in the generation of approximately 200,000 characters
of synthetic data. The generated corpus was then combined with the original corpus to
form an expanded corpus. The data preprocessing workflow is illustrated in Fig. 7.

3.2 Labeling Guidelines

The dataset uses the BIOES five-label sequence labeling method, as shown in Table 1.
The labels are represented as follows: B for Begin (indicating the start position of an
entity), I for Inside (indicating themiddle positions of an entity),O forOutside (indicating
that a character does not belong to any entity), E for End (indicating the end position
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Fig. 7. Data preprocessing flowchart

of an entity), and S for Singleton (indicating a single-character entity). The entity label
categories are represented by the following English terms: POL for marine pollution
factor, ANI for marine animal and PLA for marine plant.

Table 1. Partial Annotation in Original and Generated Datasets with BIOES Labeling
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3.3 Evaluation Metrics

This experiment uses precision (P), recall (R), and the composite metric F1-score to
evaluate the model’ performance, calculated as follows:

P = NumT

Nump
× 100% (7)

R = NumT

Nump
× 100% (8)

F1 = 2 × P × R

P + R
× 100% (9)

where NumT represents the number of correctly predicted entities by the model; NumP
represents the total number of entities predicted by the model; and NumR represents the
total number of actual entities.

4 Results and Analysis

To validate the effectiveness of the proposed deep learning-based few-shot NER model
formarine ecological entities, comparisonsweremade under the same experimental con-
ditions with the following NER models: word embedding-based BiLSTM-CRF [18],
character embedding-based IDCNN-CRF [19], BiLSTM-CRF [20], BERT-IDCNN-
CRF, and BERT-BiLSTM-CRF in terms of P, R and F1. The experimental results are
shown in Table 2 below:

Table 2. Comparison of NER results across different models and datasetsUnit: %

Model Original dataset Expanded dataset

P R F1 P R F1

Word-BiLSTM-CRF 86.64 85.42 86.03 87.62 87.30 87.46

IDCNN-CRF 87.06 85.97 86.51 88.32 88.18 88.25

Character-BiLSTM-CRF 87.08 87.56 87.32 89.25 89.71 89.48

BERT-IDCNN-CRF 89.78 86.16 87.94 90.72 89.85 90.28

BERT-BiLSTM-CRF 88.12 88.23 88.17 90.63 90.87 90.75

BERT-IDCNN-BiLSTM-CRF 90.35 90.96 90.65 93.16 93.44 93.30

The method proposed in this paper achieved optimal results on both the original and
expanded dataset. Compared to the best-performing baseline model, BERT-BiLSTM-
CRF, BERT-IDCNN-BiLSTM-CRF showed improvements of 2.23% in P, 2.73% in
R and 2.48% in F1 on the original dataset. On the expanded dataset, it achieved
improvements of 2.53% in P, 2.57% in R and 2.55% in F1.
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On the original dataset, IDCNN-CRF and BiLSTM-CRF, both based on charac-
ter embeddings, outperformed the word embedding-based BiLSTM-CRF by 0.48% and
1.29% inF1 respectively. This is because themarine ecological corpus contains long enti-
ties and nesting phenomena, such as “Chinese white dolphin”, “seagrass” and “seagrass
bed”, “coral” and “coral reef”, which lead to inaccurate word segmentation. Character-
based embeddings can alleviate the impact of inaccurate word segmentation on NER in
the marine ecological domain.

Among the character embedding-based models, IDCNN focuses more on the sur-
rounding information and features of entities, enabling better distinction of entity bound-
aries. BiLSTM learns features of the entire sentence, allowing it to capture more entities
from the sentence as a whole. BERT-based embeddings extract context information from
both directions (before and after), obtaining entity boundary features and having stronger
semantic feature representation capabilities. IDCNN can fully extract local information,
while BiLSTM can extract global information. The fusion of IDCNN and BiLSTM
improves the limitations of insufficient global feature extraction by IDCNN, resulting
in further improvements in recognition performance.

The experiment results show that, compared to the original dataset with limited
samples, Character-BiLSTM-CRF showed improvements of 2.17%, 2.15% and 2.16%
in P, R and F1 respectively after data augmentation. This improvement is attributed to
SeqGAN’s ability to generate text data that closely resembles real data, resulting in a
more evenly distributed augmented corpus. This experiment underscores the importance
of having an ample amount of data for data-driven learning, as models can perform better
with sufficient data. Compared to IDCNN, BiLSTM performed better due to its stronger
ability to extract global context features. However, IDCNN traded off some accuracy for
overall speed improvement.

5 Conclusion

This paper studiedNER in the field ofmarine ecology, proposing a few-shotmethod. The
approach involves several steps. First, SeqGANwas used to expand themarine ecological
corpus. Then, BERT was used to obtain input embeddings. Next, these embeddings
were input into IDCNN-BiLSTM to extract features. Finally, CRF was used to decode
the entities of marine pollution factors, marine animals and marine plants in the marine
ecology dataset.

Experimental results show that data augmentation has a positive impact on entity
recognition performance. Additionally, the fusion of IDCNN and BiLSTM, compared
to a single NER method, also leads to improvements. Unlike traditional NER methods,
this approach does not rely on domain-specific rules and feature engineering, making it
easily applicable to other domains lacking large-scale corpora.

However, there is still room for improvement in terms of accuracy, particularly
regarding nested entities, long entities and the quality of data generated by SeqGAN.
Future work will focus on addressing these challenges, expanding the dataset and con-
ducting further research to achieve better recognition results. Additionally, constructing
a marine ecological knowledge graph will aid in solving marine ecological management
issues more effectively.
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Abstract. Unsupervised commonsense question answering is an emerg-
ing task in NLP domain. In this task knowledge is of vital importance.
Most existing works focus on stacking large-scale models or extract-
ing knowledge from external sources. However, these methods suffer
from either the unstable quality of knowledge or the deficiency in the
model’s flexibility. In this paper, we propose a Knowledge Prompting
with Contrastive Learning (KPCL) model to address these problems.
Specifically, we first consider dropout noise as augmentation for com-
monsense questions. Then we apply unsupervised contrastive learning
in further pre-training to capture the nuances among questions, and
thus help the subsequent knowledge generation. After that, we utilize
generic prompts to generate question-related knowledge descriptions in a
zero-shot manner, facilitating easier transfer to new domains. Moreover,
we concatenate knowledge descriptions with the commonsense question,
forming integrated question statements. Finally, we reason over them to
score the confidence and make predictions. Experimental results on three
benchmark datasets demonstrate the effectiveness and robustness of our
proposed KPCL, which outperforms baseline methods consistently.

Keywords: Commonsense question answering · Prompt learning ·
Contrastive learning

1 Introduction

Commonsense question answering (CQA) is a prevalent task in the domain of
natural language processing (NLP) with a long-term goal to evaluate the ability
of cognitive understanding in machines. As shown in Fig. 1, given a commonsense
question, the machine is expected to predict the right answer from multiple
choices by combining with external knowledge. Recently, with the popularity of
large pre-trained language model (PLM) in many downstream scenarios [8,14],
the research on unsupervised CQA gradually comes into view. Specifically, the
algorithmic model needs to acquire the commonsense knowledge automatically,
and make predictions without any annotated data.
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Fig. 1. An example of CQA task using external knowledge. Without using any labeled
data, the solution for unsupervised CQA, needs to seek a way of mining relevant knowl-
edge automatically to predict answers.

Existing studies for unsupervised CQA task have mainly developed two types
of approaches. The generative approaches [12,17,19,27] devote to eliciting com-
monsense knowledge from large generative models such as GPT-3 [3] and T5 [22]
in a zero-shot way, and do not require any fine-tuning for downstream tasks.
Nevertheless, such techniques heavily rely on the prior knowledge that language
model learned in the pre-training stage, resulting in unstable quality of gener-
ated knowledge in specific fields. Meanwhile, the extraction approaches [1,2,15]
utilize external open-source knowledge bases to provide evidences and guide rea-
soning. However, these methods often use a fixed knowledge source and require
pre-defined rules to extract valuable information, which makes it difficult to
efficiently adapt to new domains and thus limits the flexibility.

To solve the aforementioned challenges, we propose a novel model,
Knowledge Prompting with Contrastive Learning (KPCL) for unsupervised
CQA task. Firstly, we utilize dropout noise as data augmentation for common-
sense questions. Then in further pre-training, unsupervised contrastive learn-
ing is applied on the knowledge generative model to perceive semantic nuances
between different commonsense questions, thereby improving the quality of gen-
erated knowledge in subsequent steps. Secondly, we use knowledge prompts
with a generic format of the instruction and random instances, having the knowl-
edge generative model elicit question-related knowledge descriptions. Based on
the domain feature of different NLP tasks, we only need to make some minor
adjustments in prompts to achieve flexible transfer. Thirdly, we concatenate
each generated knowledge description with the corresponding question, forming
a set of integrated question statements. After that, we leverage the knowledge
reasoning model to make predictions by scoring the confidence of each choice.
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The major contributions can be summarized as follows: 1) We propose a
novel KPCL model with further pre-training for unsupervised CQA task. Unsu-
pervised contrastive learning with dropout augmentation are applied to help the
model capture the semantic nuances between various questions. 2) We present
a generic prompt scheme utilizing the instruction with task-specific instances,
which is beneficial for generating question-related knowledge descriptions and
adapting the model to the downstream task. 3) We conduct extensive exper-
iments on three benchmark datasets. The experimental results show that our
method outperforms the competitive baselines consistently, which fully demon-
strates the effectiveness of our KPCL model.

2 Related Works

Prompt Learning. Prompt learning is a rapidly evolving paradigm that enables
the adaption of PLMs to various downstream tasks by utilizing textual prompts.
The core of prompt learning is to generate desired information without relying
on extensive labeled datasets, making it applicable in many zero-shot and few-
shot scenarios [3,4,20]. Some works focus on devising prompts manually [25,26].
Typically, the work of PET [25] defines cloze question patterns to reformulate
text classification and natural language inference (NLI) problems in the few-
shot setting. However, the manual way in prompt learning is labor-intensive and
requires handcrafting with rich experience. Recently, many researchers have pro-
posed continuous methods [7,9,10,13] to mitigate the limitations. For instance,
P-tuning [13] enables PLMs to learn the optimal prompt automatically by insert-
ing trainable parameters into continuous embedding space. Similarly, Prompt-
tuning [9] and Prefix-tuning [10] froze the parameters of the pre-training back-
bone and only update parameters of prompts in the training phase.

Knowledge-aware Methods for CQA Task. The CQA task commonly
focuses on exploring various approaches [31–33] to use massive knowledge graphs
and perform structured reasoning over questions. When it comes to unsupervised
CQA, some studies are inclined to leverage external knowledge sources to extract
evidences or explanations for zero-shot answer prediction [1,2,15]. In particular,
Ma et al. [15] devise a neuro-symbolic framework to transform diverse knowledge
sources into a form which is effective for PLMs. While another line of research is
dedicated to generating relevant knowledge in the specific domain to help reason-
ing [12,17,19,27]. For example, Self-talk [27] inquires the generative PLMs with
information seeking questions to elicit knowledge as clarifications. SEQA [17]
uses PLMs to generate a series of plausible answers and then vote for the cor-
rect choice by measuring the semantic similarity. To improve the flexibility of
sequential models, Liu et al. [12] generate knowledge with an input prompt for
answer prediction, reducing the reliance on task-specific adjustments.

3 Methodology

Formally, the unsupervised CQA task can be defined as follows. Given a question
q and a candidate answer set C with M choices, i.e., C = {c1, c2, . . . , cM}, we need
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Fig. 2. The architecture of our KPCL model. It consists of three parts: 1) Further Pre-
training with Contrastive Learning (Sect. 3.1), 2) Knowledge Generation with Generic
Prompt (Sect. 3.2), and 3) Knowledge Reasoning and Answer Prediction (Sect. 3.3).

to identify the best matching answer from C for the given question q without
any labeled data. The architecture of KPCL model is shown in Fig. 2.

3.1 Further Pre-training with Contrastive Learning

We use the commonsense questions in the same domain of the target bench-
mark in further pre-training, aiming to close the disparity in data distribution.
Inspired by SimCSE [5], the dropout in PLMs naturally suits the noise in data
augmentation due to the high alignment and uniformity. The neurons in the
network are randomly discarded during the forward propagation. Therefore, the
dropout noise for augmentation only exists in the neuron-level of the hidden
network and cannot hurt the contextual semantics of the input sentence.

As shown in Fig. 3, we first duplicate the input as two copies for each com-
monsense question qi. Then we utilize GPT-2 [21] as the knowledge generative
model. And the two copies (qi, q

+
i ) are fed into the model with two different

dropout masks. The hidden representations (hi, h
+
i ) are obtained as the positive

pair. In contrast, the negative pairs are the representations of other instances in
the training batch.

We adopt InfoNCE loss [18] as the objective of the contrastive learning in
further pre-training. The loss is formally defined as,

LCL = −
∑

log
esim(hi,h

+
i )/τ

∑N
j=1

(
esim(hi,h

+
j )/τ

) (1)
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Fig. 3. The strategy of unsupervised contrastive learning in further pre-training.

where N represents the training batch size, sim(·, ·) denotes the cosine simi-
larity between two vectors, and τ is the temperature hyper-parameter to scale
and control the attention for hard negative pairs. The idea is that when opti-
mizing the unsupervised comparative loss, the generative model draws closer
the semantics between the question itself and its augmented instance, and pulls
away the semantics of other different questions. This is an effective way to alle-
viate the collapse of the pre-trained model and learn better representation of the
commonsense questions.

3.2 Knowledge Generation with Generic Prompt

We use generic knowledge prompt to guide the knowledge generative model to
produce a series of question-related knowledge descriptions. The main idea is to
bridge the formulation gap between different tasks and thus improve the model
flexibility. Specifically, the knowledge prompt applies a generic format. It consists
of an instruction sentence, several random instances of question-knowledge pairs
fixed for each task, and a “<question>” placeholder as the end. For each question
q, it will be inserted into the placeholder. Then a series of knowledge descrip-
tions Kq can be obtained as the continuation part of the knowledge prompt by
repeated sampling, and it can be formalized as follow,

Kq = {ks : ks = fG (Pq, q) , s = 1 . . . S} (2)

where fG indicates the knowledge generative model, Pq is the knowledge prompt,
and ks are the generated knowledge descriptions with variable lengths.
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Table 1. Prompt sketches using generic format for two evaluating datasets, Common-
senseQA (on the top) and OpenbookQA (at the bottom).

Prompt Sketches

Instructions: Generate some knowledge about the concepts in the input

Instances:

Input: The fox walked from the city into the forest, what was it looking for?

Knowledge: Natural habitats are usually away from cities

...

Input: <question>

Knowledge:

Instructions: Generate some elementary science knowledge about the concepts in the input

Instances:

Input: In the wilderness, light pollution is?

Knowledge: As distance to a city decreases, the amount of light pollution will increase

...

Input: <question>

Knowledge:

We showcase the prompt sketches using the generic format in Table 1. It is
worth noting that, the knowledge prompt is fixed when generating knowledge
descriptions in the same dataset, and the question instances in the prompt are
randomly sampled as the representative. In addition, the corresponding knowl-
edge instances in the prompt should not directly make answer prediction, but
are expected to give more diverse expressions to imply potential connections
between the question and the answer.

3.3 Knowledge Reasoning and Answer Prediction

After obtaining a set of knowledge descriptions, we use knowledge reasoning
model to integrate them with the corresponding question and further make pre-
diction by scoring the confidence of each choice. To be specific, we first concate-
nate each question q with its S generated knowledge descriptions, forming S +1
integrated question statements, i.e.,

q0 = q, q1 = [k1 ⊕ q] , . . . , qS = [kS ⊕ q]︸ ︷︷ ︸ (3)

in which ⊕ denotes the concatenation operator. Then we apply the off-the-shelf
PLM, in a zero-shot setting, as the knowledge reasoning model. For each choice
ci, the model will compute its confidence under different integrated question
statements, and select the most supportive one with the highest score,

P (ci | q,Kq) ∝ max
0≤s≤S

fR (ci | qs) (4)

where fR indicates the knowledge reasoning model. Therefore, we choose the
candidate answer with the highest confidence score as the final prediction ĉ,
which can be formulated as follow,
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ĉ = argmax
ci∈C

max
0≤s≤S

fR (ci | qs) (5)

The evidence for the final prediction is derived from one certain knowledge
description kŝ, and its index ŝ can be computed as follow,

ŝ = argmax
0≤s≤S

max
ci∈C

fR (ci | qs) (6)

Note that the model is inclined to perform reasoning by screening out those
statements that cannot help distinguish choices decisively.

4 Experiments and Results

4.1 Datasets and Metric

We evaluate our model on three benchmark datasets, i.e., CommonsenseQA [29],
OpenbookQA [16], and SocialIQA [24]. 1) The CommonsenseQA dataset cre-
ates questions from ConceptNet [28] target concepts and semantic relations, and
contains 12,102 questions. CommonsenseQA involves a 5-way multiple choice QA
task which centers around substantial commonsense knowledge. The official test
set of CommonsenseQA is not publicly available, therefore we perform experi-
ments on the in-house data split1 used in Kagnet [11]. 2) The OpenBookQA
dataset comes with an open book of 1,326 science facts, and contains 5,957 ques-
tions focusing on elementary science knowledge. It is a 4-way multiple choice QA
task. We use the official data split of OpenbookQA2. 3) The SocialIQA dataset
is designed to evaluate machines’ commonsense understanding regarding human
behaviors and social interactions. It consists of 37,588 questions and follows a
3-way multiple-choice format. We apply the official split of SocialIQA3. Further-
more, to evaluate the performance of different unsupervised CQA methods, we
use the Accuracy (i.e., Acc) in answer prediction as the metric.

4.2 Baselines and Implementation Details

We compare KPCL with state-of-the-art baselines, including Self-talk [27],
SEQA [17], DynaGen [1], GKP [12]. In addition, Vanilla Baseline is
adopted, which developed to assign answers to the corresponding question with-
out utilizing external knowledge.

The experiments are implemented under the PLM backbones using the Hug-
gingface framework4 [30]. All results are reported on the development sets. Note

1 https://github.com/INK-USC/KagNet.
2 https://github.com/allenai/OpenBookQA.
3 https://leaderboard.allenai.org/socialiqa.
4 https://github.com/huggingface/transformers.

https://github.com/INK-USC/KagNet
https://github.com/allenai/OpenBookQA
https://leaderboard.allenai.org/socialiqa
https://github.com/huggingface/transformers
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Table 2. Experimental results (%) on CommonsenseQA, OpenBookQA and
SocialIQA. The symbol “†” indicates our reproduced results on these datasets.

Dataset Method GPT-2 (S) GPT-2 (M) GPT-2 (L) Published

CommonsenseQA Vanilla† 25.6 28.2 28.7 -

Self-Talk 24.8 27.3 31.5 32.4

SEQA 26.1 30.7 34.6 -

GKP - - - 47.3

KPCL 30.7 33.3 35.1 -

OpenbookQA Vanilla† 15.2 17.3 20.9 -

Self-Talk 17.4 21.0 23.8 -

SEQA 27.6 28.6 32.0 -

KPCL 35.4 37.8 38.2 -

SocialIQA Vanilla† 37.1 39.7 41.6 -

Self-Talk 41.2 43.3 45.3 46.2

SEQA 44.4 44.6 46.6 47.5

DynaGen - - - 50.1

KPCL 45.3 46.1 47.2 -

that the labels are invisible in the training stage and only used for the evalua-
tion of model performance. For further pre-training and knowledge generation,
we apply three different scale of GPT-2, including GPT-2 (S) with 117M, GPT-
2 (M) with 345M, GPT-2 (L) with 762M. The temperature hyper-parameter τ
in the unsupervised contrastive learning is empirically set to 0.1. In addition,
for each question, we generate S = 20 knowledge descriptions utilizing nucleus
sampling [6] with the probability p = 0.5, and remove duplicates and empty
strings. The knowledge generation is terminated either when the token length
exceeds more than 64 tokens, or a special token ‘.’ is encountered. For knowl-
edge reasoning, following the configuration of SEQA, we utilize SentenceBERT
(L) [23], which is further fine-tuned on NLI task, to measure the semantic rele-
vance between the integrated question statements and each choice.

4.3 Main Results

The experimental results on our evaluated datasets, CommonsenseQA, Open-
BookQA, and SocialIQA, are reported in Table 2. It can be seen that our KPCL
model consistently outperforms the other baselines on these three datasets. Our
method surpasses the previous best method SEQA by an average accuracy of
2.6% on the CommonsenseQA, 7.7% on the OpenBookQA, and 1.0% on the
SocialIQA. Besides, the GKP baseline is equipped with larger language model
like GPT-3 and T5 to generate commonsense knowledge, and the DynaGen base-
line uses external knowledge base to generate inferences for prediction. Therefore,
they are well-performed in the published setting. It is noteworthy that, with the
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Table 3. Ablation study of our KPCL model on each individual component.

Module CommonsenseQA OpenbookQA

Our KPCL - GPT-2 (M) 33.3 37.8

w/o Unsup. Contrastive Learning 30.7 (2.6↓) 34.1 (3.7↓)

w/o Generative Knowledge Prompting 29.2 (4.1↓) 28.3 (9.5↓)

w/o Knowledge Reasoning 32.4 (0.9↓) 36.1 (1.7↓)

scale of knowledge generative model increases from GPT-2 (S) to GPT-2 (L), the
performance improvement of our KPCL model is not as significant as other base-
lines. It turn out that the KPCL model tends to generate knowledge descriptions
with stable quality when using generic prompts. Therefore, the improvement
brought by increasing the model scale is relatively limited.

4.4 Ablation Study

To further investigate the effectiveness of each individual component in our
KPCL model, we conduct extensive ablation studies on the datasets, Common-
senseQA and OpenbookQA. As shown in Table 3, generative knowledge prompt-
ing has the greatest impact on model performance, verifying the critical role of
knowledge for answer prediction. Also, we find an average drop of 3.2% in “w/o
Unsup. Contrastive Learning” setting, which shows that contrastive learning in
the further pre-training can bring benefits for subsequent knowledge generation.
To sum up, each component in the KPCL model contributes to the entire per-
formance of the unsupervised CQA task.

4.5 Robustness Analysis

To explore the robustness of our KPCL model, we set four different distur-
bances on prompts. As shown in Table 4, we conduct experiments with GPT-2
(M) in the CommonsenseQA dataset, and the reported results are the average
on three runs to avoid the contingency. Under the disturbances of instruction
paraphrase5 and in-domain replacement6, there are minor drops of 0.4% and
0.3% in model performance, respectively. It demonstrates that the KPCL model
is robust to confront the changes in instructions and in-domain instances. While
under the disturbances of order exchange7 and cross-domain replacement8, the
performance suffers significant decline of 1.2% and 2.9%, respectively. It can be

5 For instruction paraphrase, the keywords in the instruction of prompt are replaced
with the synonyms.

6 For in-domain replacement, two examples are randomly chosen from Common-
senseQA to replace the instances in prompt.

7 For order exchange, the order of the instruction and instances in prompt is swapped.
8 For cross-domain replacement, two examples are randomly chosen from Open-

bookQA to replace the instances in prompt.
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found that the prompt scheme of the instruction’s order and instances’ domain
should be carefully considered, which determines the quality of generated knowl-
edge descriptions and indeed has a crucial impact on the model performance.

Table 4. Robustness analysis of disturbances on prompts.

# Disturbance Performance

0 None 33.3

1 Instruction Paraphrase 32.9 (0.4↓)

2 Order Exchange 32.1 (1.2↓)

3 In-domain Replacement 33.0 (0.3↓)

4 Cross-domain Replacement 30.4 (2.9↓)

Table 5. Case study for our KPCL and the vanilla baseline. The correct answers are
underlined, and the constructive parts of our generated knowledge are marked in blue.

Cases Vanilla KPCL

Q1: Riding a bike for a long time can cause what?
A.enjoyment B.fatigue C.falling down D.getting lost E.thirst
Knowledge: high-intensity outdoor workouts reduce the strength and energy.

C. (✕)
Score: 0.69

B. (�)
Score: 0.73

Q2: If you are committing perjury you have done what while under oath?
A.crime B.disrespect judge C.embarrassment D.lie E.indictment
Knowledge: perjury crime has no reliance to be placed

A. (✕)
Score: 0.52

D. (�)
Score: 0.81

Q3: Piece of land in Canada where you can find marmot?
A.North America B.United States C.Vancouver Island D.American E.cage
Knowledge: the vancouver marmots are rare animals in Canada also in the world.

C. (�)
Score: 0.47

C. (�)
Score: 0.65

Q4: He is house was a mess, he began doing housework to get what?
A.boredom B.nice home C.Michigan D.feeling satisfied E.house clean
Knowledge: housework involves cleaning and cooking in most families

E. (�)
Score: 0.58

E. (�)
Score: 0.98

4.6 Case Study

We randomly select four cases from the CommonsenseQA dataset and show
the results in Table 5. The KPCL model gives the correct predictions in the
first two examples while the vanilla baseline fails. Compared with the vanilla
baseline, our KPCL model pays more attention on the semantic constraints
implied in the question, such as “for a long time” in Q1 and “perjury...under
oath” in Q2. Thus, the generated knowledge descriptions can effectively guide
the model to perform reasonable predictions towards the correct answers. For the
last two examples, both the KPCL model and the vanilla baseline make the right
predictions. However, the confidence scores for the correct answers are much
higher in our solution. The reason behind is that the knowledge descriptions
generated by our KPCL model, such as “the vancouver marmots” in Q3 and
“involves cleaning” in Q4, are target-oriented and can help the model reason
over commonsense questions in a positive way.
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5 Conclusion

In this paper, we propose Knowledge Prompting with Contrastive Learning
(KPCL) for unsupervised CQA task. We first use dropout noise in PLM as the
augmentation for commonsense questions. To improve the quality of generated
knowledge, we then use unsupervised contrastive learning in further pre-training
and learn better representations of various questions. Furthermore, to enhance
the model flexibility, we leverage prompts with generic format to generate a set
of question-related knowledge descriptions without any labeled data. Finally,
we integrate generated knowledge descriptions with the question, and predict
the answer with the highest confidence. Experiments on three datasets show
our proposed KPCL model outperforms baselines. In the future, we will further
explore fine-grained ways of knowledge integration to perform effective reasoning.
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Abstract. Over-parameterized neural networks have good performance,
but training such networks is computationally expensive. Pruning at
initialization (PaI) avoids training a full network, which has attracted
intense interest. But at high compression ratios, layer collapse severely
compromises the performance of PaI. Existing methods introduce opera-
tions such as iterative pruning to alleviate layer collapse. However, these
operations require additional computing and memory costs. In this paper,
we focus on alleviating layer collapse without increasing cost. Therefore,
we propose an efficient strategy called parameter threshold compensa-
tion. This strategy constrains the lower limit of network layer parameters
and uses parameter transfer to compensate for layers with fewer param-
eters. To promote a more balanced transfer of parameters, we further
propose a parameter preservation strategy, using the average number of
preserved parameters to more strongly constrain the layers that reduce
parameters. We conduct extensive experiments on five pruning methods
on Cifar10 and Cifar100 datasets using VGG16 and ResNet18 architec-
tures, verifying the effectiveness of our strategy. Furthermore, we com-
pare the improved performance with two SOTA methods. The comparison
results show that our strategy achieves similar performance, challenging
the design of increasingly complex pruning strategies.

Keywords: Deep neural network · Model compression · Pruning at
initialization · Parameter threshold compensation and preservation

1 Introduction

Deep neural networks have achieved great success in computer vision [1–3], natu-
ral language processing [4], autonomous driving [5], and other fields [6]. However,
the massive size of modern neural networks hinders model training and deploy-
ment process [7]. Therefore, pruning is widely used to compress neural networks.
Among many branches of pruning, pruning at initialization (PaI) becomes more
and more attractive because it can avoid the training of a full network [8–12].
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PTCP
(Ours)

SynFlow
[11]

ProsPr
[12]

Forward Step: 

Perform weight updates with batches of data 
Forward Step: 
Extra train steps.

Forward Step: Perform iterative pruning with batches of data 

Basic step Extra steps

PTCP
(Cost-free)

Fig. 1. Comparison of PTCP and SOTA methods. Forward Step means the
number of forward propagation steps required for pruning. |Di| means the number of
graphs in Di. For example, on Cifar10, the number of forward propagation steps under
the optimal settings of ProsPr and SynFlow is

∑M
i=0 |Di| = 2048 (M = 3, |Di| = 512)

and
∑N−1

i=0 |Di| = 25600 (N = 100, |Di| = 256), which is much higher than |D| = 100
required by PTCP.

The earlier PaI methods use criteria such as randomness [8], magnitude, con-
nection sensitivity [9], gradient flow [10], to evaluate the importance of parame-
ters. These methods suffer from layer collapse, which refers to pruning a network
layer completely. SynFlow [11] points out that layer collapse severely impairs sub-
net performance at high sparsity and proposes an iterative pruning strategy to
avoid this phenomenon. ProsPr [13] proposes adding several training steps in the
pruning process to improve subnet performance, considering that the network
will be trained immediately after pruning.

However, existing studies ignore the extra cost of alleviating layer collapse.
Therefore, we propose a parameter threshold compensation and preservation
strategy (PTCP). The advantages of our strategy compared to other methods
are shown in Fig. 1, alleviating layer collapse without extra computational cost.

Specifically, our strategy includes parameter threshold compensation (PTC)
and parameter preservation (PP). In PTC, we design a parameter threshold as
the lower limit of network layer parameters and compensate layers with fewer
parameters by parameter transfer. Furthermore, we propose PP, constraining
the layers that reduce parameters strongly by the average number of preserved
parameters, to promote a more balanced transfer of parameters.

We test PTCP on twenty combinations of two network architectures (VGG16
[14], ResNet18 [15]), two datasets (Cifar10, Cifar100 [16]), and five pruning meth-
ods (Random [8], Magnitude, SNIP [9], GraSP [10], SynFlow [11]). The results
show that our strategy can effectively improve the performance of PaI methods in
multiple scenarios. Moreover, we compare the performance of our strategy with
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two SOTA methods (SynFlow [11], ProsPr [13]), showing similar performance
at partial sparsity, challenging increasingly complex pruning strategies.

Our contributions can be summarized as follows:

– We analyze that extra computational cost is a key limitation of existing PaI
methods for alleviating layer collapse.

– We propose a progressive strategy to alleviate layer collapse without extra
computational cost. PTC constrains the lower limit of layer parameters and
uses parameter transfer to compensate for layers with fewer parameters. PP
uses the average number of preserved parameters as a stronger constraint to
promote a more balanced transfer of parameters.

– We show experimentally that our strategy effectively improves the perfor-
mance of existing PaI methods. And our strategy achieves comparable per-
formance to SOTA methods at partial sparsity.

2 Related Work

Pruning is an important method of network compression. PaI finds sparse sub-
nets from randomly initialized dense networks. According to the different sparsity
structures, pruning is divided into structured [17,18] and unstructured [19,20].
Structured pruning usually uses channels or filters as pruning units, while
unstructured pruning uses weights. PaI methods usually use unstructured prun-
ing because it is more precise and flexible to adjust the network structure.

The essence of pruning is to find an appropriate mask. According to the
basis of mask selection, pruning is divided into the pre-selected mask and the
post-selected mask [21]. Pre-selected mask only requires a randomly initialized
network, while post-selected mask relies on a pre-trained model.
Pre-selected Mask: SNIP [9] first proposes the concept of pre-selected mask.
Specifically, SNIP proposes connection sensitivity based on loss preservation to
evaluate parameter importance. Compared with SNIP, GraSP [10] believes that
the training dynamics of the neural network are more suitable as pruning indi-
cators. GraSP proposes a pruning method called gradient signal preservation,
which improves the pruned subnet’s performance. At the same time, AI [22]
tries to explain why SNIP works from the perspective of signal propagation. AI
proposes a data-free pruning method to break the dynamic isometry between
network layers. SynFlow [11] proposes the concept of layer collapse and analyzes
its impact on the performance of pruned networks. SynFlow introduces iterative
pruning to improve the generalization of existing methods, alleviating the per-
formance gap with pruning after training. ProsPr [13] adds several training steps
in the pruning process so that the network can adapt to subsequent training.
Part of the follow-up works attempt to improve the pruning strategy [8,12], and
the rest attempt to introduce existing methods into more tasks [23,24].
Post-selected Mask: LTH [25] first proposes the concept of post-selected mask.
LTH determines the mask from the pre-trained model, then randomly initializes
parameters and trains this subnet, which achieves comparable results to a dense
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network. Part of the follow-up works expand LTH from theoretical and experi-
mental perspectives [26–28], and the rest try to verify its correctness with more
ablation studies [29,30].

3 Method

We propose parameter threshold compensation and preservation strategy to alle-
viate layer collapse without extra computational cost in PaI. First, we formulate
the pruning problem described in Sect. 3.1. Then, we propose the parameter
threshold compensation strategy in Sect. 3.2. Based on parameter constraints,
this strategy limits the network layer’s parameter threshold to alleviate layer col-
lapse effectively. To promote a more balanced transfer of parameters, we design
the parameter preservation strategy as an improvement in Sect. 3.3. Finally, we
present the algorithm implementation in Sect. 3.4. Figure 2 shows the retention
ratio of network layer parameters, with or without PTCP.

Fig. 2. Layer collapse phenomenon. Retention ratio of parameters at each layer of
VGG16 model pruned at initialization with Cifar100 dataset over a range of compres-
sion ratios (10n, n = 0, 1, . . . , 6). The first row represents the original performance, and
the second represents the performance processed by PTCP. The presence of missing
points in a line indicates that layer collapse occurs.

3.1 Problem Formulation

Over-parameterization of neural networks is a prerequisite for efficient pruning.
Typically, neural network pruning is modelled as an optimization problem. Given
a training dataset D = {(xi, yi)}ni=1, a network model f with ω as parameters and
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m as masks, and the number of parameters κ expected to be retained, network
pruning can be written as a constrained optimization problem as follows:

min
w,m

L (f (w � m;x) ; y) = min
w,m

1
n

∑n
i=1 l (f (w � m;xi) ; yi)

s.t. w ∈ Rd, m ∈ {0, 1}d , ‖m‖0 ≤ κ
(1)

where l (·) is the standard loss function, d is the total number of neural network
parameters, and ‖·‖0 is the standard L0 norm.

3.2 Parameter Threshold Compensation

Layer collapse in PaI severely impairs the performance of subnets, thus attracting
researchers’ attention. SynFlow [11] points out the hazards of layer collapse and
uses iterative pruning to alleviate it. Subsequent studies alleviate this problem
indirectly by combining more and more information, such as ProsPr [12], but
the effect is limited.

However, existing methods ignore the potential of previous pruning methods,
which have the advantages of low cost and easy deployment. To fully exploit the
potential of prior methods, we propose the parameter threshold compensation
strategy to alleviate layer collapse. Our strategy alleviates layer collapse based
on parameter constraints to improve performance without extra cost.

Setting of Parameter Threshold. We first propose three primary constraints
on parameter threshold setting.

1) Parameter threshold is less than the number of parameters in any layer.
2) The number of parameters retained needs to satisfy the pruning ratio.
3) Keeping the same number of parameters in each layer is unwise.

We adopt a fixed parameter threshold, that is, set the same threshold for each
network layer. We take the minimum number of layer parameters as the baseline
to ensure the effectiveness and generalizability of the threshold. The expected
network sparsity is denoted as μ, the number of network layers is denoted as
NL, the parameter quantity of each layer is denoted as li, i ∈ [0, NL − 1], the
coefficient of fixed threshold is denoted as α, and the fixed threshold lmin is:

lmin = α ∗ μ ∗ minili (2)

According to Constraint 1 and 2, α needs to satisfy the following equation:
{

lmin ≤ mini li
NLlmin ≤ μ

∑
i li

⇒ α ≤ min
(

1
μ

,

∑
i li

NL mini li

)

(3)

Existing pruning strategies indicate that network layers have different average
pruning scores, i.e., different importance [9–12]. Therefore, reserving the same
number of parameters for each layer is unreasonable, as stated in Constraint 3.
Further, we shrink the upper limit of the fixed threshold coefficient α as follows:

α ≤ min
(

1
μ

, FLOOR

( ∑
i li

NL mini li

))

(4)
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where FLOOR (·) is defined as rounding down according to the highest digit.
We set α as its upper limit (UL) to get lmin as shown in Eq. 5. The minimum

number of layer parameters bounds the first term, and the pruning ratio bounds
the second term.

lmin = min
(

minili, μ ∗ minili ∗ FLOOR(
∑

i li
NLminili

)
)

(5)

Setting of Parameter Transfer Method. We call the layers that need to
retain more parameters as In-layer, and the layers that need to be pruned more as
Out-layer. The parameter transfer method determines which parameters to add
in In-layer and which to prune in Out-layer. Considering that our strategy is to
improve existing PaI methods, we fully respect the original scores of parameters.
Specifically, we force each In-layer to retain the threshold number of parameters
according to the ordering of parameter scores. And we treat all Out-layer as a
new subnet for pruning and threshold compensation again.

3.3 Parameter Preservation

From the perspective of maintaining connectivity, the importance of any param-
eter is negatively correlated with the parameter retention ratio at its network
layer. However, PTC simply considers that In-layer and Out-layer are comple-
mentary, that is, Out-layer = In-layer, where In-layer means all network layers
except In-layer. The increased pruning ratio may lead to over-pruning of some
Out-layer, resulting in an unbalanced transfer of parameters.

To avoid over-pruning some Out-layer with a few parameters, we impose
stricter constraints on selecting Out-layer. Specifically, we allow the existence of
layers that do not belong to In-layer and Out-layer, that is, Out-layer ⊆ In-layer,
to achieve parameter preservation. The parameters of each layer after pruning
are denoted as l′i, i ∈ [0, NL]. Considering that the average number of parameters
reflects the general situation of each layer, we take the average number l′avg of
parameters in each layer after pruning as the lower limit of the selection of
Out-layer, as shown in Eq. 6. Limited by Eq. 4, lmin ≤ l′avg is always satisfied.

l′avg =
1

NL

∑NL−1
i=0 l′i (6)

The above constraints are summarized in Eq. 7.
⎧
⎨

⎩

l′i < lmin ⇒ In-layers
lmin ≤ l′i ≤ l′avg ⇒ No-operation

l′i > l′avg ⇒ Out-layers
(7)

3.4 Round-by-Round Matching Algorithm

In this section, we design a round-by-round matching algorithm to achieve
parameter threshold compensation and preservation strategy. The algorithm
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performs three steps, including pre-pruning, verification, and matching, until all
layers are matched. The pseudocode for the algorithm is shown in Algorithm 1.
The whole algorithm does not need additional network training steps, and its
cost is negligible compared to expensive training costs.

Algorithm 1: Parameter Threshold Compensation and Preservation
Data: Number of network layers NL, number of reserved parameters NR,

threshold compensation coefficient α, number of parameters pre layer li,
importance of parameters pre layer Scoresi, i ∈ [0, NL]

Result: Mask of neural network M
1 lmin ← Calculated by Eq. 5;
2 while layers matched incompletely do
3 M ← Pre-prune unmatched network layers; // Pre-pruning

4 l′ ← Number of reserved parameters pre layer;
5 l′avg ← Calculated by Eq. 6;
6 for unmatched network layers do
7 if l′i < lmin then // Verification

8 Mi ← Prune the layer independently;
9 Mark as matched; // Matching

10 else if lmin ≤ l′i ≤ l′avg then // Verification

11 Mark as matched; // Matching

12 end

13 end

14 end

4 Experiment

We conduct various experiments to verify the effectiveness of the PTCP strategy
on image classification tasks with twenty combinations of two network structures
(VGG16 [14], ResNet18 [15]), two datasets (Cifar10, Cifar100 [16]), and five
pruning methods (Random [8], Magnitude, SNIP [9], GraSP [10], SynFlow [11])
over a range of compression ratios (10n, n = [0, 0.25, . . . , 3]). Furthermore, we
compare the performance of classical methods processed by PTCP with two
SOTA methods (SynFlow [11], ProsPr [13]) aimed at alleviating layer collapse.

4.1 Experimental Settings

For a fair comparison, we follow the network structure settings of SynFlow [11],
namely VGG16 from OpenLTH1 and ResNet18 from PyTorch Model2. All exper-
iments in this paper are performed on Titan Xp GPU. And all results are
obtained from three replicate experiments.
1 https://github.com/facebookresearch/open lth.
2 https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py.

https://github.com/facebookresearch/open_lth
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
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Pruning Setting. For random pruning, we sample independently from a stan-
dard Gaussian distribution. For magnitude pruning, we take the absolute value
of the parameter as the score. For SNIP [9], GraSP [10], SynFlow [11] and
ProsPr [13], we follow the methods described in their papers to calculate the
scores. SynFlow-Mult represents the original method reported (100 iterations),
while SynFlow and SynFlow-PTCP represent the results of only one iteration
with or without PTCP. ProsPr uses the 3-round cycle setting corresponding to
its optimal performance. We only report the performance of ProsPr on Cifar10
dataset, the same as its reported experiments. For each pruning method, we
prune the model with a random subset of the training dataset whose size is ten
times the number of classes, i.e. 100 for Cifar10 and 1000 for Cifar100. The batch
size is uniformly selected as 256.

Training Setting. On VGG16(ResNet18), the model is optimized by SGD for
160 epochs, the initial learning rate is 0.1(0.01), the batch size is 128, the weight
decay is 1e−4(5e−4), the momentum is 0.9, and the learning rate multiple by
0.1(0.2) at 60 and 120 epochs.

4.2 Results and Analysis

Fig. 3. PTCP effectively improves the performance of PaI methods under
any setting. The solid line represents the mean, and the shaded region represents the
area between the minimum and maximum performance for the three runs.



Alleviate Layer Collapse in PaI via PTCP 47

Effectiveness of PTCP Strategy. We evaluate the effectiveness of the
PTCP strategy on the image classification task with twenty combinations of
two networks structures (VGG16 [14], ResNet18 [15]), two datasets (Cifar10,
Cifar100 [16]), and five pruning methods (Random [8], Magnitude, SNIP [9],
GraSP [10], SynFlow [11]). The results are shown in Fig. 3. The PTCP strategy
significantly alleviates layer collapse and improves subnet performance at high
compression ratios. Meanwhile, the PTCP strategy demonstrates more stability
as its tight interval indicates. Notably, the PTCP strategy is an improvement to
existing PaI methods. Therefore, the quality of the original parameter evaluation
indicators still affects the performance improved by PTCP.

Fig. 4. The performance of the PTCP-improved PaI methods matches the
SOTA methods at some sparsity.

Comparing to Expensive SOTA Methods. We compare the performance of
the above five PTCP-improved PaI methods with existing SOTA methods that
introduce extra costs to alleviate layer collapse. The results are shown in Fig. 4.
Some PTCP-improved methods perform the same as SOTA methods and even
perform better at medium compression ratios, such as VGG16-Cifar100-SynFlow
and ResNet18-Cifar100-Mag. At the same time, it is observed that Mag-PTCP is
superior to the SNIP method in most scenarios, indicating that PTCP can exploit
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the potential of the pruning method based on basic standards such as magnitude,
which leads to thinking about the increasingly complex pruning standards.

4.3 Ablation Study

We conduct ablation studies under the setting of VGG16-Cifar100-GraSP.

Fig. 5. Ablation results of coefficient α

Parameter Ablation: We ablate the
compensation coefficient α in Eq. 2,
and the results are shown in Fig. 5.
Limited by the constraint shown in
Eq. 4, α can only be ablated in the
decreasing direction. When α respec-
tively take UL, UL/2, and UL/3,
the average performance growths of
PTCP relative to the original method
over a range of compression ratios
10n, n = [2, 2.25, ..., 3] are 11.13%,
10.22%, 8.89%. As α gets smaller, the
performance of our strategy gradually
deteriorates, which verifies the ratio-
nality of the parameter setting.
Modular Ablation: We perform modular ablation on our two modules, PTC
and PP, and the results are shown in Table 1. The results indicate that PTC
significantly improves the performance of PaI methods by an average growth of
6.21%. However, limited by the unbalanced transfer of parameters, there is still
an unavoidable performance degradation in some cases. After adding PP, the
average performance is further improved.

Table 1. Modular ablation results. Bold numbers are the highest in the results.

Module Compression ratio

PTC PP 101 101.25 101.5 101.75 102 102.25 102.5 102.75 103

✗ ✗ 66.34 ± 0.09 65.49 ± 0.08 64.38 ± 0.23 63.46 ± 0.23 61.63 ± 0.38 57.12 ± 0.33 46.14 ± 0.13 24.75 ± 1.10 1.00 ± 0.00

✓ ✗ 66.70 ± 0.42 65.62 ± 0.04 64.93 ± 0.28 64.40 ± 0.23 62.10 ± 0.20 57.58 ± 0.19 50.44 ± 0.14 42.60 ± 0.08 31.82 ± 0.46

✓ ✓ 66.62 ± 0.37 65.82 ± 0.10 64.84 ± 0.02 64.59 ± 0.08 62.27 ± 0.42 58.12 ± 0.14 51.17 ± 0.59 43.39 ± 0.50 32.45 ± 0.76

5 Conclusions

In this paper, we show that PaI suffers from severe layer collapse at high compres-
sion ratios. We propose the parameter threshold compensation strategy to avoid
the extra cost of existing alleviation methods, which improves the performance
of PaI methods based on parameter constraints. And to further promote a more
balanced transfer of parameters, we propose the parameter preservation strat-
egy to impose more substantial constraints on Out-layer. Finally, we conduct
experiments on twenty combinations of different network structures, datasets,
and pruning methods to verify that our strategy can significantly improve per-
formance. Then we compare the performance improved by our strategy with
SOTA methods, showing similar performance in some cases, although we do not
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require any additional cost. Promising future directions for this work are to (i)
design parameter threshold with higher flexibility to compensate network lay-
ers of different types and sizes accurately and (ii) look for more improvements
besides layer collapse in PaI to improve performance further. Overall, our strat-
egy effectively improves the performance of current PaI methods, challenging
the increasingly complex design of pruning strategies.

Acknowledgement. This work was supported in part by National Natural Science
Foundation of China (No. 61831005).
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Abstract. With the rapid increase of user data and traffic, the traditional attribute
encryption scheme based on the central cloud will cause the bottleneck of comput-
ing performance. And user’s access privilege and ciphertext in the existing scheme
is not limited by the time duration and the number of attempts, which could be
brute force attack. We propose a solution to support computing outsourcing and
time-limited access in edge computing. Edge nodes can shorten data transmission
distances and eliminate latency issues. To solve the central cloud performance
problem during encryption and decryption, massive and complex computing is
considered outsource to edge nodes. And set valid time for the ciphertext and
the user key, which avoid their permanent validity and significantly improve data
security. In addition, all attributes are divided into attribute trees. According to the
hierarchical relationship between attributes, we judge the user’s access privilege.
Finally, we give security proof, performance cost, functional comparison of the
scheme.

Keywords: Hierarchical Attribute-Based Encryption · Time-Limited ·
Computing Outsourcing · Edge Computing

1 Introduction

With the rapid development of information technology and communication technology,
data shows an explosive growth.The secure transmission and storageof data havebecome
an important issue that users pay more attention. Cloud computing is unable to manage
the increasing amount of user data and huge calculations. In addition, cloud services are
not suitable for delay, portability and location-sensitive applications. Edge computing is
an important application of cloud computing. Edge cloud is closer to the user or terminal.
It can provide more convenient and fast computing power, and solve the problem of
limited mobile terminal resources and excessive computing burden of cloud server.
However, data is stored in the cloud or edge cloud, which brings privacy and security
issues. Such as user access policies and identity tracing still threaten data security. In
order to protect the confidentiality of user data, attribute based encryption (ABE) has
become one of the important choices for users to encrypt data.
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Sahai and waters [1] proposed ABE in 2005. Since then, different scholars have pro-
posed derivative schemes of ABE, such as key-policy ABE (KP-ABE) [2], ciphertext-
policyABE(CP-ABE) [3], hierarchical attribute based encryption (HABE) [4] andmulti-
authority ABE(MA-ABE) [5]. Huang Q. [6] proposed a HABE scheme with secure and
efficient data collaboration in cloud computing. In this scheme, most of the comput-
ing cost is entrusted to cloud service providers (CSP), and attribute authorities (AA)
are managed in layers. Leng [7] proposed an ABE scheme for encryption outsourcing
in cloud. According to the characteristics of the access tree, the scheme [7] constructs
the shared access strategy into an equivalent matrix of a general matrix, which greatly
reduces the calculation of the user. Qi [8] proposed a multi-authority attribute-based
encryption scheme with attribute hierarchy. The encryption and decryption in the above
references are based on the cloud server, without considering the performance bottle-
neck of the cloud server. Peng [9] proposed an ABE scheme in edge computing, which
outsources decryption calculation to edge nodes, and uses multi-authority (MA) to meet
the performance requirements of users’ cross-domain access. K. Huang [10] proposed
an ABE scheme that supports online encryption and offline encryption, and supports
outsourced decryption. It uses methods such as split encryption and reuse ciphertext to
protect data privacy and realize fine-grained access control. Wang [11] combined fog
computing technology to propose amicro attribute encryption scheme that supports com-
puting outsourcing. This scheme shortens the length of key and ciphertext, and transfers
part of the calculation to the fog node. However, there are not considered the timeliness
of key and ciphertext.

Based on the above research, there are problems in the HABE scheme, such as high
computational overhead, and inability to support time-sensitive access for users.We pro-
pose a hierarchical attribute-based encryption scheme supporting computing outsourcing
and time-limited access in edge computing. We use the computing power of edge nodes
to handle complex encryption and decryption calculations, which improves computing
efficiency and saves resources for users and the central cloud. And we set the time limit
of ciphertext and key according to specific scenarios, which enriches the fine-grained
access strategy. In order to identify the user, we propose to embed ID identifiers into
users’ private keys. Different users have different private keys and IDs, which helps to
find and lock malicious users and improve the security of users and the system.

Ours main goal is to establish a secure and confidential communication and data
storage method in the edge environment, specifically:

Efficiency: Put complex encryption and decryption calculations on edge nodes, and
make full use of all system resources to achieve efficiency.

Time Limit: Limit the valid time of users’ private keys and ciphertexts to avoid
long-term abuse of keys and ciphertexts.

Access control: Use the secret sharing protocol and hierarchical attribute tree, and
judge the user’s decryption authority according to the attribute path relationship between
the private key and the ciphertext.
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2 Preliminaries

2.1 Bilinear Groups Pairing

Boneh et al. introduced bilinear groups pairing [12]. LetG0 andG1 be twomultiplicative
cyclic groups of prime order p. Let g be a generator of G0 and e be a bilinear groups
pairing, e : G0 × G0 → G1 which has the following properties:

Bilinear: Allμ, v ∈ G0 and all a, b ∈ ZP satisfy the equation e
(
μa, vb

) = e(μ, v)ab.
Non-degeneracy: The pairing does not map all the elements in G0 × G0 to the unit

of G1, that is, there exists g ∈ G0 such that e(g, g) �= 1.
Computable: Randomly select two elements μ, v, there is an effective algorithm to

calculate e(μ, v).
Note that the pairing e(g, g) is symmetric because e

(
ga, gb

) = e(g, g)ab =
e
(
gb, ga

)
.

2.2 Linear Secret Sharing Scheme

The secret sharing scheme is known as the threshold scheme by A. Beimel [13]. A secret
is divided into n copies and distributed to n managers (e.g. users or attribute authority).
In the (k, n) threshold, the secret shares only meet more than k to restore the original
secret. This process can be described by Lagrange interpolation.

Lagrange coefficient:

�i,S(x) =
∏

ϑ∈S,ϑ �=i

x − ϑ

i − ϑ
(1)

Choose any k shares, and restore the secret:

F(x) =
k∑

i=1

(
yi × �i,S(x)

)
(2)

Among them, the elements in the set S are composed of ZP , and i ∈ ZP , yi is the
secret share and yi = F(xi).

2.3 Security Assumption

l-th Billinear Diffie-Hellman Inversion problem(l − wBDHI ): Let G0 and G1 be two
multiplicative cyclic groups of prime order p. Let g be a generator of G0 and e be
a bilinear groups pairing. Randomly select two elements β, z(β, z ∈ ZP), and let

g, gβ, gβ2
, . . . . . . gβ l ∈ G0, T ∈ G1, then determine whether T is equal to e(g, g)β

l+1
,

if
∣∣∣Pr

[
A
(
g, y1 = gβ, . . . . . . yl = gβ l

, e(g, g)β
l+1
)

= 1
]

−Pr
[
A(g, y1 = gβ, . . . . . . yl = gβ l

, e(g, g)z) = 1
]∣∣∣ ≥ ε

(3)

l-th Billinear Diffie-Hellman Inversion assumption(l − wBDHI ): There is no polyno-
mial time algorithm A that can solve the l − wBDHI problem with the non-negligible
advantage of ε.
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3 System Structure

3.1 System Model

Wedesign a hierarchical attribute-based encryption scheme that supports computing out-
sourcing time-limited access in the edge environment. It has timeliness and traceability,
and enriches the functional expression of hierarchical attribute-based encryption. More-
over, we use edge nodes as medium of outsourcing encryption and decryption, which
is helpful for privacy data protection, improves the calculation efficiency and resource
utilization efficiency. This system involves six entities. Data Owner (DO) encrypts data
by defining attribute access control policies, uploads and storage the encrypted data to
the cloud. Data User (DU) downloads the ciphertext and uses the private key to decrypt
the ciphertext. DU is allowed to access the ciphertext when the private key of DU meets
the ciphertext access policy. Cloud Server Provider (CSP) is responsible for ciphertext
transmission and storage, manages edge nodes, and provides data access and storage ser-
vices for DU and DO. Edge Node (EN) is also responsible for ciphertext transmission
and storage, and provides encryption and decryption operations, reducing the comput-
ing burden on the central cloud and users. Central Authority (CA) is a global certificate
authority trusted by the system. It accepts the registration of all authorities and all users
in the system and issues global unique ID for DU. Attribute Authority (AA) is inde-
pendent from each other, generates key shares for users, and is responsible for issuing,
revoking, and updating user attributes in its management domain. AndAA is responsible
for generating attribute trees, to help users and edge nodes use hierarchical relationships
between attributes for encryption and decryption. The system architecture is shown in
Fig. 1.

The system model mainly includes the following algorithms, and the specific
description of each algorithm is as follows.

Setup: Input security parameters, output global public key (GPK), master private
key (MSK), public key (PKi) and private key (SKi) of AA.

ENEncryption: InputGPK ,PKi, and randomly select encryption parameters, output
ciphertext of the edge node CT 1.

DO Encryption: Input CT 1, plaintext m, DO sets the ciphertext valid time, and
randomly selects parameters, output final ciphertext CT .

DU KeyGeneration: InputMSK and SKi, select the key valid time, user attribute set
and user identity ID, and output the user private key SKu.

EN KeyGeneration: Input SKu, output the edge keySKt .
Time Check: Input the key and ciphertext valid time, check whether their hash values

are the same and output 1. If both times are within the validity period, the decryption
phase is entered.

EN Decryption: Input SKt and CT , output the decrypted intermediate ciphertext
CT 2.

DU Decryption: Input CT 2 and SKu, output plaintext m.
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DO DU

Fig. 1. System Architecture Figure.

3.2 Scheme Description

GlobalSetup. Let G and GT be two multiplicative cyclic groups of prime order p. Let
g be a generator of G and e be a bilinear groups pairing. e : G × G → GT . Define two
hash functions: H1 : {0, 1}∗ → ZP and H2 : {0, 1}∗ → G. There are N attributes in the
system, which are divided into n attribute sets and then constructed into n attribute trees.
The root nodes of attribute trees are U0 = {ω10, ω20, . . . . . . , ωn0}. li is the depth of the
i-th attribute tree, and the most depth of attribute trees is l = max{l1, l2, . . . . . . , ln}.
Randomly select attribute parameters, denoted as V = {v1, v2, . . . . . . , vn} and U =
{u1, u2, . . . . . . , ul}. Randomly select elements as input parameters. So we can get the
system public key is GPK and the system master private key isMSK .

GPK = {
p, e, g, gy,V ,U

}
(4)

MSK = {y} (5)

AuthoritySetup. There are M attribute authorities in the system, which manage dif-
ferent attribute sets. Each authority manages m attributes. Input the system master key
MSK , and each authority randomly selects parameters αi and βi to satisfy equation
y = ∑M

i=1 αi · βi. The public key is PKi and the private key is SKi of the i-th authority.

PKi = {
gαi , gβi

}
(6)
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SKi = {αi, βi} (7)

ENEncryption. DO selects the ciphertext attribute set and transfers it to the edge node.
There is a hierarchical relationship between attributes. Suppose an attribute is located in
the j-th attribute tree, and the depth of the attribute tree is h1, then the ciphertext attribute
can be represented as tjδ|1≤j≤n,1≤δ≤h1

, where j represents the number of the attribute
tree, and δ represents the depth of the attribute. DO sets the ciphertext valid time to
prevent the ciphertext from being deciphered for a long time. Using the hash function
to represent the valid time as H2(time). Input PKi and randomly select an encryption
parameter s. Then, the encrypted ciphertext of the edge node is CT 1.

CT 1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =
(
vj
∏h1

δ=1 u
H1(tjδ)
δ

)s
,

C2 = gαis,

C3 = gβis,

C4 = gH2(time)·s,
C5 = gs,

C6 = e(g, g)ys

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

DOEncryption. DO randomly selects the encryption parameter t, and obtains the final
ciphertext CT based on the intermediate ciphertext encrypted by the edge node.

CT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = me(g, g)y(t+s),

C1 =
(

vj
h1∏

δ=1
u
H1(tjδ)
δ

)s

,

C2 = gαis,

C3 = gβis,

C4 = gH2(time)·s,
C5 = gs,

C6 = e(g, g)ys,

C7 = gt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

DU KeyGeneration. The user private key is closely related to the user attributes. The
attributes of the user are represented as tiϕ |1≤i≤n,1≤ϕ≤h2

, where i represents the number of
the attribute tree and ϕ is the depth of the attribute. The user private key also has an valid

time, and the hash function expresses the valid time of the key as H2

(
time

′)
. In order to

trace the user identity, using the hash function H1(ID) to express identity information.
Assuming that the secret segmentation threshold of the authority is d , a d − 1 degree
polynomial q(x) is selected for each attribute authority to satisfy the equation q(0) = βi.
Randomly select security parameters γ as the input of the user’s private key, so we get
the user’s key is SKu.
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SKu =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SK1 = gγ ,

SK2 = g
H2

(
time

′)·γ
,

SK3 = gαiγ ,

SK4 = gβiγ ,

SK5 = gβiH1(ID),

SK6 = gy+βiH1(ID),

SKj =
(

vj
h2∏

ϕ=1
u
H1

(
t
′
jϕ

)

ϕ

)γ

· gq
(
H1

(
t
′
jϕ

))

,

SKj,h+1 = uγ

h+1, . . . . . . , SKjlj = uγ

lj

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

EN KeyGeneration. In the process of outsourcing decryption, the edge node needs to
use the user’s private key to decrypt the ciphertext according to the needs of different
users. So the edge key SKt serves the user as part of the user’s key.

SKt =
⎧
⎨

⎩
g
H2

(
time

′)·γ
, gαiγ , gβiγ ,

⎛

⎝vj

h2∏

ϕ=1

u
H1

(
t
′
jϕ

)

ϕ

⎞

⎠

γ

· gq
(
H1

(
t
′
jϕ

))

, uγ

h+1, . . . . . . , u
γ

lj

⎫
⎬

⎭

(11)

Time Check. In order to prevent ciphertext and key from brute force cracking, a time
check algorithm is proposed to associate ciphertext and key with time to increase its
flexibility and randomness. By calculating the hash value of the ciphertext validity time
and the key validity time, it can determine whether the time calibration is reasonable.

H2(time) = H2

(
time

′) = 1 (12)

EN Decryption. According to the judgment of the time check algorithm, when the
Eq. (12) is satisfied, the edge node is preliminarily decrypted. In this stage, using the
edge key SKt to decrypt, and obtaining the intermediate ciphertext CT 2.

CT 2 =
∏

j=1,t∈U

[
e(C2, SK

′
j) · e(C4, SK4)

e(C1, SK3) · e(C3, SK2)

]�H (t),s(0)

(13)

DU Decryption. DU downloads the decrypted intermediate ciphertext CT 2 from the
edge node, and uses private key SKt to further decrypt, and obtains the plaintext m.

m = C0

e(C7,
SK6
SK5

) ·∏M
i=1 CT 2

(14)
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4 Security Proof

In this scheme, the security specification is based on the probability that the attacker
solves the difficult mathematical problem. We use the security game of the attacker
and the challenger to prove the security. If the difficulty problem can be solved with
a non-negligible probability, it means that the attacker can breach the model with a
non-negligible advantage, so the model is unsafe. Conversely, we consider the model
safe.

Theorem. If the l − wBDHI assumption is true, the attacker A cannot win the security
game in the probability polynomial time. The advantage of security in this paper is the
possibility of solve the l − wBDHI problem.

Proof. By using the method of proof by contradiction, it is assumed that an attacker A
can attack this scheme with a non-negligible advantage ε, then a simulator B can solve
l − wBDHI difficult problems with a non-negligible advantage ε

2 .
The challenger C sets two groups as G1 and G2 respectively. Both G1 and G2 are

cyclic groups of order p, and the generator of G1 is g. Let yi = gxi . It is assumed that
there are N authorization authorities in the system, and n attribute trees for all attributes.
The depth of the i-th attribute tree is li, and the maximum depth of all attribute trees
is l and expressed as l = max{li}1≤i≤n. Define hash functions H1 : {0, 1}∗ → ZP and
H2 : {0, 1}∗ → G. The challenger C randomly selects μ ∈ {0, 1}.

If μ = 0, the challenger C selects T = e(g, g)x
l+1

.
If μ = 1, the challenger C selects T = e(g, g)γ , where γ ∈ ZP .
The challenger C sends {g, e,G1,G2, y1, . . . .., yl,T } to the simulator B and plays

the security game.

Init. The attacker A randomly selects an attribute set U ∗ to be challenged and sends it
to the challenger C. There are v elements in the attribute set U ∗, represented by U ∗ ={
t∗i1 , t

∗
i2
, . . . . . . , t∗iv

}
. The depth of each element in the attribute tree is {k1, k2, . . . . . . , kv},

so the path of the attribute t∗ is defined as
{
t∗i0, t∗i1, . . . . . . , t∗i,ki−1, t

∗
}
. The implication

is that the attribute t∗ is in the attribute tree with root node t∗i0 and depth ki.

Setup. The challenger C is initialized using the system model, and the simulator B
generates parameters g and p. Specify g1 = y1, g2 = yl , and ui = yl−i+1, where
1 ≤ i ≤ l. For i /∈ {i1, i2, . . . . . . , iv}, the system randomly selects ai ∈ ZP , so there is
xi = gai . For i ∈ {i1, i2, . . . . . . , iv}, there is xi = gai

∏ki
δ=1 yl−i+1

t∗iδ
. The system publishes xi

as a public key. The challenger C gets the system public key, the system master private
key, the public and private keys of authorities. The attacker A gets the system public key
and the public keys of authorities.

Phase 1. The attacker A arbitrarily constructs the attribute set R so that the elements
in the set R do not meet the attribute set U ∗. For ∀ω ∈ R, suppose the attribute ω

is in the d -th attribute tree and the depth is p, then the path is represented as Lω =(
ωd0, ωd1, . . . . . . , ωd ,p−1, ω

)
. Define a attribute set R∗, where R∗ satisfies R∗ ⊆ R and

|R∗| = d−1.According to the characteristics of hierarchical attributes, all attributes inR∗
can override attributes inU ∗ on the path. Let S = R∗ ∪{0}. For ∀t ∈ R∗,μ ∈ ZP , there is
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q(H1(t)) = μ. The simulator B constructs a polynomial q(z) for each attribute authority,
which is d − 1 degree and q(0) = x. For ∀t /∈ S, the system computes q(H1(t)) =∑

�t,S(H1(t))q(H1(t))+�0,S(H1(t))q(0). Therefore, the simulator B outputs the final
private key and returns it to A.

When t ∈ S,

SKR =

⎧
⎪⎪⎨

⎪⎪⎩

SKj0 =
(
xj
∏kθ

θ=1 u
H1(tjθ )
θ

)r
gq(H1(tjθ )),

SKj,ki+1 = urki+1, . . . . . . SKjlj = urlj ,

SKj = gr

⎫
⎪⎪⎬

⎪⎪⎭
, where r ∈ ZP (15)

When t /∈ S, let r
′ = r·x

H1(tjθ )−H1

(
t
′
jθ

) . Because t /∈ S and t
′ ∈ S, there is an equation

H1
(
tjθ
) �= H1

(
t
′
jθ

)
. So

SK
′
R =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SKj0 = g

r

H1(tjθ )−H1

(
t
′
jθ

)

2 gr
′

1

(
kθ∏

θ=1
u
H1(tjθ )
θ

)r

,

SKj,ki+1 = ur
′
ki+1, . . . . . . SKjlj = ur

′
lj
,

SKj = g

r

H1(tjθ )−H1

(
t
′
jθ

)

1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(16)

Challenge. After the attacker A completes the key query in phase 1, then selects two
equal-length plaintextsM0 andM1 and sends to the challenger C. C randomly throws a
coin to get a bit, then the simulator B also selects the same bit μ ∈ {0, 1} and encrypts
message Mμ which satisfies the attribute set R. B generates a ciphertext CT ∗ and sends
to A. The ciphertext is

CT ∗ =
⎧
⎨

⎩
MμT ,

⎛

⎝xj

kδ∏

δ=1

u
tjδ
δ

⎞

⎠

s

, gs, gH2(time)s

⎫
⎬

⎭
(17)

Phase 2. The attacker A performs the second key query to decrypt the challenge
ciphertext Mμ. The interaction between A and C is the same as the phase 1.

Guess. The attacker A answers which message is encrypted and outputs μ
′
. The

advantage of winning the game is Pr
(
μ = μ

′)− 1
2 .

If the simulator B outputs ξ = 0 andμ = μ
′
, it means that the attacker A gets

the encrypted ciphertext, which is T = e(g, g)x
l+1

. It is assumed that the advantage of

attacking is ε, there isPr
(
μ = μ

′ |ξ = 0
)

= ε + 1
2 .

If the simulator B outputs ξ = 1, it means that A cannot get the ciphertext. Because
of T = e(g, g)γ and γ is a random number. So the attacker A cannot recover plaintext,

there is Pr
(
μ �= μ

′ |ξ = 1
)

= 1
2 .

Based on the above discussion, the advantage that the attacker A wins the game is
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Pr
(
μ = μ

′)− 1

2
= Pr

(
μ = μ

′ |ξ = 0
)
·

Pr(ξ = 0) + Pr
(
μ �= μ

′ |ξ = 1
)

· Pr(ξ = 1) − 1

2
=
(

ε + 1

2

)
× 1

2
+ 1

2
× 1

2
− 1

2
= 1

2
ε

(18)

If the attacker A can decrypt the ciphertext with probability ε, it means that B can
solve the difficult l − wBDHI problem with probability ε

2 . This is inconsistent with the
fact and cannot be true, so the assumption that the attacker can decrypt the ciphertext is
not valid. Therefore, we confider that the security of this scheme meets IND-sAtr-CPA.

5 Performance Analysis

5.1 Security Analysis

We outsource encryption and decryption, and use the edge node to handle the complex
and costly computation. Through the matching of the ciphertext and the key, the first
decryption is performed at the edge node to obtain CT 2, and the second decryption is
performed at the user side to obtain m.
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We know y = ∑M
i=1 αi · βi, so we can get

M∏

i=1

CT 2 =
M∏

i=1

e(g, g)αiβis = e(g, g)s·
∑M

i=1 αiβi = e(g, g)ys (20)

m = C0

e(gt, gy) · e(g, g)ys
= me(g, g)y(s+t)

e(gt, gy) · e(g, g)ys
= m (21)

The above reasoning process can prove accuracy and safety of the scheme.
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5.2 Performance Analysis

The performance analysis of the scheme mainly includes storage cost, functional com-
parison, and calculation cost. Reference [14] proposes a representative scheme for time-
limited access, and reference [15] improves the hierarchical attribute encryptionmethod.
As the closest to our scheme, the following three tables compare the performance
parameters of references [14] and [15] and our scheme.

Table 1. Storage Cost.

GPK MSK CT SKu

[14] (n · l + 13)|G| + |GT | 2|G| (|U1| + 9)|G| (|U2| + 7)|G|
[15] (n + l + 3)|G| + |G2| |G| (|U1| + 1)|G| +

|G2|
(|U2| + 1)|G|

Ours GPK PKi MSK SKi (|U1| + 4)|G| +
|G2|

(|U2| + 2)|G|
(n + l + 3)|G| 2|G| + |G2| |G| 2|G|

Table 2. Function Comparison.

Time access function Outsourced computing Hierarchical attribute

[14]
√ × ×

[15] × × √

Ours
√ √ √

Table 3. Calculation Cost.

Encryption KeyGeneration Decryption

[14] 14τm + τe + 3τr 22τm + 5τr Cloud User

(|U2| + 11)τe +
8τm

3τ e + τm

[15] (|h1| + 3)τm + τe + τr (h2 + 3)τm + τr 4τe + |U2|τm
Ours Edge User (h2 + 8)τm + τr Edge User

(h1 + 6)τm +
τe + τr

2τm + τe + τr |U2|τm + 6τe τe + 3τm
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By comparing the performance of Tables 1 and 2, we can get the following
conclusions.

• From the perspective of functionality, our scheme meets the timeliness requirements,
tracking function, hierarchical attribute matching, etc. The scheme has significant
functional advantages compared with other schemes.

• From the perspective of key storage cost, the key of ours includes master private key
and user private key. Due to |U2|  1, compared with other schemes, the total cost
of master private key and user private key occupies the minimum space.

• From the perspective of ciphertext storage cost,G andGT are cyclic groups of order p,
and p should be a large prime number in application, so we can consider |G| ≈ |GT |.
Therefore, ours ciphertext storage is small (Table 1).

Calculation cost mainly includes power operation, random number selection and
bilinear pair operation. Each calculation cost is represented by τm, τr and τe.We introduce
edge nodes to outsource computing. The distributed computing capability of the edge
cloud can help users to perform a large number of encryption and decryption operations.

• Fromencryption, decryption and key generation cost, ours only requires constant level
operations on the user side, and other computations are undertaken by edge nodes.
Compared with other schemes, this scheme has obvious computational advantages
on the user side.

• From the perspective of scalability, with the increase in the number of users and the
amount of data, our scheme can be expanded only by operating on edge computing
nodes, which is easier to achieve than other central cloud solutions.

6 Conclusion

We propose a hierarchical attribute-based encryption scheme supporting computing out-
sourcing and time limited access in edge computing, working on the problems such as
excessive computing load of cloud server and long validity time of user key and cipher-
text. In this scheme, the access permission of users is controlled by time, so that users
can access valid ciphertext that meets their access policies within the validity period.
In addition, we take edge nodes as outsourcing entities to undertake a large number of
encryption and decryption operations, which reduces the computing overhead of users
and cloud servers. Based on the selection attribute model and the l − wBDHI difficulty
assumption, we prove the security of the scheme. Finally, through the comparison and
analysis between the scheme and other schemes, it shows the advantage of ours in storage
cost, calculation cost, and function.
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Abstract. In the context of Industry 4.0, the paradigm of manu-
facturing has shifted from autonomous to intelligent by integrating
advanced communication technologies. However, to enable manufactur-
ers to respond quickly and accurately to the complex environment of
manufacturing, knowledge of manufacturing required suitable represen-
tation. Ontology is a proper solution for knowledge representation, which
is used to describe concepts and attributes in a specified domain. This
paper proposes an ontology-based industrial model and significantly
improves the interoperability of the models. Firstly, we conceptualize
the attribute of the industrial models by providing concept and their
properties in the schema layer of the ontology. Then, according to the
data collected from the manufacturing system, several instances are cre-
ated and stored in the data layer. In addition, we present a prototype
distributed computing application. The result suggests that the ontology
can optimize the management of industrial models and achieve interop-
erability between models.

Keywords: Ontology · Knowledge representation · Industry 4.0 ·
Industrial model

1 Introduction

The integration of advanced communication technologies, e.g., cyber-physical
systems (CPS), the Internet of Things (IoT), edge computing, and artificial
intelligence, is guiding traditional manufacturing to next-generation intelligent
manufacturing which is generally known as Industrial 4.0. The intelligent manu-
facturing system enables collecting data from sensors and making smart decisions
based on real-time communication and collaboration with machines, thus, can
improve the performance of the manufacturing system significantly. Meanwhile,
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https://doi.org/10.1007/978-981-99-8145-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8145-8_6&domain=pdf
https://doi.org/10.1007/978-981-99-8145-8_6


66 C. Gao et al.

the large amount of data collected from manufacturing systems and knowledge
of manufacturing processes are the cornerstone of intelligent manufacturing.

The most crucial aspect of intelligent manufacturing is the self-learning and
self-decision-making capabilities enabled by manufacturing knowledge. In gen-
eral, knowledge plays a crucial role in providing necessary information and con-
trolling the manufacturing system automatically. On the one hand, knowledge
of data analysis generated by machine learning and data visualization tool can
assist manufacturing systems in identifying the status and trends of manufactur-
ing processes. On the other hand, based on the knowledge of artificial intelligent,
manufacturing systems can predict equipment failures and fix them timely, thus,
production lines can avoid unnecessary work and reduce production costs. In
this context, the system can ensure that the products meet the required quality
standards and improve production efficiency. Nowadays, knowledge modeling has
attracted much attention from academia and industry. H.L. Wei et al. [1] focused
on mechanistic models of addictive manufacturing for predicting experimental
observations correctly. To provide an advanced solution for the smart factory,
M. Ghahramani et al. [2] deployed machine learning and data analysis tech-
nologies in semiconductor manufacturing processes. However, due to different
development standards among engineers, e.g., the meaning of symbols and pro-
gramming language, most models are not interoperable. Moreover, these models
are scattered across different domains, thus, it is a time-consuming and high-
cost task that searching for the specific model from different model libraries and
deploying it in the manufacturing system. In addition, intelligent manufacturing
is a complex domain that is comprised of different concepts, and it is a chal-
lenging task that represents manufacturing knowledge in a generic way. Hence,
there is an urgent demand for designing an appropriate knowledge representation
mechanism for intelligent manufacturing.

Ontology is a proper solution to achieve interoperability and knowledge rep-
resentation, which maintains the machine-interoperable concepts in a specific
domain and the relation among them by providing a standard platform that
supports data process and information exchange. [3] Since ontology represents
concepts and relationships in a semantic way, the ontology-based model can be
applied in various domains and enables semantic interoperability. Nowadays, var-
ious ontology-based models have been developed to represent and share manufac-
turing knowledge. Järvenpää et al. [4] developed an OWL-based manufacturing
resource capability ontology (MaRCO), which describes the functionality and
constraint of manufacturing resource and assists the system in adjusting to the
change in manufacturing system. Dinar et al. [5] developed an addictive manufac-
turing ontology, which stores the concept of domain and experiential knowledge
of addictive manufacturing and provides guidelines for designers. A new manu-
facturing ontology was developed by Saha et al. [6] to model manufacturing oper-
ations and sequencing knowledge and the result of the experiment suggests that
the model can greatly facilitate manufacturing engineers in making decisions.
In order to achieve the goal of reasoning automatically and assisting decision-
making, Sanfilippo [7] and his colleagues reused the Descriptive Ontology for



An Ontology for IIML and Its Distributed Computing Application 67

Linguistic and Cognitive Engineering (DOLCE) ontology and extended several
branches by adding concepts related to the addictive manufacturing process.
However, most previous works focus on conceptualizing manufacturing processes,
equipment, and operations, while ignoring the knowledge of reaction mechanisms
during the manufacturing processes. Moreover, most models developed in previ-
ous work are only applicable to specific domains. To the best of our knowledge,
there is no production mechanism model involved in manufacturing processes.

This paper is aimed at developing an ontology-based industrial intelligent
manufacturing model to fill this gap. In this paper, a new industrial intelligent
manufacturing ontology is developed to model knowledge of manufacturing pro-
cesses and make it easily sharable. Due to the explicit concept in the proposed
ontology, the model is suitable for various applications. Firstly, our ontology is
comprised of two layers: the schema layer and the data layer. We conceptualize
basic information of the model and provide the properties of every concept in
the schema layer. Then, according to the data of the industrial model, a number
of instances are created and stored in the data layer. Furthermore, to verify the
applicability and interoperability of the proposed ontology, we experiment by
applying the ontology to distributed computing. The result suggests that our
proposal is feasible and the ontology-based model is easy to manage. The knowl-
edge of manufacturing processes is represented semantically, thus, users without
expertise in a specific domain can quickly obtain useful information about the
model. The contribution of this paper is listed as follows:

• Develop a new ontology-based intelligent manufacturing model by extend-
ing the model into two layers, the former layer is the schema layer which is
comprised of the concepts of the industrial model and relationships between
different entities, and the latter layer is the data layer, which contains the
instances of the ontology and stored data collected from manufacturing sys-
tem.

• To the best of our knowledge, we are the first to develop an ontology-based
industrial model library for wet-process zinc smelting. The number of models
in our library is more than 100 and will continue to grow in the future.
Moreover, we map the ontology into the neo4j database and visualize the
relationship between models explicitly, a further benefit is that the model
can be classified by machine learning algorithms.

• Conduct a prototype experiment in distributed computing application and
validate the interoperability characteristic of the proposed ontology. Due to
the explicit concept of the model, the edge node can quickly obtain the main
information of the model, e.g., the functionality of the model, and the usage of
the model, thus, the time consumption of distributed computing is decreased
significantly.

The rest of the paper is organized as follows: Sect. 2 reviews the state-of-the-
art ontology development and summarizes the shortcomings of previous works
and the challenges we are facing. Section 3 not only demonstrates the devel-
opment of a new ontology-based industrial intelligent model in detail but also
presents the construction and visualization of the industrial intelligent model
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library. Section 4 presents the application of our proposal and the experiment
suggests that the proposed ontology is feasible and interoperable. The conclu-
sion of this paper and a roadmap for research directions for future works are
outlined in Sect. 5.

2 Related Work

The Semantic Web, coined by Tim Berners-Lee, is an extension of the World
Wide Web, which aims to encode the data and make it machine-readable [13]. To
encode the semantic data and represent knowledge from heterogeneous resources,
the WWW Consortium (W3C) develops the Resource Description Framework
and Web Ontology Language(OWL) technologies. Indeed, ontology plays an
essential role in representing knowledge on the Semantic Web and making it
understandable to electronic agents. In this section, we review the existing ontol-
ogy developed for intelligent manufacturing. Then we conclude the challenge we
are facing.

2.1 Ontology for Intelligent Manufacturing

Ontology is an intelligent solution to capture knowledge in a specific domain and
enable machines to reason the change in complex environments. In particular,
integrating ontology in manufacturing can improve the intelligence level of the
manufacturing system, and a great number of previous works have developed
ontologies for different purposes. For instance, Lemaignan et al. [8] developed a
manufacturing semantics ontology(MASON) for capturing the semantics of man-
ufacturing operations. López et al. [11] created a chemical ontology to represent
chemical substances and elements. Farazi et al. [12] encapsulated the chemical
kinetic reaction mechanism into the ontology and created instances to construct
a knowledge base. To validate the accuracy and correctness of the ontology,
they applied the ontology for chemical kinetic reaction mechanisms (OntoKin)
to three use cases, which include querying across mechanisms, modeling atmo-
spheric pollution dispersion, and a mechanism browser tool. Although the result
indicates that chemical ontology can help chemical knowledge exchange, they
focus on combustion chemistry particularly.

In another study, to achieve flexibility and adaptability in Cyber-Physical
Production Systems (CPPS), Günter Bitsch et al. [14] created an Intelligent
Manufacturing Knowledge Ontology Repository (IMKOR), which addresses the
interoperability issue by connecting different domain ontologies. According to
the manufacturing process planning document(STEP-NC), Zhao et al. [15] devel-
oped a self-learning ontology for representing the capability of the machine in
cloud manufacturing, the core method is the combination of algorithm and anal-
ysis result. However, while the common purpose of previous works is to overcome
the interoperability issue, most of them focus on containing concepts in a specific
domain as much as possible and ignore the practicality of the ontologies. In this
context, we develop an ontology-based approach for the standard representation
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of the industrial models to enable interoperability and flexibility. Meanwhile, by
maintaining the industrial model library, manufacturers can fetch the models
that they are searching for.

2.2 Open Challenges

The review of previous works exposes three main challenges concerning intel-
ligent manufacturing ontology. From the application perspective, most existing
ontologies are designed for a specific domain, thus, it is difficult to reuse the
existing ontology to model knowledge of another domain. In addition, most of
the previous works focus on conceptualizing manufacturing operations, materi-
als, and equipment, while lacking knowledge of reaction mechanisms. Finally,
the existing ontologies are difficult to manage, and it is time-consumption work
to find the relevant ontologies and reuse them to reduce development costs and
avoid ontology redundancy. In this context, we aim to address these issues by
developing a new ontology-based industrial intelligent model for manufacturing
knowledge representation and model management.

3 The Development of the Ontology

Ontology is useful for knowledge representation and sharing by enabling inter-
operability. There are several methodologies for developing ontology, such as
Integrated Definition for Ontology Description Capture Method(IDEF5) [10],
CyC [9]. In this paper, we choose the IDEF5 methodology for developing the
proposed ontology. The reason we choose this methodology is that it can cap-
ture the real-world object in an intuitive and natural form. In this section, we
introduce ontology development, which includes two layers. Section 3.1 presents
the schema layer of the ontology, and the data layer is introduced in Sect. 3.2.

3.1 The Schema Layer of the Ontology

In the schema layer, we conceptualize the attribute of the industrial models by
provide concept and their properties. To guarantee the semantics of ontology,
we choose Web Ontology Language(OWL) as the ontology encoding language,
because OWL can recognize various formats of data, e.g., XML, RDF, JSON-LD,
and turtle syntax. Meanwhile, we take Protégé 5.5.0 as the ontology editor and
visualize the structure of the ontology by using the OntoGraf plug-in. Protégé
5.5.0 is a useful open-source ontology editor tool, which is developed by Standford
University. The key steps required in creating an ontology as follows.

1. identify the key concepts of the industrial model and design the hierarchical
relationships between classes by using Protégé 5.5.0.

2. identify the attribute of the concepts, including data properties and object
properties. The object property represents the relationship between concepts,
while the data property connects different formats of attribute data with the
concepts (e.g. the value of the input variable.).
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To ensure the interoperability of the ontology, designing the schema layer is
the first step in developing the ontology. The structure of the schema layer is
shown in Fig. 1.

Fig. 1. The structure of the schema layer of the industrial models. The solid arrows
represent the inheritance between the classes, and the dotted arrows represent the
object properties.

The core concepts and description of the industrial model are given in
Table 1 and Table 2 reports the properties used in the ontology. For instance,
model kernel is the main class of the model. Furthermore, model input,
model output, and model param are the subclasses of model kernel. For
instance, as for a manufacturing process status prediction model based on
Long Short-Term Memory (LSTM), some features of the system represents the
input of the model and the status prediction represents the output. Meanwhile,
some hyperparameters (e.g. learning rate, epoch, batch size) are denoted by
model param. In order to enhance the machine-readability of the ontology,
some basic attributes information of the industrial models is classified into
different classes, which inherit their superclass model attribute. The class
model class declares the class of industrial model, e.g., material type, industrial
process, or industrial equipment. The maturity level of the model indicates the
quality of the model, the machine can judge the maturity level according to the
instance of the class model mature. Similarly, the class model functionality
tells the machine the main functionality and usage of the model and the class
model keyword indicates which fields the model is related to. In the process
of industrial manufacturing, many processes are interrelated, and the output of
the previous process will be the input of the next process. Therefore, the class
model preorder, model backorder, similar model and model hierarchy
is designed to show the model id to get the input variable from the previous
process or similar process.

The models can be implemented in a variety of ways. One of the important
features is the inconsistency of the programming language (e.g. Python, Golang,
and Java), which significantly hinders the interoperability of the models. The
class model implement is responsible for maintaining the interoperability of
the models. The value of data property code language is the programming
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Table 1. Description of main classes and their subclasses in industrial ontology

Class Description

model attribute “A series of attributes including the basic information of the
models.”

model class “According to the application scenario, divide the models
into different classes.”

model name “The unique identity of the model.”

model functionality “The functionality of the model.”

model keyword “The labels of the model, which facilitate retrieval of models
from model libraries.”

model unit “The dimensional unit of a variable.”

model demo “A test version of the model implement.”

model mature “The development level of the model.”

model preorder “The model that is inherited by this model.”

model backorder “The model that inherits this model.”

similar model “The model equipped similar functionality.”

model hierarchy “There is a cascading inheritance relationship between
models, the hierarchical dimension of the model is beneficial
for indexing the interconnected models.”

model input “Input variable of the model.”

model output “Result of computation.”

model param “The parameters of the model.”

model implement “Detail information of the implement, such as the coding,
programming language, the contributors, etc.”

model hashrate “Detail information of the computation, such as the IP or the
API of cloud computing.”

language, and the machine can pull a related docker to run the code, which can
get from the property code description.

Finally, accelerating the computational speed of the models is another pur-
pose of ontology. Distribute computing is an excellent solution, which has
received considerable attention in the past ten years. The model hashrate
is a general class for recording the running results of the model.

3.2 The Data Layer of the Ontology

In the data layer, according to different mechanisms, we create the individual
instances of the classes defined in the schema layer. All of the data and basic
information are stored in this layer. For instance, we can create an individual
instance Implement1 to represent the implement of the model, which belong to
the class model implement. This instance has the properties value as follows.
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Table 2. The properties used in the ontology

Property Domain Range Description

has id model input, model output,

model param,

model implement,

model hashrate, model class

int “The unique identity

of the instance.”

has name model input, model output,

model param,

model implement,

model hashrate, model class,

model mature,

model functionality,

model keyword,

model hierarchy

string “The symbol of the

instance.”

has value model input, model output,

model param

int, float64, string “The value of the

instance.”

has description model input, model output,

model param, model hashrate,

model class, model mature,

model functionality,

model keyword,

model hierarchy

string “Description of the

instance.”

has timestamp model input, model output string “The timestamp of the

instance creation.”

code language model implement string “The kind of

programming

language.”

code description model implement string “The code of the

model.”

hashrate result model hashrate string, float, int “The result after

running the code.”

hashrate api model hashrate string “The API of the

computing service.”

preorder id model preorder int “The unique identity

of model, which is

inherited by this

model.”

backorder id model backorder int “The unique identity

of model, which

inherits this model.”

similar id similar model int “The unique identity

of model, whose

functionality is similar

to this model.”

has id : 20221106
has name: ”zinc ion leaching rate”
code language: ”Python”
code description: ”import owlready2...”

Industrial manufacturing, especially metallurgy, is composed of multiple pro-
cesses. Taking the calculation of zinc ion leaching rate in wet zinc smelting as an
example, it is necessary to collect the value of the input variables first. And the
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next step is to add a model description and the concrete implementation code
to the ontology. Finally, we save the ontology by using the standard RDF/XML
format.

The owlready2 package, a third-party extension package for Python, can be
used to parse and develop the ontology. In this paper, based on the attribute of
the industrial model and the data we collect from the manufacturing system, we
write scripts to automatically generate instances by using the owlready2 package.

4 Application of the Ontology

In the Internet of Things environment, due to the limitations of size, IOT devices
are often equipped with slow processors and limited memory storage. Therefore,
most devices can’t execute local computing. Computing technology has accel-
erated the process of the industrial revolution, effectively separating data col-
lection from data computing tasks, and breaking through the limitation of the
computing power of industrial equipment. Ontology technology makes indus-
trial models machine-readable and universal. Therefore, integrating distributed
computing and ontology technology can provide a platform for data process and
exchange between multi-structure systems. Figure 2 shows the architecture of the
ontology-based distributed computing application. Firstly, we define the actors
involved in the architecture we proposed. Secondly, we demonstrate the working
flow of distributed computing. Finally, the experiment result is shown to prove
that the ontology we design is feasible and effective.

Fig. 2. The architecture of the distributed computing application.
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4.1 Actors

The distributed computing system involves three entities. Some detailed descrip-
tions of these entities are listed as followed:
1. Industrial manufacturing: Industrial manufacturing includes the equip-
ment in the factory, e.g. temperature sensor, control center, and assembly line.
These devices can collect data generated in the production environment and
make requests to nodes in the edge network.
2. Ontology repository: The ontology repository manages the ontologies cre-
ated by the users. Based on the model id, every owl file is named as a standard
format, which can improve the retrieval efficiency significantly.
3.Edge node: Due to the low storage capacity and computing power of industrial
devices, edge computing technology has received considerable attention from a
large number of researchers. The edge nodes in this system represent the servers
close to industrial equipment, which can provide a large number of computing
services.

4.2 Distribute Computing Working Flow

The distributed computing process consists of the following steps:
1. Send request: In the first step, the industrial devices collect data, e.g. the
reaction temperature, ion concentration, etc. All of these data will be encoded
in JSON format, which is a common format for data propagation in networks.
Based on the HTTP protocol, the IOT devices broadcast their request package
and wait for the response package.
2. Pull the *.owl file: If the edge nodes capture the request package suc-
cessfully, they will pull the *.owl file from the ontology repository and get the
implemented code. According to the implementing language, they run corre-
sponding dockers for supporting multiple programming language environments.
3. Push the update *.owl file: In this step, based on the PBFT (Practical
Byzantine Fault Tolerance) algorithm, these edge nodes reach a consensus before
they update the computing result. The result will be stored in the data layer
and the leader node is responsible for pushing the new *.owl file to the ontology
repository.
4. Send response: After the leader, node update the *.owl file, it packages the
filename and sends the response package to clients.
5. Get the computing result: The client waits for the response package until
it catches the file name, and pulls the *.owl file from the ontology repository.
Parsing the *.owl file by the owlready2 python package, the client can fetch the
computing result from the data layer.

5 Conclusion

The paper presents the development of computational ontology with a particular
focus on encoding machine-readable knowledge of industrial models. Meanwhile,
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we constitute a prototype distributed computing application that is used to
facilitate the data computing of the manufacturing process. Reviewing existing
ontologies, it is clear that all of them are suffering problems such as develop-
ing with different levels of granularity, lacking interoperability, and redundant
definitions of the same entities. The strategy we proposed provides a standard-
ized development of ontology-based industrial models in an attempt to optimize
interoperability between industrial models.

The data collected from heterogeneous resources may involve with the privacy
of industrial manufacturing. If the data transmission is intercepted by hackers,
the industrial production system has to face large-scale network paralysis. There-
fore, enhancing the security of data and adding access control is the future work
we will focus on.
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Abstract. Recently, large-scale pre-trained visual language models have demon-
strated excellent performance in many downstream tasks. A more efficient adap-
tation method for different downstream tasks is prompt tuning, which fixes the
parameters of the visual language model and adjusts only prompt parameters in
the process of adapting the downstream tasks, using the knowledge learned by
the visual language model during pre-training to solve the problems in the down-
stream tasks. However, the loss of the downstream task and the original loss of the
visual language model are not exactly same during model training. For example,
CLIP uses contrast learning loss to train the model, while the downstream image
classification task uses the cross-entropy loss commonly used in classification
problems. Different loss has different guiding effects on the task. The trend of
the accuracy of the visual language model task during training is also different
from that with the downstream task. The choice of an appropriate loss function
and a reasonable prompt tuning method have a great impact on the performance
of the model. Therefore, we pro-pose a more efficient method of prompt tuning
for CLIP, experiments on 11 datasets demonstrate that our method achieves better
performance and faster convergence in the downstream task.

Keywords: Deep Learning · Visual Language Models · CLIP · Prompt tuning ·
Few-shot learning

1 Introduction

The visual language pre-training model performs well in many downstream tasks, such
as CLIP [1], ALIGN [2]. An important feature of the visual language pre-training model
is to map text and images into a common vector space. For example, image encoder and
text encoder of CLIP model are used to extract features of images and text respectively.
CLIP model utilizes the idea of contrast learning to maximize the cosine similarity be-
tween matched image text pairs and minimize the cosine similarity of unmatched image
text pairs. In contrast, there are usually two methods for adapting visual language pre-
training models to downstream tasks, fine tuning and prompt tuning [3]. Fine tuning
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pre-training models need to consume a lot of storage and computational resources to
adjust the parameters of the whole model, while prompt tuning adapts downstream tasks
by fixing the pre-training model parameters and adding additional trainable parameters.
So prompt tuning only needs to save the parameters of the pre-trained model and add a
few additional parameters for different downstream tasks [3].

The visual languagemodel usually consists of an image encoder and a text encoder to
extract image features and text features, respectively. Therefore, there are three prompt
tuningmethods, namely visual prompt tuning, text prompt tuning, visual and text prompt
tuning. For visual prompt tuning, such as VPT [4], a small number of learnable param-
eters will be added to the vision transformer. For text prompt tuning, such as CoOp [5],
trainable parameters are added instead of manual fixed text prompts to find the optimal
solution matching the current task in a continuous parameter space. For visual and text
prompt tuning, such as UPT [6], unified prompt is input to the transformer for processing
and then shunted to serve as separate prompt for the image and text encoders, respec-
tively. The above approach has made significant progress and achievements in many
downstream tasks, such as few-shot learning.

However, the above approaches to prompt tuning exploration for visual language
model lack consideration for downstream tasks. For example, during our replication, we
found that the trend of the accuracy of the visual language model task during training
was different from that with the downstream task. We illustrate this problem with an
example of CLIP model adapted to downstream task of few-shot learning. In Fig. 1
(left), we showed the accuracy of training CLIP with contrast learning loss. We found
that when the contrast learning accuracy leveled off, the classification accuracy with
few-shot learning did not fully converge, which may be due to the different training
difficulty of different tasks. In Fig. 1 (right), we showed the change in accuracy when
training the CLIP model with classification loss of few-shot learning task. We found
that the classification accuracy was high, but the contrast learning accuracy was low.
However, a model with good performance should perform well in both.

Fig. 1. The trend of accuracy during training CLIP with comparative learning loss (left). The
trend of accuracy during training CLIP with classification loss (right).

Therefore, to solve the above problem,we propose amore efficientmethod of prompt
tuning called Efficient Prompt Tuning (EPT). With this approach, EPT can be better
adapted to different downstream tasks and improve the performance on these tasks.



Efficient Prompt Tuning for Vision and Language Models 79

The main contributions of our paper are as follows: 1) We propose a new prompt tun-
ing method, called Efficient Prompt Tuning (EPT), for downstream task adaptation of
visual language models; 2) We firstly propose incorporating downstream task loss into
the prompt tuning process of visual language model; 3) We perform EPT method on
11 datasets extensive experiments to demonstrate that it outperforms all other existing
prompt tuning methods. We hope that our work will stimulate more in-depth research
in the field of multimodal prompt tuning.

2 Related Work

At present, prompt tuningmethods for visual languagemodels are still amajor challenge.
In general, deep learning-based approaches can be divided into two categories: 2.1.
Single-modal prompt tuning and 2.2. Muti-modal prompt tuning. In this section,
related work from both perspectives is presented in detail.

2.1 Single-modal Prompt Tuning

Large-scale pre-trained models can be adapted to downstream tasks by prompt tuning.
For different downstream tasks, only different prompts need to be designed [3]. Com-
pared with fine-tuning pre-trained models, prompt engineering has a higher ac-curacy
with less data and does not need to adjust the parameters of the whole model, saving
computational resources. While the setting of prompts can greatly affect the model per-
formance and it is a time and effort consuming task to design the prompt templates
manually [5]. The current unimodal prompt tuning methods can be broadly classified
into two categories: text prompt tuning and visual prompt tuning.

Prompt tuning originated from natural language processing techniques [3]. Excel-
lent prompt tuning methods allow large-scale pre-trained models to effectively adapt
to downstream tasks, such as text classification. To this end, Shin et al. proposed auto
prompt based on gradient descent to find the prompt that adapts to the downstream task
in a discrete space [7]. Soft prompt method proposed by Qin et al. used continuous
optimizable vector space instead of the traditional hard prompt which were always fixed
manual templates with single structure, circumventing the problem of poor performance
on a particular corpus [8].

A common approach to image recognition problems in computer vision is to use
pre-trained convolutional models to fine-tune a subset of parameters, such as classifier
heads or bias terms, in order to achieve an improvement in the accuracy of the model for
downstream tasks [4]. However, fine-tuning pre-trained model suffered from the prob-
lem of low accuracy. Moreover, fine-tuning the whole pre-trained model required a lot
of storage resources and computational resources. There also exist some researchers in
computer vision who draw inspiration from prompt tuning in NLP. For example, visual
prompt tuning (VPT) proposed by Jia et al. introduced a small number of task-specific
learnable parameters into the input space and froze the entire pre-trained Transformer
backbone during training in the downstream tasks [4]. This approach reduced the uti-
lization of computational resources because only a few prompt parameters need to be
tuned. The current experiments demonstrated that VPT performed well in the field of
few-shot learning.
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2.2 Multi-modal Prompt Tuning

The multimodal prompt tuning technique originated from the popularity of large-scale
pre-trained multimodal models. The current mainstream visual language models usually
contain dual-streamand single-stream structuredTransformermodels, such as LXMERT
[9], Oscar [10], ViLBERT [11], etc. Oscar proposed by Li et al. improved the perfor-
mance of cross-modal models by increasing the recognition of picture objects and text
connection between them. However, cross-modal models based on contrast learning also
performedwell inmany tasks, such as CLIP [1] andALIGN [2], which extracted features
of different modalities by image encoder and text encoder respectively andmapped them
to the same vector space and then computed the cosine similarity of different texts and
images, showing excellent performance in downstream tasks, such as few-shot learning.

In the cross-modal domain, Zhou et al. proposed to use contextual optimization
(CoOp) on text modalities to achieve prompt tuning of CLIP, and obtained excellent
performance in the field of few-shot learning [5]. Other methods such as CoCoOp [12],
DualCoOp [13] and ProGrad [14] emerged subsequently after this. However, thismethod
does not use prompt parameters on image modality. Unified prompt tuning (UPT) [6]
proposed by Zang et al. adapted the unified prompt parameters to multimodal features
using Transformer. And then shunted them and embedded them into text encoder and
image encoder of CLIP model respectively. The problem with this approach is that
Transformer structure is huge compared to the prompt parameters. On the other hand,
the initial aimof prompt tuningwas to efficiently adapt pre-trainedmodels to downstream
tasks using a small number of prompt parameters.

However, a common problemwith the abovemethods is that the design of the prompt
tuning method does not adequately consider the impact on downstream tasks. Different
loss guides the task differently. During training, accuracy trend for the visual language
model task also differs from downstream tasks. For example, the trend of accuracy when
the CLIPmodel is trained under contrast learning loss is not the same as that in a few-shot
learning task. To solve the above problem, we propose an efficient method of prompt
tuning called EPT, and we will present our work in detail in Sect. 3.

3 Approach

After extensive experimental and reproduction work, we propose an efficient prompt
tuning method for visual language models, called Efficient Prompt Tuning (EPT). Our
prompt tuning method is based on the CLIP model, so we first introduce the CLIP visual
language model in Sect. 3.1 Visual and language pre-training. We will then introduce
prompt tuning method on image encoders in Sect. 3.2 Visual prompt tuning and prompt
tuning method on text encoders in Sect. 3.3 Text prompt tuning. Finally, to solve the
problemmentioned above, wewill introduce loss fusionmethods specific to downstream
tasks in 3.4 Downstream task-related loss fusion.

3.1 Visual and Language Pre-training

CLIP [1] consists of an image encoder and a text encoder. The image encoder is usually
built with ResNet50 [15] or ViT [16] as the backbone, while the text encoder is usu-
ally built on Transformer [17]. A pair of image-text data (image, text) is input to the
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image encoder and text encoder respectively to extract the corresponding features. For
the encoded image features and text features, CLIP is applied to maximize the cosine
similarity of matched image-text data pairs and minimize the cosine similarity of other
mismatched image-text data pairs.

To construct the text description, the label of the image is introduced into the manual
template “a photo of [class]” and then, the encoded features are extracted by the text
encoder. For the extracted visual features and text features, the final predicted class
probabilities are expressed as follows:

p(y = i|x) = exp(cos(ωi, z)/τ)
∑N

j=1exp(cos(ωj, z)/τ)
(1)

For a given image x and a text set y consisting of N image categories, ωi denote
the text features extracted by the text encoder, z denote the visual features of the image
extracted by the image encoder. cos(·, ·) is used to calculate the cosine similarity between
the text features and the visual features. τ refers to a fixed temperature coefficient.

3.2 Visual Prompt Tuning

VPT [4] was the first means to introduce prompt engineering as a large-scale pre-trained
model, such as ViT [16] for image processing. Simple trainable prompt parameters that
were simply added were difficult to adapt to complex image information and realize the
potential of pre-trained visual models. To expand the space of input prompt parameters,
we apply a fully connected neural network [18] to encode high-dimensional prompt
parameters, which are subsequently combined with image features as the input to the
image encoder. After extensive experiments, we found that simply adding parameters
may cause themodel to overfit the training data, sowe added the dropout layer to the fully
connected neural network. The architecture is shown in Fig. 2. Thus, original prompt
parameter of dimension d1 (d1 can be a large value) is first encoded and downscaled by
the fully connected neural network to output a prompt parameter of dimension d2 (d2
can be a value that matches the image encoder). Our approach takes ViT as the reference
model. The prompt tuning method for the visual part is represented as follows, where
the green color indicates the parameters that can be tuned during the training of the
model. The rest of the parameters in ViT are fixed.

(2)

In Eq. (2), represents the initial soft prompt parameters, denotes the soft prompt
parameters encoded by the fully connected neural network (FCN). Zi represents the
feature characteristics computed by the ith transformer layer. In the context of ViT, these
parameters are integrated prior to the position encoding. Thus, the relative localization
of xk to the prompt is preserved.
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Fig. 2. The trend of accuracy during training CLIP with classification loss.

3.3 Text Prompt Tuning

In this section, we introduce text prompt tuning part of EPT. Since the text prompt
tuning method proposed by CoOp [5] has made great progress, we still use the method in
CoOp,whichuse trainable continuous parameters insteadof discretewords as “prompts”.
Prompt parameters and image labels are stitched together and fed into the text encoder,
so that the corresponding text is described as “[soft] [soft] [soft] [soft] [soft] [class]”.
Figure 3 shows the detailed architecture of the text prompt tuning, where the soft tokens
represent the optimizable prompt parameters.

Fig. 3. The architecture of text prompt tuning method practiced in CLIP image encoder.

Thus, a given text description is fed into the text encoder to generate the probability
of a visual feature falling into a category i, as shown in Eq. (3). The [class] token in the
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prompt ti is replaced with the corresponding category of the image ith, such as “airplane”
and “dog”. g(ti) denotes the features extracted by the text encoder from text description
consisting of optimizable prompt parameters and the label of ith image.

p(y = i|x) = exp(cos(g(ti), z)/τ
∑N

j=1 exp(cos(g(tj), z)/τ
(3)

3.4 Downstream Task-Related Loss Fusion

In this section, we will detail the implementation of loss specific to downstream tasks.
In CLIP model, the image and text pairs are trained with the goal of contrast learning,
which is to maximize the cosine similarity of N matched image text pairs at diagonal
positions and minimize the cosine similarity of N 2 −N mismatched image text pairs at
other positions in image text pairs of batch size N . InfoNCE loss is used in CLIP [1].
The loss for image encoder is as follows:

LI = − 1

N

N∑

i=1

log
exp(cos(ωi, z)/τ)

∑N
j=1 exp(cos(ωj, z)/τ)

(4)

The loss of the text encoder LT and the loss of the image encoder LI are symmetric
[19]. Loss of CLIP model LCLIP is the arithmetic average of the loss of the text encoder
and the loss of the image encoder, so LCLIP can be expressed as:

LCLIP = Average(LT + LI ) (5)

As far as we know, the downstream task loss and the original training loss have
different effects on the results when adapting the visual language to the downstream
task. Therefore, in our approach, we integrate the loss of the downstream task into the
training task of the visual language model. We choose the common classification task in
few-shot learning as the reference downstream task. The cross entropy loss [20] of the
classification task Ldown with few shot learning is shown as follows:

Ldown = − 1

N

N∑

i=1

M∑

j=1

f i,jlog(pi,j) (6)

In an image classification problem with batch size N and number of classesM . For
image i, f i,j denotes the binary indicator (0 or 1) if class label j is the correct classification
for image i. log denotes the natural logarithm. pi,j denotes the probability that image i
is predicted to be class j. Therefore, in order to integrate the loss of downstream task
into prompt tuning of the visual language model, we define the loss function of EPT as
follows. The parameter α in the formula is preset to 0.5.

LEPT = (1− α)LCLIP + αLdown (7)
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4 Experiments and Discussions

In this section, we first test few-shot learning performance of our method in Sect. 4.1
Few-shot learning. To verify the improvement of themodel performance by the fused loss
function, we test the performance of different loss functions on the model performance
in Sect. 4.2 Performance of the model with different loss functions.

4.1 Few-Shot Learning

Baselines. We compare our approachwith 1) Zero-shot CLIP, which utilizesmanually
constructed prompts and does not use new training data. 2) The single-modal prompt
tuning approach. This approach used prompt tuning on the text or image modality of
CLIP model for text and image, respectively. For visual prompt tuning, we chose VPT-
deep [4] as the comparison model. For text prompt tuning, we chose CoOp [5] as the
comparison model. 3) Multimodal prompt tuning approach. This approach applied
the prompt parameter on both image and text modalities of the visual language model
at the same time. We choose UPT [6] as the comparison model.

Datasets. We follow Zhou et al. [5] to test the model’s few-shot learning performance
using 11 datasets (ImageNet [21], Caltech101 [22], OxfordPets [23], StanfordCars [24],
Flowers102 [25], Food101 [26],FGVC-Aircraft [27], SUN397 [28], UCF101 [29], DTD
[30], EuroSAT [31]) as our benchmarks. For image feature extraction, we used ViT-B/16
as part of visual prompt tuning. Following Zhou et al. we samely used 1/2/4/8/16 samples
as training data and test data from the entire dataset as evaluation data. We recorded the
average results of different randomseeds as thefinal results. The results of all experiments
are shown in Fig. 4. All the details of the training follow Zhou et al.

EPT vs Single-modal Prompt Tuning Approach. From the average results, our
methodbeatsVPTby0.59%, 2.03%, 2.43%, and3.82%at 2/4/8/16 training shots, respec-
tively. Ourmethod outperforms CoOp 1.31%, 2.53%, and 4.84% at 4/8/16 training shots,
respectively. In general, our method has more obvious advantages over CoOp, VPT and
other unimodal prompt tuning methods. In particular, on the datasets of Food101, FGV-
CAircraft, DTD, EuroSAT, and UCF101, our method has made great progress compared
with the unimodal prompt tuning method. However, we observe that the performance of
our method decreases compared to the previous method when the sample size is 1. This
may be due to the loss of the downstream task addition that causes overfitting to some
of the data. Also, on some datasets, such as OxfordPet, Flowsers102, StanfordCars, the
improvement of EPT is less, which may be caused by the excessive noise of the data.

EPT vs Multimodal Prompt Tuning Approach. From Fig. 4, we observe that EPT
achieves approximately the same excellent performance as UPT in most cases, such as
Caltech101, OxfordPets, EuroSAT. It is worth noting that EPT outperforms UPT on a
few datasets, such as Food101, FGVCAircraft, DTD, UCF101. From the average results,
EPT performs essentially the same as UPT at 1/2/4/8 training samples. At 16 training
shots, EPT outperformed UPT by 1.55% on average on 11 data sets. In addition, EPT
only needs to adjust the image encoder and text encoder prompting parameters during
prompt tuning. In contrast, UPT needs to adjust the whole Transformer parameters in
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addition to the image and text modalities in order to achieve consistent performance. In
general, EPT performs well in the adaptation of few-shot learning due to the addition of
downstream tasks to guide the visual language model.

Fig. 4. Main results over 11 datasets under the few-shot learning setting.



86 B. Li et al.

4.2 Performance of the Model with Different Loss Functions

In this section, to test the performance of the new loss in downstream tasks and exclude
the effect of the number of dataset categories on the experimental results, we set up two
different scenarios (datasets with few categories and datasets with large categories)
separately.

Datasets. For datasets with few categories, we choose RAF-DB dataset [32], which is a
face expression recognition dataset contains 7 basic expressions (i.e., neutral, happy, sad,
surprised, fearful, disgusted, and angry). The training data consisted of 12,271 images
and the test data consisted of 3,068 images. For datasets with large categories, we choose
the Food101 dataset. This dataset includes 101 food categories with 101,000 images.
For each category, 250 manually reviewed test images are presented along with 750
training images. In the two different experimental scenarios, all training images are used
as training data. All test images are used as test data.

Loss Functions. For the loss function, we choose 1) Contrast learning loss, which is
usually InfoNCE loss in the CLIP model, which is to maximize the cosine similarity of
N image text pairs at diagonal positions and minimize the cosine similarity of N 2 − N
image text pairs at other positions. The specific implementation is shown in Eq. 5. 2)
Loss of downstream task, in CLIP adaptation to downstream task of few-shot learning,
which is to calculate the cross entropy loss of predicted image labels and real image
labels. The specific implementation is shown in Eq. 6. 3) Loss fusion, which is the loss
associated with the downstream task used in the EPT. The specific implementation is
shown in Eq. 7.

Fig. 5. Classification accuracy of the model trained on the RAF-DB dataset with different loss
(left). Classification accuracy of the model trained on the Food101 dataset with different loss
(right).

Datasets with Few Categories. Figure 5 (left) shows the influence of different loss in
the RAF-DBdataset on the classification accuracy during training.We found that the loss
of contrast learning and the loss of fusion performed similarly. The classification loss
for the downstream task is slightly worse than the former. It is worth acknowledging that
the fusion loss of the downstream task used in EPT outperforms. While classification
loss is significantly weaker than contrast learning loss and loss fusion. This suggests



Efficient Prompt Tuning for Vision and Language Models 87

that loss fusion can combine the properties of CLIP itself and improve the weakness of
classification loss.

Datasets with Large Categories. Figure 5 (right) shows the effect of different loss in
the Food101 dataset on the classification accuracy during training. In the face of dataset
containing 101 categories, we found that the loss after fusion outperformed the loss from
comparison learning and the classification loss from downstream task. At the 5th epoch,
both the contrast learning loss and the classification loss converged, however the fused
loss did not converge. This may be the main reason why EPT outperformed UPT, CoOp
and VPT. Thus, the fusion loss of the downstream task utilized in EPT still performed
well in the face of datasets with large number of categories.

5 Conclusion

With the rapid expansion and growth of the number of visual languagemodel parameters,
efficient and computationally efficient adaptation methods are critical for pre-trained
models for downstream tasks. Our paper provides a novel solution to the problem of
adapting large visual language models like CLIP from the perspective of model structure
and design of loss functions. Our study sheds light on the problem of loss in downstream
tasks that has been overlooked in previous studies and gives a solution called EPT.
Performance comparable to the effect of previous studies can be achieved in EPT by
simply adjusting the loss function and adding simple prompt parameters. The results
show that the fused loss achieve excellent performance in both the CLIPmodel itself and
in downstream tasks. Overall, we believe that multimodal prompt learning is a promising
area of research.Wehope that our studywill stimulatemore lively discussions and deeper
research.
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Abstract. This study introduces a novel spatiotemporal method to pre-
dict fine dust (or PM2.5) concentration levels in the air, a significant
environmental and health challenge, particularly in urban and indus-
trial locales. We capitalize on the power of AI-powered Edge Computing
and Federated Learning, applying historical data spanning from 2018 to
2022 collected from four strategic sites in Mumbai: Kurla, Bandra-Kurla,
Nerul, and Sector-19a-Nerul. These locations are known for high indus-
trial activity and heavy traffic, contributing to increased pollution expo-
sure. Our spatiotemporal model integrates the strengths of Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) net-
works, with the goal to predict PM2.5 concentrations 24 h into the future.
Other machine learning algorithms, namely Support Vector Regression
(SVR), Gated Recurrent Units (GRU), and Bidirectional LSTM (BiL-
STM), were evaluated within the Federated Learning framework. Per-
formance was assessed using Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R2. The preliminary findings suggest that
our CNN-LSTM model outperforms the alternatives, with a MAE of
0.466, RMSE of 0.522, and R2 of 0.9877.

Keywords: Air Quality · PM2.5 Pollution · CNN-LSTM Networks ·
Edge Intelligence · Federated Learning

1 Introduction

The escalating concern of air pollution, specifically PM2.5, has intensified health
risks globally [3,5,11,12], necessitating an urgent requirement for effective air
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quality monitoring and prediction systems. PM2.5 denotes fine particulate mat-
ter with a diameter of fewer than 2.5µm, associated with serious environmental
and health concerns, including cardiovascular and respiratory diseases. As tech-
nologies advance, supporting the emergence of smart cities, the efficacy of these
systems becomes increasingly essential. Traditional air quality monitoring sys-
tems rely on centralized monitoring stations. Despite their widespread use, these
systems bear inherent limitations, including high costs, sluggish response times,
and limited coverage, demanding an innovative solution [13].

In response to these challenges, our paper presents a novel spatiotemporal
approach leveraging Cloud-Edge Intelligence and Federated Learning, revolu-
tionizing the air quality monitoring, and forecasting landscape. This approach
is a distributed computing paradigm that allows integration of both cloud and
edge capabilities. By putting data storage and artificial intelligence function-
alities nearer to the data sources, it reduces the communication overhead and
augments prediction accuracy. Furthermore, Federated Learning enables multi-
ple decentralized edge devices to collaboratively train a global machine learning
model while keeping the data locally on the devices, thereby bolstering data pri-
vacy [2,4,6–10,14]. It also allows real-time predictions of PM2.5 while delivering
a more precise and cost-effective solution.

This study also incorporates an evaluation of multiple machine learning algo-
rithms, namely SVR, GRU, and BiLSTM, and contrast them against our pro-
posed CNN-LSTM model. Edge servers facilitate this process, utilizing a secure
Message Queuing Telemetry Transport (MQTT) protocol over a Transport Layer
Security (TLS) connection, ensuring data integrity and security during trans-
missions. The necessity of using the CNN-LSTM model stems from its ability to
capture both spatial and temporal dependencies in the data effectively, a feature
that sets it apart from other models. We employ different performance metrics
to assess its prediction accuracy in terms of Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE), and to assess the proportion of variance
using R-squared (R2). In short, our key contributions include the development
of a novel prediction model using CNN-LSTM, an in-depth comparison of the
model against other conventional methods, and an exploration into the practical
deployment of the model.

The paper is structured as follows. Section 2 elaborates on the proposed
method. Section 3 documents the experimental work and discusses the results
of various approaches. Section 4 concludes the paper, highlights the limitations
of our work, offers suggestions for scalability and practical deployment of our
model as well as directions for future work.

2 Proposed PM2.5 Prediction Model

As depicted in Fig. 1, our spatiotemporal framework integrates Cloud-Edge Intel-
ligence with Federated Learning for real-time prediction of PM2.5. The main
motivation behind this approach is to combine the advantages both technologies
to offer a solution that addresses the limitations of traditional air quality moni-
toring systems, ensuring robustness and keeping data and decision-making near
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the data source. At the bottom layer, edge devices, equipped with air quality
sensors deployed across multiple locations, collect and preprocess real-time data
to train local models. The central server, equipped with a robust processor and
ample memory, is tasked with aggregating a global model. The training is per-
formed using federated learning algorithms that prioritize keeping data on local
devices while only communicating model parameters to tackle problems of band-
limited and unreliable communications such as wireless settings. The edge server
acts as an intermediary level between the edge devices and the central server.
In our experiments, the central server is hosted on a GPU-enabled AWS EC2
instance and communicates with the edge server using a secure Message Queuing
Telemetry Transport (MQTT) protocol over a Transport Layer Security (TLS)
connection. More details are explained in the following subsections.

Fig. 1. Federated Edge IoT Framework for PM2.5 Prediction.

2.1 Data Collection and Preprocessing

The data collection process is accomplished through a network of edge devices
that are equipped with a variety of sensors, including ones for measuring PM2.5

levels, temperature, humidity, Carbon Monoxide (CO), and Nitrogen Oxides
(NOx). These devices sample the environmental parameters at regular intervals
(e.g., every minute), and each data point is time-stamped and stored locally.
Prior to utilizing the data for model training, a significant step involves pre-
processing this data to handle specific conditions like data standardization and
missing value imputation.
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Data Standardization: This is critical to bring different variables to a com-
mon scale without distorting the differences in the range of values or losing
information. The standardization process not only ensures that data from dif-
ferent sensors are compatible, but also that the data feeding into the predictive
models are consistent in scale, enhancing the accuracy of the predictions. It is
essential to remove unit limits in the various data fields, thereby transforming the
data into a pure dimensionless quantity or value. This standardization enables
comparison and weighting across different units or magnitudes. In this research,
we employ the zero-mean standardization method, a common approach for raw
data fields, utilizing the mean (μ) and standard deviation (σ). This method stan-
dardizes the data to comply with the standard normal distribution where the
average value is zero, and the standard deviation is one. The standardization
process is defined mathematically by:

zt = (yt − μy)/σy (1)

where zt represents the standardized data, yt is the original data value, and μy

and σy are the mean and standard deviation of the data, respectively.

Missing Value Imputation: Inevitably, some values in the dataset might be
missing due to various reasons such as instrument failure, maintenance, manual
check-in, or invalid values. Handling missing values is crucial in time series fore-
casting, as an incomplete dataset can introduce bias or inaccuracies in the model
predictions. Filling these missing values is crucial to maintain the continuity and
quality of the dataset. As our data predominantly contains time series of PM2.5

and other gas data, we opt for Akima [1] interpolation, a well-suited method
for time-series data, to impute the missing values. Akima interpolation method
requires the adjacent four observation points in addition to the two observa-
tions at which the internal difference is being calculated, making it necessary to
have six observation points when performing Akima interpolation. This method
ensures that the interpolated values are more reflective of the actual trends in
the data, preserving the quality and integrity of our dataset.

2.2 CNN-LSTM Model Architecture

Our proposed model architecture is a Convolutional Neural Network - Long
Short-Term Memory (CNN-LSTM) hybrid model, which combines the pattern
recognition capabilities of CNN with LSTM’s ability to handle sequential data.
The main motivation for using the CNN-LSTM model is its proven efficiency
in both spatial and temporal data recognition. The input data is fed through a
series of convolutional layers for feature extraction, which identify patterns and
correlations in the data by applying multiple filters. This abstract representation
is then passed to LSTM layers for time-series prediction. The LSTM layers lever-
age memory cells that can retain information from previous time steps, allowing
for predictions based on historical trends.
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Fig. 2. Architecture of CNN-LSTM Model

The architecture depicted in Fig. 2 showcases the connectivity of the CNN-
LSTM model, which has been specifically designed to efficiently predict PM2.5

concentrations. When compared to other models like GRU, SVR, and BiLSTM,
CNN-LSTM offers a blend of the best features-making it ideal for our specific
problem statement. The model begins with the input layer, where individual
nodes represent distinct environmental factors such as PM2.5 levels, temperature,
humidity, CO, and NOx. These nodes establish connections with subsequent con-
volutional layers, consisting of 32 filters, enabling the capture of specific features
and patterns from the input data. The output of each filter undergoes processing
through an activation function, introducing non-linearity to the model.

Max-pooling layers follow the convolutional layers, facilitating down-
sampling and retaining the most salient features. The output from the max-
pooling layers is then fed into LSTM layers, which possess recurrent connections
capable of capturing long-term dependencies within sequential data. The LSTM
layers, consisting of 50 hidden units, effectively identify temporal dependencies
within the sequence of features, providing valuable insights into the evolving
patterns of PM2.5 levels.

Following the LSTM layers, fully connected layers are introduced, compris-
ing 64 nodes. Each node establishes connections with all nodes in the preceding
layer, enabling comprehensive feature transformation and learning processes.
The interconnectedness of these nodes facilitates the integration of information
from different channels, allowing the model to capture higher-level representa-
tions of the data.

Finally, the output layer receives the transformed features and generates the
predicted PM2.5 concentration. By comparing this architecture to traditional
statistical or physical models, we found that the CNN-LSTM approach delivers
superior prediction accuracy, especially for datasets with complex interdepen-
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dencies. This methodology was chosen for its ability to provide real-time predic-
tions, scalability, and a decentralized approach that respects user privacy. The
interconnected layers within the CNN-LSTM model establish a powerful flow
of information, facilitating efficient processing, feature extraction, and the cap-
turing of temporal dependencies. This comprehensive architecture enables the
model to make accurate predictions of PM2.5 concentrations, contributing to
improved air quality monitoring and forecasting.

2.3 Cloud-Edge Model Training and Inference

In the Federated Learning approach, each edge device trains a local model using
its collected data. This methodology was chosen for its ability to provide real-
time predictions, scalability, and a decentralized approach that respects user pri-
vacy. This model training is performed using the CNN-LSTM model architecture
with an ADAM optimizer and mean-squared error loss function. It’s essential to
note that the entire training process, including forward propagation (calculating
predicted PM2.5 concentrations), loss computation, and backpropagation (com-
puting gradients and updating weights), occurs locally on each edge device. After
training, each edge device shares only its model parameters or gradients (not the
actual data) with the Central Server. This federated approach, while complex,
offers benefits of data privacy as raw data remains on local devices and is not
shared with the central server. The Central Server then aggregates the received
model parameters from all edge devices, computes a global update, and shares
this updated global model with all the edge devices. The edge devices then use
this updated global model to make inferences. By employing Federated Learn-
ing, our approach ensures that the data and decision-making processes remain
close to the data sources, maximizing robustness, scalability, and privacy. The
Cloud-Edge training and inference process provides an optimal blend of cen-
tralized intelligence and distributed intelligence, achieving real-time predictions
while ensuring data privacy.

3 Experimental Work

3.1 Setup and Dataset

The proposed system for air quality monitoring and forecasting was implemented
using the Python programming language. The implementation leveraged Ten-
sorFlow’s Keras API for developing the CNN and LSTM components of the
algorithm. To ensure efficient training of the CNN-LSTM algorithm and accu-
rate air quality predictions, an Amazon Web Services (AWS) EC2 instance with
a GPU-enabled instance type was utilized.

For data collection, a Raspberry Pi 4 Model B with 4 GB of RAM and a
1.5GHz quad-core ARM Cortex-A72 CPU was employed. This hardware config-
uration provided the necessary computational power and memory capacity for
real-time data acquisition and processing. The following sensors were utilized to
collect specific environmental parameters:
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(a) MQ135 Sensor: This sensor was used to measure Carbon Monoxide (CO)
levels in the air.

(b) MQ7 Sensor: This sensor was employed for detecting Nitrogen Oxides (NOx)
concentrations.

(c) DHT11 Sensor: This sensor was utilized to measure temperature and humidity
levels.

(d) PMS5003 Sensor: This sensor was used for collecting Particulate Matter (PM)
data, specifically PM2.5 concentrations.

These sensors were strategically placed in four locations (Mumbai: Kurla,
Bandra-Kurla, Nerul, and Sector-19a-Nerul) to capture the relevant environ-
mental parameters for air quality monitoring.

The experimental setup involved training the CNN-LSTM algorithm on the
collected dataset using the GPU-enabled EC2 instance on AWS. The training
process utilized the historical air quality data1 and the corresponding sensor
readings to optimize the model’s parameters and enable accurate predictions of
PM2.5 levels.

The dataset utilized in our study comprises air quality measurements for
PM2.5 obtained from multiple monitoring stations in Mumbai over an extended
period. This dataset offers a comprehensive and long-term perspective on the air
quality conditions in various locations within Mumbai, including Kurla, Bandra-
Kurla, Nerul, and Sector-19a-Nerul. It includes daily average PM2.5 values as
well as other relevant environmental factors such as Carbon Monoxide (CO),
nitrogen oxide (NOx), temperature, and humidity.

3.2 Results and Discussions

For our evaluation metrics, we utilized Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Coefficient of Determination (R2) to assess the
model’s performance. It’s vital to underline the significance of these metrics in
model evaluation, as they provide a comprehensive overview of the model’s accu-
racy, prediction consistency, and generalization capabilities. MAE measures the
difference between predicted and actual values without considering the direc-
tion of the errors, thus providing an average magnitude of the errors. RMSE
amplifies and harshly penalizes large errors, making it sensitive to outliers. On
the other hand, the R2 metric determines how well observed outcomes are repli-
cated by the model, as the proportion of total variation of outcomes is explained
by the model. By comparing our results with those of state-of-the-art models,
it’s evident that our CNN-LSTM model offers superior performance in predict-
ing PM2.5 concentrations. This side-by-side analysis reinforces our choice of the
model and showcases its robustness in handling real-world data complexities.
These metrics are defined as follows:

MAE =
1
n

n−1∑

t=0

|yt − ŷt|, RSME =

√√√√ 1
n

n−1∑

t=0

(yt − ŷt)2, R2 = 1− SSR

SST
(2)

1 https://aqicn.org/forecast/mumbai/.

https://aqicn.org/forecast/mumbai/
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(a) CO, NO, temperature and humidity

(b) PM2.5

Fig. 3. Hardware implementation for the data collection

where yt represents the actual concentration, ŷt represents the predicted con-
centration, SSR (Sum of Squared Residuals) represents the sum of the squared
differences between the predicted values and the actual values, and SST (Total
Sum of Squares) represents the sum of the squared differences between the actual
values and the mean of the dependent variable.

A lower MAE or RMSE value indicates a closer alignment between the pre-
dicted and actual concentrations. However, it is important to note that RMSE



98 S. Abimannan et al.

assigns more weight to larger errors due to the squaring operation. On the other
hand, a higher R2 value signifies a better fit of the model to the data, indicating
that the predicted PM2.5 concentrations closely match the actual concentrations.
This metric provides insights into the models’ predictive power and their ability
to capture the variability in PM2.5 levels. Therefore, R2 serves as a valuable
metric for assessing and comparing the performance of different models, such
as CNN-LSTM, SVR, and GRU, in predicting PM2.5 concentrations. It offers a
quantitative measure of how well these models capture the underlying patterns
and trends in the data, enabling researchers to evaluate their predictive accuracy.

Fig. 4. Performance Comparison: MAE, RMSE, and R2

The research paper aimed to assess the performance of four different models:
GRU, SVR, BiLSTM, and CNN-LSTM, for predicting PM2.5 concentrations.
The evaluation was based on three key metrics: mean absolute error (MAE),
root mean square error (RMSE), and R-squared (R2). The results unequivocally
demonstrated that the CNN-LSTM model outperformed the other models across
all three metrics. A pivotal distinction between our CNN-LSTM model and other
traditional statistical or physical models is the ability of CNN-LSTM to process
both spatial (through CNN) and temporal (through LSTM) data. This dual
processing allows for a more holistic representation and understanding of PM2.5
levels, making it a robust choice for our predictions.

Significantly, the CNN-LSTM model displayed the highest R2 value of 0.9877,
which signifies its ability to explain a substantial portion of the variance in the
PM2.5 concentrations. This high R2 value underscores the strong relationship
between the predicted and actual values, illustrating the model’s proficiency
in capturing underlying patterns and trends within the data. In comparison,
the GRU model demonstrated a moderate performance with an MAE of 2.954,
RMSE of 3.5818, and R2 of 0.422. Similarly, the SVR model exhibited slightly
better performance with an MAE of 4.193, RMSE of 4.7561, and R2 of 0.512.
On the other hand, the BiLSTM model showcased better performance with an
MAE of 1.866, RMSE of 2.0912, and R2 of 0.8032.

In summary, the evaluation metrics consistently demonstrated that the CNN-
LSTM model outperformed the other models, positioning it as the most accu-
rate and reliable for predicting PM2.5 concentrations. The findings highlight the



Spatiotemporal PM2.5 Pollution Prediction Using Cloud-Edge Intelligence 99

CNN-LSTM model as an excellent choice for accurate PM2.5 predictions, while
the other models may benefit from further refinement to enhance their perfor-
mance.

4 Conclusion and Future Work

To address the growing problem of PM2.5 pollution, especially in urban and
industrial areas, we’ve developed a new technique. We use Edge Intelligence and
Federated Learning to predict PM2.5 levels in real-time accurately. This inno-
vative method combines the use of Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks. The choice of using the CNN-
LSTM model was due to its proven ability to handle time-series data efficiently,
especially when combined with the spatial features processed by the CNN. We’ve
found it works remarkably well compared to standard machine learning models
like Support Vector Regression (SVR), Gated Recurrent Units (GRU), and Bidi-
rectional LSTM (BiLSTM) and also when contrasted with traditional statistical
or physical models commonly used for fine dust prediction.

We focused on three key metrics to evaluate performance: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R2). The
reason behind selecting these metrics lies in their capability to provide a com-
prehensive view of the model’s accuracy, deviation from the true values, and
its overall explanatory power. Furthermore, the comparison of our results with
existing state-of-the-art models showcases the advancements we achieved. The
CNN-LSTM model stood out, showing superior ability in predicting PM2.5 lev-
els. It was closest to the actual values, with MAE and RMSE values of 0.466
and 0.522 respectively, and a high R2 score of 0.9877. This high score shows
that our model can account for most of the changes we see in PM2.5 levels,
highlighting its strong predictive ability and reliability. While the other models
showed some predictive ability, they didn’t perform as well as the CNN-LSTM
model. This suggests that there are opportunities to improve these models in the
future. Our study’s results show the powerful potential of using AI-based Edge
Computing and Federated Learning for predicting PM2.5 levels. This paves the
way for creating efficient, accurate, and privacy-focused air quality prediction
systems. Furthermore, the deployment of our model on an edge server using a
secure MQTT protocol over a TLS connection ensures data security and real-
time predictions.

Looking ahead, we see several interesting areas for future research. First,
we could look at how increasing the number of edge devices and having more
diverse data could improve the performance of the CNN-LSTM model. This will
also help assess the scalability of our proposed model. Second, exploring dif-
ferent Federated Learning algorithms could help speed up the learning process.
Lastly, we could look into using our model to predict other types of air pollu-
tants. As we continue to learn more about Federated Learning, we expect to see
more advancements that will make real-time air quality prediction systems even
better. Additionally, incorporating a comprehensive introduction to Cloud Edge
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intelligence in the earlier sections will further solidify our methodology and its
innovative approach.
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Abstract. The assumption of data completeness plays a significant role
in the effectiveness of current Multi-view Clustering (MVC) methods.
However, data collection and transmission would unavoidably breach this
assumption, resulting in the Partially Data-missing Problem (PDP). A
common remedy is to first impute missing values and then conduct MVC
methods, which may cause performance degeneration due to inaccurate
imputation. To address these issues in PDP, we introduce an imputation-
free framework that utilizes a matrix correction technique, employing a
novel two-stage strategy termed ’correction-clustering’. In the first stage,
we correct distance matrices derived from incomplete data and compute
affinity matrices. Following this, we integrate them with affinity-based
MVC methods. This approach circumvents the uncertainties associated
with inaccurate imputations, enhancing clustering performance. Com-
prehensive experiments show that our method outperforms traditional
imputation-based techniques, yielding superior clustering results across
various levels of missing data.

Keywords: Multi-view Clustering · Incomplete Data · Matrix
Correction

1 Introduction

Multi-view data, stemming from diverse sources, encompasses multiple repre-
sentations ubiquitous in real-world scenarios, like videos with audible and visual
facets or images with raw RGB space data paired with descriptive text. These
diverse views offer both consistent and supplementary information. The aim of
Multi-view Clustering (MVC) is to assimilate this multi-faceted information into
a unified structure, facilitating the unsupervised clustering of data samples with
similar structures. However, a predominant assumption in most MVC method-
ologies [7,13,27,31,32] is the complete observation of sample information across
all views. In reality, data collection and transmission can breach this assumption,
resulting in Incomplete Multi-view Clustering (IMVC) challenges [15,22,28].
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In the realm of IMVC, inconsistencies in views or incomplete data contribute
to data gaps. These voids, illustrated in Fig. 1, stem either from Partially View-
missing Problem (PVP) [15,22,28] due to inconsistent views (i.e., one sample
has empty vectors in some views, as shown in Fig. 1 (a)), or from the more perva-
sive, yet less explored, Partially Data-missing Problem (PDP) caused by
data incompleteness (i.e., one sample has representations in all views but with
some missing values, as shown in Fig. 1 (b)). Traditional strategies aimed at
remedying PDP often involve padding missing values via imputation techniques
[5,6,9] before applying MVC on the imputed data. However, this imputation-
based approach can falter, especially when applied without domain knowledge
on data structures, risking damage to intrinsic structures. Moreover, inaccu-
rately imputed views can distort the fusion process in existing MVC techniques,
potentially undermining clustering outcomes.

Fig. 1. Interpretation of PVP and PDP in IMVC problems.

To address the above issues, our contributions are threefold:

• We propose an imputation-free framework with the matrix correction method
to deal with partially data-missing problems in the IMVC community, which
can naturally avoid the uncertainty error caused by inaccurate imputation
and directly obtain high-quality affinity matrices through matrix correction.

• We introduce a matrix correction algorithm to effectively and efficiently esti-
mate distance matrices on incomplete data with a theoretical guarantee.
Specifically, it starts with initial distance matrices estimated from incom-
plete data and then corrects these estimates to satisfy specific properties via
a convex optimization approach.

• We design a two-stage strategy, i.e., correction-clustering (as shown in Fig. 2),
to combine with all affinity-oriented MVC methods, which makes existing
MVC methods great again on IMVC problems. Extensive experiments demon-
strate that our strategy achieves superior and robust clustering performance
under a wide range of missing ratios, compared to the imputation-based
approaches.
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Fig. 2. The framework of our imputation-free approach for PDP problems. It adopts
a novel two-stage strategy that first corrects affinity (distance) matrices in all views,
and then combines with MVC methods to achieve clustering.

2 Related Work

Multi-view Clustering. MVC assumes that all samples are fully observed in
all views. One popular roadmap of MVC is to separate the data based on affin-
ity matrices constructed in all views. Those affinity-based clustering methods
include spectral clustering [13,14,32,42], kernel-based clustering [7,21,31,41],
and graph clustering [27,29,36,37].

Incomplete-view Multi-view Clustering. Incomplete-view MVC methods
focus on scenarios where partial samples have missing views or there is no view
containing all samples, and they use the observed-view information to recover the
missing views. Traditional IMVC models generate the consensus representation
or affinity of view-missing data via matrix factorization [15,22,28], kernel-based
[10,23,24], or graph-based [30,38,40] methods.

Incomplete-value Multi-view Clustering. In contrast to view-level missing,
incomplete-value MVC aims at value-level (data-level) missing, where each sam-
ple in any view may contain some missing values. A feasible solution is to first
impute missing values and then perform multi-view clustering methods. In prac-
tice, statistical imputation techniques [12,20], such as zero, mean imputation,
and k-nearest neighbor (kNN) imputation [39], have been widely used. Besides,
matrix completion [5,6,9] is a representative machine learning-based technique
that solves a matrix factorization problem. Unfortunately, it is difficult to accu-
rately estimate missing values based on the observed data, especially for a large
missing ratio, and there is no guarantee on the quality of imputation. This moti-
vates us to design an imputation-free approach.
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3 Methodology

To seek a reliable solution to incomplete-value MVC, we propose an imputation-
free framework with a two-stage strategy, i.e., correction-clustering, as illustrated
in Fig. 2. Our work mainly resides in the matrix correction technique [18,34] to
improve the distance/affinity matrix estimation for incomplete data.

3.1 Distance Estimation

Consider a multi-view dataset with v views and n samples. Denote X(i) =
{x

(i)
1 , · · · , x

(i)
n } ∈ R

di×n as the data matrix in view i, where di is the view-
specific dimension. For simplicity, we consider an incomplete data matrix in a
single-view, i.e., Xo = {xo

1, · · · , xo
n} ∈ R

d×n, where xo
i represents the observed

i-th sample that may contain missing values.
If samples are not fully observed, their pairwise distance has to be estimated.

For two incompletely observed samples xo
i , x

o
j ∈ R

d, denote Ii,j ⊆ {1, · · · , d}
as the index set recording the positions of features that are observed in both
samples. Assuming Ii,j is not empty, denote xo

i (Ii,j) ∈ R
|Ii,j | as a vector of

selected values in xo
i on Ii,j . Then, the pairwise Euclidean distance doi,j can be

estimated from their commonly observed features by [18]

doi,j = ‖xo
i (Ii,j) − xo

j(Ii,j)‖2 ·
√

d

|Ii,j | ∈ [0,+∞). (1)

The estimated Euclidean distance matrix are obtained by Do = {doi,j} ∈ R
n×n.

Moreover, all distance-based kernel matrices can be calculated from Do accord-
ingly, such as the widely used Gaussian kernel Ko = {exp(−(d0i,j)

2/σ2)} ∈ R
n×n.

3.2 Distance and Affinity Correction

To correct an initial distance matrix Do calculated via Eq. (1), we introduce the
distance correction method [18,34] and resort to a Laplacian kernel matrix, i.e.,
Ko = exp(−γDo). Considering the PSD property of the Laplacian kernel [25],
we correct the initial distance matrix Do by solving the following problem:

D̂ = argmin
D∈Rn×n

‖D − Do‖2F (2)

subject to ⎧⎪⎨
⎪⎩

di,i = 0, ∀ 1 ≤ i ≤ n

di,j = dj,i ≥ 0, ∀ 1 ≤ i 	= j ≤ n

exp(−γD) 
 0

where 
 0 denotes the positive semi-definiteness (PSD). However, the problem
defined above is hard to solve due to the PSD constraint in the exponential form.
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Thus, we change the decision variable from D to K = exp(−γD) and reformulate
the problem under an efficient approximation:

K̂ = argmin
K∈Rn×n

‖K − Ko‖2F (3)

subject to ⎧⎪⎨
⎪⎩

ki,i = 1, ∀ 1 ≤ i ≤ n

ki,j = kj,i ∈ [0, 1], ∀ 1 ≤ i 	= j ≤ n

K 
 0

which can be solved by the Dykstra’s projection method [2,8,16–19,34,35].

Algorithm 1. Correction-clustering Strategy Based on Distance Correction
Input: {X(1), · · · , X(v)}: an incomplete multi-view dataset with X(i) ∈ R

di×n, ∀ 1 ≤
i ≤ v.

Output: L ∈ R
n: clustering labels.

1: � Stage-I. Affinity (Distance) Correction
2: for i = 1, 2, · · · , v do
3: Calculate D

(i)
o from incomplete X(i) via Eq. (1).

4: Initialize K
(i)
o = exp(−γD

(i)
o ) with γ = 0.02

max{D
(i)
o }

.

5: Obtain K̂(i) by solving Eq. (3) with the Dykstra’s projection.
6: Obtain D̂(i) = − 1

γ
log(K̂(i)).

7: Calculate a distance-based affinity matrix Â(i) from D̂(i).
8: end for
9: � Stage-II. Multi-view Clustering

10: Obtain a consensus affinity matrix Â from {Â(1), · · · , Â(v)} by MVC.
11: Obtain the final clustering labels L based on Â.

3.3 Theoretical Analysis

Theoretical Guarantee. Despite the convergence guarantee [4], the proposed
method also have a nice theoretical guarantee [18] on the correction performance
that we provide an improved estimate of the unknown ground-truth.

Theorem 1. ||D∗ − D̂||2F ≤ ||D∗ − Do||2F . The equality holds if and only if
Ko 
 0, i.e., K̂ = Ko, D̂ = Do.

Complexity Analysis. The time complexity of distance correction is O(n3)
per iteration, which mainly comes from the eigenvalue decomposition (EVD) in
the projection operation onto the PSD space. Nevertheless, we can apply highly
efficient algorithms for EVD operation to accelerate the algorithms, such as par-
allel algorithm [3] and the randomized singular value decomposition algorithm
[11]. The storage complexity is O(n2) to store the whole matrix in memory.



106 F. Yu et al.

4 Experiments

4.1 Experimental Setup

Datasets. The experiments are carried out on two benchmark datasets as shown
in Table 1: 1) MSRC-v11 [33]: a scene recognition dataset containing 210 images
with 6 views; 2) ORL2: a face-image dataset containing 400 images with 3 views.
All the experiments are carried out for 10 random seeds on a ThinkStation with
2.1GHz Intel i7-12700 Core and 32GB RAM.

Table 1. Statistic of two benchmark multi-view datasets.

Datasets # of Samples # of Views # of Clusters # of Dimensions

MSRC-v1 210 6 7 1302/48/512/100/256/210
ORL 400 3 40 4096/3304/6750

Implementation. All data is normalized to [−1, 1]. In each view, the values
of each sample vector are missing completely at random (MCAR) with a given
missing ratio r, e.g., 70%. The incomplete clustering task is to first obtain mul-
tiple distance/affinity matrices through imputation or correction methods and
then conduct multi-view clustering algorithms to get clustering results.

Baselines. The proposed distance correction method is compared with several
representative imputation methods from two categories: 1) statistical methods:
ZERO, MEAN, kNN [39] impute the missing value by zero, mean value or an
average value of k-nearest neighbors (k = 10), respectively; 2) machine learn-
ing methods: SVT [5] makes low-rank matrix completion with singular value
thresholding, GROUSE [1] conducts low-rank matrix completion via Grass-
manian rank-one update subspace estimation, FNNM [6] performs low-rank
matrix completion by factor nuclear norm minimization, and KFMC [9] uti-
lizes a kernelized-factorization matrix completion.

Multi-view Clustering Algorithms. To verify the quality of affinity matrices
obtained by imputation or correction methods, we choose popular affinity-based
multi-view clustering algorithms to perform clustering, including: 1) spectral
clustering: CRSC [14] and AASC [13] employ the co-regularization or affinity
aggregation to optimize spectral clustering, respectively; 2) graph-based clus-
tering: AWP [27] and CGD [29] generate a weighted graph by fusing multiple
graph matrices; 3) kernel-based clustering: RMKKM [7] and MVCLFA [31]
improve the robustness via multiple kernel k-means clustering or late fusion
alignment maximization, respectively.

Evaluation Metrics. The clustering performance is evaluated by three com-
monly used metrics, i.e., clustering accuracy (ACC), normalized mutual infor-
mation (NMI), and purity (PUR), which range between 0 and 1. The higher the
better. The average results of 10 random seeds are reported for all experiments.
1 https://mldta.com/dataset/msrc-v1/.
2 https://cam-orl.co.uk/facedatabase.html.

https://mldta.com/dataset/msrc-v1/.
https://cam-orl.co.uk/facedatabase.html.
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4.2 Incomplete Clustering on Single-View Data

We select the first view in the multi-view dataset as a newly single-view dataset,
where the values of samples are missing completely at random with a given
missing ratio r varying from 20% to 80%. To deal with it, we first obtain an
estimated Euclidean distance matrix D̂ from incomplete data Xo. Then we cal-
culate a corresponding Gaussian kernel K̂ = exp(−D̂2/σ2) with σ = median{D̂}
as the input of the standard spectral clustering algorithm [26], which applies the
normalized cut and is a popular package3 in the MATLAB library. As shown in
Fig. 3, the proposed method shows significant improvement in clustering metrics
(i.e., ACC, NMI, PUR) in almost all experiments with the least performance
degeneration. Even for a large missing ratio (e.g., 80%), our method still main-
tains reliable performance and shows its robustness.
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Fig. 3. Incomplete single-view clustering results on MSRC-v1 and ORL datasets using
the standard spectral clustering algorithm.

4.3 Incomplete Clustering on Multi-view Data

Now, we further investigate the multi-view clustering performance. All samples in
each view randomly replace their values with the NA values under a missing ratio
r. Same as the setting in Sect. 4.2, the results on distance-based Gaussian kernels
are shown in Fig. 4 with a fixed 70% missing ratio. The experimental results show
that our approach consistently achieves better performance, in terms of ACC,
NMI and PUR, against all compared imputation methods. Thus, the proposed
framework shows effectiveness and robustness and therefore more reliable on
incomplete multi-view clustering tasks.

3 https://ww2.mathworks.cn/help/stats/spectralcluster.html.

https://ww2.mathworks.cn/help/stats/spectralcluster.html
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Fig. 4. Incomplete multi-view clustering results on MSRC-v1 and ORL datasets using
different multi-view clustering algorithms under a fixed 70% missing ratio.

4.4 Quality Visualization of Affinity Matrices

To assess the quality of affinity matrices, we visualize consensus affinity matri-
ces. We obtain Euclidean distance matrices through imputation methods or our
correction method for all views. The AASC multi-view clustering algorithm [13]
is used to fuse multiple distance matrices to a consensus affinity matrix. A high-
quality affinity matrix should have a clear block diagonal structure. Our con-
sensus affinity matrices, illustrated in Fig. 5, demonstrate a remarkable ability
to capture a strong clustering structure that is nearly identical to the ground-
truth. This, in turn, leads to improved clustering performance as compared to the
ZERO and MEAN methods whose affinity matrices lack clear block structures
and are plagued with noise.
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Fig. 5. Consensus affinity matrices obtained by the AASC multi-view clustering algo-
rithm on MSRC-v1 and ORL datasets with a 70% missing ratio.
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4.5 Motivation and Results Summary

When dealing with incomplete data, common imputation methods rely on
domain knowledge of data structures and lack theoretical guarantees for the
imputed data. To tackle this issue, we introduce a matrix correction tech-
nique that utilizes convex optimization to correct an estimated distance matrix
and ensure certain properties are satisfied. Our approach leverages the posi-
tive semi-definite (PSD) property of the Laplacian kernel to improve the esti-
mated distance with a theoretical guarantee of accuracy. As a result, our
correction-clustering strategy outperforms traditional imputation-based strate-
gies on incomplete clustering tasks in both single-view and multi-view datasets.

5 Conclusion and Future Work

Partially missing data is a significant issue in incomplete multi-view clustering,
yet it has received relatively little attention in the research community. Tra-
ditional imputation methods can lead to inaccurate results and degrade perfor-
mance. To address this challenge, we propose a novel imputation-free and unified
framework for incomplete-value multi-view clustering. Our framework includes
a distance correction method, combined with a two-stage correction-clustering
strategy that integrates with existing multi-view clustering algorithms.

Our proposed framework outperforms existing imputation-based strategies,
as demonstrated by extensive experiments. Our matrix correction algorithm pro-
vides high-quality Euclidean distance matrices that are closely aligned with the
unknown ground-truth, resulting in improved performance in single-view spec-
tral clustering. Additionally, our algorithm achieves better multi-view clustering
performance by improving consensus affinity matrices. Overall, our framework
provides a valuable tool for various data mining applications, particularly those
involving incomplete clustering.

In future work, we plan to study missing data imputation in incomplete multi-
view clustering and extend our framework to handle other types of missing data,
such as missing views or modalities. We also aim to apply our framework to other
real-world datasets and practical applications to further validate its effectiveness.
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Abstract. In this paper, we propose PLKA-MVSNet to address the
remaining challenges in the in-depth estimation of learning-based multi-
view stereo (MVS) methods, particularly the inaccurate depth estima-
tion in challenging areas such as low-texture regions, weak lighting con-
ditions, and non-Lambertian surfaces. We ascribe this problem to the
insufficient performance of the feature extractor and the information
loss caused by the MVS pipeline transmission, and give our optimization
scheme. Specifically, we introduce parallel large kernel attention (PLKA)
by using multiple small convolutions instead of a single large convolution,
to enhance the perception of texture and structural information, which
enables us to capture a larger receptive field and long-range information.
In order to adapt to the coarse-to-fine MVS pipeline, we employ PLKA
to construct a multi-stage feature extractor. Furthermore, we propose the
parallel cost volume aggregation (PCVA) to enhance the robustness of
the aggregated cost volume. It introduces two decision-making attentions
in the 2D dimension to make up for information loss and pixel omission
in the 3D convolution compression. Particularly, our method shows the
best overall performance beyond the transformer-based method on the
DTU dataset and achieves the best results on the challenging Tanks and
Temples advanced dataset.

Keywords: Multi-view Stereo · 3D Reconstruction · Deep Learning

1 Introduction

Nowadays, learning-based MVS methods [1,2] has made great progress. Gen-
erally, MVS networks utilize a set of 2D convolutions to extract features and
compute paired cost volumes based on a set of assumed depths through plane
sweeping. These paired cost volumes are fused into a unified cost volume and reg-
ularized to obtain the final depth map. However, there are still two unresolved
issues in the above MVS pipeline. (A) The feature extractor lacks the capa-
bility to capture robust features, which leads to difficulties in handling weak
texture structures or non-Lambertian surfaces. Furthermore, features captured
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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by the low-performance extractor seriously affect the subsequent operation of
the MVS pipeline and deteriorate the 3D reconstruction. (B) The paired cost
aggregation strategies usually depend on variance, average, or 3D convolution.
For the variance-based and average-based, these methods often make all pixels
visible by default, which results in the introduction of wrong pixels. For the 3D
convolution-based, it is prone to loss of information, and the aggregation weight
is overly dependent on local information and 3D convolution performance.

In our work, we propose a novel deep neural network called PLKA-MVSNet
for MVS. Firstly, we introduce parallel large kernel attention (PLKA). It uses
LKA to capture and integrate long-range information, local information and
global information of features, while using gated convolution to learn the corre-
lation and importance between different channels, which improves the perception
of rich features. By constructing a multi-stage feature extractor with the PLKA,
it provides more robust feature encoding for different stages of the MVS pipeline.
Secondly, In order to obtain more effective cost volume weights, we propose the
parallel cost volume aggregation (PCVA) for aggregating paired cost volumes. It
contains a parallel 2D channel for global information capture, a parallel 3D chan-
nel for spatial information matching, and then a reliable cost weight is obtained
by pointwise multiplication. Lastly, we integrate several practical components
from recent MVS networks, such as the group-wise [3] correlation, binary search
[4], and coarse-to-fine strategy [5], to further improve the reconstruction quality.
In summary, our contributions are as follows:

1. We propose a new MVS feature extractor. It captures both global context
information and local details through PLKA, which can provide richer fea-
tures for subsequent MVS pipelines.

2. To leverage the global information in the paired views, we propose a novel
strategy called PCVA to aggregate paired cost volumes. It suppresses the
interference of invisible information and produces more robust cost volume
weights.

3. Our method shows the best overall performance beyond the transformer-
based method on the DTU dataset and achieves the best results on the chal-
lenging Tank and Temple advanced dataset.

2 Related Work

Recently, learning-based methods have dominated the research of MVS. The
most common method is based on the depth map [1,5,6], which usually runs in a
similar way and exceeds most traditional methods. MVSNet [1] takes a reference
image and multiple source images as input to extract depth map features. It
encodes the camera parameters in the network and constructs a 3D cost volume
using differentiable homography. Finally, the depth map is obtained through 3D
convolution regression. Although it has high memory requirements, MVSNet has
laid the foundation for subsequent MVS research.

Some methods based on recursion [7,8] propose the recursive regularization of
the 3D cost volume and utilize a Recurrent Neural Network (RNN) to propagate



PLKA-MVSNet 115

features between different depth hypotheses. These methods trade time for space,
which allows them to process high-resolution images, but their inference speed
is slow. Some studies devoted to cost volume aggregation [2,9,10] attempt to
regress 2D visibility maps from paired cost volumes. They use multiple sets of
3D convolutions to learn the visibility relationship between paired views and use
it as weight information to suppress the influence of mismatched pixels. However,
their probability data distribution severely relies on 3D convolution, which can
lead to loss of information and extreme values.

Gu et al. [5] integrate a coarse-to-fine strategy into the learning-based MVS
reconstruction, which successfully reduces memory consumption to support
deeper backbone networks and higher-resolution outputs. This idea is widely
used in subsequent methods. To further explore the potential of this pipeline,
many variants have emerged. TransMVSNet [11] attempts to introduce the self-
attention mechanism of the transformer and achieves excellent results, which
validate the importance of a large receptive field in extracting useful features.

Although the above learning-based MVS methods have achieved promising
results, they have not focused on improving the feature-capturing capability of
convolutions themselves and have overlooked the information loss that occurs
in the MVS pipeline. This leads to inaccurate estimations in challenging regions
and severely occluded areas.

3 Proposed Method

3.1 Network Overview

In this section, we introduce the detailed structure of PLKA-MVSNet. The over-
all framework is illustrated in Fig. 1. It consists of two main components: the
image feature extractor and the MVS pipeline network for iterative depth esti-
mation. To adapt the requirements of the MVS pipeline from coarse to fine
strategy, we construct the feature extractor similar to the pyramid structure. At
each stage of the feature pyramid, we enhance the capturing capability of global
and long-range information by incorporating our proposed PLKA mechanism
(Sect. 3.2). Subsequently, following the MVS pipeline, we construct paired cost
volumes by applying homographic transformations to the features at different
resolutions (Sect. 3.3). These paired cost volumes are then fed into the PCVA
to obtain visibility maps by weight fusion. Using the visibility maps, we aggre-
gate the paired cost volumes into a unified cost volume (Sect. 3.4), which is
further regularized by 3D CNNs to generate the predicted depth map. Finally,
we treat the MVS task as a classification problem and employ cross-entropy loss
to optimize the maximum likelihood estimator (Sect. 3.5).
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Fig. 1. Network architecture of the proposed PLKA-MVSNet.

3.2 Feature Extractor

Parallel Large Kernel Attention (PLKA): As shown in Fig. 2a, refer to
[12], we decompose a large kernel K × K convolution into 3 components: a⌈
K
d × K

d

⌉
depth-wise dilated convolution (ConvDWD) with dilation d, a 1 × 1

point-wise convolution (ConvPW ) along the channel dimension, and a (2d−1)×
(2d − 1) depth-wise convolution (ConvDW ). The ConvPW is used for channel-
wise adaptation, and learning long-range dependencies. The ConvDWD is used
to increase the overall receptive field, learning global correlations. The ConvDW

is used to integrate local contextual information. We can obtain the importance
of each point in the overall context by the LKA. We then perform a Hadamard
product with the input feature (fin), which can be represented as follows:

LKA = fin ⊗ ConvPW (ConvDWD(ConvDW (fin))) (1)

(a) The decomposition model of LKA. (b) The structure of PLKA.

Fig. 2. The construction process of PLKA.

We set K = 21, d = 3 as the basis for the next step. To enhance the robust-
ness of feature capture, we propose parallel large kernel attention (PLKA), which
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consists of three components: a LKA for capturing large receptive fields, a par-
allel ConvDW for capturing local features, and a gated aggregation for adaptive
weight adjustment. The structure is illustrated in Fig. 2b. A specific PLKA can
be represented as follows:

PLKA = ConvPW (ConvDW (fin) ⊗ LKA(fin)) ⊗ ConvPW (fin) (2)

Fig. 3. The concrete structure of the multi-stage feature extractor.

Multi-stage Feature Extractor: To align with the coarse-to-fine MVS strat-
egy, we construct a multi-stage feature extractor. The structure is illustrated in
Fig. 3. Firstly, we perform downsampling with 2D convolutions to obtain prelim-
inary features in 4 stages. In each stage, we employ a proposed PLKA block to
expand the receptive field and capture long-range information. Subsequently, we
fuse features from different stages through interpolation and dimension reduction
operations. Additionally, to make the fused features more flexible, we incorpo-
rate deformable convolutions to adaptively capture informative patterns in the
scene. Besides, we experiment with different positions for the PLKA blocks and
feature fusion methods, which are further described in the ablation experiments.

3.3 Cost Volume Construction

According to [1], the features of N −1 source views are mapped to the hypothet-
ical depth plane of the reference view. Under the depth hypothesis d, the pixel p
in the source view can be warped to the pixel p̂ in the reference view according
to the following equation:

p̂ = K
[
R

(
K−1

0 pd
)
+ t

]
(3)

where R and t are the rotation and translation between the two views. K0

and K are the intrinsic matrices of the reference camera and source camera
respectively. All pixels can be mapped to different depth planes according to the
current assumed depth value d.
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Through the relationship of reference view and source view, we can calculate
N-1 paired cost volumes Vi:

V
(d)
i (p) = <F0(p), F̂

(d)
i (p)> (4)

where F̂
(d)
i (p) is the pixel p of the ith ∈ [1, N − 1] source feature map at depth

d, and F0(p) is the pixel p of the reference feature map.

Fig. 4. The structure of proposed PCVA. The input is a paired cost volume, and the
output is the weight of it to aggregate.

3.4 Parallel Cost Volume Aggregation (PCVA)

To address the potential information loss and pixel omission in learning the visi-
bility distribution of the cost volume through local 3D convolutions, we introduce
the 2D channel weight to enhance the capture of visibility information.

As shown in Fig. 4, we construct 2 parallel channels specifically designed for
paired cost volumes. These channels aim to capture different types of information
(both global information in the 2D channel and adaptive pixel weights in the 3D
channel).

For the 2D channel, we first perform max-pooling and avg-pooling along the d
dimension to reduce the dimensionality of Vi. Then, we concatenate the outputs
with the Concat operation and apply a depth-wise convolution (ConvDW ) to
compress them into a single feature Fi with a size of 1 × H × W . After this, it
is normalized to facilitate the weight fusion:

Fi = ConvDW (Concat(max(Vi), avg(Vi))) (5)

Att2d(i) =
1

1 + exp(−Fi)
(6)

For the 3D channel, we apply several 3D convolutions (Conv3D) to progres-
sively reduce the dimension of the cost volume, resulting in feature matrices of
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size D × H × W . Finally, we obtain attention maps of the same size as the 2D
channel by applying a Sigmoid layer and MAX operation:

Att3d(i) = MAX(
1

1 + exp(−Conv3D(Vi))
) (7)

We perform element-wise multiplication between the two attention maps to
obtain the final attention weights Attpair(i) = Att2d(i) ⊗ Att3d(i). Subse-
quently, we aggregate N-1 paired cost volumes into a unified cost volume V
with Attpair(i):

V =
∑N−1

i=1 Vi · Attpair(i)
∑N−1

i=1 Attpair(i)
(8)

The cost volume V after fusion is regularized by 3D CNNs, which gradually
reduces the channel size of V to 1 and outputs a volume of size (D × H × W ).
Finally, we perform the Softmax function along the D dimension to generate a
probability volume P for calculating training loss and label.

3.5 Loss Function

We perform one-hot encoding on the true depth value with the mask to obtain
the ground truth volume G(j, q). Afterward, we compute the standard cross-
entropy loss for each pixel and take the average to calculate the final loss value:

Loss =
∑

q∈Qv

d∑

i=1

−G(j, q) logP(j, q) (9)

where q is the set of valid pixels, d is the D dimension in probability volume P
(D × H × W ), j is each predicted depth plane of d, and Qv is the set of pixels
with valid truth values.

4 Experiments

4.1 Datasets

The DTU dataset [13] is an indoor dataset captured with high-precision cam-
eras. It consists of 27,097 training samples, which we use for training and evalua-
tion. The BlendedMVS [14] dataset is a large-scale dataset that includes both
indoor and outdoor scenes. It contains a total of 16,904 training samples. The
Tanks and Temples [15] benchmark is a large-scale dataset with various out-
door scenes. It includes 8 intermediate subsets and 6 advanced subsets. We use
the fine-tuned model on the BlendedMVS to evaluate on the Tanks and Temples
benchmark.
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4.2 Implementation

Training: For training PLKA-MVSNet on the DTU dataset, we first crop the
original images provided by the official website from the size of 1200 × 1600
to 1024 × 1280. Then, we randomly crop them to a size of 512 × 640. This is
done to facilitate learning larger image features from smaller images. During all
training stages, we set the number of input images N = 5. The model is trained
using the PyTorch Adam optimizer for 16 epochs with an initial learning rate
of 0.0001. The learning rate is halved after the 10, 12, and 14 epochs. The total
training batch size is 2, distributed across 2 NVIDIA RTX 3090 GPUs. Following
[11], we fine-tune PLKA-MVSNet on the BlendedMVS dataset using the original
image resolution of 576 × 768 with 10 epochs.

Testing: For the test of DTU dataset, we set N = 5, and the resolution of
each image is 1152 × 1600. For the Tanks and Temples benchmark, we use the
fine-tuned model on the BlendedMVS dataset and set N = 7 with each image
resolution of 1024 × 1920. Follow the dynamic inspection strategy proposed in
[16], We filter and fuse depth maps of a scene into one point cloud.

4.3 Experimental Results

Evaluation on DTU Dataset: We evaluate the PLKA-MVSNet on the DTU
evaluation sets with the official evaluation metrics. As shown in Fig. 5, PLKA-
MVSNet is capable of generating more complete point clouds and preserving
more details compared with other methods. This is due to the large receptive
field characteristics of PLKA and the information compensation of PCVA for
cost volumes aggregation. The quantitative comparison is presented in Table 1,
where Accuracy and Completeness are the evaluation metrics proposed by
the official benchmark, and the Overall represents the average of both met-
rics. PLKA-MVSNet outperforms in terms of accuracy (best in a learning-based
MVS) and exhibits comparable overall performance to state-of-the-art methods.
In particular, we achieve higher overall performance than the transformer-based
method.

Fig. 5. Comparison of reconstructed results with state-of-the-art methods on the DTU
evaluation set [13]. The red box shows the contrast between the reconstructed results
of the challenging areas in the image. (Color figure online)
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Table 1. Quantitative evaluation of DTU [13] (lower is better). Bold figures indicate
the best and italic bold figures indicate the second best.

Acc. (mm) Comp. (mm) Overall (mm)

Camp [17] 0.835 0.554 0.695
Furu [18] 0.613 0.941 0.777
Gipuma [19] 0.2830.2830.283 0.873 0.578
COLMAP [20] 0.400 0.664 0.532
MVSNet [1] 0.456 0.646 0.551
R-MVSNet [8] 0.383 0.452 0.417
P-MVSNet [2] 0.406 0.434 0.420
D2HC-RMVSNet [16] 0.395 0.378 0.386
Point-MVSNet [6] 0.342 0.411 0.376
Vis-MVSNet [9] 0.369 0.361 0.365
CasMVSNet [5] 0.325 0.385 0.355
UCS-Net [21] 0.338 0.349 0.344
AA-RMVSNet [7] 0.376 0.339 0.357
IterMVS [22] 0.373 0.354 0.363
PatchmatchNet [23] 0.427 0.2770.2770.277 0.352
TransMVSNet [11] 0.321 0.2890.2890.289 0.3050.3050.305
PLKA-MVSNetPLKA-MVSNetPLKA-MVSNet 0.3120.3120.312 0.291 0.3010.3010.301

Evaluation on Tanks and Temples: To demonstrate the generalization capa-
bility of our method in outdoor scenes, we test the PLKA-MVSNet on the Tanks
and Temples benchmark. We upload the reconstructed point clouds to the bench-
mark website, and the quantitative evaluation result is shown in Table 2. Our
method achieves highly comparable results to state-of-the-art techniques on the
intermediate subset. It obtains the best average score on the more challenging
advanced subset and performs the best in 3 out of the 6 scenes. The visualization
results are shown in Fig. 6.

4.4 Ablation Study

In this section, we conduct ablation experiments on the combination forms of
PLKA in the feature extractor and the effectiveness of our proposed PCVA.
Baseline is largely based on [5], which applies the group-wise correlation [3] and
binary search strategy [4].
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Table 2. Quantitative evaluation on the Intermediate and Advanced subsets of the
Tanks and Temples benchmark [15]. The evaluation metric is the F-score (higher is
better). The Mean is the average score of all scenes. Bold figures indicate the best and
underlined figures indicate the second best.

Advanced Intermediate
Mean Aud. Bal. Cou. Mus. Pal. Tem. Mean Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra

COLMAP [20] 27.24 16.02 25.23 34.70 41.51 18.05 27.94 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04
MVSNet [1] – – – – – – – 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.9 34.69
Point-MVSNet [6] – – – – – – – 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06
R-MVSNet [16] 29.55 19.49 31.45 29.99 42.31 22.94 31.10 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25
UCSNet [21] – – – – – – – 54.83 76.09 53.16 43.03 54 55.6 51.49 57.38 47.89
CasMVSNet [5] 31.12 19.81 38.46 29.10 43.87 27.36 28.11 56.42 76.36 58.45 46.2 55.53 56.11 54.02 58.17 46.56
Vis-MVSNet [9] 33.78 20.79 38.77 32.45 44.20 28.73 37.7037.7037.70 60.03 77.4 60.23 47.07 63.44 62.21 57.28 60.54 52.07
PatchmatchNet [23] 32.31 23.69 37.73 30.04 41.80 28.31 32.29 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81
AA-RMVSNet [7] 33.53 20.96 40.15 32.05 46.01 29.28 32.71 61.51 77.77 59.53 51.53 64.0264.0264.02 64.0564.0564.05 59.47 60.85 54.90
TransMVSNet [11] 37.00 24.84 44.5944.5944.59 34.77 46.49 34.6934.6934.69 36.62 63.5263.5263.52 80.9280.9280.92 65.83 56.9456.9456.94 62.54 63.06 60.0060.0060.00 60.20 58.6758.6758.67
PLKA-MVSNet (ours)PLKA-MVSNet (ours)PLKA-MVSNet (ours) 37.1137.1137.11 30.3030.3030.30 41.60 35.5135.5135.51 47.8747.8747.87 30.70 36.66 61.49 79.31 66.5666.5666.56 53.45 61.16 60.13 56.53 60.9960.9960.99 53.99

Fig. 6. Point clouds of Tanks and Temples [15] reconstructed by PLKA-MVSNet.

The Combination forms of PLKA in the Feature Extractor: To unleash
the potential of PLKA, we design various feature extractor structures (The 4
most representative ones shown in Fig. 7). We perform experiments on the DTU
dataset to compare their performance, and the results are presented in Table 3.
From the results, we observe two points:

(1) The application of PLKA in the upsampling process has better performance
than the application of PLKA after upsampling (Refer to Fig. 7(a) and (c)).
We think the reason is that PLKA can grasp richer global information in
shallow features than in deep features.

(2) In the process of feature downsampling fusion, using independent features
yields better results than using mixed features. For example, when fusing
high-stage features in stage 2, using the features of stage 3 is better than
using the mixed features of stage 3 and stage 4 (Refer to Fig. 7(a) and (b)).

Component Analysis of PCVA: We use the best-performing architecture
Table 3(d) as the baseline to test the performance of our proposed PCVA. We
visualize the weights obtained from PCVA, as shown in Fig. 8. PCVA can capture
the distribution of visibility information from different source images to reference
images, and then obtain high-quality weights for cost volume aggregation.
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Fig. 7. Different variations of PLKA integrated into the feature extractor.

Table 3. Test results for 4 variations with PLKA and baseline without PLKA.

method Acc. (mm) Comp. (mm) Overall (mm)

baseline 0.327 0.312 0.320
a 0.315 0.309 0.312
b 0.317 0.301 0.309
c 0.309 0.300 0.304
d 0.3070.3070.307 0.2970.2970.297 0.3020.3020.302

We conduct ablation experiments on different components of PCVA to test
their effectiveness. The result is shown in Table 4, where the 3D channel refers
to the original method in the baseline. From the results, it is evident that using
only the 2D channel leads to poorer performance. Although 2D decision-making
can capture long-range and global information, it lacks the ability to capture
the fine details inside the cost volume. When combining 2D and 3D channel
weights, we observe a significant improvement in performance. We think the
reason is that the 2D channel compensates for the information loss in the 3D
channel and enhances the global representation capability of the cost volume
after aggregation.

Fig. 8. The output weights of PCVA. The sample input is 1 reference and 4 source
images of Scan 1 in DTU dataset [13].
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Table 4. Quantitative evaluation of different components in PCVA on the DTU.

3D Channel 2D Channel Acc. (mm) Comp. (mm) Overall (mm)
√

0.3070.3070.307 0.297 0.302√
0.319 0.295 0.307√ √
0.312 0.2910.2910.291 0.3010.3010.301

5 Conclusion

In this paper, we introduce a novel learning-based MVS network called PLKA-
MVSNet. Specifically, we design the PLKA, which consists of a LKA for cap-
turing large receptive fields, parallel depth-wise convolution for capturing local
features, and gated aggregation for adaptive weight adjustment. Additionally,
we propose the PCVA to generate more reliable cost volume weights for aggre-
gating paired cost volumes. Through extensive experiments, we observe that
PLKA-MVSNet achieves outstanding performance in both indoor and outdoor
scenes. However, due to the memory limitation of MVS pipeline network, we
can only use K = 21, d = 3 combination to realize large receptive field for the
LKA setting. It still leads to large memory consumption, and our next work will
be to design a lighter-weight LKA alternative for MVS. Finally, we hope that
our exploration can provide some insights and encourage further research on the
potential of large kernel convolution in the MVS framework.
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Abstract. Despite remarkable advancements in facial expression recog-
nition, recognizing facial expressions from occluded facial images in real-
world environments remains a challenging task. Various types of occlu-
sions randomly occur on the face, obstructing relevant information and
introducing unwanted interference. Moreover, occlusions can alter facial
structures and expression patterns, causing variations in key facial land-
marks. To address these challenges, we propose a novel approach called
the Occlusion Removal and Information Capture (ORIC) network, which
fuses segmentation and classification. Our method consists of three mod-
ules: the Occlusion Awareness (OA) module learns about occlusions, the
Occlusion Purification (OP) module generates robust and multi-scale
occlusion masks to purify the occluded facial expression information, and
the Expression Information Capture (EIC) module extracts comprehen-
sive and robust expression features using the purified facial information.
ORIC can eliminate the interference caused by occlusion and utilize both
local region information and global semantic information to achieve facial
expression recognition under occluded conditions. Through experimental
evaluations on synthetic occluded RAF-DB and AffectNet datasets, as
well as a real occluded dataset FED-RO, our method demonstrates signif-
icant advantages and effectiveness. Our research provides an innovative
solution for recognizing facial expressions from occluded facial images in
wild environments.

Keywords: Expression Recognition · Fusion Model · Occlusion Handle

1 Introduction

Facial expressions are a primary means of conveying emotions, playing a piv-
otal role in human communication alongside language [1]. In recent years, the
field of facial expression recognition (FER) has witnessed extensive applications
across diverse domains, including human-computer interaction [2], psychologi-
cal health assessment [3], driver safety [4], and computer animation [5]. With
the developments in deep learning, researchers have made remarkable progress
in facial expression recognition [6–8]. However, the recognition of facial expres-
sions in real-world scenarios presents significant challenges, primarily due to the
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ubiquitous and diverse nature of occlusions. These occlusions can come from
various sources, such as objects, food items, toys, gloves, or any other entities
capable of occluding the eyes, mouth, or other crucial facial regions associated
with expressions. The recognition of occluded facial expressions involves two
main challenges. Firstly, occlusions reduce the availability of original facial region
features, especially when occlusions occur in the most discriminative areas for
different expressions, masking the underlying expression cues and significantly
impacting overall expression recognition. Secondly, occlusions introduce inter-
fering features. The location, shape, color, texture, and other characteristics of
occlusions are unknown, which leads to error recognition during the extraction
of expression features.

To address the issue of reduced discriminative regions in occluded facial
expression features, a straightforward approach is to restore the occluded region
information and then perform expression classification. However, if the generated
parts do not accurately reflect the intended expressions, they may introduce addi-
tional interference. To mitigate the interference caused by occlusions, some work
[9,10] have employed attention mechanisms to emphasize unoccluded regions and
disregard occluded regions. While this approach considers the interference intro-
duced by occluded regions, improper region partitioning may mistakenly assign
low weights to important areas surrounding the occlusions. Another solution
[11,12] involves learning the occlusion positions within the network and remov-
ing the occlusion information at a specific layer. However, relying on a single-
scale mask may lead to either excessive or incomplete removal of the occluded
regions, limiting its adaptability to multi-scale occlusions. And, occlusion can
distort relevant facial features, making it difficult to establish their connection
with expressions based solely on extracted local features.

In this paper, we propose an end-to-end network that fuses segmentation and
classification, called the Occlusion Removal and Information Capture (ORIC)
network for occluded FER. Our network combines occlusion discarding and fea-
ture extraction to achieve effective feature representation. Specifically, we intro-
duce an Occlusion Awareness (OA) module using an encoder-decoder structure
to determine the presence of occluded pixels and utilize this information in the
Occlusion Purification (OP) module. The OP module generates robust occlusion
masks and applies them to remove occlusion information from facial expressions.
Furthermore, we incorporate an Expression Information Capture (EIC) module
that extracts the most relevant components from the purified information for
accurate expression recognition. To overcome the limitations of local features,
we introduce a Global Information Capture (GIC) module that extracts com-
prehensive features. The main contributions of our work are as follows:

– We have proposed an Occlusion Removal and Information Capture (ORIC)
network, which can effectively eliminate occlusion information from facial
features at varying scales while capturing comprehensive facial expression
information.
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Fig. 1. Examples of synthetic occlusion in the dataset.

– The OA module and OP module are introduced to effectively learn occlusion
information at various scales, enabling the generation of accurate occlusion
masks to purify expression features.

– The EIC module is designed to comprehensively integrate global and local
information, facilitating feature fusion for improved facial expression recog-
nition.

2 Related Work

With the advancement of facial expression recognition methods, there has been
a growing interest among researchers in occluded facial expression recognition.
These approaches can generally be classified into three categories: subregion-
based methods, reconstruction-based methods, and discard-based methods.

2.1 Subregion-Based Methods

In subregion-based methods, the face is divided into multiple regions, and dif-
ferent weights are assigned to these regions during training. Li et al. [10] pro-
posed PG-CNN, which decomposes the facial image into 24 regions and uti-
lizes PG-Unit to determine the importance of each region and extract local fea-
tures. Building upon PG-CNN, Li et al. [13] introduced the ACNN framework,
where GG-Unit is added to extract global information, balancing the local rep-
resentations and the global representation. Wang et al. [9] presented the RAN
framework, which consists of self-attention and relational attention modules.
The self-attention module generates corresponding scores for different regions.
The relational attention module considers local and global features to improve
the scores. Gera et al. [14] proposed a novel spatial channel attention network
that obtains local and global attention for each channel at every spatial posi-
tion. Additionally, they introduced the CCI branch to complement the extracted
features.

2.2 Reconstruction-Based Methods

Reconstruction-based methods aim to restore the features of occluded facial
regions. Lu et al. [15] proposed a method based on Wasserstein Generative
Adversarial Networks (GANs) for the restoration of occluded facial images. In
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a different approach, Pan et al. [16] utilized unoccluded images to guide the
training of an occlusion-aware network at both the feature and label levels, with
the aim of minimizing the discrepancy between occluded and unoccluded image
features. Dong et al. [17] proposed a method where they first utilized a GAN to
remove occlusions and then used the result as an additional input to a second
GAN to synthesize the final de-occluded surface.

2.3 Discard-Based Methods

The occlusion-discarding approach involves removing the occluded parts of facial
regions. Yang et al. [12] utilize facial landmarks to generate masks for locating
relevant facial regions and combining attention mechanisms while employing two
branches to extract comprehensive expressive features. Xing et al. [11] proposed
the integration of occlusion discard and feature completion to mitigate the influ-
ence of occlusion on facial expression recognition. To reduce the dependency of
feature completion on occlusion discard, guidance from discriminative regions
was introduced for joint feature completion.

3 Proposed Method

Inspired by MSML [18], We propose a network called Occlusion Removal and
Information Capture (ORIC) for addressing the challenges of occlusion in facial
expression recognition. The overall architecture of ORIC, as illustrated in Fig. 2,
consists of three key modules: Occlusion Awareness (OA), Occlusion Purification
(OP), and Expression Information Capture (EIC). The OA module employs an
encoder-decoder structure to generate multi-scale occlusion segmentation pre-
dictions. These predictions are represented as Y j

o =
{
Y 1
o , Y 2

o , ..., Y m
o

}
, where j

= 1, ..., m. Here, m denotes the number of features generated by the decoder,
and Y j

p represents the output of the j-th decoder. Similarly, the EIC module
generates multi-scale expression features, denoted as Y i

e =
{
Y 1
e , Y 2

e , ..., Y m
e

}
. In

this representation, m indicates the number of features. The initial feature, Y 1
e ,

represents the raw feature before passing through the EIC block, while Y m
e cor-

responds to the feature obtained after the final EIC block. Both the OA and
EIC modules generate an equal number of feature maps, hence the use of m as
the representation. The OP blocks receive the occlusion segmentation predic-
tions at different scales and process them to produce occlusion masks, which are
used to purify the occlusion information in the input image. Subsequently, the
resulting clean expression images are fed into the EIC module to extract compre-
hensive and robust facial expression information for the expression recognition
stage. By integrating the OA, OP, and EIC modules, our ORIC network aims
to effectively address occlusion challenges, enabling improved facial expression
recognition performance.
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Fig. 2. Overall of our proposed method

3.1 Occlusion Awareness Module

The purpose of the OA module is to identify the position and shape of occlud-
ing objects. We generate potential masks at different scales to capture occlusion
information across various levels of image detail. The OA module adopts the
encoder-decoder structure of U-Net. The decoder part of the OA module pro-
duces multi-scale features denoted as Y j

o =
{
Y 1
o , Y 2

o , ..., Y m
o

}
. The deeper layers

of the decoder output, represented by Y j
o , contain more accurate occlusion posi-

tion information as well as higher-level semantic details. On the other hand, the
shallower layers of the EIC module, denoted as Y i

e , have smaller receptive fields
and lack semantic information. Therefore, we establish a bridge between the two
modules using the loss function shown in Eq. (1), accurately representing the
information about the occlusion positions.

Locc =
∑m

j=1w
j
sidel

j
side + wfuselfuse (1)

where ljside represents the loss between the occlusion segmentation map obtained
by the j-th decoder and the target segmentation map. Similarly, lfuse represents
the loss computed between the segmentation result obtained by fusing the out-
puts of all stage decoders and the target segmentation map. Finally, wj

side and
wfuse indicate the respective weights associated with each loss.

3.2 Occlusion Purification Module

The OP module transforms the multi-scale occlusion segmentation predictions
obtained from the OA module into multi-scale masks. These masks are generated
to remove occlusions from the extracted facial expression information in the
EIC module, resulting in clean facial expression features. The OP module first
concatenates the features from both the OA module and the EIC module and
subsequently performs mask conversion. As shown in Eq. (2):

M i = OP (
[
Y i
e , Y j

o

]
) = F (Conv1(

[
Y i
e , Y j

o

]
,Wi) +

[
Y i
e , Y j

o

]
) (2)
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where Conv1(·) represents a combination operation of 1× 1 convolution, 3× 3
convolution, and 1× 1 convolution, Wi denotes the parameter matrix for the
residual operation, where i takes values from 1 to m-1, and j equals m-i. Y i

e

and Y j
o represent the i-th expression feature and the corresponding predicted

occlusion position feature generated by the j-th decoder, respectively. [·] denotes
concatenation, F(·) represents the activation function, and M i indicates the
generated occlusion mask.

To enhance the model’s robustness, we introduce the DropChannel [19] and
channel attention mechanisms. These enable the model to better adapt to differ-
ent occlusion scenarios and handle uncertainties for occlusion positions, shapes,
and degrees. When occlusions occur, the information in dropped channels can
be compensated by other channels, thereby mitigating the impact of occlusions
on model performance. The channel attention mechanism dynamically adjusts
the channel weights based on the location and severity of occlusions to capture
relevant features of the occluded areas more effectively. The final structure of
the OP block is illustrated in Fig. 2. By employing this approach, Eq. (3) can be
reformulated as follows:

M i = OP (
[
Y i
e , Y j

o

]
) = F (CA(DC(Conv1(

[
Y i
e , Y j

o

]
,Wi))) +

[
Y i
e , Y j

o

]
) (3)

where DC(·) represents channel drop, and CA(·) represents channel attention.
Then, multiple levels of occlusion masks are utilized to purify facial expressions.
The purified facial expression feature representation is denoted as Eq. (4):

Y i
p = M i ◦ Y i

e (4)

where ◦ denotes the Hadamard product.

3.3 Expression Information Capture Module

The EIC module aims to extract the most relevant and advantageous infor-
mation for facial expression recognition. Typically, ResNet structures designed
for local feature extraction are used. However, in the process of facial expression
recognition, relying solely on local information may fail to accurately extract the
key features relevant to specific expressions. Due to the presence of occlusions,
facial structures, and expression patterns can vary, causing variations in specific
key positional features. Consequently, recognition methods that depend on local
features alone may lack accuracy. To address this issue, we propose a Global
Information Capture (GIC) module that extracts global expression information,
aiding the model in identifying key positional features and their relationship
with expressions. The structure of each block in the GIC module is illustrated
in Fig. 2.

The GIC module extracts global information from multi-scale purified facial
expression features. Specifically, the output Y i

p from the OP module serves as the
input to the EIC module. It is simultaneously fed into both the residual block for
original local feature extraction and the GIC block for global feature extraction.
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Within the GIC block, the data undergoes group normalization, which is equiv-
alent to grouping the feature maps along the channel dimension. Subsequently,
two 1× 1 convolutional layers are applied. The first convolutional layer reduces
the number of input feature channels, integrating and compressing the original
feature information to facilitate the learning of representative features. Then, the
second convolution is used to restore the feature dimension, allowing the com-
pressed and integrated features to be fused with the original features, preserving
fine-grained details while incorporating global channel information for compre-
hensive modeling. Channel scaling and DropPath operations are employed to
adjust the weights and importance of the channel features, introducing random-
ness and regularization to enhance the model’s expressiveness, flexibility, and
generalization ability. This process is represented as Eq. (5):

Ri
GIC = DP (Scale(Conv2(Norm(Y i

p )))) (5)

where Norm(·) is group normalization, Conv2(·) is the combination of two 1×1
convolutions, Scale(·) is channel scaling, and DP(·) is droppath. The obtained
global feature information is combined with the local features extracted by the
ResNet block to obtain comprehensive and robust feature representations. This
is mathematically represented as Eq. (6):

Y i
e = θ(Y i

p ) + Ri
GIC (6)

where θ represents the residual operation and Y i
e represents the obtained global

representation. It is important to note that the previous m-1 expression features
Y i
e obtained will be fed into the OP module before the next block. Only the last

global feature Y m
e , produced by the final convolutional block of the network,

will not undergo expression purification but instead proceed to the classification
process.

The final loss function is a combination of classification loss and segmentation
loss represented as Eq. (7):

Ltotal = Lcls + αLocc (7)

where Lcls is the cross-entropy loss function and α is a weighting factor.

4 Experiments

4.1 Datasets

AffectNet [20] has collected over 1M facial images from the internet. In our exper-
iment, only images labeled with basic facial expressions are utilized, including
280,000 images in the training set and 3,500 images in the testing set. RAF-DB
[21] contains 29672 facial images tagged with basic or compound expressions
by 40 independent taggers. In this work, only images with 7 categories of basic
emotions are used, including 12,271 images in the training set and 3,068 images
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Table 1. Comparison with state-of-the-art methods.*represents models trained on
RAF-DB and AffectNet.

Methods RAF-DB AffectNet *FED-RO

PG-CNN [10] 78.05 52.47 64.25

gACNN [13] 80.54 54.84 66.50

Pan et al. [16] 81.97 56.42 69.75

Xia and Wang [23] 82.74 57.46 70.50

Co-Completion [11] 82.82 57.69 73.00

ORIC (Ours) 83.57 59.59 73.68

in the testing set. FED-RO [13] is the first facial expression database with realis-
tic occlusion in the wild. It consists of 400 facial images with various occlusions
and includes annotations for seven emotions. Considering the limited capacity
of FED-RO, we simply utilize it to conduct cross-database validation.

In order to simulate occlusion scenarios in real-world settings, we artificially
synthesized occluded images by randomly placing occluding objects on datasets
other than FED-RO. The occluding objects used were collected by searching for
more than 20 keywords, including hands, beverages, food, toys, computers, cups,
and others, in search engines. As Benitez-Quiroz et al. [22] have demonstrated
that small localized occlusions have no impact on current FER algorithms, we
set the size of the occluding objects to be between 25% and 60% of the size of
the facial expression images. The occlusion example is illustrated in Fig. 1.

4.2 Implementation Details

The backbone network of the proposed architecture is a pre-trained ResNet-18,
trained on MS-Celeb-1M [24], which also be the baseline for this research paper.
All images are aligned using MTCNN [25] and then resized to 224× 224. The
Adam optimizer is used for the OA module, while the OP and EIC modules
utilize stochastic gradient descent (SGD) for optimizing the model over 110
epochs. The initial learning rate for the OA module is set to the default value
of 0.001 on the RAF-DB, while for the AffectNet, it is set to 0.0005. The initial
learning rates for the EIC and OP modules are set to 0.01 on the RAF-DB, and
to 0.005 on the AffectNet, and the batch size is set to 64. The accuracy serves
as the performance metric in this paper.

4.3 Results Comparison

Comparison on Synthesised Occlusion: On datasets with synthesized occlu-
sions, we make a comparison with state-of-the-art methods. According to the
results shown in Table 1, we observed the following findings: PG-CNN and
gACNN adopt facial key points and attention mechanisms to learn key facial
expression information, but they lack an effective recognition of occluded regions,
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Table 2. Verify the importance of each proposed module.

Method ResNet18 +OA+OP +GIC

RAF-DB 79.07 81.55 83.57

resulting in relatively lower accuracy. In contrast, Pan et al.’s method and
Xia and Wang’s method leverage information from both occluded and non-
occluded images, achieving relatively better performance. Building upon this,
Co-Completion further considers the removal of occlusion information. However,
as mentioned earlier, single-layer occlusions may be challenging to completely
remove. To address this, we employ a multi-scale masking approach to elimi-
nate occluded regions and focus on the global context during feature extraction,
which leads to the best performance on the RAF-DB and AffectNet datasets.
We employ a similar occlusion handling approach to Co-Completion, but the
generated occlusion datasets may still differ.

Comparison on Realistic Occlusion: To evaluate the performance of our
model in real occluded scenes and assess its generalization ability, we conducted
cross-dataset validation on FED-RO. We merged images from RAF-DB and
AffectNet for training purposes. The experimental results are shown in Table 1.
It can be observed that our method outperforms previous approaches in terms
of generalizing well to real occluded scenes. Our method effectively addresses
occlusion interference and utilizes valuable facial expression information.

4.4 Ablation Study

To evaluate the effectiveness of our proposed method, we compared the accu-
racy exhibited by each stage of the network on the occluded RAF-DB dataset.
It is important to note that the OA module and the OP module are interde-
pendent. Therefore, in our ablation study, both components were added simul-
taneously. As shown in Table 2, we observed the following results: Firstly, our
method achieved a 4.5% higher accuracy on RAF-DB compared to the baseline
(ResNet18), proving the effectiveness of our proposed network in suppressing
interference caused by occluded information. Secondly, the experiments con-
ducted on the dataset revealed that both the OP module and the GIC module
played crucial roles in recognizing occluded expressions. This finding provides
evidence that the OP module effectively removes interference caused by occluded
information, while the GIC module captures a broader range of semantic infor-
mation, thereby enhancing the expressive capability of features. To assess the
significance of multi-scale occlusion removal, we conducted an exploration of the
optimal number of OP blocks. Considering our task of using extracted high-
level features for expression classification, we systematically incorporated OP
blocks in a stepwise manner, following the sequence OP4, OP3, OP2, and OP1.
As shown in Table 3, the result reveals an incremental improvement in model
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Table 3. Effect of multi-scale OP blocks on occlusion FER: incremental addition (+)
on the previous blocks.

Method w/o OP +OP4 +OP3 +OP2 +OP1

RAF-DB 80.96 81.42 82.01 82.73 83.57

(a) baseline t-SNE (b) ORIC t-SNE

(c) baseline confusion matrices (d) ORIC confusion matrices

Fig. 3. Results of t-SNE and confusion matrix with baseline and ORIC.

performance with the successive addition of OP blocks. This provides evidence
supporting the efficacy of the multi-scale occlusion removal technique in achiev-
ing a more comprehensive comprehension and localization of occluded areas.
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4.5 Visualization

To show the efficacy of our method, we present the t-SNE and confusion matri-
ces plots in Fig. 3, for the outputs of RAF-DB after processing with the baseline
and ORIC. Analyzing the baseline’s confusion matrix reveals a relatively low
recognition rate for fear, and it is inclined to be mistaken for a surprise. This
could be attributed to the facial expression similarities between fear and sur-
prise, such as widened eyes and raised eyebrows. These shared facial features
contribute to the visual resemblance between the two expressions, increasing
the likelihood of confusion. However, it is noteworthy that the ORIC’s confu-
sion matrix shows a significant improvement in fear recognition accuracy. This
indicates that our method effectively captures crucial fear-related features. Addi-
tionally, our method demonstrates varying degrees of improvement in recognition
accuracy for other categories compared to the baseline, highlighting its superior-
ity in reducing occlusion interference and extracting comprehensive features. In
the t-SNE plot, the ORIC shows clearer classification boundaries compared to
the baseline, with similar categories being more clustered, demonstrating that
the distribution distortion is alleviated with our method.

5 Conclusion

In this paper, we propose an Occlusion Removal and Information Capture
(ORIC) network that fuses segmentation and classification, where the Occlu-
sion Awareness (OA) module extracts occlusion information and the Occlu-
sion Purification (OP) module utilizes this information to generate masks for
removing occlusions from the feature. This allows the Expression Information
Capture (EIC) module to obtain comprehensive facial expression features from
clean expression information. The experimental results demonstrate that the
proposed method achieves superior performance in facial expression recognition
under occluded conditions.
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Abstract. Semantic lines are some particular dominant lines in an
image, which divide the image into several semantic regions and out-
line its conceptual structure. They play a vital role in image analysis,
scene understanding, and other downstream tasks due to their semantic
representation ability for the image layout. However, the accuracy and
efficiency of existing semantic line detection methods still couldn’t meet
the need of real applications. So, a new semantic line detection method
based on the deep Hough transform network with attention mechanism
and strip convolution is proposed. Firstly, the detection performance is
improved by combining the channel attention mechanism with the fea-
ture pyramid network to alleviate the influence of redundant informa-
tion. Then, the strip convolution and mixed pooling layer are introduced
to effectively collect the remote information and capture the long-range
dependencies between pixel backgrounds. Finally, the strategy of Ghost-
Net is adopted to reduce the computational cost. Results of experiments
on open datasets validate the proposed method, which is comparable to
and even outperforms the state-of-the-art methods in accuracy and effi-
ciency. Our code and pretrained models are available at: https://github.
com/zhizhz/sml.

Keywords: Deep learning · semantic line detection · attention
mechanism · strip convolution · deep Hough network

1 Introduction

Semantic lines [1] are a particular type of straight lines that can outline the
conceptual structure of an image by dividing it into several semantic regions.
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Fig. 1. Results of line detection for an image randomly selected from NKL [7] datasets.
(a) Semantic lines detected by the proposed method. (b) Semantic lines detected by
the DHT [7]. (c) Lines detected by the classical Hough transform.

As shown in Fig. 1(a), semantic lines detected by the proposed method divide
the image into grassland, water, and sky semantic regions. Semantic lines can
provide high-level priors of images by characterizing the image layout and are
essential components in high-level image understanding. So, semantic line detec-
tion is vital for computer vision applications, such as lane detection [2], horizon
detection [1], sea level detection [3], and artistic creation [4], and further provides
cues to artificial intelligence generated content (AIGC).

Most existing methods perform line detection by exploiting handcrafted [5] or
deep [6] features. However, only redundant short line segments or apparent line
structures rather than semantic lines are detected. Although recently emerging
SLNet [1] and Deep Hough Transform (DHT) [7] can successively detect semantic
lines by exploiting the deep convolutional neural network (CNN), the accuracy
and efficiency still need further improvement. For example, as shown in Fig. 1(b),
the line detected by [7] on the top has redundant false semantic lines.

So, a new semantic line detection method based on DHT is proposed. Firstly,
the attention mechanism is introduced into the feature pyramid network (FPN)
using the feature selection module (FSM) [8] to remove the interference of redun-
dant feature information. Then, the ResNet of the feature extraction part is
improved by introducing the strip convolution layer and mixed strip pooling
layer. Finally, the strategy of GhostNet [9] is applied to replace the convolu-
tion module in the original convolution network to reduce the computational
cost. Extensive experiments on open datasets validate that the proposed method
improves the accuracy and efficiency of semantic line detection, whose perfor-
mance is comparable or even superior to that of the state-of-the-art methods.

The main contributions can be summarized as follows.

– A new semantic line detection method based on the deep Hough network with
the attention mechanism and strip convolution is proposed.

– The attention mechanism is incorporated into the FPN to emphasize the
essential features and suppress redundant information.

– The strip convolution and mixed pooling strategy are proposed to capture
remote dependency of semantic contexts and aggregate global and local infor-
mation.
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– The strategy of GhostNet is adopted to reduce the computational cost.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 elaborates the proposed method. Experiments are reported in
Sect. 4. Section 5 concludes the paper.

2 Related Work

Automatic detection of straight lines in images [1–3,10,11] is essential in com-
puter vision. Currently, line detection can be fulfilled by the Hough transform
and its variants and the deep CNN. Different from ordinary straight lines, seman-
tic lines are a particular type of straight lines that can outline the conceptual
structure of an image. So, this section introduces standard straight line detec-
tion methods based on Hough transform and CNN first. Then, the definition of
semantic line is presented. Finally, semantic line detection methods are reviewed.

2.1 Hough Transform

Hough transform [12] is a reliable and robust scheme for line detection. Due to
its simplicity and effectiveness, it is widely used. However, it exploits slope-offset
parameters to represent a line, which results in an infinite parameter space. So,
Ballard [13] proposed the angle-radius representation to generalize the Hough
transform (GHT). Then, Fernandes et al. [14] improved the voting scheme to
enhance its efficiency and return final line detection results. Kiryati et al. [15]
proposed the probabilistic Hough transform to improve the computational effi-
ciency further. However, the line detector based on the classical Hough trans-
form usually ignores the semantic information of lines. Moreover, it is sensitive
to brightness changes and occlusion, as shown in Fig. 1(c).

2.2 CNN-Based Line Detection

With the progress of deep learning, some CNN-based line detection methods
have emerged. Law et al. [16] first proposed that the object detector CornerNet
can be used for line detection. Dai et al. [17] proposed masked convolution to
extract CNN features to detect line segments. Zhuo et al. [18] proposed a single
end-to-end CNN to directly output vectorized box lines. However, the receptive
field of the convolutional layer of the traditional CNN is square, and there is
redundant information to obtain the context information of the line. Although
significant progress has been made in CNN-based line detection, the efficiency
and accuracy still need improvements to meet the need of real applications.

2.3 Semantic Lines

Semantic lines are particular straight lines that can outline the conceptual struc-
ture of an image. Similar to semantic segmentation, semantic lines [1] can also
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divide an image into several semantic regions and outline its conceptual struc-
ture. Unlike semantic segmentation, semantic lines are a particular type of
straight lines. On the contrary, contours of semantic segmentation regions gen-
erally are curves in any shape. In addition, semantic lines can provide cues for
AIGC to produce visually balanced images, while contours of semantic segmen-
tation regions are only related to the specific areas.

2.4 Semantic Lines Detection

The concept of semantic line first proposed by Lee et al. [1] refers to salient
lines that outline the layout of images. Semantic line detection is considered
an uncommon instance of object detection in [1], where a network similar to
Faster-RCNN [19] is proposed to detect and localize semantic lines. An open
dataset for semantic line detection, SEL dataset, is also provided in [1]. Zhao
et al. [7] incorporated CNN with Hough transform to aggregate more con-
tent information to detect semantic lines and built a larger open dataset, NKL
dataset. Jin et al. [20] proposed a network consisting of the selection network
(S-Net) and the coordination network (H-Net) to compute semantic lines’ prob-
ability and offset and finally exploited the maximal weight clique selection to
determine final semantic lines. Similar to the case of CNN-based line detection,
the efficiency and accuracy of semantic line detection still don’t meet the needs
of real applications.

Most related to this work is DHT [7], which incorporates CNN and Hough
transform to detect semantic lines. Different from DHT, the proposed method
exploits the attention mechanism and strip convolution to improve the robust-
ness and efficiency of semantic line detection. The attention mechanism is incor-
porated into the FPN to emphasize essential features and suppress redundancy.
The strip convolution and the pooling strategy combining strip and spatial pool-
ing are proposed to improve the DHT via capturing the remote dependency of
semantic contexts and aggregating the global and local information. In addition,
the GhostNet is adopted in the FPN of DHT to reduce computational costs.

3 Proposed Method

This section firstly presents the network structure of proposed method. Then,
the main contributions of the proposed method are elaborated: 1. the attention
mechanism is introduced into the feature extraction part via incorporating the
feature selection module (FSM); 2. the strip convolution is introduced to substi-
tute for the traditional convolution for line extraction; 3. a new pooling strategy
combining the strip pooling and average pooling is proposed; 4. the GhostNet is
applied to the network backbone to meet the demand of lightweight.

3.1 Network Structure

The network structure of proposed method is shown in Fig. 2. It consists of
three parts: feature extraction, deep Hough, and regression prediction. Finally,
it outputs detected semantic lines. Details of each part are as follows.
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Fig. 2. The network structure of proposed method. It mainly consists of feature extrac-
tion, deep Hough, and regression prediction.

Feature extraction part has a reverse U-Net structure like that of original
DHT, which consists of bottom-up and top-down sub-networks. Unlike DHT,
the strip convolution and new pooling strategy combining the strip pooling and
average pooling are incorporated into the bottom-up sub-network. The deep
features of the input image are first extracted by the bottom-up sub-network,
then transferred into the top-down sub-network. Besides general connections,
there are skip connections in the reverse U-Net [21], where FSM explicitly models
the weight value of each connection. The output of feature extraction part is
intermediate Xi, which contains both semantic and detailed information.

Deep Hough part is the same as that of DHT. The outputs of the top-down
sub-network of feature extraction part, X1, X2, X3, and X4, are fed into the
Hough transform, whose size is 1/4, 1/8, 1/16, and 1/16 of that of the input
image, respectively. Then, feature maps Xi in different scales extracted in the
spatial domain are independently transformed into Yi in the parameter domain
via Hough transform. Finally, the bilinear interpolation is applied to adjust the
size of each output to the size of Y1 for aggregation operation.

Prediction part aggregates deep features of the parameter domain, Yi, along
the channel dimension, then performs 1 × 1 convolution to output the predic-
tion result. To visualize the prediction results, the reverse Hough transform is
performed finally. The cross-entropy loss function is taken to train the proposed
network via back-propagation using the Adan [22] optimizer.

3.2 Feature Selection Module

The semantic line detection method should emphasize critical feature maps that
contain much more spatial information and suppress redundant feature maps to
balance the accuracy and computational cost. Feature selection module shown
in Fig. 3 can fulfill this task by assigning weights to input feature maps along
the channel dimension and explicitly modeling the importance of feature maps.

The input feature map Ci has the form of Ci = [C1, · · · , Cd, · · · , CD],
where Cd ∈ R

Hi×Wi , Hi and Wi refers to the height and width of the
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corresponding channel respectively, D the number of input channels. Ĉi =[
Ĉ1, · · · , Ĉd′ , · · · , ĈD′

]
, Ĉd′ ∈ R

Hi×Wi refers output feature maps, and D
′

the
output channels’ number.

Fig. 3. Feature selection module, i.e., FSM.

The global information zi = [z1, · · · , , zd, · · · , zD] of feature map Ci is
extracted by the global pooling operation.

zi =
1

Hi × Wi

Hi∑
h=1

Wi∑
w=1

Cd (h,w) (1)

where Cd(h,w) represents pixel value in the coordinate (h,w) of the dth channel.
Then, zi is fed into the feature importance modeling layer fm(·),

fm(·) =
{

1 × 1 conv
sigmoid(·) (2)

fm(·) can model the channel weights of feature maps, whose output is a weight
vector u = [u1, · · · , ud, · · · , uD],

u = fm(z), (3)

where ud is the importance weight of the dth channel input feature map. Then,
the weight vector u is used to scale the input feature map. After that, the
scaled feature map is added to the input feature map pixel-by-pixel. The rescaled
feature map x3 = Ci + ud · Ci is obtained.

The feature selection layer, i.e., fs(·) = 1 × 1 conv layer, is introduced to
the rescaled feature map. The effects of fs(·) layer are two folds: 1. selectively
maintain essential feature maps. 2. discard unnecessary feature maps to reduce
information channels.

Ĉi = fs (Ci + ud ∗ Ci) (4)

FSM is incorporated into the FPN of feature extraction part, which replaces
the original 1×1 conv layer between the bottom-up and top-down in the original
DHT as shown in Fig. 2.
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3.3 Strip Convolution

To extract deep features of semantic lines, it is necessary to capture the remote
dependency relationship between semantic backgrounds. The strip convolution
of 1 × n and n × 1 is proposed to replace the square convolution of the original
DHT. The strip convolution is conducive to aggregate context and local context
information of straight lines.

Fig. 4. The improved strip convolutional network is divided into three layers: 1 × 1,
5 × 1, and 1 × 5.

As shown in Fig. 4, the 3 × 3 convolution layers in the bottleneck module of
ResNet of original DHT are substituted by the parallel strip convolution layer
of 5 × 1 and 1 × 5. The 1 × 1 convolution layer before and after the parallel
strip convolution reduces and increases the dimensions, respectively. The output
combining vertical and horizontal strip convolution, z (i, j), satisfies

z (i, j) = fs (z1 (i, j) + z2 (i, j)) (5)

z1(i, j) =
∑

j−2≤j≤j+2

ŵ · fs(x (i, j)) (6)

z2(i, j) =
∑

i−2≤i≤i+2

ŵ · fs(x (i, j)) (7)

where z1(i, j) and z2(i, j) is the output of vertical strip convolution and the
output of horizontal strip convolution respectively, ŵ is the corresponding weight
of the stripe convolution, x (i, j) is the input of the position (i, j), fs (·) is the
1 × 1 convolution layer.

The final output of the strip convolution, ẑ (i, j), is the pixel-by-pixel sum of
the residual downsampling of input and z (i, j),

ẑ (i, j) = z (i, j) ⊕ fd (x(i, j)) (8)

where fd(·) is the downsampling function.
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Fig. 5. The structure of the mixed strip pooling layers. It combines the average pooling
and the horizontal and vertical strip pooling.

3.4 Mixed Strip Pooling Layer

Considering that the strip convolution can combine remote information, a mixed
pooling layer combining the strip pooling and average pooling is proposed to
substitute the global pooling of the original DHT, which can better gather global
and local context information.

The mixed pooling layer shown in Fig. 5 consists of two modules that capture
short- and long-range dependencies between different locations. Its output is

yC,i,j = w1y
h
C,i + w2y

w
C,j + w3y

h×w
C,(i,j). (9)

yh
C,i =

1
W

∑
0≤i<W

xi,j (10)

yw
C,j =

1
H

∑
0≤j<H

xi,j , (11)

where yw
C,j and yh

C,i is the output of horizontal and vertical strip pooling, respec-
tively, yh×w

C,(i,j) is the output of average pooling corresponding to the short-range
information collection, H × W is the height and width of the input, h,w is the
range of average pooling. Then, yw

C,j and yh
C,i are up-sampled to n × n by one-

dimensional convolution. After that, yw
C,j and yh

C,i are aggregated pixel-by-pixel
according to (9). The resulting yC,i,j reduces the channel dimension via the 1×1
convolution layer. The outputs of average and strip pooling layers are summed
and fused with the weight wi pixel-by-pixel along each channel.

3.5 Lightweight Network Using the Strategy of GhostNet

To reduce the amount of floating point computation and speed up the network
inference, some convolutional layers in feature extraction part are modified using
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the strategy of GhostNet [9]. The core strategy of GhostNet is to upgrade fea-
tures extracted by the classical convolution into two parts: intrinsic features
generated by classical convolution and ghost features generated by cheap oper-
ations. Intrinsic features generated by classical convolution are fused with ghost
features generated by cheap operations along the channel dimension. A new fea-
ture map with equivalent dimension of the original classical convolution’s output
is obtained. In fact, the number of parameters in the backbone of original DHT
is 2.753 × 107, while that of proposed network is 2.636 × 107. It is reduced by
4.4%, while some extra manipulations, such as attention mechanism and strip
convolution, are incorporated.

4 Experiments

Experiments are conducted with an RTX2080ti GPU and Pytorch framework on
two open datasets: SEL [1] and NKL [7] dataset. SEL [1] contains 1,715 images
and 2,791 semantic lines, where the training set includes 1,541 images and 2,493
lines, and the remaining forms the evaluation set. NKL [7] consists of 6,500
images and 13,148 semantic lines, where the training set contains 5,200 images
and 10,498 lines, and the remaining forms its evaluation set. The qualitative
and quantitative results of the proposed method are reported in comparison
with existing methods on NKL. In addition, results of generalization ability on
SEL and ablation study are also presented.

4.1 Comparison of Experimental Results

Experimental details are as follows. The input images are unified and resized
to 400 × 400. The batch size is 8. Adan optimizer is adopted. The loss function
is cross entropy. The learning rate is 0.0002, the momentum is 0.9, and the
attenuation is 0.1. The quantization parameters of θ and R [7] are 100, and the
threshold parameter is 0.01. The training epoch is 30. The proposed network is
initialized with the model using ResNet pre-trained on ImageNet.

Evaluation Metrics. Two evaluation metrics, the Chamfer distance (CD) [24]
and EA-score [7], are used to evaluate the similarity between the estimated line
and the ground truth. The CD satisfies dCD(li, lj) = 1

n

∑
pi∈li

minpj∈lj‖pi −pj‖,
while p is the point on line l and n is the number of points. The EA-score
[7], S = (Sd·Sθ)2, considers both the Euclidean distance Sd = 1 − D(li, lj) and
the angular distance Sθ = 1 − θ(li,lj)

π/2 between the estimated and ground truth
semantic lines pair (li, lj), where D(li, lj) is the Euclidean distance between
midpoints of two lines li and lj and θ(li, lj) is the angle between li and lj . Both
of them indicate the matching degree between the prediction line and the truth
line. In addition, a series of precision, recall, and F-measure scores are obtained
based on CD and EA-score to evaluate the proposed method.

Avg. P, Avg. R, and Avg. F are used to evaluate the overall performance after
obtaining the accuracy of semantic line detection on 1300 images in the validation
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Table 1. Quantitative results on the NKL dataset

Method CD EA

Avg.P Avg.R Avg.F Avg.P Avg.R Avg.F

DHT(ResNet50) [7] 0.766 0.864 0.812 0.679 0.766 0.719

DHT(VGG16) [7] 0.750 0.864 0.803 0.659 0.759 0.706

HED [23]+HT [12] 0.301 0.878 0.448 0.213 0.612 0.318

Ours 0.773 0.872 0.819 0.697 0.783 0.733

Table 2. Quantitative comparison of the efficiency of DHT and Ours.

Method Parameters(M) FLOPs(G) FPS Forward time(s)

DHT(ResNet50) 27.53 140.065 14.308 61.17

Ours 26.36 119.71 17.057 51.82

stage and then taking the average value. Avg. P represents the average accuracy,
Avg. R represents the average recall, and Avg. F is the overall performance
indicator combining precision and recall. Precision represents the proportion of
correctly predicted semantic lines to the number of predicted semantic lines. The
recall rate represents the proportion of correctly predicted semantic lines to the
number of ground-truth lines.

FPS (Frames Per Second) indicates the speed at which the model processes
images for semantic lines detection.

Parameters indicate the size of the learnable parameters of the model.
FLOPs refer to the number of floating point operations used to measure the

complexity of the model.
Forward time refers to the time for forward propagation of all valid images.

The total time-consuming is calculated from inputting all images into the model
to output results. It evaluates the model operation efficiency.

Comparison of Quantitative Results. Experimental results of the proposed
method and the state-of-the-art methods, i.e., evaluation metrics EA [7] and
CD [24], are shown in Table 1, where the best are in bold and the second best
are marked by underlines. It can be seen that our model outperforms other
methods except that the average recall of CD is slightly lower than that of the
HED [23]+HT [12]. The baseline network, DHT(ResNet50), achieves the second
best. Then, the quantitative efficiency comparison is performed between the
baseline method and the proposed method, as shown in Table 2. It can be seen
that the processing time of the proposed network is reduced by 15.2% compared
with the baseline network, DHT(ResNet50), and the speed of image processing
is increased by 19.2%.
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(a) ORL PIC (b) GT (c) HED+HT (d) DHT(base) (e) OURS

Fig. 6. Compared visualization results on the NKL dataset.

Table 3. Results of generalization ability on the SEL dataset.

Method EA

Avg.P Avg.R Avg.F

HED [23]+HT [12] 0.356 0.42 0.385

SLNet-iter1 [1] 0.654 0.803 0.721

SLNet-iter10 [1] 0.762 0.729 0.745

DHT(ResNet50) [7] 0.819 0.755 0.786

DHT(VGG16) [7] 0.756 0.774 0.765

Ours 0.776 0.779 0.777

Comparison of Qualitative Results. Figure 6 shows the visual results of
the proposed method for semantic line detection on several randomly selected
images.

In comparison with the ground truth, it can be seen that the proposed method
can accurately predict all semantic lines except the 2nd image, where one seman-
tic line is omitted, while other methods have more errors. It is consistent with
the results shown in Table 1 that the recall rate of the DHT(ResNet50) [7] and
HED [23]+HT [12] is lower that there are more irrelevant lines in their results.
On the whole, our method outperforms the other methods.

Generalization Ability. The generalization ability of our method is qualita-
tively compared with the state-of-the-art methods on the SEL dataset. Results
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are shown in Table 3, where the best are in bold and the second best are marked
by underlines.

It can be seen in Table 3 that all metrics of the proposed method rank the 2nd

in compare with the state-of-the-art methods on the SEL dataset. The difference
between our method and DHT(ResNet50) is 4.3% on precision, while the recall
rate is better than DHT(ResNet50) with 2.4%. The F-measure of our method
has a slight difference of 0.9% from that of DHT(ResNet50). So, the proposed
method has the generalization ability comparable to that of the state-of-the-arts.

4.2 Ablation Study

This section tests four improved modules via the ablation study, which are the
feature selection module (FSM) presented in Sect. 3.2, strip convolution (SC)
shown in Sect. 3.3, mixed strip pooling layer (MSP) presented in Sect. 3.4, and
lightweight network module with the strategy of GhostNet (GHB) shown in
Sect. 3.5. The baseline model is the DHT(ResNet50). Then, the validity of the
FSM, SC, MSP, and GHB are verified. Experimental results are shown in Table 4.

Table 4. Results of ablation study.

FSM SC MSP GHB F-measure FPS

0.684 14.308

� 0.703 15.981

� � 0.724 15.954

� � 0.729 14.596

� � 0.657 18.373

� � � � 0.733 17.057

Table 4 shows the quantitative results of the ablation study. The first row
shows the performance of the baseline, i.e., DHT(ResNet50). It can be seen
in Table 4 that different components of the proposed method can improve the
performance of semantic line detection. Compared with the baseline, they all
improved the F-measure values by 2–4%. The GHB can reduce 1.91% of the com-
putation number. Therefore, each improved component of the proposed method
has a positive effect on the performance of semantic line detection.

5 Conclusion

This paper proposes a semantic line detection method using a deep Hough net-
work with the strip convolution and attention mechanism. By combining the
channel attention into the FPN, the influence of redundant information is alle-
viated. The strip convolution is incorporated into the deep Hough network to
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collect the remote information and reduce the computational cost. The mixed
pooling strategy is proposed to gather global and local content information bet-
ter. Besides, the GhostNet module is adopted to replace the convolutional mod-
ule in the FPN to reduce the computational cost further. Extensive experimental
results on open datasets validate the proposed method. Its performance is com-
parable with and even superior to some of the performance of the state-of-the-art
methods in accuracy and efficiency on the NKL and SEL datasets.
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Abstract. Few-shot Knowledge Graph Completion (FKGC) is a spe-
cial task proposed for the relations with only a few triples. However,
existing FKGC models face the following two issues: 1) these models
cannot fully exploit the dynamic relation and entity properties of neigh-
bors to generate discriminative representations; 2) these models cannot
filter out noise in high-order neighbors to obtain reliable entity repre-
sentations. In this paper, we propose an adaptive multi-hop neighbor
selection model, namely AMBLE, to mitigate these two issues. Specif-
ically, AMBLE first introduces a query-aware graph attention network
(QAGAT) to obtain entity representations by dynamically aggregating
one-hop neighbors based on relations and entities. Then, AMBLE aggre-
gates high-order neighbors by iterating QAGAT and LSTM, which can
efficiently extract useful and filter noisy information. Moreover, a Trans-
former encoder is used to learn the representations of subject and object
entity pairs. Finally, we build an attentional matching network to map
the query to few support triples. Experiments show that AMBLE out-
performs state-of-the-art baselines on two public datasets.

Keywords: Knowledge graph completion · Few-shot learning · Link
prediction · Graph attention network · Multi-hop aggregation

1 Introduction

Knowledge graphs (KGs) as a kind of structured data can assist many artificial
intelligence downstream applications, such as question answering systems [23],
recommendation systems [18], etc. KGs usually represent every fact with a triple
(s, r, o), where s, o are the subject entity and object entity, and r is the relation
between s and o. Due to the incompleteness of KGs, knowledge graph completion
(KGC) has become one of the most important research tasks in the field of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 153–164, 2024.
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knowledge graphs. The task is to infer missing facts based on the existing entity
and relation by answering queries such as (s, r, ?).

Existing large-scale knowledge graphs [2,17] often suffer from the long-tail
distribution problem, i.e., a large number of relations contain only a few triples.
However, traditional KGC models require a large number of triples for each
relation for training to obtain discriminative representations. As a result, these
models have poor completion ability for the relation with only a small number of
triples. To alleviate this problem, few-shot knowledge graph completion (FKGC)
has been proposed recently. These methods only need a small number of triples as
references for queries of each relation to achieve the completion task in few-shot
scenarios.

Existing FKGC models [12,13,21,22] obtain entity representations by aggre-
gating neighbor information, but these methods have two major limitations. 1)
Dynamic neighbor properties: Dynamic neighbor properties mean that the
influence of neighbors on entity varies with the relation of different completion
tasks. Dynamic neighbor properties are determined by both the entity and rela-
tion information. However, GMatching [21], FSRL [22] and GANA [12] ignore
the dynamic properties of entities, these methods cannot dynamically assign
neighbor weights based on the completion task, resulting in inaccurate encod-
ing of entities. Although FAAN [13] considers the problem of dynamic neighbor
properties, it only considers the effect of relations and ignores the effect of enti-
ties. 2) High-order neighbor noise: In real-world knowledge graph datasets
[2,17], there are a large number of entities that contain only a very small number
of one-hop neighbors. Existing FKGC approaches only aggregate one-hop neigh-
bors, resulting in their inability to obtain reliable representations of entities.
Although traditional KGC model [11] aggregates high-order neighbors to obtain
supplementary neighbor information, it ignores the noise problem in high-order
neighbors. Thus, how to efficiently filter out these noisy high-order neighbors
remains a challenging problem.

To address the above problems, we propose an Adaptive Multi-hop neighBor
seLEction for few-shot knowledge graph completion (AMBLE). Specifically, we
firstly propose a query-aware graph attention network (QAGAT) to obtain entity
representations by aggregating one-hop neighbors. QAGAT can fully make use of
both entity and relation information to dynamically assign weights to the neigh-
bors. Secondly, we iterate QAGAT and LSTM to aggregate high-order neighbors
which can effectively extract useful information from high-order neighbors and
filter out the noisy information. Thirdly, we use a Transformer to learn the rep-
resentations of entity pairs. Finally, an attentional matching network is applied
to calculate the score of each query. Main contributions of this paper are sum-
marized as follows:

– We propose an adaptive multi-hop neighbor selection model, namely AMBLE,
to solve dynamic neighbor properties and high-order neighbor noise problems
in FKGC.
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– We devise a novel query-aware graph attention network (QAGAT), which can
take advantage of both entity and relation information to adaptively assign
neighbor weights based on different tasks.

– We design a new high-order neighbor aggregation and selection structure by
iterating QAGAT and LSTM, which can efficiently extract useful and filter
noisy information from high-order neighbors.

– We demonstrate the superiority of the AMBLE over state-of-the-art baselines
by conducting extensive experiments on two public datasets.

2 Related Work

Due to the long-tail phenomenon in real-world KGs, FKGC has become a popular
research area. Existing FKGC models can be grouped into two categories:

Metric-Based Models. GMatching [21] learns entity representations by aggre-
gating neighbors, and then introduces a matching processor to evaluate the
similarity between queries and support triples. FSRL [22] introduces a neigh-
bor aggregator based on attention mechanism to aggregate neighbor informa-
tion. FAAN [13] considers the problem of dynamic properties in neighbors and
proposes a relation-aware attentional neighbor aggregator to learn entity rep-
resentations. Thus, it can dynamically aggregate neighbors with the change of
the completion task. YANA [8] aims to mitigate the issue of generating reli-
able embeddings for solitary entities in FKGC tasks, and introduces four novel
abstract relations to represent inner- and cross- pair entity correlations and
constructs a local pattern graph from the entities. MFEN [20] aims to capture
the heterogeneous influence of neighbor characteristics by devising a single-layer
CNN with differently sized filters to capture multi-scale characteristics while
controlling model complexity.

Optimization-Based Models. MetaR [3] designs a fast gradient descent
update procedure based on the idea of MAML [4] to achieve the completion
task by transferring relational meta-information from support triples to queries.
Based on MetaR, GANA [12] proposes a gated and attentive neighbor aggrega-
tor to filter noise in one-hop neighbors. In addition, benefiting from TransH [19],
GANA designs a MTransH to deal with the complex relations.

However, the above models cannot utilize the information of entities and
relations in dynamic properties problem on the one hand, and do not consider
the noise problem in high-order neighbors on the other hand.

3 Preliminaries

In this section, we give formal definitions of the knowledge graph, the few-shot
knowledge graph completion task, and the corresponding few-shot learning set-
ting. Specific notations and their descriptions are listed in Table 1.
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Table 1. Notations and descriptions.

Notation Description

G, E ,R,F Knowledge Graph, entity set, relation set and fact set

(s, r, o) A triple of subject entity, relation and object entity

Ti,Si,Qi Task i and its support set and query set

Q+
i ,Q−

i The positive and negative query set of task i

G′
, C Background knowledge graph and candidate entity set

Ne Neighbor set of entity e

e(t), e
(t)
i t-layer entity e and its neighbors’ representations

r, ri Query relation and neighbor’s relation representations

q, si Query and support entity pairs representations

W1,W2,W3 d × d dimensional parameters of liner

b1, b2, b3 d dimensional bias of liner

W
(t)
f ,W

(t)
i ,W

(t)
o ,W

(t)
C d × d dimensional parameters of t-layer LSTM

b
(t)
f , b

(t)
i , b

(t)
o , b

(t)
C d dimensional bias of t-layer LSTM

σ Activation function sigmoid

λ, γ Hyperparameters

Knowledge Graph. A knowledge graph G is represented by a collection of
triples: G = {(s, r, o)|s, o ∈ E , r ∈ R}. For each triple (s, r, o), s, o denote the
subject entity and object entity, and r is the relation between s and o. E , R
denote the entity set and relation set of G, respectively.

Few-Shot Knowledge Graph Completion. Few-shot knowledge graph com-
pletion is a specialized task proposed for the relations with only a few triples,
which are called few-shot relations. Each few-shot relation r corresponds to one
knowledge graph completion task Tr. Each task have a support set and a query
set, i.e., Tr = {Sr,Qr}. Support set Sr = {(si, r, oi)|(si, r, oi) ∈ G} contains
support triples of task Tr, and |Sr| = K suggests a K-shot knowledge graph
completion task. Besides, query set Qr contains all query triples of task Tr,
including positive query triples Q+

r = {(si, r, o+i )|(si, r, o+i ) ∈ G, o+i ∈ C} and
corresponding negative query triples Q−

r = {(si, r, o−
i )|(si, r, o−

i ) /∈ G, o−
i ∈ C}.

C is the candidate entity set. A few-shot knowledge graph completion task is
to find the best completion entity for each query from the candidate entity set
using the support set as a reference.

Few-Shot Learning Setting. We follow the same few-shot settings proposed
by GMatching [21]. We divide all few-shot relations into three disjoint subsets
Rtrain, Rvalid and Rtest for model training, validation and testing. Therefore,
the training, validation and testing phases of our model correspond to a series of
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Fig. 1. Overall framework of our model AMBLE.

few-shot knowledge graph completion tasks. The training, validation and test-
ing phases are defined as Ttrain = {Ti|i ∈ Rtrain}, Tvalid = {Ti|i ∈ Rvalid} and
Ttest = {Ti|i ∈ Rtest} respectively. In addition to few-shot relations, the other
relations in knowledge graph G have sufficient triples, called high-frequency rela-
tions, and the triples containing high-frequency relations constitutes the back-
ground knowledge graph G′

.

4 Methodology

Given a task Ti = {Si,Qi}, the purpose of AMBLE is to find the best candidate
entity by matching the input query q ∈ Qi to the given support set Si. To achieve
this goal, as shown in Fig. 1, AMBLE consists of three major parts: (1) Neighbor
aggregator to learn entity representations by aggregating neighbor information;
(2) Transformer encoder to learn relational representations for entity pairs; (3)
Attentional matching network to match the query to the given support set.
Finally, we present the loss function and training details of our model.

4.1 Neighbor Aggregator

Neighbor aggregator is proposed to learn entity representations, which aggre-
gate high-order neighbors through multiple layers of iterative aggregation. Each
aggregation layer of the neighbor aggregator is shown in Fig. 2, and each layer
consists of QAGAT and LSTM.

Query-Aware Graph Attention Network. The influence of neighbors on
one entity keeps changing with the relation of current task, i.e., when complet-
ing different queries, neighbors have different weights of influence on the target
entity. This dynamic property depends on the relevance between the target entity
and neighbor entity on the one hand, and on the relevance between neighbor rela-
tion and query relation on the other hand. However, existing FKGC methods
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Fig. 2. Details of the t-layer of the neighbor aggregator

[12,13,21,22] cannot simultaneously consider these two influencing factors to
obtain discriminative entity representations.

To tackle the above issue, we design a query-aware graph attention network
(QAGAT) to dynamically aggregate one-hop neighbors. For each entity e, we
constructs the neighbors of e, i.e., Ne = {(ei, ri)|, (e, ri, ei) ∈ G′}, by searching
for the triples in background knowledge graph G′

whose subject entity is e. ei
is the object entity considered as entity e’s neighbor, ri is the relation between
e and ei. At the t-layer, we first use two different FFNNs [14] to learn the
integration representations of the neighbors and target entity as follows:

u(t)
i = W1(e

(t)
i ‖ri) + b1 (1)

v(t) = W2(e(t)‖r) + b2 (2)

where ‖ denotes concatenation operation. u(t)
i denotes neighbor ei’s entity and

relation integration representation, v(t) denotes target entity e and query rela-
tion r integration representation. We obtain r given its support set Sr =
{(si, r, oi)|si, oi ∈ E} by TrasnE [1]: r = Mean(eoi − esi).

Having obtained the integration representations of the neighbors and target
entity, the weight α

(t)
i of the neighbor ei for target entity e can be calculated as

follows:

α
(t)
i =

exp f(v(t),u(t)
i )

∑
(ej ,rj)∈Ne

exp f(v(t),u(t)
j )

(3)

We use softmax function to apply over f(x, y), and we want to take benefit of
the relevance of both entities and relations, so the f(x, y) is defined as follows:

f(x, y) = LeakyReLU(x�W3y + b3) (4)

W3 is the similarity matrix to calculate the relevance between x and y. Following
GAT [15], we use activation function LeakyReLU [10] here. Thus, we make full
use of entity and relation information to dynamically assign neighbor weights.
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Then, we can learn entity e’s representation by adaptively aggregating neigh-
bor information and its own information as follows:

h(t) = Relu(λ
∑

(ei,ri)∈Ne

α
(t)
i e(t)i + (1 − λ)e(t)) (5)

where h(t) is the output representation of entity e at t-layer QAGAT. λ is a trade-
off hyperparameter, and Relu denotes activation function. Thus, QAGAT adap-
tively aggregates one-hop neighbors using both entity and relation information.

Adaptive Multi-hop Neighbor Selection. We expand from aggregating one-
hop neighbors to aggregating multi-hop neighbors, aiming to find more com-
plementary information from high-order neighbors. However, as the distance
increases, more noise information is trapped in high-order neighbors [9]. To solve
the high-order neighbor noise problem, we add a LSTM [6] after QAGAT of each
layer aggregator for information filtering, because LSTM has excellent memory
and forgetting functions. As shown in Fig. 2, the detailed calculation process for
each step is as follows:

f (t) = σ(W(t)
f h(t)+b

(t)
f ), i(t) = σ(W(t)

i h(t)+b
(t)
i ), o(t) = σ(W(t)

o h(t)+b(t)o ) (6)

C̃(t) = tanh(W(t)
C h(t) + b

(t)
C ), C(t+1) = f (t) · C(t) + i(t) · C̃(t) (7)

e(t+1) = o(t) · tanh(C(t+1)) (8)

where C̃(t) is the newly added neighbor information in the t-layer aggregation.
The gated i(t) is used to extract useful information from newly added neighbors,
and the extracted information is added to the memory by i(t)·C̃(t). The gated f (t)

is used to filter noisy information from the old memory by f (t) ·C(t). As such, we
are able to filter the memory for entity e as C(t+1). The gated unit o(t) is used to
select the output information from C(t+1). Then, we obtain representation e(t+1)

of the t-layer aggregation of entity e. After l-layer aggregation, we aggregate l-
hop neighbor information and obtain entity e’s final representation e(l).

Through the above, we effectively extract useful information from the t-hop
neighbors and filter out the noisy information. Therefore, the neighbor aggrega-
tor of our model can efficiently achieve the information aggregation and selection
of high-order neighbors by iterating QAGAT and LSTM.

4.2 Transformer Encoder

With the neighbor aggregator, we have obtained the entity representation.
Inspired by FAAN [13], which uses a Transformer module to learn the repre-
sentation of entity pairs. We use a Transformer encoder to learn representations
of entity pairs. We use the encoder to interact information between subject and
object entities to learn more reliable representations of entity pairs. For each
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triple (s, r, o) in support set or query set, we input them into Transformer as
follows:

z01 = e(l)s + xpos
1 , z02 = rmask + xpos

2 , z03 = e(l)o + xpos
3 (9)

where e(l)s and e(l)o are the representations of entity s and o obtained by neighbor
aggregator. rmask is a randomly initialized mask. xpos

1 , xpos
2 and xpos

3 are the
position embeddings. Later, we feed them into a stack of P Transformer blocks
as follows:

zpi = Transformer(zp−1
i ), i = 1, 2, 3. (10)

where zpi is the hidden state of the p-th layer Transformer. After P layer Trans-
former, the final hidden state zP2 is the representation of entity pair (s, o). By this
way, we can obtain the representations (s1, s2, ..., sK) of entity pairs in support
set Sr and the query entity pairs representation q of task Tr.

4.3 Attentional Matching Network

Having obtained the representations of entity pairs in support set and query set
by Transformer encoder, we adopt the idea of matching network [16] to calcu-
late the similarity between query and support set to achieve FKGC task. Due to
the semantic divergence in support set, different support triples have different
weights for a query [5]. To enable our model to dynamically aggregate support
triples when matching different queries, we adopt the attentional matching net-
work in FAAN [13]. The similarity score of query q is calculated as follows:

βi =
exp(q�si)

∑K
j=1 exp(q�sj)

, S =
K∑

i=1

βisi (11)

Score(q,Sr) = S�q (12)

where βi denotes the attention weight of support triple (si, r, oi), and S is support
set representation. Thus, we can obtain adaptive support set representation for
different queries by Eq. 11. We take the inner product of the representations of
query and support set as their similarity score.

4.4 Loss Function

Our model is trained on a training task set Ttrain with the goal of high similarity
scores for positive queries and low similarity scores for negative queries. The
objective function is a hinge loss defined as follows:

L =
R∑

r

∑

q+∈Q+
r ,q−∈Q−

r

[
γ + Score(q−,Sr) − Score(q+,Sr)

]
+

(13)

where γ is a hyperparameter represents safety margin distance, and [x]+ =
max(0, x) is the standard hinge loss.
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Table 2. Statistics of the experimental datasets.

Dataset #Relation #Entity #Triples #Task-Train #Task-Valid #Task-Test

NELL-One 358 68545 181109 51 5 11

Wiki-One 822 4838244 5859240 133 16 34

5 Experiments

5.1 Datasets and Baselines

We conduct experiments on two public datasets NELL-One and Wiki-One. Fol-
lowing GMatching [21], we regard relations containing more than 50 but less
than 500 triples as few-shot relations, and others as high-frequency relations.
The task relation ratios for training/validation/testing on NELL-One and Wiki-
One are 51/5/11 and 133/16/34, respectively. The statistics of the two datasets
are shown in Table 2.

The existing FKGC models: including GMatching [21], MetaR [3], FSRL [22],
FAAN [13], GANA [12], YANA [8] and MFEM [20]. To evaluate the performance
of our model and the baselines for FKGC task, we utilize two traditional metrics
MRR and Hits@1/5/10 on both datasets. The results of GMatching and FSRL
are derived from the paper of FAAN, and the results of the other FKGC models
are obtained from their corresponding original papers.

5.2 Implementation

In our model, all entities and relations representations are initialized randomly
with dimension of 100 and 50 for NELL-One and Wiki-One. The few-shot size
K is set to 5 for the following experiments. The two hyperparameters of this
model, margin γ and trade-off λ, are set to 10 and 0.6 respectively. For Neighbor
Aggregator, our model aggregates 2-hop neighbors on both datasets to achieve
optimal performance, i.e., l = 2. The number of Transformer layers P is set to
3 and 4 for NELL-One and Wiki-One respectively, and the number of attention
heads is set to 4 and 8 respectively. We implement all experiments with PyTorch
and use Adam optimizer [7] to optimize model parameters with a learning rate
of 0.0001.

5.3 Experimental Comparison with Baselines

We compare AMBLE with baselines on NELL-One and Wiki-One datasets
to evaluate the effectiveness of AMBLE. The performances of all models are
reported in Table 3, where the best results are highlighted in bold, and the
best performance of baselines is underlined. AMBLE achieves general improve-
ments compared to the baselines. To be concrete, 1) For NELL-One dataset,
AMBLE achieves an improvement of 6.1/4.9/11.4/8.3% in MRR/Hits@1/5/10
compared to the best performing baseline GANA. These results illustrate that it
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Table 3. Experimental results for all methods. The best results are marked in bold,
and the best results of the baseline are underline.

Models (5-shot) NELL-One Wiki-One

MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10

GMatching (MaxP) 0.176 0.113 0.233 0.294 0.263 0.197 0.337 0.387

GMatching (MeanP) 0.141 0.080 0.201 0.272 0.254 0.193 0.314 0.374

GMatching (Max) 0.147 0.090 0.197 0.244 0.245 0.185 0.295 0.372

MetaR (Pre-train) 0.209 0.141 0.280 0.355 0.323 0.270 0.385 0.418

MetaR (In-train) 0.261 0.168 0.350 0.437 0.221 0.178 0.264 0.302

FSRL 0.153 0.073 0.212 0.319 0.158 0.097 0.206 0.287

FAAN 0.279 0.200 0.364 0.428 0.341 0.281 0.395 0.463

GANA 0.344 0.246 0.437 0.517 0.351 0.299 0.407 0.446

YANA 0.294 0.230 0.364 0.421 0.380 0.327 0.442 0.523

MFEN 0.310 0.236 0.369 0.443 0.331 0.253 0.398 0.470

AMBLE (Ours) 0.365 0.258 0.487 0.560 0.392 0.335 0.463 0.546

Fig. 3. The MMR and Hits@10 of AMBLE and FAAN for each relation on NELL-One.

is more effective to adaptively aggregate multi-hop neighbors based on relation
and entity information. 2) For Wiki-One dataset, AMBLE achieves an improve-
ment of 3.2/2.4/4.8/4.4% in MRR/Hits@1/5/10 compared to the best perform-
ing baseline YANA. Although YANA utilizes the information from the sub-
graphs, our model achieves a better performance. This indicates that our model
can effectively extract useful and filter noisy information from high-order neigh-
bors by iterating QAGAT and LSTM.

5.4 Comparison over Different Relations

To demonstrate the superiority of our model in more detail, we set up compar-
ative experiments with FAAN [13] on NELL-One over different relations. The
experimental results are shown in Fig. 3, where Relation ID represents a class of
relation. AMBLE outperforms FAAN in MRR metric with 10 out of 11 relations,
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Table 4. The results of ablation experiment.

Variants NELL-One Wiki-One

MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10

w/o QAGAT 0.265 0.187 0.334 0.408 0.342 0.254 0.388 0.463

w/o Neighbor selection 0.337 0.239 0.425 0.476 0.364 0.265 0.408 0.495

AMBLE (Ours) 0.365 0.258 0.487 0.560 0.392 0.335 0.463 0.546

and in Hits@10 metric with 7 out of 11 relations. Experimental results indicate
that our model is robust for different task relations.

5.5 Ablation Study

We perform experiments on all the datasets with several variants of AMBLE to
provide a better understanding of the contribution of each module to AMBLE.
The ablative results are shown in Table 4. The experimental results demonstrate
the effectiveness of each module in AMBLE. 1) w/o QAGAT means we replace
QAGAT with the heterogeneous neighbor encoder in FSRL [22]. Experimental
results show that QAGAT can obtain discriminative entity and relation repre-
sentations by dynamically aggregating neighbors based on relation and entity
information. 2) w/o Neighbor selection means that we remove the LSTM
from the neighbor aggregator. Experimental results prove that using high-order
neighbor information can improve the performance of our model. In addition,
neighbor selection by LSTM can effectively extract useful and filter noisy infor-
mation from high-order neighbors.

6 Conclusion

In this paper, we propose a novel model AMBLE to address the dynamic neigh-
bor properties and high-order neighbor noise issues in few-shot knowledge graph
completion. We propose a query-aware graph attention network (QAGAT) to
dynamically aggregate neighbors based on relation and entity information, so
as to capture the dynamic neighbor properties in completion task. In addition,
we iterate QAGAT and LSTM to aggregate multi-hop neighbors, which can effi-
ciently extract useful and filter noisy information from high-order neighbors.
The experimental results on the datasets NELL-One and Wiki-One show the
superiority of our model and the effectiveness of each component of our model.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China (Grant No. U19A2067, 61976051) and Major Key Project
of PCL (Grant No. PCL2021A09, PCL2021A02, PCL2022A03).



164 X. Gong et al.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS (2013)

2. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E., Mitchell, T.:
Toward an architecture for never-ending language learning. In: AAAI, pp. 1306–
1313 (2010)

3. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning for
few-shot link prediction in knowledge graphs. In: EMNLP-IJCNLP, pp. 4217–4226
(2019)

4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML, pp. 1126–1135 (2017)

5. Gong, X., Qin, J., Chai, H., Ding, Y., Jia, Y., Liao, Q.: Temporal-relational match-
ing network for few-shot temporal knowledge graph completion. In: DASFAA, pp.
768–783 (2023)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. In: Neural Computa-
tion, pp. 1735–1780 (1997)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Liang, Y., Zhao, S., Cheng, B., Yin, Y., Yang, H.: Tackling solitary entities for
few-shot knowledge graph completion. In: KSEM, pp. 227–239 (2022)

9. Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., Qi, Y.: GeniePath: graph neural
networks with adaptive receptive paths. In: AAAI, pp. 4424–4431 (2019)

10. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
network acoustic models. In: Proceedings of the ICML, p. 3 (2013)

11. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embed-
dings for relation prediction in knowledge graphs. In: ACL, pp. 4710–4723 (2019)

12. Niu, G., et al.: Relational learning with gated and attentive neighbor aggregator
for few-shot knowledge graph completion. In: SIGIR, pp. 213–222 (2021)

13. Sheng, J., et al.: Adaptive attentional network for few-shot knowledge graph com-
pletion. In: EMNLP, pp. 1681–1691 (2020)

14. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward
neural networks. In: Chemometrics and Intelligent Laboratory Systems, pp. 43–62
(1997)
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Abstract. Nowadays, Deep Neural Networks (DNNs) are fundamen-
tal to many vision tasks, including large-scale visual recognition. As
the primary goal of the DNNs is to characterize complex boundaries
of thousands of classes in a high-dimensional space, it is critical to learn
higher-order representations for enhancing nonlinear modeling capability.
Recently, a novel method called Quantum-State-based Mapping (QSM)
has been proposed to improve the feature calibration ability of the exist-
ing attention modules in transfer learning tasks. QSM uses the wave
function describing the state of microscopic particles to map the feature
vector into the probability space. In essence, QSM introduces a novel
higher-order representation to improve the nonlinear capability of the
network. In this paper, we extend QSM to Quantum Embedding (QE)
for designing new attention modules and Self-Organizing Maps, a class
of unsupervised learning methods. We also conducted experiments to
validate the effectiveness of QE.

Keywords: Quantum mechanics · Embedding · Attention
mechanism · SOM · Image classification

1 Introduction

Researchers have recognized the connection between quantum theory and
machine learning in the past two decades and published many high-quality works.
Quantum computation uses the mathematic rules of quantum physics to redefine
how computers create and manipulate data. These properties imply a radically
new way of computing, using qubits instead of bits, and give the possibility of
obtaining quantum algorithms that could be substantially faster than classical
algorithms. There have been proposals for quantum machine learning algorithms
that have the potential to offer considerable speedups over the corresponding
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classical algorithms, such as q-means [11], QCNN [12], QRNN [1]. Another con-
cept in literature is quantum logic, which refers to the non-classical logical struc-
ture and logical system originating from the mathematical structure of quantum
mechanics. For example, Garg et al. [7] proposed a Knowledge-Base embedding
inspired by quantum logic, which allows answering membership-based complex
logical reasoning queries. Unlike the above works, Zhang et al. [23] proposed a
novel method called Quantum-State-based Mapping (QSM) to improve the fea-
ture calibration ability of the attention module in transfer learning tasks. QSM
uses the wave function describing the state of microscopic particles to embed the
feature vector into the high dimensional space.

In this paper, we extend QSM to Quantum Embedding (QE). QE uses wave
functions and quantum effects between particles as mappings, which helps to rep-
resent the complex interactions between features. We propose a new attention
method called Quantum-State-based Attention Networks (QSAN) based on QE.
We evaluate the proposed method on large-scale image classification using Ima-
geNet and compare it with state-of-the-art counterparts. Convolutional neural
networks (CNNs) have been the mainstream architectures in computer vision for
a long time until recently when new challengers such as Vision Transformers [5]
(ViT) emerged. We train ResNet-50 with QSAN and adopt the advanced training
procedure to achieve 79.6% top-1 accuracy on ImageNet-1K at 224×224 resolu-
tion in 300 epochs without extra data and distillation. This result is comparable
to Vision Transformers under the same conditions. In addition, we construct a
SOM-based image classifier using the QE method. Experiments show that the
proposed QE method can improve the classification performance by modifying
the similarity measure.

2 Related Works

2.1 Revisiting QSM

In order to highlight the plug-and-play ability of QSM, [23] use QSM only once
at the appropriate layer in the module and do not change the data dimension.
Specifically, assuming that the feature vector after pooling is X ∈ R

1×d, and then
the probability density function of one-dimensional particles under a coordinate
representation in an infinite square well is used as a mapping:

⎧
⎪⎪⎨

⎪⎪⎩

|Ψ(X)|2 = QSM(X) =
2
a

N∑

n=1

cnsin2(
nπ

a
X)

a = max(|X|)
(1)

This mapping does not change the dimension of X. As analyzed in [23], training
|Ψ(X)|2 allows the neural network to exploit the probability distribution of the
global information, which is beneficial for generating more effective attention.
Clearly, this method is straightforward but preliminary. Instead of simply using
the wave function as the mapping, QSAN in this paper uses the quantum effect
between two identical particles as the gating.
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2.2 Attention Mechanism in CNNs

SENet [10] proposed a channel attention mechanism in which SE blocks comprise
a squeeze module and an excitation module. Global spatial information is col-
lected in the squeeze module by global average pooling. The excitation module
captures channel-wise relationships and outputs an attention vector using fully
connected (FC) layers and non-linear layers (ReLU and Sigmoid). Then, each
channel of the input feature is scaled by multiplying the corresponding element
in the attention vector. Some later work attempts to improve the outputs of
the squeeze module (e.g., GSoP-Net [6]), improve both the squeeze module and
the excitation module (e.g., SRM [14]), or integrate with other attention mech-
anisms (e.g., CBAM [20]). Besides these methods, ECANet [18] aims to reduce
the complexity of the model by improving the excitation module. ECANet uses a
convolution layer with adaptive kernel size to replace FC layers in the excitation
module. Qin et al. [17] rethought global information captured from the compres-
sion viewpoint and analyzed global average pooling in the frequency domain.
They proved that global average pooling is a special case of the discrete cosine
transform (DCT) and used this observation to propose a novel multi-spectral
channel attention called FcaNet. Similarly, QSAN uses a two-particle quantum
mechanical model to enhance global spatial information.

2.3 Self-organizing Map

Self-organizing map (SOM) is a classical artificial neural network introduced
by Teuvo Kohonen in the 1980s [13], which can generate a discretized low-
dimensional representation of the input space of unsupervised training samples.
As introduced in [4], the SOM algorithm was designed for data modeled as
numerical vectors and belonging to a subset X of Euclidean space, for instance,
R

d. For the discrete setting considered in this work, the input space X comprises
N data points x1, ...,xN stored beforehand or generated online. The learning
map is a lattice of M neurons, e.g., string-like for one dimension or grid-like for
two dimensions, with each neuron having a weight vector wi ∈ R

d, where i is
the index of each neuron. The learning process for the SOM can be described
as follows. At each time instant, a random sample v from the input space X

is selected, and the best matching unit (BMU) corresponding to sample v is
determined by

r = arg min
s

∑

i

hsiD(v,wi) (2)

where r is the index of the winning node. Here function D(·, ·) represents a
similarity measure used to compare the closeness between two vectors. And hs·
is the neighborhood function, a non-increasing function of the distance among
node s and all the other nodes in the lattice. Then the weight update of each
neuron follows

wi(n + 1) = wi(n) + εhriD(v,wi) (3)

where ε is the learning rate. The closer a node is to the BMU, the more its
weights get altered, and the farther away the neighbor is from the BMU, the less
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it learns. And throughout the recursive calculation of BMU and weight update,
the map tends to approximate the distribution of given input samples.

Although the SOM algorithm was originally designed for unsupervised data,
it is also available for supervised and semi-supervised learning. Kohonen’s algo-
rithm is a neighborhood-preserving vector quantization tool working on the
winner-take-all principle, where the winner is the most similar node to the input
in an instant.

3 Proposed Method

In this section, we introduce two specific applications of Quantum Embedding
(QE). One is to modify the SOM similarity measure by using the wave func-
tion of one-dimensional particles in an infinite square well. The other is to use
the relative position distribution probability of two identical free particles in
multidimensional space to generate more efficient channel attention.

3.1 QE-SOM

We know that BMU selection is the most critical step since the following pro-
cedures are all closely related to the winning node. In addition, the design of
similarity measure D(·, ·) influences the BMU computation and thus affects the
performance of SOM. Traditional SOMs use Euclidean distance as the similarity
measure:

D(v,wi) = ‖v − wi‖2 (4)

where, v = (v(1), v(2), ..., v(d)) ∈ R
d is the input sample, and wi ∈ R

d represents
the weight of the ith neuron.

The suboptimality of those original SOMs is due to the global nature of
MSE cost functions. The outliers inevitably affect the updating of each neuron’s
weight, i.e., the data with low probabilities. It leads to oversampling in the low-
probability subspaces and undersampling in high-probability subspaces during
the learning process. For the output feature vector extracted by previous layers,
we choose the same stationary state wave function of a particle in the one-
dimensional infinite well as the mapping function with the highest energy level
as 3. Then the similarity measure of the proposed QE-SOM is modified as follows:

⎧
⎪⎪⎨

⎪⎪⎩

p(k) =
3∑

n=1

2
a
sin2(

nπ

a
v(k)), k = 1, 2, ..., d

Dp(v,wj) = ‖p − wj‖2
(5)

where a is the width of potential well, and vector p = (p(1), p(2), ..., p(d)) is
composed of transformed feature elements. Since we can normalize v into a unit
vector, then a = 1.

Note that the computation cost of this modification is constant, which can
hardly impact the efficiency of training and prediction of a neural network. An
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immediate impact is that we change the self-organizing mode of the learning map,
i.e., how those neurons cluster and update. Experiments indicate that measuring
the similarity in probability space can improve the classification accuracy on the
test set.

3.2 Quantum-State-Based Attention Networks

In this section, we present a specific form of Quantum-State-based Attention
Networks (QSAN), which is a channel attention. In order to highlight the role
of quantum embedding, we do not use a complex network structure. As shown
in Fig. 1, the only difference between QSAN and classical SE blocks [10] is that
the feature vector after the max-pooling operation is used to generate quantum
effect gating, which is used to adjust spatial information intensity.

MaxPool

AvgPool

Quantum Effect 
Gating

Input Feature F MLP Channel Attention Mc Refined Feature

broadcast

Feature Fi

Fig. 1. Illustration of the QSAN.

Given an intermediate feature map F ∈ R
C×H×W as input, the feature map

Fi ∈ R
C×1×1 is computed as:

Fi = AvgPool(F) ⊗ QEG
(
AvgPool(F),MaxPool(F)

)
(6)

where ⊗ denotes element-wise multiplication, AvgPool and MaxPool represent
the average-pooling operation and the max-pooling operation, respectively.

Quantum Effect Gating (QEG). In the attention mechanism, average-
pooling is usually used to aggregate spatial information. But [20] argues that
max-pooling gathers another important clue about distinctive object features to
infer finer channel-wise attention. However, CBAM [20] concatenates the fea-
tures after average-pooling and max-pooling operation, which ignores the intrin-
sic relationship between the two kinds of pooling. Therefore, Quantum Effect
Gating (QEG) is proposed to solve this problem. Let the feature F after average-
pooling operation be FAvg and the feature F after max-pooling operation be
FMax. Obviously, FAvg and FMax express the same spatial global information
from two different perspectives. We consider FAvg and FMax as position vec-
tors of two identical free particles, both of which are in momentum eigenstates
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(eigenvalues are �kα, �kβ). Without the exchange symmetry, the wave function
of two free particles can be expressed as:

ψkαkβ(r1, r2) =
1

(2π�)3
ei(kα·r1+kβ·r2) (7)

where r1 and r2 represent the spatial coordinates of the two particles respec-
tively, and � is reduced Planck constant. In order to facilitate the study of the
distribution probability of relative positions, let:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r = r1 − r2

k = (kα − kβ)/2

R =
1
2
(r1 + r2)

K = kα + kβ

(8)

so Eq. 7 can be reduced to:

ψkαkβ(r1, r2) =
1

(2π�)
3
2
ei(K ·R)φk(r) (9)

where
φk(r) =

1
(2π�)

3
2
eik·r (10)

we only discuss the probability distribution of relative positions. The probability
of finding another particle around a particle in the spherical shell with radius
(r, r + dr) is:

4πr2P (r)dr ≡ r2dr

∫

|φk(r)|2dΩ = r2dr
4π

(2π�)3
(11)

so the probability density P (r) is constant, independent of r. However, when we
consider the exchange symmetry, the wave function is:

ψSkαkβ(r1, r2) =
1√
2
(1 + P12)ψkαkβ(r1, r2) (12)

where P12 is the exchange operator. We directly give the probability density of
relative positions under the condition that the exchange symmetry is satisfied:

PS(r) =
1

(2π�)3
(1 +

sin2kr

2kr
) (13)

let x represent the relative distance between two particles and omit the constant
factor 1/(2π�)3, we get:

P (x) ∝ 1 +
sinx

x
(14)
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more elaborated derivation of the above equations can refer to most textbooks
of quantum mechanics such as [9]. According to Eq. 14, QEG can be expressed
as:

QEG(FAvg,FMax) = 1C +
sin

(
(FAvg − FMax) ⊗ (FAvg − FMax)

)

(FAvg − FMax) ⊗ (FAvg − FMax)
(15)

where 1C represents a C-dimensional vector whose elements are all 1, ⊗ denotes
element-wise multiplication. As shown in Eq. 15, QEG has no parameters to
train, and the computation is negligible.

4 Experiments

In this section, the experiments verify the effectiveness of QE-SOM and QSAN,
respectively.

4.1 Experiments on MNIST

We trained a CNN model from scratch. The CNN Model consists of two custom
CNN layers followed by two fully connected (dense) layers.

CNN 1 CNN 2 FC Layer 1 FC Layer 2(a)

CNN 1 CNN 2 FC Layer 1 SOM(b)

CNN 1 CNN 2 FC Layer 1 QE-SOM(c)

Input

Input

Input

Class

Class

Class

Fig. 2. Full architecture of training pipeline including the CNN model, SOM and QE-
SOM.

Fig. 2(a) illustrates the full architecture of the basic pipeline: CNN 1 (10 filters,
kernel size 5×5, stride 1×1, padding 2×2, max pooling 2×2), CNN 2 (20 filters,
kernel size 3 × 3, stride 1 × 1, padding 1 × 1), fully connected layer 1 (FC layer
1 with 500 neurons) and fully connected layer 2 (FC layer 2 with 10 neurons).
In Fig. 2(b), we described the SOM training pipeline, in which we removed FC
layer 2 and extracted features to feed SOM with 500 input dimensions. More
specifically, we extract the features before the classifier layer and use them as
input to SOM. Figure 2(c) illustrates the QE-SOM training pipeline, i.e., the
previous FC layer 2 in Fig. 2(a) is removed, and the features extracted from FC
layer 1 are then fed to the proposed QE-SOM. Note that CNN 1, CNN 2, and FC
layer 1 are determined by the CNN model and kept fixed during both the training
and test stages of SOM and QE-SOM. The practice is a typical operation in
transfer learning, i.e., training a base network and then copying its first n layers
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Fig. 3. The basic operation performed by SOM or QE-SOM when a batch is given,
and its resulting cases.

Table 1. Performance comparison under different batch sizes.

Number of samples

600 6000 30000 48000

QE-SOM 93.51% 93.69% 94.16% 93.88%

SOM 93.30% 93.60% 93.83% 93.31%

to the first n layers of a target network [22]. That is to say, transfer learning is
the improvement of learning in a new task through transferring knowledge from
a related task that has already been learned [16]. Figure 3 depicts more details
of the SOM-based pipeline. We randomly select a certain number of samples
from the training set as a batch for training SOM for one single iteration in this
experiment. We report the average accuracy of 100 experiments to reduce the
impact of randomness.

We start with the SOM neurons arranged in a 25×25 rectangle grid. Table 1
shows the classification accuracy of original SOM and QE-SOM under different
sample sizes with the same other configurations in only one iteration.

Table 2 shows the same comparison under different iterations with the same
number of neurons and batch size. At this time, the batch size is set as 600.
Experiment results show that the performance gain is limited as the batch size
and the iteration number are increased separately, and the effect of QE cannot
be ignored.

Finally, with a batch size of 600 and the iteration number 100, we set the
topology of SOM neurons as 2 × 5, 5 × 5, 15 × 15 and 30 × 30, respectively.
Table 3 shows that QE can still achieve consistent performance improvements,
especially when the number of neurons is small.

Considering that the SOM can be used for both supervised and unsuper-
vised learning, we deleted labels of some samples from the training set for semi-
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Table 2. Performance comparison under different iterations.

Iterations

5 10 20 100

QE-SOM 97.59% 98.05% 98.06% 98.13%

SOM 97.47% 97.75% 97.85% 97.96%

Table 3. Performance comparison under different numbers of neurons.

Number of neurons

2 × 5 5 × 5 15 × 15 30 × 30

QE-SOM 93.47% 96.27% 98.03% 98.27%

SOM 92.69% 95.24% 97.94% 98.16%

supervised learning with a fixed batch size of 600 and iteration number of 100
at last. Furthermore, empirically, the SOM architecture is again set as a 25× 25
rectangle grid. Table 4 shows that when the energy level in Eq. 5 is 3, as the pro-
portion of unlabeled samples increases, the performance advantage of QE-SOM
gradually disappears or is even surpassed by the original SOM. However, with
a higher energy level, such as 10 in Table 4, the proposed QE-SOM outperforms
the original SOM in all proportion cases.

4.2 Experiments on ImageNet

We evaluate the QSAN on large-scale image classification using ImageNet and
compare it with state-of-the-art counterparts.

Implementation Details. To evaluate our QSAN on ImageNet-1K classifica-
tion, we employ three widely used CNNs as backbone models, including ResNet-
18, ResNet-34, and ResNet-50. To train ResNets with QSAN, we adopt the
same data augmentation and hyperparameter settings. Specifically, the input
images are randomly cropped to 224 × 224 with random horizontal flipping.
The parameters of networks are optimized by stochastic gradient descent (SGD)

Table 4. Performance comparison between QE-SOM and SOM under different pro-
portions of unlabeled samples.

Energy level Proportion of unlabeled samples

0% 10% 25% 50% 90%

QE-SOM 3 98.13% 98.34% 98.16% 98.03% 97.04%

10 98.32% 98.30% 98.28% 98.16% 97.26%

SOM − 97.96% 98.25% 98.15% 97.79% 97.13%
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with weight decay of 1e-4, a momentum of 0.9, and a mini-batch size of 256. All
models are trained within 100 epochs by setting the initial learning rate to 0.1,
which is decreased by a factor of 10 per 30 epochs. All programs run on a server
equipped with two RTX A6000 GPUs and two Xeon Gold 6230R CPUs.

Comparisons Using Different Deep CNNs. We compare different attention
methods using ResNet-18 and ResNet-34 on ImageNet-1K. The evaluation met-
rics include both efficiency (i.e., network parameters, floating point operations
per second (FLOPs)) and effectiveness (i.e., Top-1/Top-5 accuracy). The results
are listed in Table 5, where the results of ResNet, SENet, CBAM, and ECA-
Net are duplicated from [18]. Table 5 shows that QSAN improves the original
ResNet-18 and ResNet-34 over 0.46% and 0.96% in Top-1 accuracy, respectively.
Compared with SENet, CBAM, and ECA-Net, our QSAN achieves better per-
formance.

Table 5. Comparison of different methods using ResNet-18 (R-18) and ResNet-34 (R-
34) on ImageNet-1K in terms of network parameters (Param.), floating point operations
per second (FLOPs), and Top-1/Top-5 accuracy (in %).

Method CNNs Years Param. GFLOPs Top-1 Top-5

ResNet R-18 CVPR 2016 11.148M 1.699 70.40 89.45

SENet [10] CVPR 2018 11.231M 1.700 70.59 89.78

CBAM [20] ECCV 2018 11.234M 1.700 70.73 89.91

ECA-Net [18] CVPR 2020 11.148M 1.700 70.78 89.92

QSAN (ours) 11.231M 1.700 70.86 89.92

ResNet R-34 CVPR 2016 20.778M 3.427 73.31 91.40

SENet [10] CVPR 2018 20.938M 3.428 73.87 91.65

CBAM [20] ECCV 2018 20.943M 3.428 74.01 91.76

ECA-Net [18] CVPR 2020 20.778M 3.428 74.21 91.83

QSAN (ours) 20.938M 3.428 74.27 92.02

ResNet-50. ResNet-50 is one of the most widely adopted backbones, and
many attention modules report their performance on ResNet-50. We compare
our QSAN with several state-of-the-art attention methods using ResNet-50 on
ImageNet-1K, including SENet [10], SRM [14], CBAM [20], A2-Nets [3], ECA-
Net [18], GCT [21] and FcaNet [17]. For comparison, we report the results of
other compared methods in their original papers, except FcaNet. As shown in
Table 6, compared with state-of-the-art counterparts, QSAN obtains better or
more competitive results.

Recently, most of the state-of-the-art vision models have adopted the Trans-
former architecture. To boost the performance, these works resort to large-scale
pre-training and complex training settings, resulting in excessive demands of
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Table 6. Comparison of different methods using ResNet-50 (R-50) on ImageNet-1K in
terms of network parameters (Param.), floating point operations per second (FLOPs),
and Top-1/Top-5 accuracy (in %). *: FcaNet uses more advanced training schedules,
such as cosine learning rate decay and label smoothing. We reimplement it with the
same settings as the other methods for a fair comparison.

Method CNNs Years Param. GFLOPs Top-1 Top-5

ResNet R-50 CVPR 2016 24.37M 3.86 75.20 92.52

SENet [10] CVPR 2018 26.77M 3.87 76.71 93.39

A2-Nets [3] NeurIPS 2018 25.80M 6.50 77.00 93.69

CBAM [20] ECCV 2018 26.77M 3.87 77.34 93.69

SRM [14] ICCV 2019 25.62M 3.88 77.13 93.51

ECA-Net [18] CVPR 2020 24.37M 3.86 77.48 93.68

GCT [21] CVPR 2020 24.37M 3.86 77.30 93.70

FcaNet-LF* [17] ICCV 2021 26.77M 3.87 77.32 93.55

QSAN (ours) 26.77M 3.87 77.57 93.56

data, computing, and sophisticated tuning of many hyperparameters. Therefore,
it is unfair to judge an architecture by its performance alone. We employ rsb-A2
[19], a strong training procedure, to train QSAN-ResNet50 and ResNet50. Due
to hardware limitations, we adjusted the minibatch to 512 according to the Lin-
ear Scaling Rule [8], which inevitably led to performance reduction. All models
were trained for 300 epochs without extra data. As shown in Table 7, the strong
training procedure reduces the performance gap between QSAN-ResNet50 and
ResNet50, but QSAN-ResNet50 still outperforms ResNet50. In addition, the per-
formance of QSAN-ResNet50 is competitive with ViT-SAM, especially when the
number of parameters is close.

Table 7. Comparison of different architectures on ImageNet-1K in terms of network
parameters (Param.), and Top-1 accuracy (in %). *: The result was reimplemented
using the code provided by the open source toolbox MMClassification [15].

Method Years Resolution Param. Top-1

ViT-S/16-SAM [2] ICLR 2022 224 × 224 22M 78.1

ViT-B/16-SAM [2] ICLR 2022 224 × 224 87M 79.9

ResNet50 (rsb-A2)* [19] NeurIPS 2021 Workshop 224 × 224 26M 79.2

QSAN-ResNet50 (ours) 224 × 224 27M 79.6

5 Conclusion

In this paper, we extend QSM to QE and introduce its two specific applica-
tions. One is to modify the SOM similarity measure by using the wave function
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of one-dimensional particles in an infinite square well. The other is to use the
relative position distribution probability of two identical free particles in mul-
tidimensional space to generate more efficient channel attention. Future work
will focus on exploring the application of time-dependent wave functions and
quantum effects to QE.
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P. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization.
AISC, vol. 428, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-28518-4 1

5. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. In: ICLR (2021)

6. Gao, Z., Xie, J., Wang, Q., Li, P.: Global second-order pooling convolutional net-
works. In: CVPR, pp. 3024–3033 (2019)

7. Garg, D., Ikbal, S., Srivastava, S.K., Vishwakarma, H., Karanam, H.P., Subra-
maniam, L.V.: Quantum embedding of knowledge for reasoning. In: NeurIPS, pp.
5595–5605 (2019)

8. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour.
CoRR abs/1706.02677 (2017). http://arxiv.org/abs/1706.02677

9. Griffiths, D.J.: Introduction to quantum mechanics. Am. J. Phys. 63(8), 1–12
(2005)

10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–
7141 (2018)

11. Kerenidis, I., Landman, J., Luongo, A., Prakash, A.: q-means: a quantum algorithm
for unsupervised machine learning. In: NeurIPS, pp. 4136–4146 (2019)

12. Kerenidis, I., Landman, J., Prakash, A.: Quantum algorithms for deep convolu-
tional neural networks. In: ICLR (2020)

13. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43(1), 59–69 (1982)

14. Lee, H., Kim, H., Nam, H.: SRM: a style-based recalibration module for convolu-
tional neural networks. In: ICCV, pp. 1854–1862 (2019)

15. MMClassification Contributors: Openmmlab’s image classification toolbox and
benchmark. https://github.com/open-mmlab/mmclassification (2020)

16. Olivas, E.S., Guerrero, J.D.M., Martinez-Sober, M., Magdalena-Benedito, J.R.,
Serrano, L., et al.: Handbook of Research on Machine Learning Applications and
Trends: Algorithms, Methods, and Techniques. IGI Global (2009)

17. Qin, Z., Zhang, P., Wu, F., Li, X.: FCANet: frequency channel attention networks.
In: ICCV, pp. 763–772 (2021)

18. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient chan-
nel attention for deep convolutional neural networks. In: CVPR, pp. 11531–11539
(2020)

https://doi.org/10.1007/978-3-319-28518-4_1
https://doi.org/10.1007/978-3-319-28518-4_1
http://arxiv.org/abs/1706.02677
https://github.com/open-mmlab/mmclassification


Applications of Quantum Embedding in Computer Vision 177

19. Wightman, R., Touvron, H., Jegou, H.: Resnet strikes back: an improved training
procedure in TIMM. In: NeurIPS 2021 Workshop on ImageNet: Past, Present, and
Future (2021)

20. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention
module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01234-2 1

21. Yang, Z., Zhu, L., Wu, Y., Yang, Y.: Gated channel transformation for visual
recognition. In: CVPR (2020)

22. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, pp. 3320–3328 (2014)

23. Zhang, J., et al.: An application of quantum mechanics to attention methods in
computer vision. In: ICASSP (2023)

https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1


Traffic Accident Forecasting Based
on a GrDBN-GPR Model with Integrated Road

Features

Guangyuan Pan1,2, Xiuqiang Wu1, Liping Fu2, Ancai Zhang1, and Qingguo Xiao1(B)

1 Linyi University, Linyi 276000, Shandong, China
xiaoqingguo@lyu.edu.cn

2 University of Waterloo, Waterloo, ON N2L3G1, Canada

Abstract. Traffic accidents pose a significant challenge in modern society, lead-
ing to substantial human loss and economic damage. Therefore, accurate fore-
casting of such accidents holds a paramount importance in road safety status
evaluation. However, models in many studies often prioritize individual factors
like accuracy, stability, or anti-interference ability, rather than considering them
comprehensively. Toward this end, this study presents a novel traffic accident
forecasting model, known as the Gaussian radial Deep Belief Net - Gaussian Pro-
cess Regression (GrDBN-GPR). This model integrates feature engineering and
predictive algorithms to capture the intricate relationships among various traffic
factors. This model comprises two key components: firstly, the GrDBN uses the
Gaussian-Bernoulli Restricted Boltzmann Machine (GBRBM) and the Gaussian
activation functions to extract valuable features more effectively and stably. This
feature extraction mechanism enhances the ability to uncover meaningful patterns
within the data. Secondly, the GPR can achieve stable predictions based on the
extracted informative features achieved by GrDBN. Finally, this model is applied
to evaluate the road safety status of Highway 401 in Ontario, Canada, using a set of
collision data collected for over eight years. In comparison to six commonly used
benchmarkmodels, the predictive accuracy, stability, and resistance to interference
of the proposed model are evaluated.

Keywords: Machine learning · Neural network · Road safety · Forecasting ·
GPR · DBN

1 Introduction

Forecasting traffic accidents plays an important role in analyzing accident trends and
related factors in specific traffic situations. Moreover, it serves as a valuable method to
conduct road safety research, evaluate the effectiveness of safety measures, and estimate
the expected safety level in specific locations under given conditions. Therefore, by
effectively predicting road accidents, it is possible to reduce their occurrence.

Furthermore, the road Safety Performance Function (SPF), a representative example,
was introduced in the first edition of the Highway SafetyManual (HSM) by the National
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Highway and Transportation Association of the United States in 2010. Traditionally,
various statistical methods have been employed as road accident prediction models.
Among them, Generalized Linear Models (GLMs), such as negative binomial regres-
sion models and Poisson regression models, have been widely used [1–7]. In addition,
other statistical models have been also used for collision prediction, including Bayesian
models [8], autoregressive models, moving average models, Autoregressive Integrated
Moving Average (ARIMA) models, and hidden Markov models [9, 10]. For instance, in
Tennessee USA, a model was developed and implemented by the state to predict daily
accident risk [11]. By forecasting accidents for the upcoming week, the model provides
valuable insights for managers to take preventive measures, resulting in a significant
reduction in traffic accident fatalities.

Along with the rapid development of intelligent transportation systems, the amount
of data obtained is constantly increasing, and Machine Learning (ML) models are get-
ting more attention than before. Therefore, several scholars have researched accident
prediction issues based on MLmodels, such as the Support Vector Machine (SVM) [12,
13], the Random Forests (RF) [14], the gradient boosting decision trees [15], and the
Deep Neural Networks (DNNs) [16–18].

In recent years, Deep Learning (DL), a subset ofML, has gained widespread applica-
tion in traffic accident prediction, emerging as the dominant trend in ML across various
application domains. For instance, Deep Belief Networks (DBNs), a classic DL model,
have also shown excellent performance in traffic accident prediction due to the combi-
nation of both the unsupervised and the supervised learning processes [18]. Moreover,
Pan et al. introduced a visual feature importance method to identify and remove noise
features, leading to significant improvements in model performance [19]. Moreover,
Franco et al. employed a CNN architecture and Deep Convolutional Generative Adver-
sarial Networks (DCGAN) technology with random under-sampling, achieving better
performance in accident prediction [17].

However, in real cases, traffic accident data is often in tabular format, representing
heterogeneous data. Despite the remarkable performance of DNNs in various domains,
recent studies have shown that they are not the optimal choice for tabular datasets, unlike
homogeneous datasets such as images and speech [20–22].

To sum up, traditional modeling methods were initially used for traffic accident pre-
diction due to the challenges in collecting and obtaining data.While thesemethods have a
solid theoretical foundation and are easy to implement, they have limitations when deal-
ingwith big data problems,missing values, and outliers aswell as transferring knowledge
to other datasets [12]. As modern transportation has evolved, data is available in a bigger
quantity, leading to the widespread adoption of data-driven methods. Compared to tra-
ditional theory-based and experience-based approaches, data-driven methods focus on
patterns and regularities within the data itself. Moreover, they can uncover information
and knowledge that traditional methods may overlook [17]. For example, data-driven
methods encompass both traditional ML and DL techniques. Traditional MLmodels are
relatively straightforward and can handle big data to some extent. Their performance is
acceptable in small-sample learning scenarios. However, for complex tasks, ML meth-
ods often require extensive feature engineering and hyperparameter tuning, which can be
time-consuming. Additionally, their performance evolution with the increasing dataset
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volume is not as significant as those of DL. On the other hand, DL models can auto-
matically extract and select features, reducing therefore the need for extensive feature
engineering. They excel in handling large-scale, high-dimensional data and tackling
complex tasks. However, DL methods rely heavily on a large amount of training data
and may not perform effectively when dealing with limited data. Their performance is
also highly influenced by parameters’ initialization, such as the initial weights. More-
over, since traffic accident data is typically tabular and heterogeneous, it may contain
noise or irrelevant features. As a result, the performance of DL methods on such data is
not particularly promising.

Considering the aforementioned studies and the need for accurate and stable predic-
tion method for traffic accidents, this paper proposes a new model called the Gaussian
radial Deep Belief Net - Gaussian Process Regression (GrDBN-GPR). This model com-
bines an improved version of DBN with GPR to overcome the limitations of existing
methods. Therefore, the main contributions of this work are as follows:

(1) On the theoretical side, the model controls the continuously restricted Boltzmann
machines within DBN to minimize data loss during the unsupervised learning pro-
cess and employs someGaussian activation functions to enhance themodel’s stability
performance during the supervised learning process. Then, the integrated features
are incorporated with GPR technology for regression prediction.

(2) In engineering applications, the study collects real-world traffic accident data span-
ning over eight years. Through a series of experiments, the model was rigorously
tested for prediction accuracy, stability, and sensitivity-to-noise features analysis.

2 Methodology

2.1 Gaussian Radial Deep Belief Network

The DBN is a hierarchical model composed of multiple layers of Restricted Boltzmann
Machines (RBMs) [23]. In traditional RBMs, the visible and hidden layers consist of
binary units, i.e., their values are either 0 or 1. However, some input variables are con-
tinuous; therefore, binary unit models are not suitable for handling continuous data.
To address this issue, the traditional RBM model is extended to incorporate these con-
tinuous values by introducing independent Gaussian distributions. This modification
restricts the output values of the RBM’s structure units to continuously vary between 0
and 1. This variation of RBM is known as the Gaussian-Bernoulli Restricted Boltzmann
Machine (GBRBM), consisting of a visible layer with real-valued nodes and another
hidden layer with Boolean nodes. Furthermore, Fig. 1(a) depicts the schematic diagram
of the GBRBM.

The learning process of GBRBM is facilitated through an energy function that is
mathematically defined as follows:

E(v, h; θ) =
D∑

i=1

(vi − bi)
2

2σ 2
i

−
D∑

i=1

F∑

j=1

vi
σi
Wijhj −

F∑

j=1

ajhj (1)

where v represents the visible units, h indicates the hidden units, and θ = {a, b,W , σ }
presents the complete set ofmodel parameters inRBM.Moreover, parameter a represents
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the bias terms associated with the hidden units, parameter b indicates the bias terms
associated with the visible units,W represents the weight matrix that connects the visible
and hidden units, and, finally, σ shows the standard deviation of the Gaussian activation
function used in this model.

Furthermore, the probability density functions of the visible and hidden layers are
given by:

P(v; θ) = 1

Z(θ)

∑

h

exp(−E(v, h; θ)) (2)

Z(θ) = ∫
v

∑

h

exp(E(v, h; θ))dv (3)

where P(v; θ) represents the probability density of the visible layer with respect to
the model parameters θ . The normalization constant Z(θ) ensures that the probability
distribution sums up to the unit. It is calculated by integrating all possible values of the
visible layer while summing all possible configurations of the hidden layer.

Therefore, the conditional distribution can be given by the following equations:
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where N (μ, σ 2) is a Gaussian distribution having a mean μ and a variance σ 2. With
predefined training samples, the model parameters can be optimized using pre-training
methods.

Figure 1(b) shows the structure of the Gr-DBN, where the bottom and top layers
represent, respectively, the input and the output layers. The training process of GrDBN
starts by inserting the training data into the first layer; then, the unsupervised pre-training
calculates the parameters of the hidden layer of the first GBRBM. The output of this
hidden layer serves as an input for the subsequent RBM’s hidden layer. This iterative
process continues until reaching the final hidden layer. Finally, a regression layer is
added at the top to enable the regression prediction. Once the unsupervised training
phase is completed, the entire network parameters undergo supervised fine-tuning using
the Back Propagation (BP) and the gradient descent techniques. The specific process
can be outlined as shown in Fig. 1.

In this study, the GrDBN method that incorporates GBRBM, is used to extract
hierarchical features from the data. Furthermore, the use of aGaussian activation function
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a) Restricted Boltzmann Machine b) Gaussian radial DBN

Fig. 1. Diagram of the improved DBN

(refer to Eq. (8)) in the BP process provides additional benefits in terms of robustness
and accuracy. The relation expression is expressed as follows:

f (x) = e−x2 (8)

2.2 Gaussian Process Regression

GPR is a supervised learning algorithm that can determine the relationship between the
input and the output variables based on empirical data. It, not only predicts the expected
values of unknown variables, but also provides information about their distribution.

In GPR, assuming that the observed target variable y is contaminated with noise
εi, which differs from the true function output f (xi), the following relationship can be
determined:

y = f (xi) + εi (9)

where εi is an independent random variable with a Gaussian distribution, having a zero
mean and variance σ 2

n .
The matrix form of the covariance function is:

C(X ,X ) = K(X ,X ) + σ 2
n In (10)

where In is an n-dimensional identity matrix, K(X ,X ) is an n × n kernel matrix where
Kij = k(xi, xj) representing the correlation between xi and xj measured by the kernel
function, and σ 2

n is the variance of the n-dimensional data sample.
The joint Gaussian distribution between the observed values y of the training samples

and the output vector f∗ of the testing data is expressed as follows:
[
y
f∗

]
∼ N

(
0,

[
K(X ,X ) + σ 2

n In K(X , x∗)
K(x∗,X ) K(x∗, x∗)

])
(11)
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where K(X , x∗) = K(x∗,X )T as it measures the n × 1 covariance matrix between the
test point x∗ and the training set X ; moreover, k(x∗, x∗) is the covariance matrix of x∗
itself.

The squared exponential kernel is the most common kernel function [24], given by
Eq. (12), where σf and l are two adjustable parameters that must be greater than zero;
therefore, one can have:

κij = σ 2
f · exp

(
−

(
xi − xj

)2

2l

)
(12)

Using the above equations, the posterior distribution of the predicted values y can
be calculated as follows:

f∗|y ∼ N
(
f∗, σ 2

f∗

)
(13)

f∗ = K(x∗,X )∗[K(X ,X ) + σ 2
n In]−1

y (14)

σ 2
f∗ = K(x∗, x∗) − K(x∗,X )[K(X ,X ) + σ 2

n In]−1
K(X , x∗) (15)

The point prediction result of the GPR is the mean of the posterior distribution,
denoted as f∗.

2.3 Proposed Method

The proposed method combines GrDBN with GPR to achieve reliable and probabilistic
predictions. Firstly, the GrDBN utilizes the Gaussian function as an activation function,
inspired by the Radial Basis Function Network and overcoming the limitations of the
traditional RBMs when dealing with continuous input data. During the pre-training
phase, a GBRBM is employed whereas, during the fine-tuning phase, the Gaussian
function is used as the activation function. This combination enables the GrDBN to
effectively capture and analyze the features from the data distribution without the need
for manual feature selection and extraction. The hierarchical structure of the GrDBN
allows it to extract the features at different levels, enhancing its ability to represent the
data complex structure.

Furthermore, the integration of GrDBN with GPR improves the prediction perfor-
mance of the model. Compared to neural networks that can be sensitive to parameter
initialization, GPR offers a more stable and accurate prediction. The core idea of this
approach is to first train a DNN on the training set and use the GrDBN to extract features
from both the training and test sets. The features extracted from the last hidden layer
of the GrDBN are then used as inputs for GPR, which is trained using original labels.
Finally, the trained GPR model is used to predict the output using the features extracted
from the test set.

Therefore, the specific process, presented in Fig. 2, is as follows:

(1) Train a GrDBN: The GrDBN model is trained using the training data in a layered
process. The first layer network, the RBM, extracts the low-level features from the
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Fig. 2. Flowchart of GrDBN-GPR

input data. The output of the first layer is then used as input to train the second layer
network, which captures the higher-level abstract features. This process continues
for subsequent layers until the entire DBN network is trained. Finally, fine-tuning is
performed using BP to further optimize the network;

(2) Feature extraction: Once theGrDBN is trained, it can be used to extract features from
both the training and the test datasets. The output of each layer network represents
the feature representation of the input data. Typically, the output of the last layer
contains the highest-level abstract features, which are used as input features for the
regressor. In this study, the features extracted from the last layer are used for further
analysis.

The extracted feature F’ can be obtained using the following formula:

F
′ = g

(
wT
2 ∗ g

(
wT
1x + b1

)
+ b2

)
(16)

where w and b stand for the weight and the bias parameters in the DBN, respec-
tively. The subscripts indicate the layer number, and g(x) denotes the activation
function used.

(3) Train the GPR: In the final step, GPR is trained using the features extracted from
the DBN and the original labels.

3 Case Study

3.1 Data Description and Preprocessing

To assess the effectiveness of theGrDBN-GPRmodel, an empirical studywas conducted
using data obtained from Highway 401 provided by the Ministry of Transportation
Ontario (MTO) in Canada.

To facilitate the analysis, homogeneous road segments, with similar road features,
are classified into 418 sets. The collision and traffic data of eight years is combined
to create a unified dataset, comprising 3,762 entries of collision, road geometry, and
traffic data from Ontario, Canada. Moreover, Table 1 offers a concise overview of the
variables present in the dataset. The target variable of interest is the “accident”. In
addition, Fig. 3 illustrates the histogram of all the used variables, consisting of six
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Table 1. Description of Variables

Feature No Feature Name (variables) Description

1 Exposure Degree of exposure of the road

2 AADT_Comm Annual average daily commercial traffic volume
(vehicles per day)

3 ShldLeft Shoulder width on the left side of the highway (in
meter)

4 MedianWidth Median width (in meter)

5 ShldRight Shoulder width on the right side of the highway
(in meter)

6 CurveDeflection Horizontal curve deflection (per km)

7 Accident Number of accidents per year

feature variables and one target variable. The horizontal axis represents the variable
values, while the vertical axis denotes the frequency of their occurrences. This figure
shows that the variables are not uniformlydistributed,with data points being concentrated
within specific intervals. As a preprocessing step, all variables were normalized (ranging
between 0 and 1). Following the training phase, the performance of each model was
evaluated using two metrics: Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), as defined in Eqs. (17) and (18), respectively. They are represented as
follows:

MAE = 1

n

n∑

i=1

|yi − Yi| (17)

RMSE =
√√√√1

n

n∑

i=1

(yi − Yi)
2 (18)

where yi is the true label of the ith input and Yi represents the prediction or estimated
value of the i th input.Moreover, thesemetrics are commonly used to assess the accuracy
of the prediction models and provide valuable insights into their performance.

3.2 Experiment 1

In this experiment, seven models are compared: GrDBN-GPR, Back Propagation Neu-
ral Network (BPNN), DBN, GPR, RF, Gradient-Boosted Decision Trees (GBDT), and
SVM. The main objective is to evaluate the accuracy and the stability of GrDBN-GPR
and to examine the impact of the data volume on the model performance.

Consequently, Table 2 and Table 3 provides a comparison of performance metrics
between the proposed model and other methods. Furthermore, Fig. 4(a, b) depict the
performance index obtained by each model regarding the test set as a function of the
percentage of the training set used. The performance index includes metrics, such as the
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Fig. 3. Frequency distribution of the seven variables

Fig. 4. Performance comparison between different machine learning models
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minimumMAE, theminimumRMSE, the averageMAE, and the averageRMSE, derived
from 20 repeated experiments.Moreover, Fig. 4(c, d) present theMAE andRMSEvalues
of all seven models on the test set when all training sets are used. The box plot displays
the distribution of the experimental results from the 20 repeated experiments. In general,
a flatter box plot suggests a better stability model, indicating consistent performance or
prediction results across repetitive experiments.

According to Fig. 4, the below conclusions can be proposed: (1) The GrDBN-GPR
model achieved high accuracy, as indicated by the minimum MAE and RMSE, mean
MAE, and RMSE and consistently outperformed other models in terms of averageMAE
and RMSE across multiple experiments; (2) The proposed model exhibited high stabil-
ity, as evidenced by the box plots. Although it showed higher stability compared to
BPNN and DBN, there is still room for improvement compared to some ML models;
(3)TheGrDBN-GPRmodel, not only demonstrated strong performance with large
amounts of training data, but it also exhibited good performance evenwhen trained
with limited data.

3.3 Experiment 2

To test the model’s resistance to interference, five sets of random numbers are generated
at this level to retrieve the interference features. These features are uniformly distributed
between 1 and 10, and they are denoted as Extra_F1, Extra_F2, …, and Extra_F5. To
facilitate replication, random number seeds 1–5 are used to generate these interference
features. These latter are combined with the original dataset D0 to generate five new
datasets, denoted as D1,D2,D3,D4 and D5. RF are trained on all six datasets to obtain
the feature importance. The same comparison model, used for Experiment 1, is trained
and tested on these datasets, and the results are shown in Tables 2 and 3.

Furthermore, Tables 2 and 3 provide the performancemetrics for the proposedmodel
and other models when being applied to the datasets with interference features. The pro-
posed GrDBN-GPR consistently exhibits the best performance among all models, both
before and after adding interference features. For example, even though GPR initially
performs well, its performance significantly deteriorates after adding the interference
features. Conversely, GrDBN-GPR consistently achieves an optimal performance in

Table 2. Min. MAE of seven models

GrDBN_GPR BP DBN GPR SVM GBDT RF

D0 6.87 8.25 8.33 7.30 11.51 10.69 8.78

D1 6.79 9.03 8.84 9.80 11.51 10.69 8.61

D2 7.64 9.01 9.08 10.52 11.54 10.63 8.67

D3 7.04 9.04 8.85 10.07 11.51 10.67 8.64

D4 6.88 9.28 8.54 10.29 11.41 10.60 8.74

D5 7.19 8.77 9.06 10.52 11.48 10.71 8.74
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terms of minimum MAE and minimum RMSE, regardless of the presence of interfer-
ence features. This may be due to GrDBN’s feature extraction phase, which filters out
the interference features and learns useful features.

Table 3. Min. RMSE of seven models

GrDBN_GPR BP DBN GPR SVM GBDT RF

D0 13.90 16.27 16.05 15.24 24.85 21.10 18.22

D1 13.23 18.45 18.29 20.36 24.93 21.10 17.92

D2 15.52 17.98 17.59 22.78 24.99 20.93 17.95

D3 14.76 19.12 18.32 22.27 24.80 21.12 18.01

D4 13.50 18.63 16.98 22.58 24.59 21.09 18.15

D5 14.55 16.56 18.10 23.50 24.67 21.30 18.05

4 Conclusions

Theproposedmethod,GrDBN-GPR, demonstrates significant potential in accurately and
reliably predicting traffic accidents, which is crucial for traffic planning and decision-
making. By incorporating the GBRBM and Gaussian activation function, GrDBN
enhances feature extraction capability and ensures the extraction of effective features in
a stable environment.Moreover, the GPR is employed to predict these extracted features,
resulting in stable and highly accurate predictions.

The application of GrDBN-GPR to predict the number of accidents on Ontario’s
Highway 401 in Canada involved comparing it to six other models and evaluating its
performance using the RMSE andMAEvalidation indicators. The experimental findings
show that GrDBN-GPR consistently delivers accurate predictions while being robust
against noise. Moreover, the proposed method showcases promising performance even
with limited data, making it suitable for scenarios with small dataset volumes.

It is important to acknowledge that traffic accident datasets frequently suffer from
imbalanced data, e.g., there is a significant disparity in the number of instances for dif-
ferent classes or outcomes. Moreover, these datasets are typically structured in a tabular
form, showing heterogeneity in the data,which can be challenging for accuratemodeling.
It is worth noting that the current study did not explicitly address these issues; however,
future research can concentrate on enhancing the modeling approach to specifically
tackle these challenges.
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Abstract. Blockchain technology has garnered a lot of interest recently,
but it has also become a breeding ground for various network crimes.
Cryptocurrency, for example, has suffered losses due to network phish-
ing scams, posing a serious threat to the security of blockchain ecosystem
transactions. To create a favorable investment environment, we propose
a community-enhanced phishing scam detection model in this paper.
We approach network phishing detection as a graph classification task
and introduce a network phishing detection graph neural network frame-
work. Firstly, we construct an Ethereum transaction network and extract
transaction subgraphs, and corresponding content features from it. Based
on this, we propose a community-enhanced graph convolutional net-
work (GCN)-based detection model. It extracts more reasonable node
representations in the GCN neighborhoods and explores the advanced
semantics of the graph by defining community structure and measur-
ing the similarity of nodes in the community. This distinguishes normal
accounts from phishing accounts. Experiments on different large-scale
real-data sets of Ethereum consistently demonstrate that our proposed
model performs better than related methods.

Keywords: Phishing Scam Detection · Graph convolutional
networks · Community analysis · Ethereum · Graph embedding

1 Introduction

The emergence of Bitcoin has ushered in a new era of cryptographic currencies.
According to coinmarketcap.com, there are currently over 5,000 cryptographic
currencies (or tokens) with a total market capitalization of over $200 billion
[10]. The key technology behind these cryptographic currencies is blockchain
technology.

Blockchain [24] is a distributed database that maintains a continually grow-
ing list of data records that are distributed, jointly replicated, and linked in a
chain, making them tamper-proof. By leveraging blockchain technology, data
is distributed globally, and people no longer need to rely on traditional third
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parties, providing a more reliable form of trust while also reducing costs associ-
ated with intermediaries. Ethereum is currently the largest blockchain platform
supporting smart contracts, and its corresponding cryptocurrency, Ethereum, is
the second largest cryptocurrency [30]. However, with the rapid development of
Ethereum, it has also become a breeding ground for various network crimes [13].
Therefore, identifying these scams has become a pressing and critical issue in
the blockchain ecosystem, and has attracted great attention from researchers.
Network phishing scams have emerged with the rise of network business and
have now been found in the blockchain ecosystem [17]. According to a report
by Chainalysis1, more than 50% of network crime revenue comes from phish-
ing scams since 2017. In the first half of 2017, 30,287 victims lost $225 million,
indicating that financial security has become a key issue in the blockchain ecosys-
tem. A well-known example is the Bee Token ICO phishing scam2, in which the
phisher ultimately collected about $1 million from investors in just 25 h. These
examples demonstrate that detecting and preventing phishing fraud is a pressing
issue in the blockchain ecosystem.

Due to the open and transparent nature of blockchain technology, extract-
ing information from transaction records is an intuitive way of detecting phish-
ing fraud on the Ethereum platform. The Ethereum transaction history can be
modeled as a directed transaction network, where nodes are unique addresses.
When utilizing the Ethereum transaction records for fraud detection, we may
face three challenges that impede the performance of fraud detection: (i) Lack of
node features. The data we collect can be considered as weighted directed edges,
thus there is no longitudinal information on the nodes themselves. To effectively
implement a phishing fraud detection scheme, we need to extract features that
can accurately differentiate between phishing and non-phishing addresses. (ii)
Extreme data imbalance. One of the biggest obstacles to phishing detection on
Ethereum is the data imbalance. According to a report from etherscan.io3, a
well-known Ethereum block explorer and analytics platform, there are over 500
million addresses and 3.8 billion transactions on Ethereum. In contrast, the total
number of labeled phishing network addresses on etherscan is only 2,041. (iii)
Massive node data. If we study the graph from a topological perspective, we will
inevitably face time and space constraints.

Some researchers are dedicated to developing effective methods for detect-
ing network phishing fraud in the Ethereum ecosystem. These methods typi-
cally involve constructing a graph structure that takes into account addresses
in Ethereum and forms a graph based on the transactional connections between
them. Graph embedding methods are then used to learn the network repre-
sentations of Ethereum addresses [8,29,32], and further phishing detection is
achieved through downstream machine learning classifiers. However, traditional
graph embedding methods such as graph neural networks [21], may embed some
irrelevant neighbor information on the current node, leading to a lower accu-

1 https://blog.chainalysis.com/the-rise-of-cybercrime-on-ethereum/.
2 https://theripplecryptocurrency.com/bee-token-scam/.
3 https://etherscan.io/charts.

https://blog.chainalysis.com/the-rise-of-cybercrime-on-ethereum/
https://theripplecryptocurrency.com/bee-token-scam/
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racy of the node representation, and therefore, the classification results are not
satisfactory.

We are presenting the idea of community structure [22] to overcome the
drawbacks of graph representation in our work. We propose a community-
enhanced phishing detection model (CEGCN-PD) for detecting phishing scams
on Ethereum. In our research, we first gather edge information on each node as
a feature of the node. Then, we use graph convolutional networks [15] to learn
the node representation of addresses in the graph. In this process, we aggre-
gate neighbor features of the node and embed the adjacency relations in the
graph structure into the node. To make the node representation of the addresses
more comprehensive, we incorporate a modularity measure that can quantify the
strength of community structure into the GCN to maintain community informa-
tion. In this way, we merge the modularity and node representation in the loss
function, making it possible to update the node representation while considering
community structure information. Finally, we use the graph representation of
addresses as the input of lightGBM to obtain the classification results and opti-
mize the parameters through a new loss function. In summary, the contributions
of this work are as follows: (i) Our model can well aggregate the node features and
spatial structure of the network, and can easily be extended to general feature
engineering. (ii) We propose a new loss function to consider community structure
information in graph node representation, which will produce a more compre-
hensive node representation and thus better for classification. (iii) We conduct
extensive experimental studies using a publicly crawled dataset from Ethereum
to fully evaluate the performance of the proposed model. By comparing with a
series of baseline methods, the effectiveness of the method is demonstrated.

2 Related Works

2.1 Phishing Detection Methods

In order to create a favorable investment environment in the Ethereum ecosys-
tem, many researchers have paid close attention to the effective detection
methods of network phishing frauds. Wu et al. [14] proposed a method called
trans2vec, which detects network phishing frauds by mining Ethereum’s transac-
tion records. By taking into account the transaction amount and timestamp, the
method uses random walks to perform network embedding and finally uses an
SVM classifier to distinguish normal accounts from network phishing accounts.
Chen et al. [8] proposed a method (PSDECN) based on graph convolutional
networks and autoencoders for phishing detection. This method aggregates
account features and network topology and uses classifiers to recognize phishing
accounts in Ethereum. Li et al. [16] introduced a graph neural network-based
self-supervised incremental depth graph learning model for Ethereum’s phishing
fraud detection problem. The aforementioned methods mainly construct phish-
ing account detection as a node classification task, unable to capture more poten-
tial global structural features of phishing accounts. Wang et al. [29] introduced
a subgraph network (SGN) mechanism into the Ethereum transaction network
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to expand the feature space of accounts. They constructed the transaction sub-
graph network (TSGN) by extracting the first-order subgraph of the accounts
and used GCN and Diffpool and other graph neural networks to identify phish-
ing accounts. However, these methods still suffer from the issue of insufficient
graph embedding learning.

2.2 Network Representation Learning

Network representation learning aims to learn low-dimensional latent represen-
tations of nodes in a network while preserving network topology, node content,
and other auxiliary information [34]. The learned feature representations can be
used as features for various graph-based tasks such as node classification [1],
graph classification [33], and link prediction [7]. One class of methods is based
on random walks. Perozzi et al. [23] proposed generating node representations
by using the co-occurrence probability of node sequences generated by random
walks. Grover et al. [12] proposed a biased random walk to balance the trade-
off between breadth-first and depth-first sampling, achieving a balance between
homophily and structural equivalence. These methods use the Skip-gram model
to learn node embeddings and generate node sequences by random walks on the
graph. Another class of methods is based on graph structural information, such
as LINE [27] and GraRep [5]. LINE uses a complex loss function to maintain first-
order and second-order proximity of nodes in the embedding space, while GraRep
represents each node by aggregating the embeddings of its neighbors based on
the graph structure. There are also some graph generative model-based methods,
such as GCN [15], and SDNE [28]. SDNE uses an autoencoder structure to opti-
mize first-order and second-order similarity, learns to preserve vector representa-
tions of both local and global structures, and is robust to sparse networks. GCN
learns node embeddings by performing multi-layer graph convolution on node
features. Kipf et al. [15] proposed a network topology-based graph convolutional
network that iteratively aggregates and updates node features to achieve higher
representation performance. Narayanan et al. [21] proposed graph2vec which
can learn graph-level representation of networks for graph classification tasks.
However, these network representation learning methods all have the problem of
incomplete representation of graphs, which affects the performance of network
phishing detection and classification.

3 Proposed Methods

In this section, we will provide a detailed overview of some initial data preprocess-
ing, including content features generated from feature engineering and context
features obtained from subgraph extraction. Next, we propose an embedding
layer based on GCN to learn graph representations of addresses. Finally, we use
LightGBM for classification to obtain the results.
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Table 1. Notations and explanations

Notation Explanation

G, Gs The original Ethereum transaction graph and subgraphs
V, Vs The original set of Ethereum address nodes and subsets
E, Es The original Ethereum address transaction set and subset
X Content features of the subgraph
A The adjacency matrix of the subgraph
n, N Number of address nodes of the subgraph
d Dimension of content features
hl l-th layer of node representation
W l weights of l-th GCN layer
e the representation of nodes
B the modularity matrix
α The hyperparameter that controls the impact of community structure
yi True classification of target addresses
ŷi Predicted classification of target addresses

3.1 Problem Statement

Given a destination address and the corresponding transaction data in the
Ethereum network, our goal is to determine whether that destination address is
a phishing scam address. More formally, given a destination address x and its
transaction data, a prediction function f is learned to determine whether the
address is a phishing scam address such that f : x → y = {y|y ∈ 1, 0}. The
notations used in this paper are shown in Table 1.

3.2 Feature Extraction

Context Feature. The Ethereum transaction network is a multi-graph, which
possesses rich context information, for example, the network structure allows
for multiple edges between nodes, and each edge is directed and contains a
weight. Specifically, the direction of remittance is the key information of the
transaction described by the direction of edges and the weight of edges, such as
the transaction amount (in units of Ether) and the timestamp of execution (here
represented as an integer). The scale of the original graph is very large, so we use
Algorithm 1 for sampling. It is worth noting that transaction relationships (i.e.,
edges in the graph) are directed, but the neighbor relationships are undirected.
Our goal is to obtain a subgraph with the same distribution through random
walks of neighbor relationships. Therefore, during sampling, the graph is treated
as an undirected graph. Here, during the sampling phase, we directly convert
the directed edges into undirected edges.

The natural choice of the sampling idea is to conduct random walks. During
the walking phase, we randomly choose a node and start from it to obtain a
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Algorithm 1. Node Sampling
Input:Undirected Graph G.

Sampled Size L of nodes.
Start Node Vsrc

Output: Sampled node’s set S.
1: S = set(Vsrc);
2: U = Vsrc;
3: while len(S) < L do
4: Vcur = U ;
5: Vnext = a random neighbor ofVcur ;
6: S.add(Vnext);
7: U = Vnext;
8: end while
9: return S.

fixed-size subgraph. The method of walking is clear, that is, to choose one of the
current node’s neighbors to move forward until a fixed number of nodes have
been successfully collected. Then we extract a subgraph based on these nodes.

For ease of description, we provide the definition of basic variables and the
sampling algorithm used in this stage. We define the graph G(V, E) that is
collected for analysis, where V = {v1, v2, . . . , vn} represents the set of nodes,
|V | = n, and E ∈ V × V represents the set of edges, |E| = m. Then, we further
assume Gs = (Vs, Es), a subgraph of G, where each subgraph Vs ⊆ V and retains
all edges Es among these nodes. Using Algorithm 1, we obtain Gs and extract the
node’s feature content X ∈ Rn×d and the adjacency matrix A ∈ Rn×n. Where n
and d represent the number of nodes and the dimension of features respectively.

Content Feature. In this study, we set the dimension of node features, d, to be
8, indicating that we have extracted 8 features for each address node. The specific
features and their description are as follows: (1) FT1. In-degree: the number of
incoming edges [3], which refers to the number of ether transactions sent to the
current node. On average, non-phishing node samples have a larger number of
in-degree transactions, while phishing node samples have a smaller number. (2)
FT2. Out-degree: the number of outgoing edges [3], which refers to the number
of ether transactions sent by the current node to other nodes. According to
statistics, the number of phishing nodes is generally greater than the number of
non-phishing nodes. This is somewhat counterintuitive, and we believe it is due
to the bait transactions sent by the phishing account’s auxiliary accounts. (3)
FT3. Degree: the total number of transactions sent and received by the current
node [3]. (4) FT4. In-strength: the total amount of ETH received by the current
node [2]. In other words, FT4 is the sum of the weights of the incoming edges of
the node. (5) FT5. Out-strength: the total amount of ETH transferred from the
current node to other nodes is [2]. In other words, FT5 is the sum of the weights
of outgoing edges. (6) FT6. Strength: the total amount of ETH transferred and
received by the current node, or the total transaction amount of the node is
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[2]. By observing the data, we know that the values of FT4, FT5, and FT6 for
phishing accounts are generally higher than those for non-phishing accounts. (7)
FT7. The number of neighbors: as the data is based on a multigraph, the number
of neighbors and degree (FT3) are not equal. For example, an account may have
only one neighbor but the degree will be greater than the number of neighbors
due to many transactions. We can see that the number of neighbors for phishing
accounts is generally higher than that for normal users. This is consistent with
our previous conclusion that the process of network phishing is usually to cast a
wide net in order to increase the number of successful scams. (8) FT8. Reciprocal
of transaction frequency: FT8 is defined as the time interval between the first
and last transactions of the account divided by FT3. The smaller the FT8, the
more frequent the transactions. Network phishing nodes attempt to scam more
money by trying multiple times, plus transferring stolen money, resulting in a
higher frequency.

After the above operations, we obtained contextual features A ∈ Rn×n and
content features X ∈ Rn×d.

3.3 Community Enhanced Phishing Scam Detection

After obtaining the content features X and the adjacency matrix A, we input
them into a graph convolutional neural network to learn the underlying graph
representation. The overall system architecture is depicted in Fig. 1. GCN is
a semi-supervised graph embedding method that utilizes the Laplacian trans-
formation to aggregate high-order neighborhood features. GCN performs con-
volution operations in the spectral domain, with each operation aggregating
additional layers of features. We use the following GCN layers in our approach:

Fig. 1. The overall framework of CEGCN-PD
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hl+1 = σ
((

Phl
)
W l

)
(1)

The node representation hl+1 is obtained. Specifically, h0 is the input provided
at the beginning, in addition to the adjacency matrix A.P = D̃−1/2ÃD̃−1/2, the
matrix Ã = A + I represents the adjacency matrix A plus its identity matrix
I,D̃ = diag

(
Ã1

)
, where 1 is the all-ones vector,D̃i,i =

∑
j Ãi,j , and W l is

the shared trainable weight matrix for all nodes in layer l. The activation func-
tion σ(·) is applied, where ReLU(·) = max {0, ·}. The variable l represents the
l-th layer of graph convolution. The information from adjacent nodes is aggre-
gated through a graph convolution layer, and after passing through three layers
of graph convolution, the graph representation of Ethereum address nodes is
obtained, which can be represented as.

h1 = ReLU
(
(PX)W 0

)
(2)

h2 = ReLU
((

Ph1
)
W 1

)
(3)

h3 = ReLU
((

Ph2
)
W 2

)
(4)

e = h3 (5)

However, the above process ignores the measurement of community structure and
fails to consider the relationships between communities. Community structure
is an advanced semantic of the graph. The connections between nodes in a com-
munity are dense, while the connections between nodes in different communities
are sparse. Therefore, the representation of nodes within the same community
should be more similar than that of nodes belonging to different communities
[18]. For example, in social networks, users from the same organization have
closer contacts, while users from different organizations have farther contacts;
papers within the same field or theme have more similarities in citation networks.
Therefore, both the neighbor information and community structure information
of the graph should be considered within a unified framework. Therefore, to
make the graph representation of entities more complete, we introduce modular-
ity, which can measure the strength of community structure, and merge it into
a unified loss function for optimization. Modularity is a measure of community
structure strength [22], by defining the modularity matrix B ∈ Rn×n,

Bij = Aij − kikj
2r

(6)

where Aij represents the weight of the edge between node i and node j, ki and kj
respectively represent the degrees of these two nodes, and r represents the total
number of edges in this network. Modularity measures the difference between
the number of edges within a community and the expected number of edges in
an equivalent random network. Finally, to obtain community information, the
following loss function is defined:

Losscom =
1
2r

tr(eTBe) (7)
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Algorithm 2. Generating the representations of nodes
Input: the given adjacency matrix A ∈ Rn×n.

the content feature matrix X ∈ Rn×m of nodes.
n is number of nodes, m is number of features;

Output: The final node representations of address e ∈ Rn×d.
d is the representation dimension.

1: Initialize e;
2: Calculate Ã, D̃, P according to Formula 1;
3: Let h0 ⇐ X;
4: Calculate h1 by Formula 2;
5: Calculate h2 by Formula 3;
6: Calculate h3 by Formula 4;
7: Calculate modularity matrix B and Losscom by Formula 6 and Formula 7 ;
8: e ⇐ h3;
9: return e.

The larger the value of Losscom the stronger the community structure strength,
indicating that the quality of community partitioning is better. The algorithm
framework is shown in Algorithm 2.

In the final step, the generated nodes are embedded in e as the input for
the tree-based model, LightGBM. A stratified 5-fold cross-validator is used to
obtain classification results. LightGBM [14] is an efficient classifier, especially
suitable for handling large datasets in classification problems. It employs tree-
based algorithms and leverages the idea of gradient boosting, resulting in a sig-
nificant acceleration in classification speed. Additionally, LightGBM possesses
excellent computational efficiency and can complete the calculation in a rela-
tively short time, making large-scale dataset classification tasks more feasible.
Furthermore, LightGBM has a high level of accuracy, performing well in many
practical applications. It has an adaptive learning rate algorithm that auto-
matically adjusts the learning rate in each step, thereby enhancing the model’s
generalization capability. Moreover, LightGBM also supports automatic feature
selection, which can automatically identify useful features during the training
process and ignore irrelevant ones, thus improving the model’s efficiency. The
binary cross-entropy loss function is adopted as the target loss function for node
classification.

Lossce =
1
N

∑

i

−[yilog(ŷi) + (1 − yi)log(1 − ŷi)] (8)

The overall loss function is as follows:

Loss = Lossce − αLosscom (9)

where α is the hyperparameter controlling the impact of community structure.
The weight matrix W = W 0,W 1,W 2 is trained by minimizing the final loss func-
tion. The gradients are computed through backpropagation and the parameters
are optimized using Adam.



200 K. Yin and B. Ye

4 Experiment

4.1 Datasets

In this study, we collected labeled data on phishing scams from two author-
itative websites reporting various illegal activities on the Ethereum network.
The first website is EtherScamDB4, which collects information on network fraud
to guide Ethereum investors away from potential scams. The second website
is Etherscan5, which serves as an Ethereum block explorer. Reports of various
scams on these two websites not only show the content of the scams but also
display the addresses suspected of being involved in the scams. From the var-
ious scams reported on these two websites, we extracted addresses related to
network phishing scams. We obtained over 600 million addresses and 4.5 bil-
lion transaction records. However, only over a thousand addresses were labeled
as phishing addresses. Through further screening, we obtained the largest con-
nected graph, which includes 2,973,382 nodes and 13,551,214 edges, with 1262
labeled phishing nodes. We commence by sampling subgraphs of sizes 30000,
40000, and 50000, respectively, from the initial node by utilizing random walk,
to assess the performance of our proposed method under different data scales.

4.2 Evaluation Metrics

To measure effectiveness, we adopt four widely used evaluation protocols [19,25]:
AUC (Area Under the Curve), Recall, Precision, and F1 score.

The AUC score evaluates the overall effectiveness of the model, while F1 is
a comprehensive evaluation of the Precision and Recall scores. Recall, in this
context, refers to the proportion of positive samples correctly predicted in the
sample. As the number of suspicious nodes is small, we tend to prioritize the
recall of these nodes. In everyday life, we are more tolerant of risk warnings
than being deceived. Therefore, our goal is to identify as many network fishing
suspects as possible within a reasonable range. At the same time, we supplement
Precision, which shows the proportion of samples that are judged as positive and
truly positive samples.

4.3 Comparison with Other Methods

For each model, we treat them as inputs for LightGBM. These models are
designed to explore the effective combination of features and structural informa-
tion as much as possible, ultimately improving the performance of classification.

To evaluate the performance of the proposed approach, we consider various
baseline methods as follows: Features Only: The eight features (FT1 to FT8)
of the nodes were directly input into the LightGBM classifier. DeepWalk [23]:
A network representation learning method. The inspiration for DeepWalk comes

4 https://etherscamdb.info/scams.
5 https://etherscan.io/.

https://etherscamdb.info/scams
https://etherscan.io/
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from Word2Vec. This method aims to obtain a sequence distribution similar to
that of words in natural language through short random walks and to follow a
power law. Node2Vec [12]: An extension of DeepWalk, which differs from its
random walk strategy. Node2Vec is a dynamic combination of depth-first and
breadth-first search. LINE [27]: A technique for transforming graph-structured
data into a natural language processing task using the random walk method
to generate node sequences. Trans2vec [14]: A method that detects phishing
frauds on Ethereum’s network. It uses transaction records, considers amount
and timestamp, employs random walks for network embedding, and an SVM
classifier to differentiate regular and phishing accounts.

We also compare our model against graph convolutional network methods:
ChebNet [11]: A variant of graph convolutional network that uses Chebyshev
polynomials for graph convolution. PSDECN [8]: A method using graph convo-
lutional networks and autoencoders to detect phishing in Ethereum. The method
uses classifiers to identify phishing accounts accurately.

To implement these network embedding methods, we need to set the following
parameters. Firstly, the dimension of the embedding vectors is set to 64. For
DeepWalk and Node2Vec, we set the number of random walks per node to 20
and the length of the random walks to 20. The p and q of Node2Vec are set to
0.25 and 0.75 according to [12]. The number of layers for GCN and ChebNet is
set to 3. Incorporating the eight features suggested in the paper, we fed them
into the baseline methods, except for Trans2vec and PSDECN. Afterward, we
utilized LightGBM to derive the classification results.

Table 2. Overall performance comparison for 30,000, 40,000 and 50,000 sampled nodes

Method GraphSize = 30000 GraphSize = 40000 GraphSize = 50000
AUC Recall Precision F1 AUC Recall Precision F1 AUC Recall Precision F1

Features 0.5631 0.1120 0.6154 0.1895 0.5637 0.1120 0.5829 0.1879 0.5783 0.1589 0.6022 0.2515
DeepWalk 0.5741 0.1263 0.7146 0.2147 0.5789 0.1371 0.6634 0.2272 0.5801 0.1575 0.6729 0.2553
Node2Vec 0.5535 0.1083 0.6841 0.1870 0.5733 0.1436 0.6721 0.2366 0.5759 0.1549 0.6733 0.2511
LINE 0.5780 0.1421 0.5338 0.2245 0.5721 0.1346 0.5567 0.2168 0.5823 0.1739 0.5233 0.2610
ChebNet 0.5821 0.1431 0.7210 0.2388 0.5833 0.1502 0.7049 0.2476 0.5921 0.1664 0.7042 0.2692
Trans2vec 0.5902 0.1534 0.7321 0.2546 0.5951 0.1572 0.7178 0.2598 0.6014 0.1825 0.7089 0.2891
PSDECN 0.5830 0.1492 0.7258 0.2475 0.5887 0.1531 0.7122 0.2520 0.5986 0.1781 0.7051 0.2844
CEGCN-PD 0.6325 0.1625 0.7523 0.2673 0.6386 0.1702 0.7428 0.2769 0.6418 0.1923 0.7329 0.3046

As can be seen from Table 2, models based on graph convolutional networks
typically produce the best performance across all datasets. Among all metrics,
we are most concerned with recall, as in such a complex and practical trans-
action network, the accounts of potential network phishing victims can only be
lightly reminded of risks. Such risk reminders are common in daily life, so we
may be more inclined to recall suspected phishing accounts. Since in blockchain
networks, transaction accounts are anonymous and there is no user profile, the
differences between nodes are mainly reflected in the structure and attributes of
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the edges. Models based on graph convolutional networks take into account node
features (i.e., information extracted from edge information) and integrate them
well into the spatial structure. We believe that the adjacency matrix formed by
the transaction network is usually sparse, and graph attention networks have
better handling of sparsity in graph data compared to traditional graph convo-
lutional networks.

The method proposed in this paper takes into consideration the significant
graph information of community structure, resulting in a more comprehensive
representation of the graph nodes and a more effective capture of the relation-
ships between nodes in the graph. By considering the community structure as a
factor, the CEGCN-PD model demonstrates a significantly better classification
performance compared to the GCN model (PSDECN) which does not utilize
community structure. As shown in Table 2, the CEGCN-PD model improved
the AUC by 7.2% and the Recall, Precision, and F1 scores by 7.9%, 3.9%, and
7.1%, respectively. It is believed that this is because phishing fraud addresses
often transfer funds to other accounts after acquiring them, and these accounts,
forming a community with the phishing fraud address, have a higher degree
of similarity and may also be fraud addresses. Thus, incorporating community
structure information is highly effective in enhancing the classification perfor-
mance of graph embeddings. In comparison to other baseline methods, CEGCN-
PD also exhibits superior performance in various evaluation metrics.

Table 3. Comparing Performance Across Various Classifiers.

Method AUC Recall Precision F1

XGBoost 0.6152 0.1324 0.7145 0.2253
Random Forest 0.6018 0.1189 0.6952 0.2012
Naive Bayes 0.5123 0.0927 0.6421 0.1619
SVM 0.5915 0.1046 0.7013 0.1823
LightGBM 0.6325 0.1625 0.7523 0.2673

To ensure optimal system performance, the choice of classification model is
crucial. We conducted a comprehensive analysis comparing LightGBM to sev-
eral established machine learning models including Naive Bayes [26], XGBoost
[9], Random Forest [4], and Support Vector Machines (SVM) [6]. The results,
presented in Table 3, clearly demonstrate that LightGBM outperforms all other
models in all evaluation metrics. This superior performance is due to its high-
performance gradient boosting framework, which effectively manages large-scale
datasets with exceptional scalability. Additionally, LightGBM’s ability to han-
dle high-dimensional and sparse features, as well as its robustness to noise and
missing values, makes it an ideal choice for our phishing detection framework.
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4.4 Evaluation of Model Parameters

In this study, we investigated the impact of the number of GCN layers on model
performance. As shown in Fig. 2, we conducted experiments on datasets of dif-
ferent graph sizes. It is clear that the performance of the proposed model varies
with the number of layers (i.e. 1, 2, 3, 4, and 5), and it can be seen that as
the depth of GCN increases, the performance of the model is enhanced and
reaches its peak at 3. However, as the number of convolutional layers continues
to increase, the overall performance no longer increases, but slightly decreases.
Currently, GCN is mostly applied to shallow layers, and simply stacking more
layers can result in over-smoothing obstacles [20]. We originally believed that
as more information is obtained, the efficiency of the model would also increase
correspondingly, but in fact, aggregating multi-order neighbors results in the loss
of individual information [31], thereby weakening performance.

Fig. 2. Performance of GCN layers at different Graph sizes

Fig. 3. Performance of α at different Graph sizes

We also studied the hyperparameter α, which controls the impact of commu-
nity structure on the performance of the model, as shown in Fig. 3. We found
that the best performance was achieved when α was around 0.6, and α ∈ [0, 1]
worked well. When α is too large, it ignores the information from the neighbors,
which affects the decision results.

In this study, we also investigate the impact of embedding dimensions on
performance. Specifically, we explore the effect of varying the dimensionality of
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Fig. 4. Performance of d at different Graph sizes

embeddings, denoted as d, on the performance of a classifier. High-dimensional
embeddings can lead to overfitting and increased computational complexity,
while low-dimensional embeddings can degrade representation capabilities. To
study how dimensionality affects classification performance, we varied the dimen-
sionality from 4 to 64. As shown in Fig. 4, we observe a general trend that sug-
gests the best performance is usually achieved with an embedding size of 16.

5 Conclusion and Future Work

This paper presents a community-structure-based phishing scam detection
model. In order to capture the information of address nodes on Ethereum, we
construct a transaction graph among address nodes. Guided by GCN to capture
the information between multiple entities, while taking into account the commu-
nity structure information between nodes, this leads to a more complete graph
representation of nodes. In the transaction network, due to the anonymity of
accounts, feature engineering capability is limited. The idea of combining struc-
tural features from the topological graph seems like an extension of this. In
order to validate the effectiveness of the proposed method, experiments were
conducted on real-world data, and satisfactory results were obtained.

However, it is necessary to recognize some limitations and flaws in our
research. Firstly, the evaluation of our model focused exclusively on real-
world data from the Ethereum network, thereby necessitating further evalua-
tion of diverse blockchain networks to gain comprehensive insights. Secondly,
the anonymity of accounts in transaction networks poses a challenge, leading
to limited feature engineering capabilities. For future work, we will extend and
improve our model to fully exploit Ethereum transaction information, making
it adaptable to various blockchain data mining tasks, including Ponzi scheme
detection and transaction tracking. These advancements are aimed at creating
a safer transaction environment and improving the security of the blockchain
system.
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Abstract. Open-domain text relation extraction (OpenTRE) is a sub-
field of information extraction that focuses on extracting relational facts
from open-domain corpora. Recent OpenTRE researches have shown
that clustering unlabeled instances leveraging knowledge from labeled
data is effective, but most of them are based on the assumption that the
testing set only contains open relations, which is inconsistent with real-
world scenarios where known and open relations are mixed. Therefore, a
novel OpenTRE method based on Dynamic Thresholds and Pair-based
Self-weighting Loss (DTP) is proposed. It performs text data processing
by categorizing instances and predicting unknown relations, which can
handle a more diverse range of data. Specifically, we break down Open-
TRE into two stages: detecting and discovering, which makes the Open-
TRE process more understandable. Wherein, sample-based dynamic
threshold strategy is employed to clarify the relation boundaries. Addi-
tionally, pair-based self-weighted loss improves the capture of semantic
knowledge in labeled data and guides clustering. Experimental results
indicate that this method outperforms strong baseline models on two
datasets and has significant improvements.

Keywords: Open Relation Extraction · Dynamic Thresholds ·
Pair-based Self-weighting Loss

1 Introduction

Open-domain text relation extraction (OpenTRE) is a critical information
extraction task that involves detecting and discovering relational triples con-
taining new relation types from open-domain text corpora. The extracted triples
are subsequently utilized for various downstream applications, including but not
limited to question and answer, information retrieval and dialogue [1].

Previous OpenTRE methods have been widely regarded as a completely
unsupervised task. [2] rely on syntax or syntactic patterns to extract salient
relational facts, however, such patterns are difficult to cover the diverse range
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of relation expressions. Unsupervised clustering methods [3], linguistic feature-
based clustering [4], and relational siamese networks [5] have been suggested to
address these limitations, but they are susceptible to irrelevant information or
can only transfer knowledge to corpora in the same domain. A self-supervised
learning framework [6] has also been raised, but it increases learning instability
and cannot leverage the knowledge inherent in existing known relation instances.
Deep metric learning, a technique widely applied in computer vision, can be used
to learn a sample-to-feature mapping |f(·)| through a specific loss function. A
recent OpenTRE study employed a metric learning framework [7] to obtain rich
supervision signals from known relation instances directly. Nevertheless, this
framework only uses known relations for training, making it difficult to discover
new relations with large differences in distribution. To sum up, current OpenTRE
methods have not been able to fully exploit the relational semantic knowledge
contained in known relations, and their ability to transfer knowledge is often
limited to the same domain. Additionally, in real-world scenarios, both labeled
and unlabeled data can exist that contain both known and unknown relations.
It is important to note that existing methods assume that the testing phase only
involves new relation instances.

In view of the above problems, this paper proposes a novel semi-supervised
framework for open-domain text relation extraction called DTP, which includes
the use of Dynamic Thresholds and a Pair-based self-weighted loss. Specifi-
cally, DTP first extracts relation representations from the BERT model [8] and
embeds known relations into dense vectors. Then, it joints each dense vector and
relation representation to obtain logits for open relation detection. Simultane-
ously, the relation representation and a zero vector are concatenated to obtain
the sample-dependent dynamic threshold. The proposed method leverages the
dynamic threshold to detect unknown relations and integrates them with neg-
ative samples to learn thresholds adaptable for open-domain scenarios. DTP
method creates dynamic thresholds without additional parameters and network
design, which enables the thresholds to automatically adapt to different samples.
Additionally, the unsupervised learning by clustering is similar to the DeepClus-
ter approach [7], but DTP utilizes a deep metric loss to train the model without
a classifier. Moreover, we only require to know whether the instance pairs belong
to the same class, which helps to avoid the mismatch of pseudo-labels during
each training epoch. Our contributions are summarized below:

– A novel approach is formulated for open-domain text relation extrac-
tion that can handle more diverse data and enhance the interpretability
of the relation extraction process.

– A sample-based dynamic threshold is constructed without prior knowl-
edge of the open class, which is combined with two negative sample
generation techniques to learn thresholds that are more suitable for
open scenarios.

– A pairwise self-weighting loss is designed to fully exploit the semantic
knowledge of relations in labeled data and guide the clustering process.
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2 Methodology

Fig. 1. Overall architecture of open relation extraction.

This paper presents a novel method for extracting both known and unknown
relations in text. In particular, we decomposes open text relation extraction into
two stages: open relation detection and open relation discovery. The first stage
aims to distinguishing instances with N known relations and one unknown rela-
tion. While it can classify known relations and detect the new one, it cannot
discover specific open relations. To tackle this issue, the second stage employs
clustering techniques to group analogous open relation instances into more spe-
cific relation clusters. The comprehensive framework of our proposed approach
is depicted in Fig. 1.

2.1 Encoder

Given an input sentence x, all token embeddings [h0,h1, . . . ,hl] ∈ R
(l+1)×d are

get from the last hidden layer of the pre-trained language BERT [8].
To obtain the relation semantic representation between two entities, the

entity representations are obtained by using the mean-pooling method first:

e∗ = mean-pooling (
[
hie∗ , . . . ,hje∗

]
) (1)

Then, we concatenate the output corresponding special token h0 and two
entity representations for extract hidden representation h ∈ R

d:

h = ReLU(Wh [h0; e1; e2] + bh), (2)

In addition, known relation labels are embedded as a high-dimensional vector:

[c1, c2, . . . , cN ] = E ([c1, c2, . . . , cN ]) , (3)
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2.2 Open Relation Detection

In this section, we present the formal definition of the open relation detection
task, followed by the introduction of dynamic thresholds based on samples. Addi-
tionally, we introduce two techniques for generating negative samples, namely
manifold mixup [9] and entity boundary sliding, to further improve the thresh-
old learning. Meanwhile, utilizing deep metric learning with a pair-based self-
weighting loss function makes the class boundaries clearer.

Formal Definition. The model is trained using Dtr = {(xi, yi)}|Dtr|
i=1 , where

each instance xi consists of a token sequence {w1, w2, . . .} and a pair of entities
(e1, e2), and yi ∈ Y = {1, 2, . . . , N} is the corresponding class label. In the
presence of open classes, the model is tested with Dte = {(xi, yi)}|Dte|

i=1 , where yi ∈
Y = {1, 2, . . . , N,N +1} is the corresponding class label. Here, class N +1 refers
to a set of novel categories that may consist of multiple classes. As there is no
prior information available about these novel classes, they cannot be decomposed
into subcategories.

Dynamic Thresholds. For the training instances with known relations, we
concatenate ci with relation representation and output logits by:

zi = ReLU(Wz [h; ci] + bz),
logit i = Proj(zi),

(4)

where Wz ∈ R
2d×2d and bz ∈ R

d are learnable parameters, Proj : R2d→1 is a
linear projection. The logits {logit i}N

i=1 are used to calculate the confidence of
relations in subsequent computations.

In closed-set classification, open class samples are typically assigned to the
class with the highest predicted probability. In order to detect the open class,
an intuitive method [10] is to treat the highest output probability as confidence
scores and set a threshold to extend the classifier:

ŷ =

{
argmaxk∈Y p̂k conf > th
N + 1 otherwise

(5)

where th is a threshold, p̂k is the probability that the model prediction belongs to
class k, Y = {1, · · · , N} denote the known classes, and conf = maxk=1,··· ,N p̂k.
To enable adaptive detection of open samples, a sample-dependent threshold is
proposed for reducing the need for manual tuning. The threshold is defined as:

z0 =ReLU(Wz [h;0] + bz),
th = Proj(z0),

(6)

The loss function of dynamic threshold is defined as follows:

Lth = − log
exp(logity)

exp(th) + exp(logity)
− log

exp(th)

exp(th) +
∑N

j=1,j �=y exp(logitj)
(7)
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where y is the index corresponding to the ground-truth label. Minimizing the
loss function Lth enables the model to learn a threshold that adapts to each
individual sample, leading to more precise detection of open classes. Since the
designed threshold depends on the sample itself, it can perform well even when
there are multiple sub-classes within the open class during testing.

Generative Negative Samples. Although the dynamic threshold detects
open classes, it is worth mentioning that the model has never seen open class
samples before. Therefore, we generate negative samples as open samples for
threshold learning.

Manifold Mixup. Inspired by [11], we generate the negative relation representa-
tion instead of origin input. The Manifold Mixup method [9] is used to generate
negative samples:

r̃ = λri + (1 − λ)rj , yi �= yj , (8)

where λ ∈ [0, 1] is sampled from Beta distribution, r̃ ∈ R
d is a negative sample

obtained by mix different classes of relation representations.
The negative sample

r̃ is used to calculate the output [logitm
1 , . . . , logitm

N , thm]. We treat r̃ as open
samples and minimize the following loss:

Lmix = −log
exp(thm)

exp(thm) +
∑N

j=1 exp(logit
m
j )

. (9)

Manifold mixup generates r̃ to enhance the compactness of the boundary of
known classes and adapt the dynamic threshold for open scenarios.

Entity Boundary Sliding. Entity boundary sliding is proposed to handle complex
data distributions and account for instances that may not express any relations
during testing, in contrast to manifold mixup which may not be effective for
open classes with different high-dimensional space distributions than all known
classes. To generate new entity representations, the method randomly slides the
boundary of the entity pair, denoted as ie = i+δ and je = j+δ, where i and j are
the start and end indices of the single entity. The scalar δ is randomly sampled
from the interval [−a,−1]∪ [1, b], where a and b are the distances from the start
and end indices of the entity to the start and end of the sequence, respectively.
The open entity representation e∗ is obtained using Eq. 1, and the negative
sample r̂ is generated based on e∗ using Eq. 2. The output [logits

1, . . . , logit
s
N , ths]

is computed using Eq. 4 and Eq. 6, and we minimize the following loss:

Lslid = −log
exp(ths)

exp(ths) +
∑N

j=1 exp(logit
s
j)

. (10)

The dynamic threshold loss based on generative negative samples is:

Lneg = Lmix + Lslid. (11)
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Metric Learning with Pair-Based Self-weighting Loss. To optimize the
semantic space and capture the semantic knowledge present in the data, we
build upon prior work on metric learning [7,12], and employ it to pre-train the
encoder and create semantic embeddings directly. Within each batch, we consider
sample pairs belonging to the same class as positive pairs and those of different
classes as negative pairs for each batch. Our goal is to push the negative pairs
beyond the negative boundary αn while simultaneously pulling the positive pairs
closer than the positive boundary αp. In order to leverage informative examples
[12,13] for fast convergence and good performance, we adopt the practice of
mining non-trivial instances. For a given instance xi, the non-trivial positive set
after mining is defined as Pi = {xj |i �= j, yi = yj , sij > αp} and the negative set
is defined as Ni = {xj |yi �= yj , sij < αn}. To make the most of these non-trivial
samples, we need to consider their distance from the boundaries as well as their
relative distance from other non-trivial samples in the set when designing the
loss function. To achieve this, the pair-based self-weighting (PSW) loss is:

LPSW =LP + LN

LP = log

[
B1∑

i=1

exp
(
γ [sp

i − αp]
2
+

)
]

LN = log

[
B2∑

i=1

exp
(
γ [αn − sn

i ]
2
+

)
]

(12)

where sn
i ∈ Ni and sp

i ∈ Pi are positive sample pairs and negative sample pairs,
respectively. B1 and B2 are the sizes of non-trivial sample sets. γ > 0 is a scalar
temperature parameter.

The derivative concerning model parameters θ can be calculated as:

∂Ls

∂θ
=

m∑

i=1

∂Ls

∂si

∂si

∂θ
, (13)

where m is the size of a batch. Note that ∂Ls

∂si
is regarded as a constant scalar

that not in the gradient θ. We regard ∂Ls

∂si
as the weight of ∂si

∂θ and rewritten as:

LPSW =
m∑

i=1

wisi (14)

where wi = ∂Ls

∂si
. From Eq. 12, si ∈ Ni ∪ Pi and we further analyze for a non-

trivial positive sample pair:

∂Ls

∂sp
i

=
∂LP

∂sp
i

=
2γ[sp

i − αp]+∑m
j=1 exp(γ([s

p
j − αp]2+ − [sp

i − αp]2+))
(15)

From Eq. 15, we know that the weight of a positive sample pair is not only
determined by [si − αp]+ but also affected by other non-trivial samples. When
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si is close to boundary αp, the weight of the sample pair will decrease, and it
will increase otherwise. Moreover, when other non-trivial samples are closer than
the point, ([sp

j − αp]2+ − [sp
i − αp]2+) < 0 will increase the overall impact after

exp scaling, making it focus on optimizing such samples. The analysis presented
above demonstrates that our proposed loss function assigns different weights to
different sample pairs, allowing us to flexibly mine non-trivial samples.

Finally, our optimized training loss is:

L = Lth + Lneg + LPSW . (16)

In the test phase, the model outputs a dynamic threshold th for each sample
and then detect open classes through Eq. 5.

2.3 Open Relation Discovery

In order to enable the model to better discover new relations, the model under-
goes pre-training of the Encoder with labeled data in Sect. 2.2, and then further
transfers the learned semantic knowledge to discover new relations from unla-
beled data. This section presents the complete framework for discovering new
relations in unlabeled data through clustering-based methods.

Formal Definition. Given a set of unlabeled relation instances Xu, the
goal is to group the underlying semantic relations of the entity pairs in Xu.
Xu = {(xi, hi, ti)}N

i=1, where xi is a sentence and (hi, ti) is a named entity
pair corresponding to xi. In semi-supervised scenarios, high-quality labeled data
Xl = {(xi, hi, ti)}M

i=1 is available to improve the model performance. Note that
the supervised data Xl is separate from the label space and may be different
from the corpus domain of Xu.

Unsupervised Clustering. We employ a clustering-based approach to extract
previously unknown relations from unlabeled data. Specifically, we use an online
deep clustering framework that combines label assignment and feature learning,
inspired by the ODC method [14]. The framework involves of two memories:
the sentence memory, which stores the features and pseudo-labels of the unla-
beled training set, and the centroids memory, which stores the features of class
centroids. In this context, a class represents a temporary relational cluster that
evolves continuously during training. With the use of two memories, the clus-
tering process becomes more stable and obviates the need for additional feature
extraction steps.

The complete iteration consists of four steps. Firstly, we extract relational
representations Z̃ = [z̃1, z̃2, . . . , z̃B ] in a batch of input, which are described
in Sect. 2.2. Secondly, read the pseudo-labels from the sentence memory as a
supervision signal to train the entire network, which minimizes L. Thirdly, z
after L2 normalization is reused to update the sentence memory:

S ←− m
Z̃

||Z̃||2
+ (1 − m)S (17)
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where S is the relational memory, m ∈ (0, 1] is a momentum coefficient. Simul-
taneously, each involved instance is assigned with a new label by finding the
nearest centroid following:

min
y∈1,...,M

< z̃, cy > (18)

where cy denotes the centroid feature of class y. Finally, every k iterations,
the centroid memory is updated by averaging all the features belonging to the
corresponding centroid in the sentences memory.

3 Experiments

To demonstrate the effectiveness of DTP, we conduct three types of validation
experiments: main experiments, ablation experiments, and visualization exper-
iments on two publicly accessible datasets and report the comparison results.
The statistics of two datasets are shown in Table 1.

Table 1. The statistics of the relation datasets (# indicates the total number of
instances.).

Dataset #Training #Validation #Test Relations

SemEval [15] 6500 1500 2717 19
FewRel [16] 46400 4000 5600 80

3.1 Baselines and Evaluation Metrics

Baselines. We consider 3 advanced baselines: RSN [5], a supervised open-
domain text relation extraction framework, uses the siamese network structure to
learn the similarity of the relation from the label data. DeepAligned [17] aids the
discovery of new classes by labeled data and proposes an alignment strategy to
tackle the label inconsistency problem during clustering assignments. MORE [7]
is a metric learning based framework, which uses deep metric learning to obtain
rich supervision signals in labeled data and drive the model to learn semantic
relational representation directly.

Evaluation Metrics. We use B3 metric [18], Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), and Clustering Accuracy (ACC) for compre-
hensive evaluation. We use the Hungarian algorithm [19] to calculate clustering
accuracy by aligning predicted and ground-truth labels.
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3.2 Parameters Setting and Training Details

DTP is built on top of the pre-trained BERT model (base-uncased, with 12-layer
transformer) implemented in PyTorch [20] with default hyperparameter settings.
To speed up the training procedure, we freeze all but the last transformer layer
parameters of BERT. The training batch size is 64, the d is 768, and the learning
rate is 1e−4. The scaled temperature γ is set to 50. The positive margin αp is
0.7, and the negative margin αn is 1.4.

We vary known classes number in the training set by using proportions of
25%, 50%, and 75%, and use all available classes for testing. For each ratio, we
report the average performance over 5 runs of experiments. Instances from open
classes will not be used during training or validation for open relation detection
stage, and unlabeled open class training instances will be used during training
for open relation discovery stage.

3.3 Result and Discussion

Table 2. Results (%) of relation extraction with different known relation proportions
(KRP) on two dataset.

KRP Method SemEval FewRel
ACC ARI NMI B3 ACC ARI NMI B3

25% RSN 35.69 22.29 39.41 29.78 43.75 31.89 63.19 35.31
DeepAligned 33.05 21.08 33.33 26.65 45.47 32.55 62.89 36.26
MORE 35.44 22.61 35.80 28.36 49.79 37.31 66.29 40.67
DTP 41.66 28.87 43.33 35.77 51.83 38.75 71.31 47.27

50% RSN 48.61 34.01 50.89 41.04 44.94 32.80 63.76 36.03
DeepAligned 52.68 39.39 51.29 44.32 63.19 51.86 76.03 54.70
MORE 53.15 39.41 52.68 45.17 62.71 51.68 76.10 54.91
DTP 57.96 43.46 57.53 50.82 65.97 54.31 78.87 59.66

75% RSN 50.99 34.65 54.56 43.39 44.18 32.58 63.18 35.19
DeepAligned 68.83 53.63 66.35 60.14 72.77 62.41 81.60 64.61
MORE 68.04 52.19 66.23 59.31 66.40 56.15 78.93 59.79
DTP 69.94 54.03 68.33 62.16 74.88 64.40 82.86 67.18

Open Relation Extraction Result. Table 2 shows the results of the pro-
posed methods and baselines compared on SemEval and FewRel datasets. Firstly,
DTP outperforms baselines on ACC, ARI, NMI, and B3-score and significantly
improves B3-score compared with the results of best baseline up to 6.6%. It
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shows that DTP can effectively learn the relation semantic knowledge and dis-
cover new relations. Secondly, in the setting of 25% known classes, DTP signifi-
cantly outperforms all baselines on all datasets, which indicates that it can learn
latent relation semantic knowledge with only a few known relations instances.
What’s more, “Other” class in SemEval may cause poor clustering performance,
but DTP excels over current state-of-the-art methods, showing effectiveness in
complex, open scenarios. Finally, compared with the MORE, which also uses
metric learning, the B3 scores of DTP are improved by 5.65% and 4.75% in the
50% setting on the SemEval and FewRel datasets, respectively.

Ablation Study. Ablation studies were conducted to evaluate the effectiveness
of generative negative samples-based dynamic thresholds and pair-based self-
weighting loss in the proposed method for open-domain text relation extraction.
The results of the ablation study are shown in Table 3. Results shows that both
techniques made significant contributions to the model, and negative sample
training is essential for optimal performance. Removing self-weighting loss also
affected the model’s performance, but to a lesser extent than removing nega-
tive samples. The proposed method was found to be practical and effective for
handling various types of data.

Table 3. Ablation study of DTP at detection stage on SemEval and FewRel dataset.

Ratio Method SemEval FewRel
Known Open Overall Acc Seen Unseen Overall Acc

25% Lt + LP 41.85 20.71 37.62 32.97 52.97 31.97 51.97 37.52
Lt + Ln 62.71 80.08 66.18 74.66 63.48 69.54 63.77 63.47
Lt + Ln + LP 67.98 86.56 71.69 81.72 67.30 78.66 67.84 72.04

50% Lt + LP 64.02 35.21 60.82 55.30 69.23 34.01 68.37 55.02
Lt + Ln 75.25 78.56 75.62 78.54 73.77 63.63 73.53 67.83
Lt + Ln + LP 75.96 80.29 76.44 79.95 75.31 68.74 75.15 71.01

75% Lt + LP 75.39 38.61 72.76 68.98 78.97 34.13 78.23 70.16
Lt + Ln 81.88 75.60 81.44 81.89 78.85 49.63 78.37 72.22
Lt + Ln + LP 78.91 76.79 78.76 81.41 80.05 56.05 79.66 74.13

Visualize Relation Representation. The effectiveness of DTP for relation
representation extraction was evaluated using t-SNE [21] to visualize the high-
dimensional relation representation (see Fig. 2). Four randomly selected known
and four unknown relation types were chosen from the FewRel test set, and
the sample points were colored according to their ground-truth labels. Results
showed that DTP at detection stage outperformed the other two baselines in
distinguishing between known and unknown relations. Our model was also better
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than ADB at handling classes with complex boundaries. DTP and ADB were
effective at extracting representations of unknown relation instances. In addition,
DTP at discovery stage learned more compact and separable representations
between classes than MORE and DeepAligned, indicating that the proposed
approach learns cluster-friendly representations.

Fig. 2. Visualization of relation representation.

4 Conclusions and Future Works

This paper proposes an open-domain text relation extraction method to han-
dle diverse relation data. Specifically, we propose dynamic thresholds to detect
unknown relations and generate negative samples to learn thresholds that are
more suitable for open scenarios. To better capture the semantic knowledge in
the labeled data, pair-based self-weighted loss is used to learn feature repre-
sentation effectively. In addition, a well-designed learning framework can better
transfer relational semantic knowledge in labeled data to guide clustering. In the
future, we will continue to study the combination of cross-domain open relation
extraction and continuous learning.
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Abstract. In the sustainable smart agriculture era, a vast amount of
agricultural knowledge is available on the internet, making it necessary to
explore effective document classification techniques for enhanced accessi-
bility and efficiency. Over the past few years, fine-tuning strategies based
on pre-trained language models (PLMs) have gained popularity as main-
stream deep learning approaches, showcasing impressive performance.
However, these approaches face several challenges, including a limited
availability of training data, poor domain transferability, lack of model
interpretability, and the challenges in deploying large models. Inspired by
ChatGPT’s significant success, we investigate its capability and utiliza-
tion in the field of agricultural information processing. We explore various
attempts to maximize ChatGPT’s potential, including various prompting
construction strategies, ChatGPT question-answering (Q&A) inference,
and intermediate answer alignment technique. Our preliminary compar-
ative study demonstrates that ChatGPT effectively addresses research
challenges and bottlenecks, positioning it as an ideal solution for agricul-
tural document classification. This findings encourage the development of
a general-purpose agricultural document processing paradigm. Our pre-
liminary study also indicates the trend towards achieving Artificial Gen-
eral Intelligence (AGI) for sustainable smart agriculture in the future.
Code is available on Github (https://github.com/albert-jin/agricultural
textual classification ChatGPT).

Keywords: ChatGPT · Natural language processing · Agricultural
document classification · Very large language model

1 Introduction

With the rapid development of the sustainable smart agriculture ecosystem, the
quantity of various Internet news related to agricultural fields has seen an explo-
sive increase. Artificial intelligence agricultural document classification enables
the automatic management of this massive agricultural news and facilitates the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Comparisons of ChatGPT-based NLP solutions with existing prompt learning
paradigms by using an agricultural sentiment analysis example. Part (a) represents
the task prototype of the agricultural sentiment analysis, while Part (b) and Part
(c) illustrate the standard workflows of ChatGPT-based approaches and Masked LM
prompt-tuning methods, respectively.

indexing of unstructured data, which is a crucial step towards agricultural digi-
tization [22,25] and the agricultural Internet of Things development [9,26].

As a powerful very large-scale pre-trained language model (VLLM) for dia-
logue [19], ChatGPT has rapidly exhibited remarkable language comprehension
abilities, attracting increasing attention in many cross-disciplinary researches
[11,17,23]. Considering ChatGPT’s impressive capabilities, it is natural to
explore its potential in optimizing sustainable agricultural applications, includ-
ing agricultural document classification.

In this paper, we investigate the potential of ChatGPT by focusing on the
concise classification of agricultural text. This work introduces a novel NLP
paradigm based on ChatGPT, which distinguishes it from existing methods.
Figure 1 provides a clear illustration of the major similarities and differences
between ChatGPT-based NLP paradigm (a) and MLM prompt-tuning paradigm
(b). The prompt-tuning paradigm based on pre-trained language models (PLMs)
can be divided into three primary procedures: template engineering, reasoning
using pre-trained language models, and answer mapping engineering. Similarly,
as depicted in part (b) of Fig. 1, natural understanding tasks based on ChatGPT
can be organized into several phases [12,28]: 1) prompting question construction
engineering; 2) ChatGPT question-answering (Q&A) inference; and 3) answer
alignment (or normalization) engineering. To optimize the process, we consid-
ered several key factors: 1) designing task-specific inquiries to intuitively trigger
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the understanding capability of ChatGPT; and 2) developing an accurate label
mapping strategy from the outputs of ChatGPT to the final classified categories.

In our experiments, we initially obtained datasets from various agricultural
sub-fields. These datasets were primarily sourced from Internet news articles
that covered topics like insect pests, natural hazards, and agricultural market
comments. By utilizing ChatGPT for tasks such as pest and disease identifica-
tion, agricultural news categorization, and market comment analysis, we show-
cased how it can contribute to agricultural information management. Through
a comprehensive set of experiments, including comparisons with state-of-the-
art (SOTA) baselines, ablated experiments with advanced prompting strategies,
ChatGPT triggered prompts and prompts from PromptPerfect1, and several
additional case studies, we thoroughly investigated and highlighted the distinct
advantages of ChatGPT over other methods in advanced agricultural practices.

The primary contributions of this work can be summarized as follows:

– Motivated by the significant application success of ChatGPT, we conducted
a preliminary study to explore the potentials of ChatGPT in agricultural
document classification tasks and proposed a ChatGPT-based solution for
agricultural document classification;

– ChatGPT-based document classification method outperforms existing PLM-
based approaches when evaluated on multi-linguistic agricultural datasets,
showcasing its impressive cross-lingual understanding capability;

– Our ChatGPT-based method that equipped with advanced prompts shows
impressive performance gains, which demonstrates and highlights the impor-
tance and significance of the strategies about how to design prompts.

– The reliance of ChatGPT-based method subverts complex and power-
intensive PLM-based methods, promising the low-cost and general artifi-
cial intelligence (AGI) techniques for smart agriculture. Code is released on
Github2.

2 Related Work

2.1 Agricultural Document Classification

Over the past decade, traditional machine learning approaches, such as SVM,
CNNs, and RNNs, have dominated document classification research [24]. Azeez
et al. utilized support vector machines (SVM) for regional agricultural land tex-
ture classification [1]. Dunnmon et al. demonstrated the superiority of CNNs
over RNNs in sentiment classification of agriculturally-relevant tweets [6,13].
The introduced pre-trained language models like BERT [5] have significantly
improved agricultural document processing tasks, gradually replacing traditional
methods. Shi et al. used BERT to extract representative information from unla-
beled sources, improving the efficiency of constructing corpora for agricultural

1 PromptPerfect service: https://promptperfect.jinaai.cn/prompts.
2 https://github.com/albert-jin/agricultural textual classification ChatGPT.

https://promptperfect.jinaai.cn/prompts
https://github.com/albert-jin/agricultural_textual_classification_ChatGPT
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news [18]. Jiang et al. classified French plant health bulletins using fine-tuned
BERT, making the data easily searchable [9]. Cao et al. introduced an improved
BERT-based sentiment analysis model for evaluating agricultural products using
internet reviews [4]. The integration of large pretrained language models like
BERT into agricultural document classification has shown promising results,
advancing the field and improving efficiency and accuracy.

However, the current scale of existing PLMs is still not capable enough to
meet the requirements for artificial general intelligence (AGI). There is an urgent
need to accelerate the exploration of the capability of very large language models
(VLLMs). Therefore, the tremendous interest in ChatGPT has sparked explo-
ration into its potential and possibilities in the field of agriculture.

2.2 ChatGPT

ChatGPT [3,15], developed by OpenAI, is a leading conversational language
model that provides expert knowledge in various fields. It is a disruptive revolu-
tion in research domains, extending beyond NLP and has made significant con-
tributions to various application scenarios. As more and more users engage with
ChatGPT, a multitude of novel applications emerge, showcasing its immense
potential. ChatGPT has shown remarkable proficiency in multilingual transla-
tions, especially in high-resource languages such as various European and Ameri-
can languages [20]. ChatGPT’s capabilities extend beyond translations to coding
tasks, and it can assist in code debugging and generation. Recent empirical stud-
ies [2,7,25] have shown that ChatGPT can provide code snippets adhering to
syntax and semantics in languages like Python, Java, and JavaScript. Addition-
ally, ChatGPT has been explored for event extraction and information extraction
tasks [7,8,21].

Overall, ChatGPT is a remarkable language model with a wide range of
applications. It revolutionizes the accessibility and capabilities of large language
models, opening up new possibilities for research and development. The ground-
breaking nature of ChatGPT has sparked curiosity and exploration, including
its potential applications in the agricultural field. While specific agricultural use
cases are limited, researchers continue to investigate and uncover new possibili-
ties for the sustainable agricultural development.

3 ChatGPT-Based Agricultural Document Classification

This paper focuses on the feasibility of applying ChatGPT to agricultural doc-
ument classification. We present a series of exploratory experiments as a pre-
liminary study on ChatGPT-based agricultural applications. As we know, there
were no existing works that systematically utilized ChatGPT for document clas-
sification. To fill this gap, we discuss the general workflow for ChatGPT-based
agricultural document classification. Based on extensive literature [21,28], we
identify three phases that most ChatGPT-assisted applications can be divided
into, as illustrated in Fig. 2:
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i. Prompting Question Construction: This initial stage focuses on providing
appropriate prompting strategies to input into ChatGPT;

ii. ChatGPT Q&A Inference: The second stage involves the ChatGPT
question-answering reasoning procedure, which is transparent to us that
treated as a black box;

iii. Answer Alignment: In the final stage, the natural language intermediate
response is transformed into the target label within predefined categories.

Fig. 2. The ChatGPT-based document classification framework is exemplified using
the French Plant Health Bulletin dataset. It involves designing various prompts gener-
ation strategies (left), obtaining a response from ChatGPT (center), and aligning the
intermediate answer to pre-defined categories (right).

Among these steps, while the question-answering inference conducted by
ChatGPT remains static and beyond our modification, we can optimize the
prompting construction and answer alignment engineering during our experi-
ments. In the followings, we will introduce several novel strategies that we uti-
lized to fully leverage the enormous potential and superiority of ChatGPT.

3.1 Prompt Question Construction

Prompts serve as a crucial component in determining the quality and relevance
of generated outputs from language models. As inputs and guides for the model’s
output, the quality of prompts has a significant impact on the performance of
the model. By leveraging prompt optimization engineering, users can unlock the
full potential of large-scale language models and achieve better results with less
effort and time. The engineering for constructing prompting question is widely
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recognized as a complex task that involves extensive historical experience and
manual trial-and-error [14,28]. As illustrated on the bottom-left of Fig. 2, we
adopt several prompt generation strategies in our experiments, including: 1)
manually defined prompts, 2) prompts triggered from ChatGPT, and 3) prompts
triggered from the PromptPerfect platform.

Next, we discuss these prompt generation strategies in detail.

Table 1. The partial manually devised prompts. [Res] denotes the response provided
by ChatGPT.

No. prompting template

1 Classify the following sentence into one of the given
categories: [CATE] \n Sentence: [SENT] \n Category: \t[Res]

2 Which categories do you think sentence: \n [SENT] \n belongs
to, out of [CATE]? \n [Res]

3 . . . . . .

Manually Designed Prompts: Following the communication habits, we man-
ually create several prompting templates. Table 1 showcases part of the designed
templates. There are two essential elements that be provided to ChatGPT,
denoting the sentence context and the pre-defined categories, respectively. For
simplicity, we include two extra slots in the prompts to combine the respective
mentions: slot [SENT] as the sentence, and slot [CATE] as the categories.

Note that not all manually designed templates are always the most suitable. It
is necessary to select representative templates from the candidate set to be used
for subsequent experiments. For this purpose, we utilize a data down-sampling
evaluation as described in [2]. Specifically, we randomly select a predetermined
number (100 by default) of samples from the specified dataset, Twitter Natural
Hazards. Subsequently, we evaluate the performance of each template on this
subset and choose the best-performed template as the most suitable manually
defined prompt. Through a series of thorough down-sample comparison experi-
ments, we selected the prompt for the subsequent experiments, which is depicted
as follows.

> Categorize the given sentence into one of the provided
categories. Please provide a clear and concise response
that identifies the category of the sentence to allow for
categorizations.
The sentence is: [SENT].
The categories are specified in the [CATE].
The sentence to be classified is: {ChatGPT Response}.

Moreover, it should be noted that we have additionally included the following
command in the prompts.
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> ......, Please only answer the category.

This additional request is aimed at reducing unnecessary explanations gen-
erated by ChatGPT regarding its reply. Such explanations have the potential to
disrupt the decision-making process for labeling subsequent text. We have also
considered this factor when devising the following prompting methods.

ChatGPT Triggered Prompts: Taking cues from the extensive research in
the field [10,27], we hypothesize that exploring ChatGPT directly might offer
valuable insights into the creation of top-notch templates. With this in mind, we
turn to ChatGPT itself, seeking its guidance on the recommended approaches
for generating templates. Please note that the following human inquiries can
serve as triggers for task-specific prompts:

> Provide five concise prompts or templates that can make
you deal with the [x] task.

, where the slot [x] represents task-specific types in the context.

Fig. 3. Candidate prompt templates triggered by requests to ChatGPT (Model: GPT-
3.5, Query Date: 2023.4.02).

As depicted in Fig. 3, we have intuitively formulated our request as follows:

> Provide five concise prompts or templates that can make
you deal with the agricultural document classification task.

The generated prompts demonstrate sensible and coherent semantic content,
with discernible variations in their respective formats. Employing the sampling-
based evaluation method described earlier, we have chosen the best-performing
prompt to represent the ChatGPT-triggered prompts for subsequent compara-
tive experiments. The selected prompt is as follows:
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> Classify the agricultural text: [SENT] according to its
main topic [CATE].

Experiments prove that this like ChatGPT triggered prompting strategy can
enhance the quality and accuracy of generated outputs, making them more useful
and effective.

Prompts Triggered from PromptsPerfect: PromptPerfect3 is a cutting-
edge intelligent prompt optimizer for large-scale language models, which helps
users craft prompts that yield exceptional results. PromptPerfect has the abil-
ity to fine-tune prompts and generate high-quality results for a wide range of
applications. PromptPerfect can revolutionize users’ experience with models like
ChatGPT, MidJourney, and StableDiffusion.

Fig. 4. The prompt optimization procedure of the PromptPerfect interface, exemplified
by optimizing the manually designed prompt.

Here, we explore the impact of prompts optimized by PromptPerfect on
the output quality of ChatGPT, taking advantage of PromptPerfect’s advanced
capabilities. Specifically, in the experiment, we simultaneously optimized the
manually designed prompt and the ChatGPT-triggered prompt selected in
the previous two steps. Figure 4 illustrates the optimization effects of the
PromptsPerfect website service on the manually designed prompt.

The optimization result for the manually designed prompt is as follows:

3 PromptPerfect service is available at https://promptperfect.jinaai.cn/prompts.

https://promptperfect.jinaai.cn/prompts
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> Please classify the following agricultural document
according to its main topic:
Sentence: [CATE]
Categories: [SENT].

And the optimization result for the ChatGPT triggered prompt is as follows:

> Your task is to categorize a given sentence into one of
the provided categories. The sentence will be specified in
the prompt, and the categories are listed below. Please
provide a clear and concise response that accurately
identifies the category of the sentence.
Categories: [SENT]
Sentence: [CATE]
Please note that your response should be flexible enough to
allow for various relevant and creative categorizations.

Experimental results demonstrate that the overall performance of utilizing
PromptPerfect for optimization are superior, surpassing the original prompts in
a slight range of improvement.

3.2 ChatGPT Q&A Inference

The conversational prower of ChatGPT lies in its capacity to generate coherent
sentence through sequence-to-sequence learning and the transformer architec-
ture.

During inference, ChatGPT generates response by conditioning on a prompt
and sampling words from a probability distribution. This distribution is com-
puted using the softmax operation applied to the model’s output. The output at
each step is influenced by the previously generated tokens, enabling a generative
process that produces coherent text.

Formally, the token generation process of ChatGPT can be expressed as
follows:

p(y|x) =
L∏

i=1

p(yi|y1, ..., yi−1, x) (1)

where
∏

denotes the probability multiplication operator. The probability dis-
tribution p(yi|y1, ..., yi−1, x) represents the likelihood of generating token yi at
the t-th time step, given the preceding tokens y1, ..., yi−1 and the input prompt
x. The length of the generated sequence is denoted as L.

To maintain consistency and enable independent thinking, we adopted a
unique conversation thread for each prompt during the ChatGPT interaction
process. This approach ensures that ChatGPT’s responses are unaffected by
the previous conversation history. By leveraging the user-provided information,
ChatGPT consistently delivers optimal responses.
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3.3 Answer Alignment

Different from traditional PLM-based classification models, the answers gen-
erated by ChatGPT do not directly correspond to predefined labels, posing
challenges for subsequent output analysis and evaluation. Therefore, additional
alignment strategies are required to convert these intermediate answers into
final labels that can be used to compute various performance metrics. In our
experiments, we designed and implemented two distinct alignment strategies:
rule-based matching and similarity-based matching.

– Rule-based matching: This method utilizes predefined patterns or rules
based on token attributes (e.g., part-of-speech tags) to match token sequences
in unstructured textual data. During our experiments, we use the Matcher4

in spaCy v3 to find the matched tokens in context.
– Similarity-based matching: This method computes the similarity between

the generated answer and each label, selecting the label with the highest sim-
ilarity score. First, we aggregate and synthesize commonly used expressions
by ChatGPT for each category and establish a reference answer repository for
each category. Then, we employ the Levenshtein distance algorithm to calcu-
late the minimum edit distance between each reference answer and the input
answer to be classified. The answer with the minimum distance is selected as
the final category label.

To address the challenge of answer mapping, we adopt a pipeline approach
that combines both rule-based and similarity-based matching strategies. We first
use the rule-based strategy to parse the intermediate answer. If the category
remains uncertain, we then employ the similarity-based strategy to calculate the
similarity between the intermediate answer and each category’s answer examples,
selecting the most similar category as the final label.

4 Experiments

4.1 Setups

Datasets. We collected three datasets for agricultural document classifica-
tion: PestObserver-France5, Natural-Hazards-Type6, and Agri-News-
Chinese7, ranging from different types of categories (e.g. plant diseases, insect
pests, and twitter natural hazards) and numbers of categories to various lan-
guages, including French, English, and Chinese. Note that Natural-Hazards-Type
is a disaster categories classification dataset re-organized from the original senti-
ment classification dataset, Natural-Hazards-Twitter8. The details are depicted
in Table 2.
4 Spacy can be accessed on https://spacy.io.
5 PestObserver-France download: https://github.com/sufianj/fast-camembert.
6 https://github.com/albert-jin/agricultural- textual classification ChatGPT.
7 More details can be accessed from http://zjzx.cnki.net/.
8 https://github.com/Dong-UTIL/Natural-Hazards-Twitter-Dataset.

https://spacy.io
https://github.com/sufianj/fast-camembert
https://github.com/albert-jin/agricultural-_textual_classification_ChatGPT
http://zjzx.cnki.net/
https://github.com/Dong-UTIL/Natural-Hazards-Twitter-Dataset
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Table 2. The statistical meta-information of these datasets. N-train, n-test, n-label
denote the count of training samples, test samples, and categories, respectively.

Datasets n-train n-test language labels n-label

PestObserver-France 322 80 French Bioagressor, Disease, Others 3

Natural-Hazards-Type 5000 1000 English Hurricane, Wildfires, Blizzard,
Floods, Tornado

5

Agri-News-Chinese 52000 6500 Chinese 农业经济, 农业工程, 水产渔业,

养殖技术, 林业, 园艺, 农作物

7

Baselines. To conduct a comprehensive comparison with previous machine
learning methods, such as feature engineering-based method, representation
learning method, PLM-based fine-tuning and prompt-tuning. We selected a
series of representative approaches as baselines. These baselines include SVM [1],
TextRNN [13], BERT-based fine-tuning [5] and T5-based prompt-tuning meth-
ods [16], each representing a different learning paradigm mentioned above. For
TextRNN, we utilized the pre-trained word vectors from GloVe9 as embeddings.
The PLM models used in our study are the “bert-base-uncased” and “t5-base”
versions obtained from facebook/huggingface.io10.

Metrics. In agricultural document classification tasks with multiple labels, accu-
racy and F1-score are commonly used metrics. Accuracy measures the propor-
tion of correctly predicted samples among all predicted samples, while F1-score
considers precision and recall.

Experimental Environment. The meta experimental settings can be sum-
marized as follows: The experimental hardware environment consists of an Intel
Core i9-9900k CPU and a single Nvidia GPU, specifically the GTX 1080Ti. The
code implementation is done in Python 3.7 and PyTorch 1.9.0.

4.2 Main Results

Table. 3 details the comparison results of our method and these state-of-the-
art baselines on the three cross-linguistic datasets. For comparison simplicity,
we regarded the approach which adopts the manually defined prompts as the
vanilla ChatGPT-based classification method and took it for comparison.

Through the comparative experimental results, our approach exhibits com-
petitive performance across all datasets. ChatAgri demonstrates a significant
performance advantage of 10% to 20% compared to traditional SVM and Tex-
tRNN methods. Furthermore, our approach shows impressive performance com-
pared to the latest methods based on large-scale pre-trained models. Compared
to PLM BERT fine-tuning and PLM T5 prompt-tuning methods, our approach
improves accuracy or weighted F1 scores. For example, compared to BERT
fine-tuning, our approach achieves an accuracy improvement of approximately
9 GloVe embedding: https://nlp.stanford.edu/projects/glove/.

10 Huggingface transformers: https://huggingface.co/docs/transformers/index.

https://nlp.stanford.edu/projects/glove/
https://huggingface.co/docs/transformers/index
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Table 3. Performance statistics of the baselines and ChatAgri on the adopted datasets.
The best and second-best scores across all models are respectively highlighted in bold
and underlined. [ChatGPT Query Date: March 16, 2023].

PestObserver

-France

Natural-Hazards

-Type-English

Agri-News

-Chinese
Learning

Paradigms
Baselines

Acc
Weighted

-F1
Acc

Weighted

-F1
Acc

Weighted

-F1

Feature

Engineering
SVM 0.672 0.645 0.811 0.811 0.623 0.622

Word

Representation
TextRNN 0.707 0.697 0.931 0.931 0.812 0.801

PLM-based

Fine-tuning

BERT-based

fine-tuning
0.736 0.714 0.945 0.945 0.826 0.819

PLM-based

Prompt-tuning

T5-based

prompt-tuning
0.764 0.753 0.966 0.966 0.859 0.854

ChatGPT-based

Prompt QA
(Our Method) 0.794 0.789 0.978 0.978 0.863 0.856

5.8% and 3.7% on the PestObserver-France and Agri-News-Chinese datasets,
respectively. Compared to the T5 prompt-tuning method, our approach achieves
slightly higher accuracy on the Agri-News-Chinese and Natural-Hazards-Type
datasets, approximately 3.0% and 1.1% respectively.

In addition, ChatGPT performs excellently in cross-language understand-
ing. Unlike traditional PLM-based methods, ChatGPT utilizes comprehensive
and high-quality training corpora covering most languages used in various coun-
tries. Moreover, the enormous parameter size of ChatGPT enables it to retain
and master more language knowledge, not limited to English. Thus, ChatGPT
exhibits significant superiority over traditional PLM models (such as BERT,
RoBERTa, and BART) in terms of cross-language understanding.

4.3 Improved with ChatGPT Triggered Prompts

Here, we discuss the performance influence of ChatGPT triggered prompt-
ing strategy. The overall results of ChatGPT equipped with ChatGPT trig-
gered prompts are presented in Table 4. Specifically, from the third and fourth
columns of Table 4, our method that equipped with ChatGPT triggered prompts
yielded an approximately 2.1% accuracy and 1.4% weighted-F1 improvements
on PestOb-server-France over that using manually constructed prompts, and
outperforms the basic counterpart by a performance margin about 1.2% both of
accuracy and weighted-F1 on Agri-News-Chinese.

However, there was no significant improvement in performance for the
Natural-Hazards-Type. We speculate that this may be attributed to the char-
acteristics of the dataset, where the semantics related to classifying natural
disaster categories are prominently evident, often relying solely on a few fixed
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trigger words and phrases. Consider the following sentence found in the dataset:
“Matthew charges toward Jamaica, Haiti, Cuba: Islanders stock up on food,
water and other supplies.” In this sentence, the referenced word “Matthew” is
intrinsically associated with the document topic of an American hurricane dis-
aster.

Table 4. The performance comparison of our method using the manually constructed
prompts and the prompts generated by ChatGPT. The colored numbers shown in
percentage indicated the increased performances.

Prompting

Strategies

Manually Defined -
Prompts (Vanilla)

ChatGPT Triggered
- Prompts

PestObserver
-France

Accuracy 0.794 0.815 ↑ 2.1%

Weighted-F1 0.789 0.812 ↑ 1.4%

Natural-
Hazards-Type

Accuracy 0.978 0.978 ↑ 0.0%

Weighted-F1 0.978 0.978 ↑ 0.0%

Agri-News
-Chinese

Accuracy 0.863 0.874 ↑ 1.1%

Weighted-F1 0.856 0.867 ↑ 1.1%

One additional notable experimental phenomenon is that prompts obtained
through ChatGPT tend to be concise and succinct, while manually crafted
prompts often become excessively lengthy due to the inclusion of a series of con-
straining conditions. This finding further substantiates the lack of a direct rela-
tionship, in theory, between the length of the provided prompt and the quality
of feedback and classification performance achieved by ChatGPT. Accordingly,
appropriately providing brief prompts can still effectively stimulate ChatGPT’s
exceptional language comprehension capabilities.

In summary, with the help of the advanced prompts triggered by ChatGPT,
the proposed classification method achieves impressive performance improve-
ments and shows its significance and effectiveness. Furthermore, designing appro-
priate templates to stimulate the potential generative capacity of ChatGPT is
an valuable research area that warrants thorough exploration and discussion.

4.4 Improved with PromptPerfect Prompt Optimization

Here, we provided a detailed analysis towards the PromptPerfect’s prompt opti-
mization effect on our ChatGPT-based classification method. Table 5 statistics
the comparative experimental results between the use of PromptPerfect to opti-
mize prompts before and after.

In this table, the first and second groups show the increased performance of
manually constructed prompts and ChatGPT triggered prompts equipped with
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PromptPerfect, respectively. It can be clearly observed that prompts optimized
through PromptPerfect facilitate ChatGPT in providing more accurate feed-
back responses and achieving higher metrics. Although there was only a slight
improvement in the Natural-Hazards-Type dataset, it can be mainly attributed
to the fact that the dataset already had high prediction performance, approach-
ing saturation. For instance, after being optimized with PromptPerfect, our
methods, based on the two prompting designs, showed an averaged improve-
ments of over 1% on the PestObserver-France dataset. Furthermore, our method
utilizing manually constructed prompts that enhanced by PromptPerfect exhib-
ited an increase of 2.6% in accuracy and a increase of 2.3% in weighted-F1 on
the Agri-News-Chinese dataset.

Table 5. The performance statistics of our method enhanced by the PromptPerfect
tool. The first group and the second group respectively represent the two designed
prompts, manually defined prompts and ChatGPT triggered prompts.

PestObserver

-France

Natural-Hazards

-Type

Agri-News

-Chinese
Prompting

Strategies Acc
Weighted

-F1
Acc

Weighted

-F1
Acc

Weighted

-F1

Manually Defined -

Prompts (Vanilla)
0.794 0.789 0.978 0.978 0.863 0.856

Manually Defined

- Prompts

+ PromptPerfect

0.808

↑1.4%

0.802

↑1.3%

0.982

↑0.4%

0.982

↑0.4%

0.889

↑2.6%

0.879

↑2.3%

ChatGPT Triggered

- Prompts
0.815 0.812 0.978 0.978 0.874 0.867

ChatGPT Triggered

- Prompts

+ PromptPerfect

0.832

↑1.7%

0.827

↑1.5%

0.980

↑0.2%

0.980

↑0.2%

0.886

↑1.2%

0.876

↑0.9%

The experiments conducted have provided compelling evidence of the signifi-
cant and profound influence of different designed prompts on the performance of
agricultural document classification. This finding can be extrapolated to various
other language understanding tasks as well. We believe that meticulously crafted
prompts possess the capability to guide AI models in generating outputs of higher
quality and greater value, thereby facilitating more intelligent information pro-
cessing. Recently, Baidu’s founder, Robin Li, stated that in ten years, prompt
engineering would encompass half of the world’s jobs, highlighting the immense
employment opportunities in this field11. As we venture into the future of artifi-
cial intelligence, the proficiency in prompt design will determine the boundaries

11 Baidu Ernie Bot: https://wenxin.baidu.com/wenxin/nlp.

https://wenxin.baidu.com/wenxin/nlp
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of advancement for large-scale language models. Good prompts have the poten-
tial to effectively unlock greater potential in large-scale language models like the
ChatGPT series, thus enabling their wider application and impact in real-world
scenarios.

5 Prominent Cross-Linguistic Supports

To evaluate the level of support that ChatGPT and traditional PLMs provide
for different languages, especially low-resource languages, we selected three typ-
ical French document fragments from the PestObserver-France dataset. We tok-
enized these fragments using the tokenizer provided by the official transformers
library12. The intermediate tokenization results are shown in Table 5.

Fig. 5. Three tokenized cases generated by the tokenizers of BERT and T5 on the
PestObserver-France dataset. Each group of the same color represents a independent
word segmentation result.

From the table, it is evident that BERT and T5 have insufficient vocabu-
lary coverage and support for small languages like French. Specifically, due to
the limited vocabulary size during the pre-training phase, most of the French
words in these examples are incorrectly segmented. For instance, in the first
example, the French word gonflement is incorrectly segmented into four sub-
word units with semantic ambiguities: ’go’, ’##n’, ’##fle’, and ’##ment’. In
the second example, intervention is segmented into four unrelated individual
words: ’int’, ’##er’, ’##ven’, and ’##tion’. Similarly, in the final example,
variétés is segmented into ’var’, ’##iet’, and ’##es’. Such inappropriate

12 https://huggingface.co/docs/transformers/v4.29.1/en/index.

https://huggingface.co/docs/transformers/v4.29.1/en/index
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segmentations greatly affect the performance of subsequent language models in
semantic understanding during fine-tuning. The primary reason is that the cur-
rent mainstream pre-trained language models are still limited by the training
data, which prioritizes scale and thus restricts their effective and comprehensive
coverage of various small languages.

In contrast, one significant advantage of ChatGPT lies in its enormous
parameter size. ChatGPT is based on a corpus of 800 billion words (or 45 ter-
abytes of textual data) and contains 175 billion parameters. The 800 billion refers
to the training data used for ChatGPT, while the 175 billion model parameters
can be considered as the knowledge and representation distilled from this training
data. Previously, the largest models only had parameters in the billions, not in
the hundreds of billions. Therefore, this larger parameter size enables ChatGPT
to capture more complex language patterns and relationships, thereby improving
the accuracy of complex natural language processing tasks.

6 Conclusion

Agricultural document classification is a crucial step in managing the vast and
ever-increasing amount of agricultural information for sustainable agricultural
application. However, mainstream PLM-based classification approaches face sev-
eral challenges, such as dependency on well-annotated corpora, cross-linguistic
transferability. The emergence of ChatGPT, a leading OpenAI conversational
technology, has brought a turning point to this dilemma. In this study, we pro-
pose a novel ChatGPT-based agricultural document classification framework, to
explore the feasibility and potential of using ChatGPT for agricultural document
classification. We conducted extensive experiments on datasets that included
various languages, comparing our ChatGPT-based classification approach with
existing baselines from different learning paradigms. We also developed several
effective prompting strategies to further stimulate the generative capability of
ChatGPT. The experimental results demonstrate the superiority of ChatGPT
in agricultural document classification. Our empirical exploration has opened
up new milestones for the development of techniques of ChatGPT-based agri-
cultural information management, without exaggeration. We look forward to
proposing more ChatGPT-based applications in sustainable agricultural devel-
opment, which will help promote future agricultural digital transformation and
sustainable agricultural development simultaneously.
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Abstract. The performance of the model suffers dramatically when
the scale of supervision data is constrained because the most sophisti-
cated neural machine translation models are all data-driven techniques.
Adding monolingual data to the model training process and using the
back-translation method to create pseudo-parallel sentences for data aug-
mentation is the current accepted approach to address data shortage.
However, this method’s training procedures are laborious, it takes a
lot of time, and some of the created pseudo-parallel sentences are of
poor quality and detrimental to the model. In this paper, we propose a
semi-supervised training method—Multi-Task Feature Self-Distillation
(MFSD), which can train models online on a mixed dataset consisting of
bilingual and monolingual data jointly. Based on the supervised machine
translation task, we propose a self-distillation task for the encoder and
decoder of the source and target languages to train two kinds of mono-
lingual data online. In the self-distillation task, we build a teacher model
by integrating the student models of the previous rounds, and then use
the feature soft labels output by the teacher model with more stable
performance to guide the student model training online, and realize the
online mining single High-level knowledge of language data by comparing
the consistency of the output features of the two models. We conduct
experiments on the standard data set and the multi-domain transla-
tion data set respectively. The results show that MFSD performed bet-
ter than mainstream semi-supervised and data augmentation methods
approaches. Compared with supervised training, our method improves
the BLEU score by an average of +2.27, and effectively improves the
model’s domain adaptability and generalization ability.

Keywords: Back-translation · Multi-Task · Machine Translation

1 Introduction

In the research field of Natural Language Processing (NLP), Machine Transla-
tion (MT) is a topic with high research value and an important task that is
relatively difficult to achieve. Machine translation technology needs to compre-
hend the source language sentences and establish a corresponding relationship
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from the source language to the target language, to construct target-side sen-
tences that follow the source and are relatively fluent. Therefore, the quality of
machine translation depends on the machine’s understanding of natural language
and the quality of its generation. If some achievements can be made in machine
translation research, it will also be of great help to the promotion of research
on other tasks of natural language processing. Both the traditional Statisti-
cal Machine Translation [2,23,39] and the current particularly popular Neural
Machine Translation (NMT) [5,18,19,37] are data-driven machine translation
methods. Apparently, massively parallel corpora is one of the driving factors
behind the leap in translation quality. However, in many cases, domain-specific
parallel corpora are very scarce, in which case only using domain-specific super-
vised or unsupervised data is not an optimal solution. In addition, for most
languages, large-scale parallel corpus data is still difficult to obtain, and it is
even more difficult to improve the performance of NMT in languages with rel-
atively scarce resources. As a result, how to enhance model performance when
dealing with a limited parallel corpus is one of the main research areas in the
field of MT [1,20,29,36].

Semi-supervised learning approaches [42] based on monolingual data and
small-scale bilingual data have grown to be a very popular strategy for obtain-
ing a powerful model in the situation of limited supervised data. Among them,
the team at the University of Edinburgh proposed for the first time to use
back-translation (BT) technology for NMT [33], using the monolingual data
on the target side to effectively improve translation performance. Specifically,
BT first generates translation sentences from the target language to the source
language through the trained MT model, and mixes the constructed pseudo-
parallel sentences with natural parallel sentences to train the translation model,
so as to realize the use of monolingual data in training. On the basis of BT,
[11] further proposes iterative BT, that is, the process of BT is repeated con-
tinuously until a better translation effect is obtained. [13,14] construct higher-
quality pseudo-bilingual data through multiple translations to screen target sen-
tences to improve translation quality. [44] proposes a bilingual data extraction
method called “Extract-Edit” to replace the widely used BT method to produce
high-quality bilingual data. [40] proposes a constrained stochastic BT decoding
method based on an automatic post-editing data augmentation architecture. [16]
enhances sampling technique by choosing the most informative single-sentence
phrases to supplement bilingual data to improve translation quality.

These methods have achieved the desired results, which greatly aid in improv-
ing model quality, particularly in low-resource translation scenarios, and have
greatly promoted the progress of semi-supervised MT. Their internal logic is to
indirectly enhance the model by constructing pseudo-parallel sentences. How-
ever, this approach faces three general problems. First of all, the produced
pseudo-parallel corpus data has poor quality, which is not always beneficial to
the model and will affect the translation performance to a certain extent. Sec-
ondly, the BT method’s phases are laborious and expensive in terms of training
time because they repeatedly need offline reconstruction of the pseudo-parallel
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corpus. Finally, BT generally only uses one of the source-end sentences and the
target-end sentences, and the data usage rate is not high.

Recalling the rationale for the semi-supervised learning approach, the model
will be better able to acquire the underlying logic of the language by being
trained on a monolingual population. Is it possible to train the model online
to extract the characteristics of monolingual data? Along this line, inspired
by recent progress in contrastive learning [25,35,43,47], we propose a semi-
supervised machine translation method based on Multi-Task Feature Self-
Distillation (MFSD). Our semi-supervised task consists of a supervised machine
translation task for bilingual data and two self-distillation tasks for monolingual
data, which enables online training with mixed data consisting of bilingual data
and two kinds of monolingual data through multi-task learning, The step of
constructing a pseudo-parallel corpus is omitted, which effectively alleviates the
problems existing in the above methods. Specifically, for source and target lan-
guages, we combine contrastive learning and knowledge distillation to propose a
self-supervised learning method for encoder and decoder feature self-distillation,
which extends knowledge distillation to the case without labels by comparing
the consistency of model output features. During training, we build the teacher
model dynamically using the momentum encoder concept [9] and use its output
features as soft labels [45] to guide the training of the student model online. In
order to directly mine the underlying high-level knowledge of the monolingual
data itself online, we minimize the difference between the output characteris-
tics of the two models. Our approach is flexible enough to work with any other
modified strongly supervised task, without modifying the model architecture or
adjusting internal norms. In addition, our method and BT method are comple-
mentary and can be used instead of or combined with BT in scenarios such as
domain adaptation and fine-tuning.

We undertake experiments on typical datasets to test the efficacy of our
strategy, and the findings demonstrate that it can efficiently harvest valuable
knowledge from monolingual data, enhance model performance, and have addi-
tive effects with other approaches. Compared to the base Transformer model,
MFSD improves the scores on the IWSLT’14 German-English and IWSLT’15
English-Vietnamese by +2.5 BLEU and +2.04 BLEU, respectively. When com-
bined with other methods, model performance is further improved. We also per-
formed tests on tiny sample data sets to better highlight the function of MFSD in
low-resource circumstances. The experimental findings revealed that the model
trained on monolingual data consistently improved. Additionally, we test our
method’s efficacy in the domain adaption scenario. In the domain adaptation
scenario, the distinction between the source domain and the target domain is the
variation in terminology and vocabulary weight even though both domains are
the same language and have the same grammatical structure. In our approach, we
train the source-language-to-target-language mapping with bilingual data from
the source domain, which is the same across domains, and train the encoder
and decoder with two monolingual data from the target domain to learn Lin-
guistic features within domain data. We run trials on multi-domain translation
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datasets, and the findings demonstrate that our method performs well in dif-
ferent domains and performs better than BT methods in domain adaptation
scenarios.

2 Method

This section presents the concrete implementation of our method. Our app-
roach’s main goal is to realize online training of bilingual data and monolingual
data through multi-task learning. We divide the semi-supervised task into a
supervised machine translation task for bilingual data and two self-distillation
tasks for monolingual data, where the two self-distillation tasks for monolin-
gual data are encoder self-distillation task for the source language and decoder
self-distillation task for the target language. The model structure is shown in the
Fig. 1. The overall framework of our suggested architecture for training on mono-
lingual data is the same as that of self-supervised techniques [31]. However, we
introduce our method from this viewpoint since it shares certain parallels with
knowledge distillation [4,7,10] in terms of its operating concept. We introduce
the teacher model structure in Sect. 2.1 and the working specification of our
method in Sect. 2.2.

Fig. 1. Multi-Task Feature Self-Distillation for Semi-Supervised Machine Translation.
From top to bottom in the figure are supervised machine translation task, encoder
self-distillation task, and decoder self-distillation task. The training data set is a mixed
data set consisting of labeled data and unlabeled data.
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2.1 Teacher Model Structure

Our framework requires training a student model and a teacher model. Differ-
ent from traditional knowledge distillation using pre-trained teacher models, we
follow the idea of momentum encoder to dynamically build teacher models dur-
ing the training phase. The architectural design of the teacher model and the
student model are identical. Using Exponential Moving Average (EMA) on the
parameters of the student model, we determined the parameter update rule for
the instructor model as follows:

θt ← λθt + (1 − λ)θs (1)

where θs is the parameter of the student model, which is updated through back-
propagation. θt is the parameter of the teacher model. During training, λ adheres
to a cosine schedule from 0.996 to 1 to increase the stability of the mean model
update [8]. Momentum encoders were originally proposed to improve the prob-
lems of insufficient negative samples and lack of consistency between samples
in contrastive learning [9]. In our method, the momentum encoder’s function
for self-training is more akin to that of the mean teacher [38]. During train-
ing, the teacher model performs a form of model ensemble similar to Polyak-
Ruppert averaging with exponential decay [27,32], which is a standard practice
for improving model performance [15]. The teacher model constructed in this
way is more stable and excellent and can provide high-quality feature knowledge
to distill the student model.

2.2 Working Specification

We primarily introduce the working specification of our method during the train-
ing phase in this subsection. We used a mixed dataset to train our model, which
included bilingual data as well as two other types of monolingual data. We carry
out the related task after first determining the type of the input that has been
provided.

Encoder Self-distillation Task. If the input x is the source monolingual data,
the model performs the encoder self-distillation task. We input x to the teacher
encoder and student encoder with different perturbations [22] and denote the fea-
ture outputs of the two model encoders as ft(x) and fs(x). The internal mecha-
nism of encoder training is similar to the masked language model, the distinction
is that we employ the self-distillation loss function rather than cross-entropy loss.
Probability distributions pt(x) and ps(x) are obtained by normalizing ft(x) and
fs(x) using a softmax function, more precisely defined as:
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pt,i(x) =
exp (ft,i(x)/τt)

K∑

k=1

exp (ft,k(x)/τt)
(2)

ps,i(x) =
exp (fs,i(x)/τs)

K∑

k=1

exp (fs,k(x)/τs)
(3)

where K is the dimension of pt(x) and ps(x). τ is the temperature coefficient of
the softening probability distribution.

We use the output of the teacher encoder as the target feature to guide the
training of the student encoder. Referring to the work of [3,38,43], we investigate
the performance of the model when using KL Divergence, JS divergence, MAE
loss, and MSE loss as the self-distillation task training objective function in
Sect. 5.1. The formula is specifically expressed as follows:

LKL=
∑

i

DKL (pt,i(x)‖ps,i(x)) (4)

LMAE =
1
m

m∑

i

‖pt,i(x) − ps,i(x)‖2 (5)

LMSE =
1
m

m∑

i

‖pt,i(x) − ps,i(x)‖22 (6)

where m is the number of samples in each batch. Research shows that updat-
ing the parameters of the student encoder works best in our architecture by
minimizing the MSE loss between the two outputs:

Len =
1
m

m∑

i

‖pt,i(x) − ps,i(x)‖22 (7)

Decoder Self-distillation Task. If the input x is target-side monolingual data,
the model performs the decoder self-distillation task. Similar to the encoder self-
distillation task, we give the input x to the teacher decoder and student decoder
respectively, denoting the feature outputs of the two model decoders as gt(x)
and gs(x). The internal mechanism of decoder training is similar to the causal
language model, we use the self-distillation objective function. The predicted
probability distributions pt (yi | x,y<i) and ps (yi | x,y<i) are obtained by nor-
malizing gt(x) and gs(x) using the softmax function. Likewise, we define the
training objective for the decoder self-distillation task by minimizing the MSE
loss between two outputs:

Lde =
1
m

m∑

i

‖pt,i (yi | x,y<i) − ps,i (yi | x,y<i)‖22 (8)
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Table 1. Statistics for different datasets.

Dataset Standard Low-Resource Domains
De-En En-Vi De-En (Low) En-Vi (Low) Medical Koran Law

Train 160k 133k 40k 40k 17k 248k 467k
Vaild 7283 1553 2000 1553 2000 2000 2000
Test 6750 1268 2000 1268 2000 2000 2000

Supervised Machine Translation Task. If the input x is labeled bilingual
data, the model performs supervised machine translation tasks. The task of
machine translation supervision for bilingual data is not the focus of this paper,
and will not be introduced here. We follow a standard end-to-end machine trans-
lation approach [41].

3 Experiments

3.1 Datasets

To test the effectiveness of our approach generally and it is capacity to mine
monolingual knowledge mining, we conduct experiments on two small-sample
standard datasets. We conduct experiments on IWSLT’14 German-English (De-
En) and IWSLT’15 English-Vietnamese (En-Vi). We follow the steps of [46] to
deal with De-En1 and En-Vi2. We sampled standard data sets to simulate small
sample data sets in low-resource scenarios. 40k training samples were extracted
for each pair of languages. The monolingual data in the experiment all come
from News Crawl3 and the scale is twice that of the bilingual data. Additionally,
we do experiments on the multi-domain translation dataset to confirm that our
technique works just as well in the domain adaption situation. Our experiments
consider domains including Medical, Koran, and Law. We use the pre-processed
dataset4 provided by [48]. The construction of the unaligned corpus is processed
according to [12] and the scale is twice that of the bilingual data. The dataset’s
sentence statistics are displayed in Table 1. We applied Byte Pair Encoding to
extract shared subword units [34].

3.2 Baselines

MFSD is also a data augmentation approach in another sense, so our main
baseline is powerful and widely used data augmentation and semi-supervised
techniques:
1 https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-

iwslt14.sh.
2 https://nlp.stanford.edu/projects/nmt/.
3 http://data.statmt.org/news-crawl/.
4 https://github.com/zhengxxn/adaptive-knn-mt.

https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://nlp.stanford.edu/projects/nmt/
http://data.statmt.org/news-crawl/
https://github.com/zhengxxn/adaptive-knn-mt


Multi-Task Feature Self-Distillation for Semi-Supervised Machine Translation 245

Transformer. We conduct supervised training on the most basic Transformer
model and only use parallel corpus in the training process.

Back [17]. This is the basic BT baseline. BT first generates translation state-
ments from the target language to the source language through the trained
reverse MT model and then mixes the constructed pseudo-parallel statements
with natural parallel statements to train the translation model.

UNCSAMP [16]. This is an improved BT algorithm. In the stage of extracting
monolingual data, the most informative monolingual lines are selected to sup-
plement the bilingual lines instead of random sampling subsets to construct the
composite data.

CMLM [6]. This is a data enhancement approach based on the conditional
masking language model and soft word substitution. Using deep, bidirectional
CMLM can enhance semantic consistency between generated and raw data dur-
ing data enhancement by conditioning the source and target.

3.3 Evaluation

As is customary, we use multi-bleu.perl5 to measure case-sensitive BLEU [26]
for small sample standard datasets. We closely follow [18] to assess the Sacre-
BLEU [28] results for multi-domain translation datasets in order to provide a
fair comparison.

3.4 Implementation Details

We adopted the open-source fairseq toolkit [24] to implement our algorithms.
We use transformer_iwslt_de_en configuration. In the transformer model, the
encoder and decoder each have 6 layers, 4 heads, and 512 dimensions. During
training, the data of each batch is composed of three kinds of data mixed in
proportion. We train for 500 epochs and then perform 30 epochs of supervised
machine translation training at the breakpoint with the highest score to achieve
the purpose of the fitting. When performing the decoder self-distillation task, we
remove the Encoder-Decoder Attention layer, and the model training is similar
to causal prediction. With a beam size of 5, we employ the beam search. The
final model was chosen based on having the best perplexity on the validation set
for all tests, which were carried out on a machine with 4 NVIDIA V100 GPUs.

5 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/genric/multi-
bleu.perl.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/genric/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/genric/multi-bleu.perl
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Table 2. Experimental results of Standard Datasets, Low Resources Datasets, and
Domains Datasets.

Models Standard Low-Resource Domains
De-En En-Vi De-En (Low) En-Vi (Low) Medical Koran Law

Transformer(base) 34.01 30.65 22.43 20.83 27.46 13.74 60.71
Back 35.50 31.87 24.51 23.74 31.65 17.19 60.82
UNCSAMP 36.31 32.55 25.89 25.01 34.35 19.75 61.54
CMLM 35.93 32.01 25.23 24.12 33.16 20.61 61.11
MFSD 36.51 32.69 26.76 25.75 38.74 21.47 61.50
+Back 36.76 32.73 27.65 27.03 39.45 23.43 61.59
+UNCSAMP 37.02 33.26 28.68 28.09 40.26 24.27 61.82
+CMLM 36.94 32.88 28.15 27.46 40.12 24.86 61.61

4 Experimental Results

We first validate the MFSD framework used in this study on standard and
small sample datasets, and compare the model’s performance against main-
stream semi-supervised and data-enhanced techniques. We then conduct exper-
iments on the multi-domain translation dataset and investigate the effectiveness
of MFSD in domain adaptation scenarios. We’ll think about using MFSD to run
tests in the fine-tuning scenario to more thoroughly confirm how well the model
performs when our method is used in conjunction with pre-training methods in
the future.

4.1 Results of Standard Datasets

Table 2 displays the findings from our experiments using common datasets. We
contrasted our approach with baseline algorithms and supervised training to
demonstrate its efficacy. Our method introduces a self-supervised model as a
feature extractor for online training on mixed data and achieves excellent perfor-
mance on two datasets. Specifically, on the basic Transformer model, MFSD has
achieved very good performance, improving +2.5 BLEU score and +2.04 BLEU
score on De-En and En-Vi respectively, indicating that our method can effec-
tively learn the internal features of monolingual data to enhance the model per-
formance. MFSD demonstrated better performance than BT and data enhance-
ment technology. We also showed how our strategy works in conjunction with
other strategies. The results indicate that the self-distillation method is com-
plementary to the already well-liked semi-supervised methods and can be used
in conjunction with them to further improve model performance. The model
performs better when MFSD is paired with other baseline methods.
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4.2 Results of Low Resource Datasets

Table 2 shows our experimental results on a small sample data set. When using
only Transformer models without other related technologies, too little train-
ing data will result in difficult model training to fit and poor predictive effect.
When the data is enhanced by other techniques such as BT, the model per-
formance is improved to some extent. However, due to the poor quality of
pseudo-parallel statements produced by BT, the performance improvement is
not obvious. MFSD directly trains monolingual data by mining high-level knowl-
edge in the language and makes more effective use of monolingual data for data
enhancement. The results demonstrate that using MFSD significantly improves
the model’s performance, effectively improving the issue that it is challenging to
train the model when resources are limited.

4.3 Results of Domains Datasets

We further tested the effectiveness of MFSD on the multi-domain translation
dataset in addition to the standard dataset, and the experimental results are
displayed in Table 2. MFSD again outperforms all baselines in all domains. Our
proposed method achieves +6.6 BLEU score on average compared to the base
Transformer in three domains. This further demonstrates that our strategy suc-
cessfully enhances the performance of the model and has a great ability to exploit
monolingual data features.

4.4 Domain Adaptation

To confirm the generalizability of our strategy, we also run experiments in the
semi-supervised domain adaption scenario. The Table 3 displays the findings
from the experiment. We further develop our approach to apply to instances
when there are only bilingual data in the source domain and monolingual data
in the destination domain in the semi-supervised domain adaptation scenario.
We define multi-task as a supervised machine translation task on source domain
bilingual data and two self-distillation tasks on target domain monolingual data.
We train the encoder and decoder on the two monolingual datasets in the target
domain to acquire the high-level knowledge included in the domain data, and
we train the model on bilingual data in the source domain to learn the mapping
connection between the source language and the target language. The outcomes
demonstrate that our approach dramatically enhances the model in the semi-
supervised domain adaption scenario, and our MFSD performs noticeably better
than the basic Transformer and the model utilizing BT technology. This further
demonstrates the generalizability of our method, confirming our conclusions in
Sect. 1.
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5 Analysis

We outline our analytical MFSD experimentation in this section. We look into
how various components affect a model’s performance. The whole study is con-
ducted on the De-En dataset.

Table 3. Experimental results of Domain Adaptation. “Law-Medical” means that we
train the model on the Law domain and directly apply it to the Medical domain, and
vice versa.

Models Law-Medical Medical-Law

Transformer (base) 18.76 3.05
Back 24.64 17.57
MFSD 29.46 24.48

5.1 Effect of Language Modeling Task Training Objectives

We show the effect of using other self-supervised learning training objectives on
the training of our framework. Referring to the work of [3,38,43], we further
tested the performance of the model when using KL divergence, JS divergence,
MAE loss, and MSE loss as training objectives for self-distillation tasks. The
Table 4 displays the experimental outcomes. When other variables stay the same,
it is clear that the MSE loss with the best performance is better suited for our
framework.

Table 4. BLEU scores of model when using different losses as training objectives for
self-distillation tasks.

Training Objectives KL divergence JS divergence MAE loss MSE loss

BLEU 36.47 36.42 36.36 36.51

5.2 Effect on Different Part

In the Table 5, we show the model’s performance when only one of the encoder
self-distillation task and the decoder self-distillation task is added to the super-
vised machine translation task. In the experiment, the monolingual data is twice
that of the bilingual data. It can be seen that when only one self-distillation
task is added, the model’s performance has greatly increased, which shows that
both self-distillation tasks have effectively enhanced the model’s ability to mine
monolingual data knowledge. The results also show that these two tasks are com-
plementary. They work best when combined and help the model more accurately
represent both the source and target languages.
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Table 5. BLEU scores of model when adding different modeling tasks.

Tasks Part
None Encoder Decoder All

BLEU 34.01 35.89 35.63 36.51

5.3 Monolingual Data Size

We investigate how our models perform in relation to the volume of monolin-
gual data. The Fig. 2 displays the experimental findings. As can be observed,
self-distillation utilizing 160k monolingual data with the same size as bilingual
data can greatly enhance NMT performance, and adding more monolingual data
of a larger size will not result in further model improvements. When using 480k
monolingual data which is three times the size of bilingual data, the final perfor-
mance of the model only reaches 36.42 BLEU score. This indicates that merely
increasing the amount of monolingual data is not a viable way to enhance self-
training and that more advanced techniques are required to utilize monolingual
data.

Fig. 2. BLEU scores of model with the increased size of monolingual data.

5.4 Hallucinations

The model’s attention mechanism might not accurately reflect the model’s actual
attention. [21] proposed the concept of hallucinations to further understand the
NMT model. If modest input changes cause rapid changes in the output, the
model is hallucinating and is not really paying attention to the input. In order
to verify that the model is more robust, we followed the algorithm of [30] and
used 50 and 100 most common subwords as perturbations respectively, and tested
the model’s performance under input perturbations.

Table 6 shows the number of hallucinations of the model on the IWSLT De-
En test set in the baseline and MFSD. The baseline is a supervised MT model.
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In MFSD training, tests were performed using both the student and teacher
models. The number of hallucinations dropped on average by 30% in the student
model and 40% in the instructor model as compared to the supervised MT. This
indicates that the model in our approach is more robust to interference and more
focused on input content. The results show that there are fewer hallucinations
in the teacher model than in the student model, proving that it is a more stable
model overall. This further confirms the implementability of the internal logic
of our method.

Table 6. Number of distinct sentences which cause hallucinations in the baseline and
MFSD models.

Models
Hallucinations

50 subwords 100 subwords
Transformer 24 47

Student Model 16 33
Teacher Model 13 29

5.5 Computation Overhead

In our method, monolingual data is added to the training process for data
enhancement, which increases the complexity of training to a certain extent.
We compare the model calculation overhead on the IWSLT De-En standard
data set. We performed the experiment on 4 NVIDIA V100 GPUs. According to
our experiment, it takes a total of 20 h to train the model using only supervised
training. BT model increases the training time by about 85%, from 20 h to 38 h.
Our approach increases the training time compared to supervised training by
about 50%, from 20 h to 30 h. Our approach is computatively expensive com-
pared to supervised training because MFSD uses two models and requires two
model generations. However, MFSD is much less complex and faster than BT
training because our approach does not require textual reasoning every round,
which is serial and time-consuming. Our method alleviates the problem of high
training complexity in BT.

6 Conclusion

In this paper, we introduce a semi-supervised machine translation method based
on Multi-Task Feature Self-Distillation, which divides the semi-supervised task
into one supervised machine translation task for bilingual data and two self-
distillation tasks for monolingual data. For monolingual data, we propose a self-
distillation training form to enable the teacher model to guide the student model
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to train and complete the online mining of language features. Our method effec-
tively solves many problems existing in the classical method of BT. We conducted
a large number of experiments to demonstrate the effectiveness of our strategy
and to further demonstrate the generalizability of our model on semi-supervised
domain adaptation tasks. However, because our method uses two models, it will
increase the computational overhead compared with supervised training. In the
future, we will consider further improving our method in other scenarios such as
pre-training and fine-tuning, and apply MFSD to other tasks.
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Abstract. Detecting abnormal users in social networks is crucial for protecting
user privacy and preventing criminal activities. However, existing graph learning
methods have limitations. Unsupervised methods focus on topological anomalies
and may overlook user characteristics, while supervised methods require costly
data annotations. To address these challenges, we propose a weakly supervised
framework called Anomaly Detection Graph Convolutional Network (ADGCN).
Our model includes three modules: information-preserving compression of user
features, collaborative mining of global and local graph information, and multi-
view weakly supervised classification. We demonstrate that ADGCN generates
high-quality user representations using minimal labeled data and achieves state-
of-the-art performance on two real-world social network datasets. Ablation exper-
iments and performance analyses show the feasibility and effectiveness of our
approach in practical scenarios.

Keywords: Anomaly Detection · Social Networks · Weak Supervision · Graph
Neural Network · Graph Autoencoder

1 Introduction

Social networks have gained immense importance in the era of information explosion
due to their vast user privacy information and commercial value. Unfortunately, they
are often the primary targets of criminal activities, with abnormal users being a com-
mon means of attack [17, 23]. Identifying abnormal users accurately and effectively is
crucial for safeguarding user privacy and preventing criminal activities, as highlighted
by recent statistics [23]. Recent research has attempted to integrate advances in graph
learning to detect anomalies in social networks. For instance, one study utilized graph
unsupervised learning for anomaly datamining, which helped reduce the processing cost
of data labeling [13]. Additionally, graph-based supervised learning has been employed
by designing an appropriate spatial message passing mechanism to capture abnormal
information [7].
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However, the abovemethods have several drawbacks.With unsupervisedgraph learn-
ing, existing works on anomaly detection primarily focus on using auto-encoders to
reconstruct the adjacency matrix of the graph, which lacks effective discrimination of
user anomaly attributes [8]. Conversely, supervised methods employ classification loss
functions coupled with well-designed message passing mechanisms to learn abnormal
features or attributes. However, a significant drawback of supervised tasks is the high
cost of data label collection and annotation, making it challenging to deploy and update
in actual scenarios [9].

To address the challenges of capturing anomalous features and high costs associated
with data labeling, we propose a weakly supervised anomaly detection framework called
Anomaly Detection Graph Convolutional Network (ADGCN). Our model comprises
three parts: information-preserving compression of user features, collaborative mining
of global and local graph information, and a multi-view weakly supervised classifier.
The most significant technological innovation is that our ADGCN model exploratively
combines generative and contrastive self-supervised mechanisms to enhance model rep-
resentation in weakly supervised scenarios and we conducted extensive experiments on
two real-world social network datasets to demonstrate that our model can produce high-
quality and easily classifiable representations for user nodes while using only about
1% of the labeled data and achieve state-of-the-art performance in this task. We also
performed ablation experiments and sensitivity analysis of the model hyperparameters,
demonstrating the essentiality of the three modules and the feasibility and superiority
of our weakly supervised learning framework in detecting anomalies in real social net-
works. In the Methodology section, we will show the entire streaming workflows of
our model in detail as well. And in the Experiment and Discussion sections, specific
details of experimental settings and results will be shown. The main contributions are
summarized as follows:

• We identify the limitations of previous graph-based anomaly detection methods and
propose a novel GCN-based encoder that jointly mines user content features and
network topology information to overcome these issues.

• We introduce a weakly supervised framework combining generative and contrastive
self-supervised mechanisms (ADGCN) for anomaly detection in social networks that
generates high-quality user embeddings using only a small amount of labeled data
(1%).

• We conduct extensive experiments on two real-world benchmark datasets, demon-
strating the effectiveness and superiority of our approach over state-of-the-art
methods.1

2 Related Work

2.1 Anomaly Detection in Social Network

Traditional social network anomaly detection algorithms primarily use content fea-
tures of users’ statements under different posts and the complex network relationships
between different users and posts. These content features are often processed into high-
dimensional vectors through the Linguistic Inquiry and Word Count (LIWC) method

1 The source code is available at https://github.com/zxlearningdeep/ADGCN-project.

https://github.com/zxlearningdeep/ADGCN-project
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[16]. For network information processing, matrix factorization is employed to reduce
the dimension of the adjacency matrix [18].

2.2 Graph Unsupervised Learning

Graph Auto-Encoder (GAE) and Variational Graph Auto-Encoder (VGAE) are two
popular graph embeddingmethods that leverage the topological information of graphs to
reconstruct the adjacencymatrix but have limitations in learning node features. Recently,
contrastive learning has been extended to the graph learning framework (GCL), which
constructs different views of data using data augmentation techniques and maximizes
the mutual information of the same node representation from two views while reducing
the similarity between different node representations. Some researchers have proposed
adaptive data augmentation methods based on topological centrality to improve the
heuristic data augmentation approach (GCA) [11, 22, 24].

2.3 Message Passing Neural Networks

TheMessage PassingNeuralNetwork consists of two parts:message passing and readout
[4], with the former being the core of graph neural network and explored extensively in
previous works [2, 20]. The Graph Convolutional Networks (GCN) introduce the convo-
lution from computer vision into graph neural networks, performing feature aggregation
between neighboring nodes [10, 21]. Graph Attention Networks (GAT) enhance repre-
sentation by introducing an attention mechanism to assign different weights to different
nodes in a neighborhood [19]. GraphSAGE proposes an inductive learning framework
for graph convolution by sampling from multi-hop neighbors and trying various aggre-
gation methods [5]. Recent works have combined spectral and spatial convolutions to
balance global and local feature modeling [1].

2.4 Weakly Supervised Learning

Some weakly supervised methods mainly focus on semi-supervised learning using the
pseudo-labels generatedby themodel,while thismethod requires theoriginal distribution
of the dataset to present significant clustering distribution and requires high learning time
cost [12, 14]. Another academic path is to use data augmentation to expand the training
data [6].

3 Methodology

In this section, we describe our proposed ADGCN framework in detail, as shown in
Fig. 1.ADGCNfirstly uses theAuto-Encoder to extract the high-quality low-dimensional
representation of the original node features, then mines the global and local information
through the asymmetric centrality graph augmentation and node feature aggregation, and
finally collaboratively learns the high-quality representation of nodeswith themulti-view
weakly supervised classifier.
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Fig. 1. ADGCN contains three modules: information-preserving compression of user features,
GCN-based mining of global-local information, and multi-view weakly supervised classifier.

Problem Definition: Anomaly detection in social networks can be abstracted as a clas-
sification problem. The input is the adjacency matrix and the feature matrix of the net-
work, where each node is a user or a post, each edge represents an information release
by the user on the post, and the feature matrix of the node is obtained by LIWC method
from the content published by the user. The final task is to train a model with very little
annotated data to embed each user node in order to facilitate classification.

3.1 Information-Preserving Feature Compression

The initial features of nodes are usually high-dimensional vectors. In order to obtain a
low-dimensional embedding that can be operated efficiently, we use the Auto-Encoder
for information-preserving feature compression. Auto-Encoder contains encoder and
decoder, both implemented using MLP. Each layer of the multilayer perceptron is
calculated as follows:

X(�+1) = σ(X(�)W(�)
MLP) (1)

where X(�) and W(�)
MLP denote the input matrix and parameter matrix at the layer � of

the MLP respectively. σ(·) is an active function such as “ELU” [3], “Sigmoid” et al. In
order to make the extracted embeddings retain the information of node features, we take
the Mean-Squared Loss as the loss function. The specific process is as follows:

H(0) = MLPE(X), X̂ = MLPD(H(0)) (2)

Le = ||X̂ − X||2F (3)

whereX and X̂ ∈R
n×q denote the Node Original Feature Matrix and the Reconstruction

Feature Matrix respectively. MLPE(·) and MLPD(·) are Encoder and Decoder of the
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Auto-Encoder respectively. H(0) ∈ R
n×d represents the low-dimensional embedding

after dimensionality reduction, which is also the input matrix of the first layer of GCN.

3.2 Collaborative Mining of Global and Local Information

Previous work also pointed out that GCN is equivalent to a low-pass filter, which
can effectively capture the low-pass component of graph signal and mine the local
information [15]. The aggregation process of each layer can be expressed as follows:

H(�+1) = σ(D̃− 1
2 ÃD̃

− 1
2H(�)W(�)

GCN),Zi =
K∑

�=0

H(�)
i (4)

where D̃− 1
2 ÃD̃

− 1
2 is the symmetrically normalized Laplacian matrix of the graph with

self-loop; � = 0, 1, 2,......,K−1 denotes the GCN layer; H(�)/H(�+1) stand for the
embedding matrix in the �-th /(�+1)-th layer of GCN andW(�)

GCN denotes the parameter
matrix at the layer � of GCN. To overcome the over-smoothing problem, we employ
skip-connection to form the final node representation. Zi is the final representation of
node ui and H(�)

i indicates the i-th row of the embedding matrix H(�), which is also the
representation vector of the node ui at �-th layer.

In a social network, user nodes that post messages frequently have a greater influ-
ence on the community by contributing more to the global information. Therefore, we
selected the degree of nodes as a measure of importance and employed asymmetric data
augmentation techniques to ensure themodel to focus on globally important information.
The process is described as follows:

scui = degree(ui) =
N∑

j=1

Ãij, s
e
uv = log(

scu + scv
2

) (5)

puv = min(
semax − seuv
semax − μe

s
· pe, pτ ) (6)

where N is the number of the node; scui and seuv refer to the importance coefficients of
node ui and edge euv, respectively. The probability puv that an edge euv is discarded is
calculated from the above equation, where pe controls the total number of edges that
are removed and pτ is the truncation probability preventing the probability of deleting
edges from being too large to damage the topological information of the graph [24].

Note that the data augmentation using this method will retain the more important
edges, which can extract the significant topological information in the original graph.
InfoNCE loss is used as the loss function with the following formula:

Zq = GCN(f1(Ã), ς1(H(0))),Zk = GCN(f2(Ã), ς2(H(0))) (7)

Lc = − 1

2N

N∑

i=1

[�(Zq
i ,Z

k
i ) + �(Zk

i ,Z
q
i )] (8)



260 Z. Shen et al.

�(Zq
i ,Z

k
i ) = log

exp(s(Zq
i W,Zk

i W)/τ)

exp(s(Zq
i W,Zk

i W)/τ) + ∑
j �=i exp(s(Z

q
i W,Zk

j W)/τ) + ∑
j �=i exp(s(Z

q
j W,Zk

i W)/τ)

(9)

where f1(·) and f2(·) are two topology augmentation functions defined above with dif-
ferent probabilities of edge deletion; ς1(·) and ς2(·) are two feature mask functions with
different probabilities according. As usual, s(·) is the cosine similarity of two vectors,
W is a linear layer playing the role of feature augmentation and τ is the temperature
coefficient in the Contrastive Loss. The combination of GCN and asymmetric centrality
graph data augmentation can collaboratively mine the global and local information in
the spatial domain.

3.3 Multi-view Weakly Supervised Classifier

In practical scenarios, the acquisition of a large number of labels is costly, so we choose
to use data augmentation methods to expand the training data, thereby increasing the
amount of labeled data, and finally generating high-quality node embeddings. Here, we
implement multi-view weakly supervised learning by exploiting the augmented graphs
constructed during the graph contrastive learning phase. We choose a two-layer MLP as
a weakly supervised classifier, and jointly perform supervised training on the original
graph embedding and the augmented graph embedding as follows:

Pi = Softmax(MLPW (Zi)),Lr = − 1

N

N∑

i=1

M∑

c=1

yiclog(Pic) (10)

Lw = −[ 1
N

N∑

i=1

M∑

c=1

yiclog(Pq
ic) + 1

N

N∑

i=1

M∑

c=1

yiclog(Pk
ic)] (11)

where MLPW (·) is the Multi-view Weakly Supervised Classifiers; Pi, P
q
i and Pk

i refer
to the probability distribution vector of the predicted class for node ui on the original
graph and the two augmented graphs, respectively. y denotes the ground truth.

To prevent overfitting, we add L2 Regularization to all parameters of the model. The
unsupervised loss can be jointly optimized with the multi-view weakly supervised loss,
so the total loss function can be expressed as:

L = Lr + λ1 · Lw + λ2 · Le + λ3 · Lc + λ4 · ||�||22 (12)

where λ1, λ2, λ3, λ4 are the hyperparameters used to balance out the loss function.

4 Experiment

To verify the superiority and effectiveness of the proposed ADGCN model, we per-
form abundant experiments on two real-world datasets to answer the following research
questions:
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Fig. 2. Label distribution

Table 1. ADGCN performance

Reddit Wikipedia

AUC 69.69 (0.2) 84.13 (0.4)

Recall 73.24 (0.3) 82.96 (0.3)

Precision 94.62 (0.1) 97.27 (0.2)

F1score 81.60 (0.4) 88.92 (0.5)

• RQ1: How does ADGCN perform on different datasets compared to various
baselines?

• RQ2: How does the local-global integrated contrastive learning method contribute to
the performance of ADGCN?

• RQ3: How does node representation generated byADGCN improve the classification
performance?

4.1 Dataset

We evaluate our model and the baselines on two real-world datasets focused on
anomaly detection task. These datasets are bipartite graphs, divided into two sets: users
and items. Edges only exist between nodes of different set. We choose the following
dataset which contain all scenarios.

Wikipedia Dataset.2 This dataset collects top edited pages and active users as graph
nodes, while edges indicate users’ editing action on Wiki pages. Node labels indicate if
users are banned from editing.

Reddit Dataset.3 This dataset collects active users and their posts under subreddits
on social news and discussion website Reddit. Users and subreddits are regarded as
nodes while the posting action of users under subreddits are regarded as edges. Node
labels indicate whether users are banned from posting.

Taking a deeper look at these two datasets, we observe that the distribution of the
node label is exceedingly imbalanced. Nodes with label 1 account for merely 2%–3% of
the entire dataset, which is perfectly aligned with our anomaly detection task. The label
distribution is provided in Fig. 2.

4.2 Baselines (RQ1)

We compare our model ADGCN with the following four baseline models [5, 11, 19]
using the same experimental settings. And we summarize the results in Table 2, with the
following observations and conclusions:

2 http://snap.stanford.edu/jodie/reddit.csv.
3 http://snap.stanford.edu/jodie/wikipedia.csv.

http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/wikipedia.csv
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In Table 2, all the results are converted to percentage by multiplying by 100, and the
standard deviations are computed over 10 runs (displayed in parenthesis). The best and
second-best results of each dataset are respectively in bold font and underlined.

We then evaluate our model’s performance using different measurement on two
datasets: AUC, recall (weighted), precision (weighted), F1score (weighted). The results
are shown in Table 1.

The proposed model utilizes local-global integrated contrastive learning method to
improving its performance. And it outperforms the second-best model by 8% on Reddit
and 2% on Wikipedia. We observe that supervised models (GAT and GraphSAGE)
generally outperform unsupervised models based on Autoencoder (GAE and VGAE).
And graph contrastive method (GCA) achieves competitive results.

The results in Table 1 and Table 2 demonstrate the state-of-the-art performance on
anomaly detection task due to the local-global collaborative data mining. Interestingly,
our model even outperforms full supervised models on this task. We infer that the sep-
arately trained classifier and the feature augmentation method may result in this better
performance.

Table 2. Performance comparison with baselines

Reddit Wikipedia

GAE 58.40 (0.5) 74.85 (0.6)

VGAE 57.98 (0.6) 73.66 (0.7)

GAT 64.52 (0.5) 82.34 (0.8)

GraphSAGE 61.24 (0.6) 82.40 (0.7)

GCA 65.98(0.2) 81.78 (0.6)

ADGCN 69.69 (0.2) 84.13 (0.4)

4.3 Ablation Experiment (RQ2)

To investigate the effectiveness of our feature augmentation method and information-
preserving feature compression scheme (with Auto-Encoder) without losing the impor-
tant information of the graph, we perform the ablation experiment on Reddit to answer
the question whether we can provide improvement to anomaly detection task with our
local-global approach. To this end, we implement four different versions of our model
with AUC as our measurement index: the complete ADGCN, ADGCN without feature
augmentation, ADGCN without information-preserving feature compression (whose
loss function is MSE), and the raw model only uses supervised method on 1%–1.6%
labels.

As shown in Table 3, with the feature augmentation and undamaged feature com-
pression, the model is able to reach satisfactory results, and it can outperform the raw
model by around 10%. The results indicate that both feature augmentation by contrastive
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learning and information-preserving feature compression can bring improvement to the
raw model.

Table 3. Ablation results

Settings Lr Lw Le AUC (%) Recall (%) Precision (%)

i
√ √ √

69.69(0.2) 73.24(0.3) 94.62(0.1)

ii
√ √

67.52(0.1) 61.05(0.4) 94.23(0.2)

iii
√ √

66.89(0.3) 58.55(0.6) 94.25(0.1)

iv
√

65.98(0.2) 57.25(0.4) 94.38(0.3)

4.4 Evaluation of Node Representation (RQ3)

To verify the high quality of the node representations generated by the ADGCN frame-
work, we freeze the ADGCNmodel parameters and measure the embedding by training
a two-layer MLP. In the category processing, we set the anomaly label as Class 1 and
the normal label as Class 0, so that the anomaly detection problem can be converted
into a binary classification problem. In terms of dataset partition, we divided the training
dataset, validation dataset and test dataset by stratified sampling according to the ratio
of 50%–25%–25%.

Figure 3 is the running result of the classifier on the node representations generated
by ADGCN. It’s worth noting that the classifier converges quickly on the test dataset
after about 35 epochs and achieves an excellent AUC of close to 70%. The rapid conver-
gence and high results of AUC on the test dataset can well reflect the high quality and
separability of the node representations generated by ADGCN, which is reflected in the
high-dimensional space that node representations with abnormal attributes of features
will form spatial clusters, which is due to the collaborative mining of global a global
information by ADGCN.

5 Discussion

5.1 Hyperparameter Analysis

In this section, we investigate the sensitivity of our model in relation to several key
hyperparameters. In order to analyze the mutual influence and interaction among the
three modules in our model on the final results, we focus on weight for augmentation
loss λ1 and weight for feature compression loss (the MSE loss) λ2. We use AUC, Recall
(weighted) and Precision (weighted) on dataset Reddit as the measurement.

In each graph, the ordinate of each node indicates the average value of performance
over 10 runs, while the radius of the colored fog around each node indicates the standard
deviation over 10 runs.
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Fig. 3. AUC on Reddit Fig. 4. Impact of parameter λ1 (left) and λ2 (right)

• ·The impact of λ1. As illustrated in Fig. 4, the performance reaches the peak when
augmentation loss weight λ1 = 0.4, and presents a more concentrated distribution. It
can be noted that λ1 with the range of [0.0, 1.0] can hardly perturbmodel performance
on Precision.

• ·The impact of λ2. As illustrated in Fig. 4, the performance reached the peak when
the weight of MSE loss λ 2 = 0.7. We observe that λ2 with the range of [0.0, 1.0]
cause a more significant impact on Recall.

5.2 Loss Convergence

We further notice that our model present fast convergence during the experiment. As
illustrated in Fig. 5, the MSE loss can converge within 250 epochs both on Wikipedia
and Reddit. Model loss can converge within 200 epochs on Reddit and 300 epochs on
Wikipedia. And the model loss presents a sharp decline at the beginning. We attribute
the result to two reasons. Firstly, we use exponential-decayed learning rate with the
decaying rate of 0.993 to train the classifier. At the very beginning, the learning rate is
relatively high, and exponentially decreases during the run. Secondly,ADGCNgenerates
high quality node representations (stated in the preceding paragraph), so the classifier
can capture node information more efficiently and quickly converge. As the model loss
function include the supervised loss on augmented graph, the randomness of graph
augmentation can lead to tiny fluctuations of the total loss.

Fig. 5. Loss converges rapidly.
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6 Conclusion

In conclusion, the ADGCN framework proposed in this paper addresses the problem
of weakly supervised anomaly user identification in social networks. By exploratively
combining generative and contrastive self-supervised mechanisms to enhance model
representation, our model generates high-quality user representations with very few
labeled data. Experimental results show that ADGCN achieves state-of-the-art perfor-
mance using only 1% of the labeled data and outperforms previous unsupervised and
supervised models. However, as social network data is continually evolving, there is a
need for further research to explore how to leverage temporal information effectively
when incorporating limited labeled data into our model.

References

1. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph convolu-
tional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 3950–3957 (2021)

2. Cai, S., et al.: Rethinking graph neural architecture search from message-passing. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6657–6666 (2021)

3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by
exponential linear units (ELUS). arXiv preprint arXiv:1511.07289 (2015)

4. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing
for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272.
PMLR (2017)

5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems 30 (2017)

6. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: weakly supervised data
augmentation network for fine-grained visual classification. arXiv preprint arXiv:1901.09891
(2019)

7. Jiang, J., et al.: Anomaly detection with graph convolutional networks for insider threat
and fraud detection. In: MILCOM 2019–2019 IEEE Military Communications Conference
(MILCOM), pp. 109–114. IEEE (2019)

8. Khan, W., Haroon, M.: An efficient framework for anomaly detection in attributed social
networks. Int. J. Inf. Technol. 14(6), 3069–3076 (2022)

9. Khan,W., Haroon,M.: An unsupervised deep learning ensemblemodel for anomaly detection
in static attributed social networks. Int. J. Cognit. Comput. Eng. 3, 153–160 (2022)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016)

11. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308
(2016)

12. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for
deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol.
3, p. 896 (2013)

13. Li, Y., Huang, X., Li, J., Du, M., Zou, N.: Specae: spectral autoencoder for anomaly detec-
tion in attributed networks. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 2233–2236 (2019)

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1901.09891
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308


266 Z. Shen et al.

14. Liu, F., Tian, Y., Chen, Y., Liu, Y., Belagiannis, V., Carneiro, G.: ACPL: anti-curriculum
pseudo-labelling for semi-supervised medical image classification. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20697–20706
(2022)

15. Nt, H., Maehara, T.: Revisiting graph neural networks: all we have is low-pass filters. arXiv
preprint arXiv:1905.09550 (2019)

16. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count: LIWC
2001, vol. 71. Lawrence Erlbaum Associates, Mahway (2001)

17. Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q.: Anomaly detection in online social
networks. Soc. Netw. 39, 62–70 (2014)

18. Tosyali, A., Kim, J., Choi, J., Kang, Y., Jeong, M.K.: New node anomaly detection algorithm
based on nonnegative matrix factorization for directed citation networks. Ann. Oper. Res.
288, 457–474 (2020)
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Abstract. Light field (LF) is a emerging technology, which can be used
in many fields. Furthermore, LF cameras can capture spatial and angu-
lar information of 3D real-world scenes. This information is beneficial for
image super-resolution (SR). However, most existing LF approaches have
the limitation of utilizing the global-view information, which contains the
correlation information among all LF. Moreover, to exploit the comple-
mentary information from different views of an LF image, we propose a
novel SR method that adapts each view to a global domain with the guid-
ance of global-view information. Our method, called LF-GAGNet, uses a
dual-branch network to align features across views with deformable con-
volutions and fuse them with an attention mechanism. The upper branch
extracts global-view information and generates adaptive guidance factors
for each view through a global-view adaptation-guided module (GAGM).
The lower branch uses these factors as offsets for deformable convolu-
tions to achieve feature alignment in the global domain. Furthermore,
we design an angular attention fusion module (AAFM) to enhance the
angular features of each view according to their importance. We evaluate
our method on various real-world scenarios and show that it surpasses
other state-of-the-art methods in terms of SR quality and performance.
We also demonstrate that our method can handle complex realistic LF
scenarios effectively.

Keywords: Light field · Super-resolution · Deformable convolution

1 Introduction

Light field (LF) images, captured by commercial LF cameras, enable various
applications such as 3D reconstruction [1] and salience detection [2]. However,
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LF cameras have a fixed sensor resolution, which requires a trade-off between
spatial and angular resolutions. This results in low spatial resolution for each
sub-aperture image (SAI), which limits the LF applications. Therefore, a key
challenge is to recover high-resolution (HR) LF images from low-resolution (LR)
LF images using LF image super-resolution (SR) methods.

LF images capture the parallax structure and angular dimension of 3D scenes,
which creates high correlations among SAIs. Recently, some learning-based meth-
ods [3–8] have been proposed for LF image SR, which leverage both spatial and
angular information to enhance the resolution of SAIs. Jin et al. [4] developed an
all-to-one model named LF-ATO that reconstructs a reference view by combining
its features with those of other views. Subsequently, several works [5,6] designed
multiple extractors based on the LF characteristics to achieve the high-quality
reconstruction of each SAI. However, existing learning-based methods still face
two challenges. First, they have difficulty in adaptively supplementing comple-
mentary information for different views, especially when there are occlusion and
non-Lambertian reflections in the captured LF scenes. Second, they do not fully
exploit the global-view correlations among all SAIs, but only rely on 2D CNNs
to model stacked SAIs or perform local-view feature alignment.

We propose a novel method, LF-GAGNet, to enhance the resolution of sub-
aperture images (SAIs) in light field (LF) image super-resolution (SR), address-
ing the two challenges of existing learning-based methods. Our method has two
dual branches that integrate complementary information among different views
and exploit the global-view information from all LF views. The upper branch
has a global-view adaptation-guided module (GAGM), which dynamically gen-
erates adaptive guidance factors for each SAI, containing global-view correlation
information. These factors are used as offsets for deformable convolutions in
the lower branch, which align the features of each view with the global-domain
feature, supplementing angular information for each view. After a shared con-
volution, the features are further fused by an angular attention fusion module
(AAFM), which preserves the geometric structure of LF by considering the com-
plementary visual informativeness between each view and the reference view. We
conduct comparative experiments on various real-world scenarios and show that
our LF-GAGNet outperforms other state-of-the-art LF image and single image
SR methods in terms of performance and generalization. The main contributions
of this paper are summarized as follows:

1. To achieve state-of-the-art performance, we propose an LF-GAGNet that
dynamically incorporates angular information among all LF views. This
method adaptively considers the distinctive global-view information for each
view.

2. Our method is based on a GAGM, which has an extractor and an adjuster that
generate distinctive offsets for each view. By using deformable convolution,
our method can effectively exploit spatial and angular information among all
LF views for high-quality reconstruction.

3. We introduce an AAFM based on the centre view to further enhance each
view with complementary information. Our network can not only generate
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Fig. 1. Network architecture of the proposed LF-GAGNet. The overall network is com-
posed of four modules (S-AFEM, GAGM, AAFM and FM). Note that, the input of
our network consists of SAIs with dimensions N × C ×H ×W .

high-quality reconstruction results but also preserve LF parallax structure by
using these two modules.

The rest of this paper is structured as follows. We present the architecture and
implementation details of our LF-GAGNet in Sect. 2. We report comparative
experiments and ablation studies using real-world datasets in Sect. 3. Finally,
We conclude this paper in Sect. 4.

2 Architecture and Pipeline

Two planes can represent the 4D LF, which includes spatial and angular informa-
tion. As mentioned by [9], the LR LF images can be formulated as a 4D function
LLR (RU×V ×H×W ) and the results of SR LF images are LSR (RU×V ×αH×αW ),
where U and V represent angular dimensions, H and W represent spatial dimen-
sions, and α presents the up-scaling factor. We convert the RGB colour space
of LF image to the YCbCr colour space and apply our method only on the Y
channel in this paper. We use bicubic interpolation to generate the LR SAIs. We
describe the proposed network in detail in this section.

2.1 Overview

Figure 1 shows an overview framework of our LF-GAGNet. First, a spatial-
angular feature extraction module (S-AFEM) extracts the initial features of
all SAIs. Then our network splits into two branches. The top branch has four
GAGMs to generate distinctive guidance factors. The bottom branch has four
DeforConvs (deformable convolutions), four Sharing (sharing convolutions), four
AAFMs and an FM. DeforConv connects the top branch and the bottom branch.

2.2 Spatial-Angular Feature Extraction Module (S-AFEM)

Figure 2 (a) shows that our LF-GAGNet first performs an S-AFEM on the
LR SAI (LLR ∈ R

U×V ×H×W ) input to extract shallow features with spatial-
angular information (FN

SAI ∈ R
C×H×W , N = U × V ). The S-AFEM consists
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Fig. 2. The architectures of the S-AFEM and GAGM.

of a 3D ResASPP block and a 3D residual block (Resblock). This module can
preserve correlation among different SAIs and extract rich spatial information.
Our S-AFEM extracts deep and hierarchical features (FN

SAI ∈ R
C×H×W , N =

1, 2, · · · , u × v) of each SAIs. Section 3.4 demonstrates the effectiveness of our
S-AFEM.

2.3 Global-View Adaptation-Guided Module (GAGM)

The structure of GAGM is depicted in Fig. 2 (b), and the performance of our
extractor and adjustor is evaluated in Sect. 3.4. The extractor of GAGM aims to
extract the correlation features in the global angular domain, while the adjustor
generates adaptive factors for different views, which can help DeforConv align
the features in the global angular domain. Moreover, the proposed module can
enrich the angular information for each view. Specifically, the extractor applies a
1×1 convolution, two 2D ResASPP blocks and two 2D Resblocks to the shallow
features (FN

SAI). Each 2D ResASPP block consists of three dilated convolutions
with different dilation rates of 1, 2 and 4. The extractor produces a deep feature
representation (Fg ∈ R

C×H×W ) as the output. The adjustor of GAGM gen-
erates the offsets of DeforConv for each view adaptively, which can enrich the
angular information. Specifically, we first concatenate Fg and each FN

SAI along
the channel dimension and use a 1 × 1 convolution to fuse the global-domain
feature and each-view feature. This process can be expressed as,

FN
fus =

(
fConv1

[Fg,FN
SAI

])
, (1)

where [·] represents concatenation the operation, fConv1 denotes the 1 × 1 con-
volution and FN

fus is the input of the adjuster.
This adjuster is inspired by [10], whose channel attention block (CAB) is

the core block. This block contains a 2D Resblock, a global average pooling
(Average), two 1 × 1 convolutions and a sigmoid function. The input features
(FN

fus) of our adjuster are first fed into a 2D Resblock to obtain deep-level
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Fig. 3. The architectures of the AAFM and FM.

Table 1. PSNR/SSIM/LPIPS values achieved by different methods for 2× and 4× SR,
the best results are in bold and the second best results are underlined.

Methods scale Datasets Average
EPFL INRIA STFgantry STFlytro

Bicubic 2× 29.74/0.9376/0.198 31.33/0.9577/0.200 31.06/0.9498/0.156 33.32/0.9528/0.201 31.36/0.9495/0.189
VDSR [11] 32.63/0.9606/0.092 34.65/0.9750/0.092 35.93/0.9808/0.030 36.31/0.9717/0.102 34.88/0.9720/0.079
EDSR [12] 33.10/0.9632/0.080 35.02/0.9768/0.082 36.36/0.9823/0.023 36.79/0.9737/0.102 35.32/0.9740/0.069
LFSSR [13] 33.83/0.9746/0.041 35.51/0.9833/0.056 37.04/0.9874/0.026 38.46/0.9818/0.053 36.21/0.9818/0.044
resLF [3] 33.63/0.9702/0.044 35.45/0.9803/0.056 37.38/0.9881/0.026 37.85/0.9790/0.053 36.08/0.9794/0.044
LF-InterNet [5] 34.00/0.9752/0.040 35.72/0.9839/0.054 37.27/0.9880/0.024 38.60/0.9824/0.048 36.40/0.9824/0.042
LF-DFNet [14] 34.50/0.9760/0.039 36.4336.4336.43/0.9846/0.052 38.51/0.9909/0.018 38.81/0.9830/0.048 37.06/0.9836/0.039
MEG-Net [15] 33.64/0.9725/0.046 35.50/0.9821/0.057 36.16/0.9847/0.034 38.07/0.9806/0.053 35.84/0.9800/0.047
DPT [9] 34.30/0.9760/0.040 36.13/0.9845/0.053 38.75/0.9913/0.015 38.82/0.9829/0.049 37.00/0.9837/0.039
LF-IINet [16] 34.47/0.9764/0.037 36.26/0.9847/0.053 38.10/0.9900/0.021 38.89/0.9832/0.048 36.93/0.9836/0.040
DistgSSR [6] 34.42/0.9770/0.036 36.27/0.9851/0.0490.0490.049 38.9638.9638.96/0.99170.99170.9917/0.014 39.02/0.9837/0.044 37.17/0.9844/0.036
Ours 34.5134.5134.51/0.97770.97770.9777/0.0330.0330.033 36.37/0.98540.98540.9854/0.050 38.80/0.9915/0.0120.0120.012 39.1639.1639.16/0.98410.98410.9841/0.0420.0420.042 37.2137.2137.21/0.98470.98470.9847/0.0340.0340.034
Bicubic 4× 25.26/0.8324/0.435 26.95/0.8867/0.412 26.09/0.8452/0.432 27.97/0.8564/0.451 26.57/0.8552/0.433
VDSR [11] 27.18/0.8773/0.288 29.17/0.9207/0.278 28.54/0.9012/0.190 29.55/0.8896/0.314 28.61/0.8972/0.268
EDSR [12] 27.84/0.8852/0.269 29.76/0.9262/0.264 28.72/0.9095/0.161 30.04/0.8976/0.298 29.09/0.9046/0.248
LFSSR [13] 28.26/0.9071/0.260 30.32/0.9436/0.231 29.78/0.9317/0.160 31.13/0.9178/0.257 29.87/0.9250/0.220
resLF [3] 27.41/0.8838/0.265 29.45/0.9276/0.260 28.64/0.9067/0.215 29.96/0.8970/0.283 28.86/0.9038/0.256
LF-InterNet [5] 28.16/0.9041/0.253 30.33/0.9434/0.248 29.26/0.9218/0.197 31.05/0.9171/0.267 29.70/0.9216/0.241
LF-DFNet [14] 28.63/0.9097/0.236 30.83/0.9481/0.227 30.28/0.9378/0.148 31.41/0.9215/0.255 30.29/0.9293/0.217
MEG-Net [15] 27.00/0.8791/0.287 29.02/0.9243/0.285 28.04/0.8971/0.259 29.68/0.8931/0.309 28.43/0.8984/0.285
DPT [9] 27.64/0.8925/0.264 29.84/0.9344/0.258 28.83/0.9115/0.199 30.34/0.9044/0.287 29.16/0.9107/0.252
LF-IINet [16] 28.57/0.9109/0.233 30.63/0.9471/0.231 29.90/0.9322/0.165 31.42/0.9217/0.258 30.13/0.9280/0.222
DistgSSR [6] 28.70/0.9130/0.223 30.84/0.9482/0.225 30.30/0.9379/0.140 31.45/0.9221/0.255 30.32/0.9303/0.211
Ours 28.8828.8828.88/0.91600.91600.9160/0.2210.2210.221 30.88/0.950330.88/0.950330.88/0.9503/0.2170.2170.217 30.47/0.9399/0.13830.47/0.9399/0.13830.47/0.9399/0.138 31.7831.7831.78/0.92650.92650.9265/0.2430.2430.243 30.50/0.9332/0.20530.50/0.9332/0.20530.50/0.9332/0.205

representation information of each view. After being processed by another CAB
and a 2D ResASPP block, the output features are fed into a 1×1 convolution to
compress the channel numbers from C to C1. After this, the distinctive guidance
factors of each view are generated. Each factor is different, which can guide the
deformable convolution to supplement angular information from other views.
This process can be specifically expressed as,

FN
GAGMi

= fConv2 ◦ faspp ◦ fCAB2 ◦ fCAB1 ◦ FN
fus, (2)
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where FN
GAGMi

is the output of our GAGM, fConv2 is the 1×1 convolution, faspp

is a 2D ResASPP block, and fCAB1 and fCAB2 denote the block of our CAB.
Note that N is equal to the number of angular views.

2.4 Angular Attention Fusion Module (AAFM)

Due to the parallax structure of LF, each view provided the angular informa-
tion is different, and the associated pixel information in different views contains
some shifts. Our network is composed of several cyclic structures. The output
of the later structure may be seriously affected by previous parts, when the
outputs of before modules have some problems such as feature misalignment
and inadequate fusion. Therefore, an attention mechanism should be adopted to
dynamically achieve further interaction with the angular information. Inspired
by the method [17], we propose an AAFM to assign different weights for differ-
ent views. This module can further improve the situation of angular information
misalignment. The effectiveness of our AAFM is demonstrated in Sect. 3.4.

The structure of AAFM is shown in Fig. 3 (c). We first selected the cen-
tral position feature as the reference view. That is because each view has a
certain offset compared with the reference view under the parallax structure of
LF. Note that the further views have less correlation with the centre view, whose
views have less weight through our attention mechanism. Specifically, the output
(FN

GAGMi
) through a DeforConv and a 1 × 1 convolution generates preliminary

aligned features (FPAF i). We selected a centre-view feature (Fref ) from FPAF i

as our reference feature. Fref and FPAF i features are fed into a 3 × 3 convolu-
tion, respectively. Through a sigmoid operation, the attention maps between the
reference view and each view can be expressed as,

Fmapi
= fsigmoid [fConv3 ◦ Fref , fConv4 ◦ FPAF i] , (3)

where Fmapi
is the angular attention map.

Finally, the output features (FAAFM i) of AAFM can be generated by multi-
plying Fmapi

and FPAF i in a pixel-wise manner. This process can be specifically
expressed as,

FAAFM i = FPAF i � Fmapi
, (4)

where � denotes the element-wise multiplication.

2.5 Fusion and Upsampling Module (FM)

Our FM aims to fuse hierarchical features and construct an HR residual map
for LF, which contains a fusion block and an upsampling block. The output of
FAAFM i indicates different deep representations of LLR. This structure of FM
following [16] is shown in Fig. 3 (d). Through these four CABs, these hierarchical
features achieve a more compact representation. The first stage can be expressed
as,

MM
fus = fCABM

◦ . . . fCAB1 ◦ [FAAFM1, . . . ,FAAFMM ] , (5)
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where the number of M is 4, and fCABM
is the block of our CAB. The effective-

ness of the CAB is demonstrated in Sect. 3.
The goal of the second stage is to produce an HR residual map (Ff ∈

R
N×1×H×W ). The upsampling block consists of a 1 × 1 convolution, a pixel-

shuffle layer and another 1 × 1 convolution, which can transform the feature
depth into the feature spatial dimension. The final output (LSR) has only one
channel, and its spatial size of LSR is αH × αW . The LSR can be expressed as
follows,

Ff = fUP ◦ MM
fus,

LSR = Ff + LLR,
(6)

where fUP is an upsampling block.

3 Experiments

In this section, we first introduce the LF public datasets of real scenarios and
metrics in Sect. 3.1, which are used to evaluate the performance of our LF-
GAGNet in the real world. Then in Sect. 3.2, we provide the settings and imple-
mentation details. After that, we compare our LF-GAGNet with state-of-the-
art methods from two aspects (quantitative results and qualitative results) in
Sect. 3.3. Finally, we perform a series of ablation studies and analyses in Sect. 3.4.

3.1 LF Public Datasets and Evaluation Metrics

There are a total of 4 real-world scene datasets, which are used for training
and testing in our experiment. These datasets are EPFL [18], INRIA [19], STF-
gantry [20] and STFlytro [21]. We divide all LF datasets into two parts (training
datasets and testing datasets) in a nearly 6:1 ratio. To solve the problem of LF
image SR in real scenes, we only use the real-world dataset to train our LF-
GAGNet, which is more targeted for application to LF cameras. Because these
cameras are always used to capture real-world scenes. In total, there are in total
364 and 67 images for training and test datasets, respectively. To evaluate the
performance of LF-GAGNet, the metrics of PSNR and SSIM are used on the
Y channel. Moreover, the perceptual metric named LPIPS [22] is also used to
evaluate the performance of different methods on RGB images. This metric can
reflect the difference between the SR image and the ground-truth image.

3.2 Settings and Implementation Details

Following [23], the angular resolution of SAI is set to 5 × 5. We crop and down-
sample each SAI with α (α = 2, 4) to generate LR patches, whose sizes are
32× 32. Due to limited datasets, the flipping and rotating operations are used
to augment training data. The initial learning rate is set to 2e−4, multiplying
an attenuation rate by 0.5 for every 15 epochs. The channel depth C and C1 of
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Fig. 4. Visual results for 2× SR. The enlarged patches highlighted using red boxes
are generated by VDSR [11], EDSR [12], LFSSR [13], resLF [3], LF-InterNet [5], LF-
DFNet [14], MEG-Net [15], DPT [9], LF-IINet [16], DistgSSR [6] and ground truth,
respectively. Zoom in for better observation.(Color figure online)

convolution are set to 64 and 18, respectively. N represents the amount of angu-
lar resolution. In comparative experiments, N is set to 25. Our network adopts
the L1 Loss function following previous works [5,14,16]. An Adam optimizer is
used with β1 = 0.9 and β2 = 0.999. The training epoch is set to 100 to get better
performance.

3.3 Comparison to State-of-the-Art Methods

We compared our LF-GAGNet with the state-of-the-art SISR and LF image SR
methods on a total of five datasets. The SISR methods contain two algorithms,
which are VDSR [11] and EDSR [12]. The remaining methods belong to LF
image SR, which are LFSSR [13], resLF [3], LF-InterNet [5], LF-DFNet [14],
MEG-Net [15], DPT [9], LF-IINet [16] and DistgSSR [6]. For fair comparisons,
we retrain the learning-based methods (e.g., LFSSR [13], resLF [3] and Dist-
gSSR [6]) with the same training datasets to produce HR LF images. The bicubic
interpolation is used as a baseline in this part.

Quantitative Results. The quantitative results including three metrics are
listed in Table 1. All methods are tested on four public LF datasets, and we also
provide the average result to evaluate the generalization on complex real-world
scenes. We use the bold and underlined types to show the best results and second-
best results, respectively. In Table 1, it can be observed that our LF-GAGNet has
the best performance of generalization for 2× and 4× SR. Although our method
is slightly inferior to some state-of-the-art methods on EPFL, INRIA and STF-
gantry datasets, our method achieves the best performance for more challenging
4× SR. Compared with the learning-based SISR methods (VDSR and EDSR),
we achieve 2.33 dB (0.0127 and −0.045) higher for VDSR and 1.89 dB (0.0107
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Fig. 5. The visual results of EPIs, which indicate the parallax structure for 4× SR.

and −0.035) higher for EDSR in terms of the average PSNR (SSIM and LPIPS)
for 2× SR. That is because directly using the SISR method to SR in each view
ignores the correlations among all SAIs, which hinders the performance in SR.
Due to the representation capability of CNN, many methods based on CNN
are proposed. In contrast to these methods, our LF-GAGNet achieves a state-
of-the-art method with the best value of PSNR, SSIM and LPIPS. Compared
with LFSSR [13], our method achieves an average gain of 1.00 dB (0.0029 and
−0.010) and 0.63 dB (0.0082 and −0.015) in terms of average PSNR (SSIM and
LPIPS) for 2× and 4× SR, respectively. This is mainly attributed to the guide
of dynamical global-guided factors in our GAGM. This module can capture the
global-view information and supplement complementary information.

Qualitative Results. The qualitative results for 2× SR testing on ISO_Chart
are shown in Fig. 4. As we can see, our LF-GAGNet can accurately preserve the
fine details of the letter, which is pointed out by the green arrow. Specifically, the
results of VDSR and EDSR cannot clearly distinguish each letter. The results
of LF-IINet and DPT produce more faithful details than SISR methods, but
their performance is a little worse than our method. The EPIs of different state-
of-the-art methods are shown in Fig. 5, which can reflect the ability to keep
the parallax consistency. The results of SISR methods (EDSR) present blurry
EPIs. That is because they cannot preserve the parallax structure by using SISR
methods directly. Compared with other LF image SR methods, our LF-GAGNet
can present straight lines in EPIs, which are more fine-grained. That is mainly
benefited by designed modules (GAGM and AAFM). Our GAGM can integrate
angular information and AAFM can effectively utilize the correlation among
different SAIs by using 3D convolution.

3.4 Ablation Study

In this subsection, we conduct several ablation experiments to investigate the
effectiveness of different components in our LF-GAGNet, which mainly con-
tain the S-AFEM, GAGM, AAFM and FM. We provide two types of compari-
son results containing numerical and visual experimental results. The numerical
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Table 2. PSNR/SSIM values achieved by LF-FANet and its variants for 4× SR

Models #Params. Datasets Average
EPFL INRIA STFgantry STFlytro

Bicubic ––– 25.26/0.8324 26.95/0.8867 26.09/0.8452 27.97/0.8564 26.57/0.8552
LF-GAGNet w/o S-AFEM 5.34M 28.78/0.9137 30.85/0.9494 30.32/0.9387 31.63/0.9254 30.40/0.9318
LF-GAGNet w/o GAGM_only 5.59M 28.72/0.9146 30.72/0.9498 30.43/0.9392 31.74/0.9260 30.40/0.9324
LF-GAGNet w/o GAGM (Extractor) 5.40M 28.76/0.9148 30.84/0.9495 30.34/0.9388 31.74/0.9259 30.42/0.9323
LF-GAGNet w/o GAGM (Adjuster) 4.94M 28.84/0.9147 30.88/0.9496 30.36/0.9389 31.65/0.9257 30.24/0.9322
LF-GAGNet w/o AAFM_only 5.76M 28.49/0.9093 30.57/0.9472 30.24/0.9341 31.67/0.9260 30.24/0.9292
LF-GAGNet w/o AAFM 5.07M 28.72/0.9142 30.74/0.9495 30.27/0.9382 31.68/0.9258 30.35/0.9319
LF-GAGNet w/o FM 5.06M 28.65/0.9149 30.68/0.9493 30.39/0.9390 31.70/0.9259 30.36/0.9323
LF-GAGNet1 2.74M 28.71/0.9149 30.68/0.9502 30.42/0.9396 31.73/0.9261 30.39/0.9327
LF-GAGNet2 5.12M 28.76/0.9150 30.75/0.9498 30.44/0.9397 31.75/0.9263 30.43/0.9327
LF-GAGNet 5.64M 28.88/0.916028.88/0.916028.88/0.9160 30.88/0.950330.88/0.950330.88/0.9503 30.47/0.939930.47/0.939930.47/0.9399 31.78/0.926531.78/0.926531.78/0.9265 30.50/0.933230.50/0.933230.50/0.9332

results are listed in Table 2. The bicubic interpolation method is used as a base-
line in these results.

The Effectiveness of S-AFEM. Extracting the features from SAIs plays an
important role in the reconstruction of LF. The previous works [14,16] always
adopted a 2D module containing some ResASPP blocks and Resblocks, which
ignores the correlations among different angular views. Thus, spatial and angu-
lar features of SAIs are extracted by the proposed S-AFEM. To demonstrate
the effectiveness of the S-AFEM, we remove the feature extraction module (S-
AFEM), replacing the stacked 2D ResASPP blocks and 2D Resblocks. We keep
the parameters consistent by adjusting the number of 2D blocks. LF-GAGNet
w/o S-AFEM is the variant of feature extraction. In Table 2, the value of the
average PSNR and SSIM has decreased by 0.10 dB and 0.0014 for 4× SR, respec-
tively. Our S-AFEM can capture not only the spatial features of each SAIs but
also the correlations among different angular views, which is beneficial to improve
the performance of LF images.

The Effectiveness of GAGM. The GAGM proposed in our LF-GAGNet is
made of an Extractor and an Adjuster, which can adaptively construct the guid-
ance factors based on the global angular information. To verify the effectiveness
of the guidance factors produced by the Extractor and the Adjuster in LF-
GAGNet, we designed three different variants (LF-GAGNet w/o GAGM_only,
LF-GAGNet w/o GAGM (Extractor) and LF-GAGNet w/o GAGM (Adjuster)).
As shown in Fig. 1, we keep the top branch with four GAGMs in LF-GAGNet
w/o GAGM_only. Specifically, the output of GAGM is directly fed into a 1× 1
convolution without the DeforConv and AAFM. For LF-GAGNet w/o GAGM
(Extractor) and LF-GAGNet w/o GAGM (Adjuster), we only keep one of the
two components (Extractor and Adjuster) compared with LF-GAGNet. All these
comparison results on testing datasets for 4× SR are shown in Table 2. It can be
observed that the average PSNR and SSIM of LF-GAGNet w/o GAGM_only,
LF-GAGNet w/o GAGM (Extractor) and LF-GAGNet w/o GAGM (Adjuster)
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suffer a decrease of 0.10dB (0.0008), 0.08dB (0.0009) and 0.26dB (0.0040) com-
pared with that of LF-GAGNet, respectively.

The Effectiveness of AAFM. We provide two variants (LF-GAGNet w/o
AAFM_only and LF-GAGNet w/o AAFM) to verify the effectiveness of AAFM.
The AAFM is a key component to dynamically integrate angular information
among all views. For the variant of LF-GAGNet w/o AAFM_only, we remove
the GAGM, DeforConv and 1 × 1 convolution and increase the filters of convo-
lutions for a fair comparison. Meanwhile, we remove the AFAM in LF-GAGNet
w/o AAFM. In Table 2, the results of LF-GAGNet w/o AAFM_only and LF-
GAGNet w/o AAFM decrease 0.26 dB (0.0040) and 0.15 dB (0.0013) in terms
of the average PSNR (SSIM) compared with that of LF-GAGNet, respectively.

The Effectiveness of FM. The FM is the generic module, which is always
used in LF image SR. This module can generate attention weights for different
channels, blending the concatenated hierarchical features. To demonstrate the
effectiveness of our FM, we merely remove the part of channel attention in CAB.
This variant is termed as LF-GAGNet w/o FM. It can be observed that the
average PSNR (SSIM) value of LF-GAGNet w/o FM suffers a decrease of 0.14
dB (0.0009) compared with that of LF-GAGNet.

The Effectiveness of Sharing Weights in LF-GAGNet. To reduce the
number of parameters of our LF-GAGNet, we also conducted two different exper-
iments, which are LF-GAGNet1 and LF-GAGNet2. Specifically, LF-GAGNet1
has the modules of GAGM and AFAM with sharing weights, and only the mod-
ule of AFAM shares the weights in LF-GAGNet2. For our LF-GAGNet, we do
not share the weights for both GAGM and AAFM. The comparative results for
4× LF image SR are shown in Table 2. It can be observed that the performances
of LF-GAGNet1 and LF-GAGNet2 are degraded by 0.11 dB and 0.07 dB for the
average PSNR with the increase in the number of parameters.

4 Conclusion

In this paper, we propose a new LF-GAGNet network to achieve LF spatial SR
in real scenarios. We mainly introduce three components (S-AFEM, GAGM and
AAFM) to achieve feature extraction and spatial-angular information fusion.
These components are effectively combined by a deformable convolution. Our
LF-GAGNet can dynamically supplement global-view information and comple-
mentary information from other views. Extensive comparisons with state-of-the-
art methods show that our method outperforms them in visual and quantitative
results. Moreover, our LF-GAGNet also has a competitive computing efficiency.

In the future, we will continually explore a more lightweight framework based
on our LF-GAGNet to reduce computational complexity. Moreover, our group
will commit ourselves to an unsupervised learning framework, which may be a
novel research trend in the future.
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Abstract. Graph embedding aims to embed the information of graph
data into low-dimensional representation space. Prior methods gener-
ally suffer from an imbalance of preserving structural information and
node features due to their pre-defined inductive biases, leading to unsat-
isfactory generalization performance. In order to preserve the maximal
information, graph contrastive learning (GCL) has become a prominent
technique for learning discriminative embeddings. However, in contrast
with graph-level embeddings, existing GCL methods generally learn less
discriminative node embeddings in a self-supervised way. In this paper,
we ascribe above problem to two challenges: 1) graph data augmenta-
tions, which are designed for generating contrastive representations, hurt
the original semantic information for nodes. 2) the nodes within the same
cluster are selected as negative samples. To alleviate these challenges, we
propose Contrastive Variational Graph Auto-Encoder (CVGAE). Specif-
ically, we first propose a distribution-dependent regularization to guide
the paralleled encoders to generate contrastive representations following
similar distributions. Then, we utilize truncated triplet loss, which only
selects top-k nodes as negative samples, to avoid over-separate nodes
affiliated to the same cluster. Experiments on several real-world datasets
show that our model CVGAE advanced performance over all baselines
in link prediction, node clustering tasks.

Keywords: graph auto-encoder · contrastive learning ·
distribution-dependent regularization · truncated triplet loss

1 Introduction

Graph data is commonly applied in many fields to capture relationships among
entities, such as citation networks, social networks, and protein interaction net-
works. Modeling such data is challenging due to the non-Euclidean structure
characteristic. Graph embedding that maps the graph data into low-dimensional
representation space has emerged as a mainstream for modeling graph structure
and node features. Intuitively, the quality of learned node embeddings affects
the performance for downstream graph data mining tasks including link predic-
tion [18] and node clustering [1] tasks.
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Graph Neural Networks (GNNs) [10], inheriting the power of neural net-
works and utilizing the neighborhood propagation mechanism, have become
powerful tools for learning graph embeddings. Recently, tremendous endeav-
ors have been devoted to graph self-supervised learning because label informa-
tion is usually difficult to obtain. Generally, these graph embedding methods
are designed to exploit the diverse inductive bias exhibited in graphs. Some
methods learn the node embeddings by reconstructing the graph topology struc-
ture, which inserts an inductive bias that nodes share similarities with their
nearby nodes. These methods intend to promote similar representations across
nearby nodes, which over-emphasize proximity relations, but ignore the node
features [3]. Another group of graph embedding methods attempts to maximize
mutual information [17] between each node and the corresponding graph’s patch
summaries. These methods encourage each node to be mindful of coarser infor-
mation, increasing the similarities between unconnected nodes and affecting the
inherent structural information.

Recently, contrastive learning (CL) [15], a type of self-supervised learning,
aims to generate discriminative representations, which can benefit to preserve
individual information maximally and bolster the performance on downstream
tasks. Therefore, CL has gained great interest and been widely applied for graph
embedding learning. Graph contrastive learning (GCL) generally follows the
framework of CL in computer vision [7], in which two graph representations are
generated for each graph and then maximizes the mutual information between
these two representations. In this way, GCL methods can lead to learn discrimi-
native representations distributing on the unit hypersphere [11,23]. To this end,
graph data augmentations play a vital role in generating generalized graph rep-
resentations. However, existing augmentations, including node dropping, edge
perturbation, embedding masking, and subgraph replacements, have hurt the
information of graph structure and node features. Therefore, existing graph
augmentations cannot preserve semantic information of nodes broadly, which
significantly limits the generality of learned node embeddings. Besides, existing
GCL methods usually involve nodes within the same cluster as negative sam-
ples, which refers to as simpling bias [8]. Intuitively, these GCL methods would
benefit a coarser-level graph analysis task, e.g., graph classification, and do not
benefit a fine-level task, e.g., node clustering, that large.

To address the above problems, we propose to augment the Variational
Graph Auto-Encoder (VGAE) with CL framework, namely CVGAE, to improve
the generality of learned node embeddings. In this paper, we summarize two
challenges waiting for us to solve: 1) existing graph augmentations, that are
designed to generate contrastive representations, cannot preserve the original
semantic information for nodes. 2) the nodes within the same cluster are usually
selected as negative samples. In order to solve the first challenge above, instead
of devising more advanced data augmentations for nodes, we propose a novel
distribution-dependent regularization for CVGAE to guide its two paralleled
encoders. Specifically, we take original graph data as input and Graph Con-
volutional Network (GCN) [31] models as two paralleled encoders to generate
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contrastive representations following similar distribution. For the second chal-
lenge, we adopt truncated triplet loss by selecting top-k negative samples instead
of the widely-adopted InfoNCE loss [20], which takes all negative samples into
consideration. VGAE generally endows nearby nodes, that are similar in struc-
ture and dissimilar in node features, similar representations. Therefore, most of
the top-k negative samples are nearby nodes instead of these nodes affiliated to
the same cluster. Owing to the inductive bias of VGAE framework, selecting
the top-k negative samples would reduce the sample bias. With the truncated
triplet loss as the optimization goal, we avoid to over-separate each node with its
unnecessary negative samples affiliated to the same cluster and benefit from the
advantage of training efficiency from the reduction of negative samples. At the
same time, with a decoder aiming to reconstruct the graph structure, CVGAE
can generate discriminative node embeddings by utilizing both the structural
information and node features.

2 Related Work

2.1 Graph Embedding

Graph embedding generally learns a low-dimensional representation space
according to the information of graph data, and it is essential to facilitate var-
ious downstream tasks. Graph Convolutional Network (GCN) [31] is a well-
known method, which aggregates information for each node from its neighbor-
hood nodes. Since then, most graph embedding methods utilizes GCNs to extract
rich information from graph data [29]. Some reconstruction-based methods insert
an inductive bias that nodes share similarities with their nearby nodes for learn-
ing graph embeddings. For example, VGAE [16] use GCNs as an encoder to
obtain node embeddings and a simple inner product decoder to reconstruct the
graph topology structure. VGNAE [3] utilizes L2-normalization to regularize the
encoder of GAE for better learning isolated node embedding. There are also some
methods centering around the data distribution of node embeddings, which inject
an inductive bias that similar nodes share similar feature distribution. Inspired
by Deep InfoMax (DIM) [13], Deep Graph Infomax (DGI) [25] maximizes the
mutual information between nodes and graph-level summaries obtained by aver-
age pooling all node embeddings. Similar to DGI, Graph InfoClust (GIC) [19]
maximizes the mutual information between nodes and cluster-level summaries.
However, these graph embedding approaches tamper the individual information
of nodes themselves [21], which only attain limited performances in downstream
tasks.

2.2 Graph Constrative Embedding

Contrastive learning (CL) [15] has been the pinnacle of self-supervised repre-
sentation learning, in which the embeddings of similar instances are gathered
closely, and dissimilar instances are taken apart in the representation space. Up
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to now, many graph contrastive embedding methods have been proposed for
graph embedding learning [30,32]. For GCL, graph data augmentations play an
important role in generating positive and negative samples. For example, graph
contrastive learning (GraphCL) [30] firstly uses shared two-layer GCNs as an
encoder to extract embeddings from two subgraphs, which are dealt with ran-
domly selected graph augmentations. Besides, graph contrastive learning with
automated augmentations (JOAO) [32] proposed a unified framework to auto-
matically select the data augmentations for specific datasets. However, these
graph data augmentations fail to preserve the information of graph structure
and node features. An alternative comes to light when considering that operat-
ing the encoders can in turn be utilized to generate contrastive samples. Instead
of using these graph data augmentations, Simple Graph Contrastive Learning
(SimGRACE) [28] adds perturbs on the encoder respectively to generate corre-
sponding contrastive representations following different distributions. Predomi-
nantly, due to prohibitive computations caused by taking all negative nodes into
computation, existing graph contrastive embedding methods also suffer from
low learning efficiency [27]. Besides, prior work [5] points out that existing GCL
methods usually suffer from the problem of sampling bias. Graph Debiased Con-
trastive Learning (GDCL) [8] utilizes cluster labels as supervisory signals to
select negative samples from different clusters. In addition, alleviating the sam-
ple bias in a self-supervised way is desired to explore.

3 The Proposed Method

In this paper, we propose CVGAE for guaranteeing the generalization of the
learned node embeddings. The overall framework of CVGAE is shown in Fig. 1.

Fig. 1. The framework of CVGAE. The i-th row zi , z
′
i of Z,Z

′
are corresponding

positive sample of each other, while the different rows zi , z
′
j are corresponding negative

sample of each other.
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3.1 Preliminary Work

In this section, we present the preliminary concepts of the graph. A graph G
is represented as G = (V,A,X), where V = {v1, v2, . . . , vN} is a node set of
G, N is the number of nodes in G. The graph topology structure is captured
by an adjacent matrix A ∈ R

N×N , where ai,j = 1 denotes the node vi connect
to vj mutually, and ai,j = 0 otherwise. The embedding matrix X ∈ R

N×H

preserves the information of node features, where each row xi ∈ R
H denotes

the corresponding node feature of vi, H is the dimension of node feature. The
graph embedding methods use G = (V,A,X) as input to learn low-dimensional
node embedding matrix Z ∈ R

N×H
′
, which can preserve the information of

graph topology structure and node features. Therefore, after obtaining the high-
quality node embeddings, we can use them on various downstream tasks, such
as link prediction [18] and node clustering [1].

3.2 Variational Graph AutoEncoder

In our model, we use GCNs as encoders to extract information from G. As for
CVGAE, the paralleled encoders are designed to obtain the node embedding
matrices Z,Z

′
respectively, which follows a multi-variate Gaussian distribution.

The generation process is as follows:

q(Z | X,A) =
N∏

i=1

q (zi | X,A) (1)

q(Z
′ | X,A) =

N∏

i=1

q
(
z

′
i | X,A

)
(2)

where zi, z
′
i denote the i − th row of Z,Z

′
respectively. Besides, q (zi | X,A) =

N
(
zi | μi , diag

(
σ2

i

))
, where μi ∈ μ, σi ∈ σ denote the mean and standard

deviations of q (zi | X,A) respectively. The matrices of μ ∈ R
N×H

′
and σ ∈

R
N×H

′
are calculated as follows:

μ = fμ(X,A) = Ã
(
ÃXW1

)
W2 (3)

logσ = fσ(X,A) = Ã
(
ÃXW

′
1

)
W

′
2 (4)

where fμ, fσ denote the mapping functions. For the sake of simplicity, we do not
represent the generation process of μ

′
i ∈ μ

′
, σ

′
i ∈ σ

′
, which follows the same

process by f
′
μ, f

′
σ. Then, using the reparameterization technique [24] to obtain

Z,Z
′
. Followed by an inner-product layer to reconstruct the graph structure,
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and the progress is defined as follows:

Z = μ + σ � ε (5)

Z
′
= μ

′
+ σ

′ � ε
′

(6)

p(Â | Z,Z′) =
N∏

i=1

N∏

j=1

σ
(
ziz′T

j

)
(7)

where ε, ε
′ ∈ R

N×H′
are sampled from a multi Gaussian normal distribution

with εj ∼ N (0, IH′). For CGAE, we only optimize the reconstruction loss LAE .
And for CVGAE, we consider the data distribution of node embeddings and
hence optimize the variational lower bound LELBO.

LAE =Eq(Z|X,A)[log p(A | Z)] (8)
LELBO =Eq(Z|X,A)[log p(A | Z)] − KL[q(Z | X,A)‖p(Z)] (9)

− KL[q(Z′ | X,A)‖p(Z′)]

where KL[q(·)‖p(·)] measures the Kullback-Leibler divergence [12] between
q(·) and p(·). p(Z), p(Z′) follow Gaussian regularizations, where p(Z) =∏

i N (zi | 0, IH′) and p(Z′) =
∏

i N (z′
i | 0, IH′). In this way, the paralleled

encoders can lead the q(Z′ | X,A) and q(Z | X,A) approaching to multi-variate
Gaussian distribution.

3.3 Distribution-Dependent Regularization

Different from previous contrastive embedding methods using data augmenta-
tions to generate contrastive representations, we propose a unified distribution-
dependent regularization leading the encoders to generate contrastive node
embeddings, which follow similar distribution. To obtain corresponding posi-
tive and negative samples, we must minimize the discrepancy of distribution
between embedding matrices Z,Z′ generated by two paralleled encoders. The
well-adopted distribution measure method is Kullback-Leibler divergence, but it
is asymmetric and unidirectionally guides the distribution. Hence, we choose
Jensen-Shannon divergence [10] to approximate the distribution of Z,Z′ for
CVGAE, which is symmetric and can provide a bidirectional guidance. Here,
we follow the independence hypothesis [16] the same as VGAE, and the unidi-
rectional Kullback-Leibler divergence is defined as follows:

KL
(
N

(
μ, σ2

) |N (
μ′, σ′2)) (10)

=
∫

e−(x−μ)2/2σ2

√
2πσ2

log

{√
σ′2

√
σ2

exp

{
1
2

[
(x − μ′)2

σ′2 − (x − μ)2

σ2

]}}
dx

= log σ′ − log σ +
1
2

(
σ2

σ′2 +
(μ − μ′)2

σ′2 − 1

)
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where q (Z | X,A) = N
(
Z | μ, σ2

)
and q (Z′ | X,A) = N

(
Z′ | μ′, σ′2)

. There-
fore, the Jensen-Shannon divergence regularization is defined as follows:

JS (q (Z | X,A) |q (Z ′ | X,A)) (11)

=
1
2
KL

(
N

(
μ, σ2

) |N (
μ′, σ′2)) + 1

2
KL

(
N

(
μ′, σ′2) |N (

μ, σ2
))

=
1
2

(
σ2

σ′2 +
(μ − μ′)2

σ′2 +
σ′2

σ2
+

(μ − μ′)2

σ2

)
− 1

where JS[q(·)‖p(·)] is the Jensen-Shannon divergence between q(·), p(·). Hence,
we can optimize the lower bound of the Jensen-Shannon divergence between the
embedding matrices Z,Z′. In this paper, we consider a multi-normal Gaussian
distribution with an independence hypothesis, which is for simplifying the deriva-
tion. And so, only when μ = μ′ and σ = σ′, the JS (q (Z | X,A) |q (Z′ | X,A))
can achieve the minimum value 0 theoretically, which is the desired distribution
situation.

Inspired by previous graph data augmentations [30], we soft the regular-
ization to the node embeddings to some extent, which is beneficial to capture
more robust node embeddings [14]. Therefore, we soft the optimization process
of maximizing the regularization, which is defined as follows:

LSoft = ReLU (− � +α) − ||1 − α||2 (12)

where � = JS[q(·)‖p(·)], α ∈ R is a learnable lower bound of the regulariza-
tion respectively. ||1 − α||2 is a penalty term, which avoids the lower bound
approaching to 1. The loss LSoft aims to constraint � within [α, 1].

3.4 Truncated Triplet Loss

After obtaining the embedding matrices Z,Z′, we utilize the truncated triplet
loss to properly adjust the distance of all node embeddings. For representation
simplicity, we only use one node embedding zi for illustrating the truncated
triplet loss. The positive sample of zi refers to the same index node embeddings
{zi, z

′
i} of Z,Z′, while the negative samples refer to the different index node

embeddings {zi, z
′
j}(j �= i, j = 1, 2, 3, . . . , N). As for zi, its positive node embed-

ding is z′
i, and its negative node embeddings are {z

′
j | j �= i}. Then, the initial

triplet loss is defined as:

LTriplet =
N∑

i=1

N∑

j=1,j �=i

max
(
d

(
zi, z

′
i

)
− d

(
zi, z

′
j

)
, C

)
(13)

where d(·, ·) denotes cosine distance, C is a margin value deciding whether or
not to drop a negative node embedding. In practice, the loss only focuses on
optimizing some negative node embeddings, which are near the margin. In a
graph, the scale of one node’s nearby neighborhoods is limited, using all nega-
tive node embeddings suffers from low learning efficiency [26] and ignoring the
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cluster information of negative samples. Therefore, we only take part of all neg-
ative node embeddings into consideration, which is the meaning of truncation.
Firstly, we compute all d

(
zi, z

′
j

)
(j = 1, 2, . . . , i − 1, i+ 1, . . . , N). Then, we sort

them by ascending. Finally, selecting the top-k negative node embeddings into
computation, the truncated triplet loss is defined as follows:

LTrun =
N∑

i=1

∑

j∈top−k

max (d (zi ,z
′
i) − d (zi ,z

′
j ) , C) (14)

4 Experiments

4.1 Datasets

We use three benchmark networks Cora [4], CiteSeer [6] and PubMed [9], in
which the nodes are public publications and the connectivities are citation rela-
tionships. The features are unique words in each document. The statistical infor-
mation of each dataset is shown in Table 1.

Table 1. Datasets details.

DataSet #Nodes #Edges #Features #Clusters #Avg degree

Cora 2708 5429 1433 7 4.0
CiteSeer 3327 4732 3703 6 2.85
PubMed 19717 44338 500 3 4.5

4.2 Baselines and Implementation Details

In this paper, we compare our proposed models with eight models for link pre-
diction: GAE [16], VGAE [16], ARGA [22], ARVGA [22], GNAE [3], VGNAE [3],
DGI [25], GIC [19]. Except for the baselines we compared for link prediction,
we include two baselines for node clustering task: K-means [2], GraphCL [30].
Besides, two quantitative metrics are used to evaluate the performances of the
link prediction task, which are Area Under Curve (AUC) and Average Precision
(AP). Three quantitative metrics are used to evaluate the performances of the
node clustering task, which are Average Clustering Accuracy (ACC), Normal-
ized Mutual Information (NMI), and Adjusted Rand Index (ARI). Our proposed
model CVGAE is implemented by PyTorch 1.12.0 and trained on a Linux server
with GTX 3090. And, we adopt the Adam optimizer with a learning rate 0.001.
We use two-layer GCNs as encoders, and the output dimension H ′ is set to 128.
For link prediction, we train our models for a maximum of 500 epochs with an
early stopping if the test loss does not decrease in 50 consecutive epochs on
datasets Cora and CiteSeer. And, we train our models on the dataset PubMed
1000 epochs for adequate parameters iteration. For all compared baselines, we
present their best performances on responding datasets and tasks.
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4.3 Link Prediction

Table 2 summarizes the performances of our models and the other eight baseline
models. There are some observations from the result: Firstly, DGI is inferior to all
other models in most cases, indicating that supplementing graph-level informa-
tion solely isn’t beneficial to the link prediction task. Secondly, GNAE/VGNAE
are superior to other baseline models, indicating that using the L2-normalization
for node embeddings works well.

Table 2. Link prediction results (in %). The top performances are emphasized in bold.

Models Cora CiteSeer PubMed
AUC AP AUC AP AUC AP

GAE 91.0 92.0 89.5 89.9 96.4 96.5
VGAE 92.2 93.0 90.8 92.1 94.4 94.7
ARGA 92.4 93.2 91.9 93.0 96.8 97.1
ARVGA 92.4 92.6 92.4 93.0 96.5 96.8
GNAE 95.6 95.7 96.5 97.0 97.5 97.5
VGNAE 95.4 95.8 97.0 97.1 97.6 97.4
DGI 89.8 89.8 95.5 95.7 91.2 92.2
GIC 93.5 93.0 96.8 96.6 93.9 93.5
CVGAE-R 93.5 94.4 95.6 96.2 94.8 94.4
CVGAE-D 94.4 94.4 96.1 95.3 96.0 95.9
CVGAE-A 95.2 95.1 96.2 96.6 96.7 96.4
CVGAE 96.3 96.5 97.3 97.6 97.6 97.8

Specifically, the normalization operation is beneficial to iterations of node
embeddings, weakening the inductive bias of GAE. Thirdly, our proposed model
CVGAE achieves remarkable improvements to varying degrees on all datasets,
which demonstrates that CVGAE can make full use of graph topology structural
information.

4.4 Node Clustering

For the node clustering task, we use K-means algorithm [2] on obtained node
embeddings from all compared baselines respectively. For our models, the
obtained Z and Z′ are used respectively, and the experiment results show the
best performances of one of them. Table 3 summarizes the performances of all
models on the task. Compared with ten baseline models, CVGAE achieves the
best performances in most cases. Besides, GIC outperforms other baseline mod-
els, which is mainly due to the fact that it incorporates cluster-level summary
information into node embeddings. The comparison results between GIC and
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other baseline models demonstrate that node embeddings owning more individ-
ual information can bring significant improvements to the node clustering task.
Compare with GraphCL, CVGAE performs better on all datasets, which verifies
the effectiveness of the triplet truncated loss for alleviating the simpling bias.

Table 3. Node clustering results: Average Clustering Accuracy (ACC), Normalized
Mutual Information (NMI) and Adjusted Rand Index (ARI) scores (in %).

Cora CiteSeer PubMed
Acc NMI ARI Acc NMI ARI Acc NMI ARI

K-means 49.6 32.3 22.6 55.9 31.4 29.4 57.0 22.0 17.8
GAE 61.3 44.4 38.1 48.2 22.7 19.2 64.2 22.5 22.1
VGAE 64.7 43.4 37.5 51.9 24.9 23.8 51.9 24.9 23.8
ARGA 64.0 44.9 35.2 57.3 35.0 34.1 68.1 27.6 29.1
ARVGA 63.8 45.0 62.7 54.4 26.1 24.5 63.5 23.2 22.5
GNAE 72.4 55.6 50.9 67.6 41.8 42.5 68.0 27.8 29.1
VGNAE 72.3 54.7 51.1 67.6 42.1 42.6 69.1 29.1 30.7
DGI 71.3 56.4 51.1 68.8 44.4 45.0 53.3 18.1 16.6
GIC 72.5 53.7 50.8 69.6 45.3 46.5 67.3 29.7 29.1
GraphCL 72.1 55.1 53.4 68.2 42.7 43.9 69.0 28.7 30.4
CVGAE 74.7 57.4 54.8 69.4 44.1 45.5 69.8 31.9 31.8

4.5 Ablation Experiments

In this section, we conduct ablation experiments to verify the effectiveness of
different implementations for our proposed model. The details of the three
implementations are as follows: (1) CVGAE-R represents that we remove the
distribution-dependent regularization. (2) CVGAE-A represents that we replace
the truncated triplet loss with InfoNCE loss using all negatives. (3) CVGAE-D
represents that we replace the regularization with dropout operation. We pass
the same graph to one encoder twice to obtain contrastive representations, and
the dropout ratio is set to 0.2. As shown in Table 2, removing the regularization is
critically harmful to learning performances. For example, CVGAE outperforms
CVGAE-R in all datasets, by at least 1.4% on AUC. CVGAE-D outperforms
CVGAE-R in all cases, indicating that the quality of contrastive representations
plays a vital role in CL. In addition, the performances of CVGAE are superior
to CVGAE-D, which demonstrates that using the distribution-dependent regu-
larization works better than the dropout operation. Meanwhile, considering all
negatives is not a wise choice, it slightly hinders performance improvements and
affects learning effectiveness.
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5 Conclusion

In this paper, we augment the VGAE with CL framework, namely CVGAE,
which aims to learn more generalized node embeddings. We argue that exist-
ing graph data augmentations fail to preserve original semantic information for
nodes. Therefore, different from previous GCL methods using designed graph
data augmentations, we proposed a novel distribution-dependent regularization
to guide the paralleled encoders to generate contrastive representations. Subse-
quently, to alleviate the problem of sampling bias in a self-supervised way, the
truncated triplet loss is employed to separate the top-k nodes apart in the rep-
resentation space and improve the learning efficiency. Extensive experiments are
evaluated on several real-world datasets and the results demonstrate our pro-
posed model’s advanced performance in link prediction, node clustering tasks.
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Abstract. Semantic segmentation is a fundamental computer vision
task attracting a lot of attention. However, limited works focus on
semantic segmentation on fine-grained class scenario, which has more
classes and greater inter-class similarity. Due to the lack of data avail-
able for this task, we establish two segmentation benchmarks, CUB-seg
and FGSCR42-seg, based on CUB and FGSCR42 datasets. To solve the
two major problems in this task, spatial inconsistency and extremely
similar classes confusion, we propose the Spatial Consistency and Class-
level Diversity enhancement Network. First, we build the Spatial Con-
sistency Enhancement Module to take advantage of the low-frequency
information in the feature, enhancing the spatial consistency. Second,
Fine-grained Regions Contrastive Loss is designed to make the features of
different classes more discriminative, promoting the class-level diversity.
Extensive experiments show that our method can significantly improve
the performance compared to baseline models. Visualization study also
prove the effectiveness of our method for enhancing spatial consistency
and class-level diversity.

Keywords: Fine-grained Semantic Segmentation · Spatial
Consistency · Contrastive Learning

1 Introduction

Semantic segmentation, as a fundamental computer vision task, aims to assign
specific class to each pixel in images. Deep learning methods [1–5] have real-
ized significant achievement in semantic segmentation task. Furthermore, many
extended tasks such as few-shot segmentation [6,7], zero-shot segmentation [8]
and part segmentation [9] are also proposed to promote the application of seman-
tic segmentation. However, few works [10] focus on semantic segmentation on
objects with fine-grained classes.
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Fig. 1. Some annotation examples of two datasets. Two rows of (a) are images and their
corresponding annotations of CUB-seg, while (b) contains those of FGSCR42-seg.

Fine-grained means there are many objects in the scene that belong to differ-
ent finer subcategories under a same category. Different from traditional semantic
segmentation, objects of different classes in fine-grained semantic segmentation
task are extremely similar to each other, accompanying by large intra-class dif-
ferences. This task can be applied to many practical scenarios, such as biological
nature protection, commodity identification and so on.

To improve the fine-grained segmentation ability of models, we first estab-
lish two segmentation datasets based on two fine-grained classification datasets,
CUB [11] and FGSCR-42 [12]. We use f-BRS model [13] to label the images
roughly with pixel-wise annotations and then make some manual adjustments
to the mislabeling results. Some final annotations can be seen in Fig. 1. With
these two fine-grained semantic segmentation datasets, we can evaluate perfor-
mance of each model on both natural and remote sensing scenes, which can
comprehensively promote the research of this task.

By analyzing the segmentation results of many methods [1,4,14–17] on above-
mentioned two datasets, we find two major problems which hinder the perfor-
mances of these methods. First, because of the large intra-class variation and
small inter-class difference, the weak class-level feature diversity makes it easy
to assign a wrong class to the object, creating confusion among many categories
that are very similar. Second, the spatial separation of the different components
of an object leads to spatial inconsistency in the object region, driving methods
to identify the whole region of the object as a combination of components with
different classes. Due to the extreme similarity between components of different
classes, the spatial inconsistency becomes increasingly serious. Some failure cases
of current methods can be seen in Fig. 2.
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Fig. 2. Some failure cases of current methods on CUB-seg dataset. Columns (a), (b)
and (c) show the mistake of segmenting the object into many components with dif-
ferent classes caused by the spatial inconsistency. Columns (d), (e) and (f) show the
classification failure caused by the weak class-level feature diversity.

To solve the two problems mentioned above, we propose the Spatial Consis-
tency Enhancement Module (SCEM) and Fine-grained Regions Contrastive Loss
(FRC loss) to improve the segmentation performance on fine-grained semantic
segmentation task. The SCEM regards the output features of the encoder as
high-frequency features, that is, pixel-wise features change dramatically in spa-
tial dimension, resulting in spatial inconsistency. Visualization on the features
of current methods also proves this opinion that the hot region of heat map only
cover part of the whole object region. So SCEM generates a low-frequency low-
resolution feature under the guidance of heat map and then fuse it with original
feature to enhance the spatial consistency. Furthermore, to make the features of
different classes more discriminative, FRC loss first uses Masked Average Pooling
(MAP) to obtain a vector which can represent the object. After that, vectors
of different classes in a single batch are generated and dense cosine metrics is
utilized to calculate similarities between each pair of vectors, including a vector
and itself. Then we use contrastive loss to supervise the similarities, aiming to
make representative vectors of different classes far away from each other. With
the SCEM and FRC loss, we design the Spatial Consistency and Class-level
Diversity enhancement Network (SCCDNet) to address the fine-grained seman-
tic segmentation task specifically.

Extensive experiments prove that our SCCDNet can be built on all encoder-
decoder based convolutional neural networks and significantly improve the per-
formance compared to baseline models. We also conduct ablation experiments
and visualization study to validate that our SCCDNet is indeed enhance the spa-
tial consistency and class-level diversity of features. Our code, pretrained models
and two datasets, CUB-seg and FGSCR42-seg, are available at https://github.
com/cv516Buaa/SCCDNet.

https://github.com/cv516Buaa/SCCDNet
https://github.com/cv516Buaa/SCCDNet
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The contributions of this paper are listed as follow:

1. We establish two fine-grained semantic segmentation datasets based on CUB
and FGSCR-42, providing comprehensive benchmarks for evaluating related
methods of this task on natural and remote sensing scenes.

2. We propose Spatial Consistency Enhancement Module (SCEM) to take
advantage of the low-frequency information in the feature, enhancing the
spatial consistency.

3. Fine-grained Regions Contrastive Loss (FRC loss) is designed to make the
features of different classes more discriminative, promoting the class-level
diversity.

4. Comprehensive experiments are conducted to prove the effectiveness of our
Spatial Consistency and Class-level Diversity enhancement Network (SCCD-
Net).

2 Related Work

Semantic segmentation has attracted a lot of attention of researchers and
achieves a number of breakthroughs with the emergency of fully convolutional
neural network (FCN) based segmentation methods [1,3,5] and large scale seg-
mentation datasets [18–20]. PSPNet [4] introduces pyramid pooling module to
extract multi-scale features which contain both local information and global
information, solving the problem of insufficient use of context information well.
Similarly, Deeplab series models [3,5,15] utilize atrous convolution kernel with
different dilation values to get context information.

After transformer [21] has achieved great success in the field of natural lan-
guage processing, attention based CNN models also obtained greatly developed.
SENet [22] squeezes the feature map to a vector by global average pooling and
uses several fully connected layers generating channel reweighting vector, which
can represent the importance of different channels. DANet [14] adopts position
attention module and channel attention module to learn position and channel
inter-dependencies. CCNet [16] adopts a criss-cross attention module to capture
contextual information from full-image dependencies. Then following ViT [23],
Segformer [17] realizes semantic segmentation with a fully transformer architec-
ture.

Fine-grained classification task has also been studied for a long time. Some
famous datasets are CUB [11] and Standford dogs [26]. API-Net [24] learns a
mutual feature vector to capture semantic differences in the input pair and then
compares this mutual vector with individual vectors to generate gates for each
input image. Transfg [25] designs a tranformer model to effectively and accu-
rately select discriminative image patches and compute their relations. How-
ever, as a similar task, fine-grained semantic segmentation task receives limited
attention, so we establish two datasets and study this task in this paper.
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Fig. 3. The overall architecture of our SCCDNet. E and D in figure are encoder and
decoder.

3 Method

3.1 Overall Network Architecture

As we discussed above, the Spatial Consistency and Class-level Diversity
enhancement Network (SCCDNet) is proposed to solve the two major problems
in fine-grained semantic segmentation task. The overall architecture of SCCDNet
is shown in Fig. 3, in which the model consists of encoder, decoder, Spatial Con-
sistency Enhancement Module (SCEM) and Fine-grained Regions Contrastive
Loss (FRC loss).

Any classification network could be chosen as encoder, such as ResNet [27]
and ViT [23]. The decoder is always different in various methods, which is pyra-
mid pooling module (PPM) in PSPNet [4] and atrous spatial pyramid pooling
(ASPP) in DeepLabv3 [15]. The SCEM and FRC loss are applied on the output
feature of encoder. The output of SCEM will be input to decoder for getting
final prediction and FRC loss, which is not used in test phase, is only utilized to
promote the feature more discriminative.

3.2 Spatial Consistency Enhancement Module

Due to the large intra-class variation and small inter-class difference, the com-
ponents of an object could be very similar to components of object with another
class, resulting in segmenting an object to multiple parts with different classes.
To alleviate this challenge, we propose the Spatial Consistency Enhancement
Module (SCEM) to enhance the spatial consistency, making model predict a
integral region for a single object.
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Define the output feature of encoder as f , so SCEM takes f as input, and
output a new feature fc, whose size is equal to f . Based on the visualization
of f , we discover the encoder mainly focuses on part of the whole region of
object, inducing decoder to assign different classes to this part and other object
regions. As shown in the above dotted box of Fig. 3, the original feature f has
a dramatically varying spatial heat distribution. However, we want it to have a
lower peak but a smoother heat distribution, in other words, realizing spatial
smoothing to change the heat distribution of f from high to low frequency in
spatial dimension, while still focusing on the object region. We first calculate
the heat map h of f as h(i,j) =

∑c
n=1 fn

(i,j)/c, where i, j and n are row index,
column index and the number channels of feature respectively.

Consider the certain class fits a particular distribution F , then each feature
generated from image with this class is a sample chosen from this distribution.
The sampled feature f can be separate to three part along spatial dimension, the
background region Sα, the hot region Sβ and the other object region Sγ with
low value in h. We want get a new feature f̂ with low-frequency information
compared to f and finally generate f̃ = ψ

(
f, f̂

)
, which has both the low fre-

quency spatial consistency and the focus on the whole object region. The ψ (·, ·)
is a mapping function. Because we mainly aim to increase the heat values of Sγ

and maintain those values of Sα and Sβ , our objective function of ĥ (heat map
of f̂) in Sγ is shown in Eq. 1.

max
∑

p∈Sγ

∣
∣
∣
ĥp

hp

∣
∣
∣ (1)

where ĥp and hp denote points in two heat maps. Meanwhile, in Sα and Sβ ,
ĥp should converge in distribution to ( d→) h as shown in Eq. 2.

ĥ (p | p ∈ (Sα ∪ Sβ))
d→ h (p | p ∈ (Sα ∪ Sβ)) (2)

To satisfy above conditions, we aim to prompt the high heat region of the
heat map expand and enlarge. Therefore, as shown in Eq. 3, in each s × s local
region, we get a vector v which has the maximum probability of belonging to
the object to represent this region under the guidance of h.

v = Softmax(h1, h2, · · · , hs×s) · (f1, f2, · · · , fs×s)
T (3)

where (h1, h2, · · · , hs×s) and (f1, f2, · · · , fs×s) are points in local region of h
and f . This method is just similar to the pooling operation, while the output is
not average calculation or maximum selection but a weighted average operation
based on heat map. By setting the stride of local region as s, the output feature
f̂ is s times downsampled from f . Two MLPs are applied to f̂ and f respectively,
aligning the channel distributions of them.

Then we use bilinear interpolation to upsample the f̂ to fl, which has same
size with f but lower frequency spatial information because of the informa-
tion loss caused by the above downsampling. Using f̃ = (f + fl) /2, we can get
f̃ , which has smoother distribution than f and still focuses on object region
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with stronger spatial consistency. By using f̃ as input, the decoder will be more
inclined to predict the object as a whole in spatial dimension.

3.3 Fine-Grained Regions Contrastive Loss

Although the spatial inconsistency problem can be solved by SCEM to some
extent, the small inter-class difference still induces model to confuse different
fine-grained classes. To clear the decision boundaries between different classes,
we design the Fine-grained Regions Contrastive loss (FRC loss).

The output feature f of encoder contains multiple features extracted from a
batch of images. Define the batch size as K, then all features in a single batch can
be denoted as f1, f2, · · · , fK . During training phase, we also have mask labels
M1,M2, · · · ,MK of samples in the same batch. Then we will use these mask
labels to extract representative feature vectors of every objects in this batch,
just except the background.

Assume there are m different classes (except background) in images of a
single batch and mask M is downsampled to the same size with f , then we
can get the representative vector of each class with Masked Average Pooling, as
shown in Eq. 4 and Eq. 5.

vp
t =

∑w
i=1

∑h
j=1 fp

(i,j)

[
Mp

(i,j)
== t

]

∑w
i=1

∑h
j=1

[
Mp

(i,j) == t
] (4)

vt =

∑
1≤p≤K,t∈Mp vp

t
∑K

p=0 [t ∈ Mp]
(5)

h and w are feature height and width. [·] denotes Iverson bracket, a notation
that signifies a number that is 1 if the condition in square brackets is satisfied,
and 0 otherwise, i.e. vt is the vector of class t (t ≤ m) and vp

t is the vector
generated by the p-th mask Mp.

To enhance the class-level diversity, we introduce contrastive loss on these
vectors. At the first, we generate a dense cosine similarity matrix S by calculating
cosine similarity between each pair of vectors (including one and itself). So S is
a m×m matrix and each point s(a,b) equals to 〈va · vb〉 / (|va| · |vb|) (a, b are row
and column indexes, 1 ≤ a, b ≤ m).

After getting S, we use Softmax operation on it, converting summation of
each line to 1 following Eq. 6.

s
′
(a,b) =

exp
(
s(a,b)

)

∑m
i=1 exp

(
s(a,b)

) (6)

where S
′

is the matrix generated from S after Softmax. So the FRC loss is
obtained by calculating cross entropy loss between S

′
and an identity matrix I

as shown in Eq. 7

LFRC = − 1
m

m∑

a=1

(
1
m

m∑

b=1

(
I(a,b) · log s

′
(a,b)

)
)

(7)
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Table 1. Datasets details and experiment settings of CUB-seg and FGSCR42-seg.

Datasets Num of Class Train Set Test Set Input Size Batch Size

CUB-seg 200 5994 5794 416× 416 8
FGSCR42-seg 42 3924 3854 416× 416 4

Table 2. Experiment results of six previous models and our SCCDNet on CUB-seg
and FGSCR42-seg datasets. PPM and ASPP denote that models are based on PSPNet
and DeepLabv3 respectively.

Methods Backbone CUB-seg FGSCR42-seg
mIOU Acc mAcc mIOU Acc mAcc

FCN [1] ResNet50 61.91 96.13 73.69 45.31 93.74 55.38
FCN [1] ResNet101 60.92 96.05 73.04 54.41 94.84 61.60
DANet [14] ResNet50 63.38 96.04 75.58 68.84 97.35 79.41
DANet [14] ResNet101 67.85 96.62 79.12 70.28 97.61 80.96
CCNet [16] ResNet50 68.86 96.79 79.88 63.33 96.47 71.59
CCNet [16] ResNet101 68.73 96.81 79.58 63.74 96.91 72.31
Segformer [17] mit-b0 63.37 96.07 73.48 67.43 97.24 77.69
Segformer [17] mit-b5 69.16 96.88 80.87 70.53 97.56 80.99
PSPNet [4] ResNet50 69.95 96.93 80.90 75.44 98.10 84.62
PSPNet [4] ResNet101 70.03 96.97 80.94 73.49 97.82 80.32
DeepLabv3 [15] ResNet50 69.98 96.98 80.82 72.75 97.69 80.21
DeepLabv3 [15] ResNet101 70.26 96.97 81.14 70.77 97.89 81.19
SCCDNet (+PPM) ResNet50 71.12 97.00 81.48 77.60 98.21 85.61
SCCDNet (+PPM) ResNet101 71.02 97.00 81.99 72.24 97.82 82.83
SCCDNet (+ASPP) ResNet50 71.29 97.04 81.19 73.57 97.96 83.59
SCCDNet (+ASPP) ResNet101 70.91 97.01 81.44 71.83 97.71 80.05

By designing the FRC loss, the features of different classes can be more
diverse, making it easier to classify.

3.4 Loss

By adding SCEM and FRC loss, the overall loss of our SCCDNet, as shown in
Eq. 8, consists of three parts, main cross entropy loss, auxiliary loss and the FRC
loss.

L = α · Lce + β · Laux + γ · LFRC (8)

Laux is usually based on a FCN decoder and placed after the encoder. In
experiments, we set α = 1 and β = γ = 0.4.
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Table 3. The ablation study of
SCEM and FRC loss, the exper-
iments are conducted on CUB-
seg datasets and baseline model is
PSPNet with ResNet50.

Method mIOU Acc mAcc

PSPNet 69.95 96.93 80.90
PSPNet+SCEM 70.36 96.97 81.02
PSPNet+FRC loss 70.87 96.95 81.33
SCCDNet 71.12 97.00 81.48

Table 4. Ablation study on down-
sampling stride s of SCEM, con-
ducted on CUB-seg datasets and
baseline model is PSPNet with
ResNet50.

Stride mIOU Acc mAcc

2 71.12 97.00 81.48
4 70.94 97.02 81.43
6 69.14 96.90 80.79
8 64.53 96.38 74.62

Table 5. Comparison between “PSPNet+SCEM” and “SCCDNet” with different batch
size on CUB-seg dataset using ResNet50 as encoder.

Batch size 2 3 4 5 6 7 8

PSPNet+SCEM (mIOU) 58.94 62.79 65.28 67.94 68.86 70.37 70.36
SCCDNet (mIOU) 56.32 61.43 65.09 67.98 69.50 70.86 71.12

4 Experiments

4.1 Implementation Details

We establish two datasets, CUB-seg and FGSCR43-seg, to evaluate perfor-
mances of different models, details are shown in Table 1. For CNN based mod-
els, ResNet50 and ResNet101 with ImageNet pretrained weights are used as
encoders, while mit-b0 and mit-b5 with pretrained weights are used for Seg-
former. Initial learning rate, momentum and weight decay are set as 0.01, 0.9
and 0.0001, and SGD is chosen. We also utilize “Poly” schedule with 0.9 power
and run models for 40k iterations. Methods and experiments are implemented
on MMSegmentation framework. Mean IOU (mIOU), pixel accuracy (Acc) and
mean pixel accuracy (mAcc) are used as evaluation metrics.

4.2 Results

We conduct extensive experiments on two datasets as shown in Table 2, using six
commonly used segmentation models with different backbones and our SCCDNet
based on PSPNet and DeepLabv3. It can be seen intuitively that our SCCDNet
achieves significant improvement compared to original PSPNet and DeepLabv3.
On CUB-seg dataset, there are only delicate difference between same model (such
as PSPNet and DeepLabv3) with different encoders. However, on FGSCR42-seg,
models based on ResNet101 usually have worse performance than those based
on ResNet50. Because FGSCR42-seg datasets has some classes which has few
samples, so large backbone has excessive focus on large sample classes and neglect
of small sample classes. Overall, our SCCDNet effectively improves performance
while introducing very little cost during testing phase.
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Fig. 4. The prediction visualization of six different models, FCN, DANet, Segformer,
PSPNet, DeepLabv3 and our SCCDNet.

4.3 Ablation Study

To further analyze the effect of SCEM and FRC loss, we conduct ablation exper-
iments on CUB-seg dataset as shown in Table 3. The baseline model is PSPNet
with ResNet50. We can see that adding SCEM or FRC loss alone to baseline,
the performances both can be improved. In addition, the effect of FRC loss is
larger than effect of SCEM, which means the small inter-class distinction can be
even more detrimental to network performance. Combine SCEM and FRC loss,
our SCCDNet achieves the best performance on CUB-seg dataset.

We also validate our SCCDNet on CUB dataset with different stride s of
SCEM as shown in Table 4. It is obvious that the segmentation performance
going lower when the stride s becomes larger, because as s increases, the negative
impact of information loss on the model exceeds the enhancement effect of SCEM
on spatial consistency.

As shown in Table 5, as the batch size increases, the performances of two mod-
els also increases. However, the larger the batch size, the better the improvement
introduced by FRC loss.

4.4 Visualization

To analyze the performance of our SCCDNet intuitively, we conduct several
visualization experiments. Figure 4 illustrates the prediction mask of six different
models, FCN, DANet, Segformer, PSPNet, DeepLabv3 and our SCCDNet. It can
be seen that the prediction results of SCCDNet are more consistency in spatial
dimension, and the classification errors are significantly reduced compared with
other methods. For example, in the first line, other five models all predict some
regions of the black American Crow to another class, but SCCDNet recognize
the whole region of it correctly.

We visualize the heat map of features before and after SCEM in Fig. 5. Before
SCEM, as shown in Fig. 5 (b), the feature focuses on part of the object region.
Figure 5 (c) illustrates the heat map of feature output from the SCEM. We can
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Fig. 5. The heat map visualization of features before and after SCEM. (a) original
images, (b) heat map of feature before SCEM, (c) heat map of feature after SCEM.

Fig. 6. The t-SNE visualization of vectors generated from MAP on CUB-seg dataset.

intuitively find the hot region where the feature focus is larger than line (b) and
cover the whole object region appropriately.

We conduct a t-distributed stochastic neighbor embedding (t-SNE) visual-
ization experiment for the vectors of whole CUB-seg test dataset by masked
average pooling. There are 5794 points in Fig. 6 and different colors denote dif-
ferent classes (total 200 classes). We can see that the introduction of FRC loss
can shorten distances of same class vector and enlarge them with different classes,
significantly enhancing the class-level diversity and promoting the model gen-
erating clearer decision boundaries. Otherwise, SCEM has little effect on the
distinction between different classes.

5 Conclusion

To explore the fine-grained semantic segmentation which has more classes and
greater inter-class similarity, we establish CUB-seg and FGSCR42-seg datasets.
To solve the major problems in this task, spatial inconsistency and similar classes
confusion, we propose a Spatial Consistency and Class-level Diversity enhance-
ment Network (SCCDNet). We design the Spatial Consistency Enhancement
Module (SCEM) to obtain feature with low-frequency and spatial consistent
information, which can guide model to segment objects in a more holistic way.
Then we introduce Fine-grained Regions Contrastive loss (FRC loss) to prompt
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features of different classes diverse, realizing clearer decision boundaries and
reducing confusion between classes. Extensive experiments have been conducted
to prove the effectiveness of our SCCDNet, comprehensive ablation study and
visualization work show that SCCDNet indeed enhance the spatial consistency
and class-level diversity well. Future work may focus on extraction of key fine-
grained discriminative parts and the representation of relationship between part
and entirety.
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Abstract. Named entity disambiguation (NED) is a fundamental task
in NLP. Although numerous methods have been proposed for NED in
recent years, they ignore the fact that a lot of real-world corpora are
diachronic by nature, such as historical documents or news articles, which
vary greatly in time. As a consequence, most current methods fail to fully
exploit the temporal information inside the corpora and knowledge bases.
To address the issue, we propose a novel model which integrates temporal
feature into pretrained language model to make our model aware of time
and a new sample re-weighting scheme for diachronic NED which penal-
izes highly-frequent mention-entity pairs to improve performance on rare
and unseen entities. We present WikiCMAG and WikiSM, two new NED
datasets annotated on ancient Chinese historical records. Experiments
show that our model outperforms existing methods by large margins,
proving the effectiveness of integrating diachronic information and our re-
weighting schema. Our model also gains competitive performance on out-
of-distribution (OOD) settings. WikiSM is publicly available at https://
github.com/PKUDHC/WikiSM.

Keywords: Entity disambiguation · Natural language processing ·
Diachronic information

1 Introduction

Named entity disambiguation (NED) is the task of mapping mentions in a text to
their corresponding entities in a knowledge base (KB). NED is crucial for various
downstream natural language processing tasks, such as information retrieval
[15], knowledge graph construction [19] and question answering [13]. Despite the
numerous methods proposed for this task in recent years [3,14,27], there has
been limited focus on NED in diachronic corpora. Many knowledge-intensive
texts are diachronic by nature, such as historical documents and news articles.
However, most existing methods are designed to be time-agnostic, neglecting the
temporal properties embedded in texts and knowledge bases (KBs).

Diachronic NED is faced with three main challenges. First, most pretrained
language models are not specifically formulated to capture temporal features,
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thus they have a poor perception of the time of input texts and KB entities.
Second, NED datasets are often imbalanced, with a very small number of enti-
ties with very high frequencies. Third, training resources and benchmarks for
diachronic NED are scarce, particularly in non-English languages, posing a sig-
nificant difficulty for the community to fairly compare and develop new methods.

To address the above challenges, firstly, we propose a new NED model that
transforms time signal to natural language expression to jointly encode it with
textual inputs. Secondly, we propose to re-weight train samples by their fre-
quency in training set to alleviate the bias caused by data imbalance. Thirdly,
we present two new diachronic NED datasets in ancient Chinese history domain.

The contributions of this paper are threefold:

1. We propose a novel diachronic named entity disambiguation method which
incorporates temporal information as natural language expressions to improve
performance on diachronic corpus. Experiments show that our method out-
performs recent baselines by large margins.

2. We propose a novel sample re-weighting scheme for diachronic NED which
penalizes highly-frequent mention-entity pairs to improve performance on rare
and unseen entities. Experiments show that this scheme effectively enhances
model performance on rare or unseen entities.

3. We present WikiCMAG and WikiSM, two new named entity disambiguation
datasets annotated on ancient Chinese historical records. The datasets con-
tain a large amount of manually annotated mentions and cover a variety of
dynasties spanning nearly 2000 years. We make WikiSM publicly available1
in hope to boost researches in related areas. To the best of our knowledge,
this is the first NED dataset ever in ancient Chinese history domain.

2 Related Works

Previous Methods for NED. Recently, deep learning has achieved enormous
success in solving NED task. Gillick et al. [11] propose a multi-layer network to
compute the cosine similarity of mention embedding and entity embedding. Chen
et al. [7] follow this paradigm by introducing BERT to generate embedding and
latent type information to better capture similarity. Logeswaran et al. [18] adopt
cross-encoder to improve attention interaction between mention and entity. De
Cao et al. [9] propose an autoregressive NED model which generates NED output
in a language-model manner under alias trie constraint.

Temporal Methods in NLP. Rijhwani et al. [20] study the effect of temporal
drift in evaluation data in named entity recognition (NER) task. They introduce
a year-split dataset of English tweets to support their analysis. It is found that
temporal information has the potential for improvement in NER and similar
NLP tasks. Zaporojets et al. [28] propose TempEL, an entity linking dataset in
which entities are time-continual, occurring in different years from 2013 to 2022.

1 https://github.com/PKUDHC/WikiSM.

https://github.com/PKUDHC/WikiSM
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Experiments show state-of-the-art models suffer major performance degradation
on TempEL. Wang et al. [23] propose TimeBERT, a BERT-based model pre-
trained on long-span temporal news collection. It adds a pretraining objective
that predicts article timestamp using the representation of [CLS] token. Regard-
ing the NED task, Agarwal et al. [2] propose the first diachronic NED method
named diaNED, which introduces time signature from date expressions and is
based on static word and entity embeddings and gradient boost trees.

Sample Re-weighting. Sample re-weighting has been shown effective for
imbalanced training data [6]. Beigman et al. [5] propose to re-weight samples
inversely proportional to class frequency to improve metaphor detection. Su et
al. [21] introduce a re-weighting method for zero-shot and rare word sense dis-
ambiguation task based on number of senses belonging to the word.

3 Method

Formally, the NED task can be defined as follows. Let X denote a set of docu-
ments and E denote a knowledge base. An entity e ∈ E consists of a title τt(e)
and a description τd(e). For a document x ∈ X , the set of mentions within x is
denoted as M(x) = {m(x)1, ...,m(x)|M(x)|}. The task of NED requires that for
any mention m ∈ M(x) where x ∈ X , an NED model should assign the correct
corresponding entity e ∈ E to the mention m.

We propose a novel diachronic NED model based on a two-stage retriever-
reranker architecture with time period information as complementary input.
The major architecture of our model is illustrated in Fig. 1. Following a common
practice in prior works [1,25,29], our model consists of two subsequent modules,
namely retriever and reranker. When disambiguating mentions in a chunk of
text, the text is first fed into our retriever to recall entity candidates that can
possibly be linked to the mentions in the chunk, and then the chunk, along with
the possible entity candidates collected by the retriever, are provided to the
reranker for a more scrutinized reranking.

The following parts describe our method formally.

3.1 Retriever

Our retriever is mainly a combination of two encoders, both of which are multi-
layer bidirectional transformers initialized from pretrained language models, such
as BERT [10] or RoBERTa [17]. Let φmnt

θ and φent
θ denote the two encoders

respectively, where θ denotes the parameters of the corresponding encoder. The
parameters of the two encoders are not shared.

We use φmnt
θ to encode the mentions. For a given document x ∈ X with

mentions M(x), we iterate over M(x) to obtain a separate representation for
each mention (called query mention) individually. The input sequence of the
encoder φmnt

θ consists of four parts: the query mention, the left and right context
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Fig. 1. The overall architecture of our proposed model (⊕ denotes concatenation)

of the mention, and the diachronic information of the text. To be specific, the
input token sequence of a mention m ∈ M(x) is defined as:

Tmnt(m,x) = [tCLS, d(x), t1, cleft(m,x), t<,m, t>, cright(m,x), tSEP],

where d(x) is the described time period of the document x, cleft(m,x) and
cright(m,x) are the left and right context of mention m in document x respec-
tively, t1 is a custom token indicating the concatenation of different segments,
t< and t> are two custom tokens indicating the position of the query mention
among the context, and tCLS, tSEP are the special tokens of pretrained language
models that indicate the start and the end of a sequence, respectively, such as
[CLS] and [SEP] in BERT. Notably, to inject diachronic information into our
model, we prepend time period string to the context to make our retriever aware
of the time background.2

Entities in knowledge base are encoded by φent
θ . For a given entity e ∈ E , the

input token sequence is defined as follows:

T ent(e) = [tCLS, τt(e), t2, τd(e), tSEP],

where t2 is a custom token like t1.
For both encoders, we use the hidden vector from the final layer as the rep-

resentation of the mention and the entities. For mention encoder φmnt
θ , we use

the hidden final vector of corresponding to the t< token, while for entity encoder
2 In real scenarios, the time which a piece of text describes is easy to obtain since

most texts have known sources and metadata that can help with time identification.
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φent
θ , the tCLS token is used instead. Let hmnt(m,x) ∈ R

u denote the represen-
tation of a mention m ∈ M(x) and hent(e) ∈ R

u denote the representation of
an entity e ∈ E , where u is the hidden size of the pretrained language model.
The relevance score between a mention m from document x and an entity e is
defined as

sim(m, e;x) = hmnt(m,x)Thent(e). (1)
To train the retriever, for each mention m, we construct a batch of entity samples
with both a positive sample and negative samples. Exactly 1 positive sample
is contained in the batch, which is the entity to which mention m is linked,
denoted as e+. Negative samples are obtained through two criteria: random
sampling and hard negative sampling. We obtain k hard negatives per batch
by selecting k entities with highest scores predicted by retriever. The resulting
negative samples, combining random and hard negatives, are denoted by Q−(x).
We use a fixed batch size for training. The loss function of the retriever over m
is defined as

L1 = − log
esim(m,e+;x)/γ

esim(m,e+;x)/γ +
∑

e−∈Q−(x) esim(m,e−;x)/γ
, (2)

where γ is the temperature hyperparameter.

3.2 Reranker

Our reranker is a cross-encoder that takes a concatenated sequence of mention,
context and entities as input. It is also a multi-layer bidirectional transformer
initialized from a pretrained language model. Let Qr(m,x) denote the candidate
entities obtained by the (fully-trained) retriever. For any m ∈ M(x), x ∈ X and
e ∈ E , the input token sequence for the reranker is defined as:

T rerank(m,x, e) = [Tmnt(m,x), τt(e), t2, τd(e), tSEP].

Let hrer(m,x)i denote the final layer hidden vector of the reranker corresponding
to the "t<" token in T rerank(m,x, Qr(m,x)i), where Qr(m,x)i denotes the i-th
entity in the candidate list Qr(m,x). We compute the probability of Qr(m,x)i
being the correct corresponding entity to the query mention by

p(m,x)i = softmax(WThrer(m,x)i), (3)

where W ∈ R
u is learnable parameter and the softmax is computed over all

entities given a certain mention.
The loss function for the reranker is multi-class cross-entropy loss:

L2 = − log(p(m,x)y) (4)

where y is the index of the gold entity corresponding to the mention m.
We use the candidate entities generated by the fully-trained retriever to train

the reranker. To make sure the loss function is valid, we add gold entity into
Qr(m,x) if they are missed by the retriever. During inference, we first obtain
candidates entities using our fully-trained retriever, and then use the reranker
to choose the entity with highest probability.
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3.3 Sample Re-Weighting by Frequency

We propose an additional sample re-weighting scheme to reduce the bias induced
by imbalanced training data. Since the training data contains mention-entity
pairs with very high frequency (e.g. 100x more frequent than average), common
training method might misguide the model to memorize high-frequent mentions
and entities, thus harming performance of low-frequent or unseen data. Thus,
we propose a re-weighting function that assigns a weight monotonically decreas-
ing with respect to frequency. Let f(m, e) denote the number of occurrences of
mention m linked to entity e in training set. Then, for every training sample con-
taining mention m linked to entity e, we assign a weight α(m, e) to the sample
by the following equation:

α(m, e) = β1(f(m, e) + β2)−β3 , (5)

where βi > 0(i = 1, 2, 3) are hyperparameters. We provide a plot of the func-
tion with specified hyperparameters in Appendix A to illustrate it more clearly.
Consequently, the loss function for reranker after re-weighting becomes:

L2 = −α(m,Qr(m,x)y) log(p(m,x)y). (6)

3.4 Coreference Resolution Post-processing

It is a prevailing phenomenon in ancient Chinese historical records that a person’s
surname or the first one or two characters in a person’s first name are omitted
when the person is mentioned for multiple times. This is problematic because due
to complexity constraints, the length of text processed by pretrained language
models is limited (e.g. less than 512 in RoBERTa), so the input text must be
cut into short chunks. However, sometimes the mentions in the current chunk
are incomplete and the full mention is so far away that it can not be seen in the
current chunk. This may lead to wrong disambiguation result. To alleviate this
issue, we adopt a rule-based coreference resolution algorithm for entity mentions.
Concretely, we iterate over all mentions in the text and point the mention to the
nearest precedent if the precedent ends with the mention.

4 Dataset

Since there are no publicly available NED dataset on ancient Chinese histori-
cal records, we construct two new NED dataset to train and test our method,
WikiCMAG and WikiSM. Both datasets are annotated on randomly-selected
chapters of classic ancient Chinese history records: WikiCMAG on Comprehen-
sive Mirror for Aid in Government (CMAG, 资治通鉴) and WikiSM on History
of Song (宋史) and History of Ming (明史). The datasets are manually anno-
tated by a group of approximately 10 Chinese university students. We instruct
the students to link the mentions to the corresponding entity in the KB, if such
an entity exists. The KB we use is Chinese Wikipedia. The basic statistics of the
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Table 1. Statistics of the train, dev and test split of WikiCMAG and WikiSM

Statistic WikiCMAG WikiSM
Train Dev Test Train Dev Test

# Chapters 29 2 2 7 2 2
# Characters 265K 17.0K 20.4K 66.4K 18.0K 17.0K
# InKB Mentions 23.1K 1.4K 1.6K 2.5K 0.7K 0.8K
# Entities in KB linked to a mention 3.6K 0.3K 0.4K 0.8K 0.4K 0.3K
# Unseen entities N/A 0.16K 0.27K N/A 0.28K 0.20K
% Unseen entities N/A 58.7 67.9 N/A 78.8 62.6
% Unseen dynasties N/A 100.0 100.0 N/A 0.0 0.0

datasets are shown in Table 1. The scale of WikiCMAG is large, with a total of
26.1K InKB mentions annotated in three splits. As comparison, AIDA-CoNLL
[12], one of the most popular English NED benchmarks, contains 27.8K.

Below are some significant characteristics of the two datasets.

Large Number of Unseen Entities. As is shown in Table 1, the portion of
unseen entities (those never linked in the training set) in the test set of WikiC-
MAG and WikiSM are 67.9% and 62.6%, respectively. This indicates that a
majority of linked entities in test set are not seen in training set, which brings
a big challenge for NED models to link them successfully. The same holds for
dynasties in WikiCMAG.

Small Textual Overlap and Large Number of Aliases. The textual overlap
between mention surface and entity name is a vital feature in many previous
NED methods, such as diaNED [2] and ExtEnD [4]. We calculate the ratio of
exact matches between mention surface and entity names in the training set
of WikiCMAG, WikiSM and AIDA-CoNLL. It is discovered that AIDA-CoNLL
has 43.9% exact matches, while WikiCMAG and WikiSM only have 22.0% and
24.2%. This makes it harder for models to disambiguate according to surface form
of mentions. Also, the portion of entities with more than one surface mentions is
46.6% and 24.5% in WikiCMAG and WikiSM, significantly higher than 19.5% in
AIDA-CoNLL. These features in overall increases the difficulty of our datasets.

Same Name but Different Time. Our datasets involve many cases where
multiple Wikipedia entities in different dynasties share exactly the same name.
For instance, the person Jia Kui (贾逵) has 3 entries in Wikipedia, living in
Eastern Han, Three Kingdoms and Northern Song (东汉，三国，北宋). The
location Ji Zhou (吉州) also has 3 entries, referring to that in Sui, Liao and Jin
(隋，辽，金).

Very Long Documents. Many English NED datasets consist of short docu-
ments. For instance, the average length of document in AIDA-CoNLL train set
is less then 300 (in tokens). However, the average document length of train set in
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WikiCMAG and WikiSM are 9.1K and 9.5K (in characters), respectively. This
is very different from commonly used NED datasets.

5 Experiments

5.1 Settings

We conduct experiments to show the effectiveness of our method. Three model
variants are experimented: (1) full model; (2) model without diachronic infor-
mation, i.e. temporal information omitted during training and testing; and (3)
model without sample re-weighting. All models are evaluated by two ways: with
coreference resolution (CR) post-processing and without. We also add an out-
of-distribution (OOD) experiment which trains the models on WikiCMAG but
evaluates them on WikiSM to assess their OOD generalizability.

We use PyTorch framework for implementation. We use SikuRoBERTa [22]
as the pretrained language model for all the encoders in the retriever and the
reranker, since it is an ancient Chinese version of RoBERTa that is pretrained
on approximately half a billion ancient Chinese characters which is particularly
suitable for ancient Chinese understanding. The optimizer is Adam [16]. We
use warm-up in training where the learning rate increases linearly from 0 to
configured learning rate over the first epoch. See Appendix A for major hyper-
parameters and other details in our experiment.

5.2 Baselines and Results

The following baseline methods are compared to our model.

– BM25 [8] is a classic unsupervised information retrieval algorithm in which is
generally considered a strong baseline in information retrieval [24]. We apply
it to NED by regarding mention as query and KB entity titles and descriptions
as documents.

– GPT 3.5-ZS. GPT 3.5, also known as ChatGPT, is a model powered by
OpenAI. It is trained by instruction fine-tuning and RLHF, achieving high
performance in a wide range of NLP tasks across languages. We test GPT
3.5 in zero-shot (ZS) setting on our datasets by prompting it to output exact
Wikipedia entity name.

– Minimum Edit Distance (MED). Edit distance is a common metric for
evaluating the similarity of two strings. We take the KB entity with minimum
edit distance to a given mention as prediction. 3

– diaNED [2] is the first method for diachronic named entity disambiguation
task. We re-implement diaNED and train and evaluate it on our datasets.

– GENRE [9] formulates NED as an seq2seq task. It directly generates
entity name conditioned on mention and context. We re-implement and train
GENRE on our datasets. Note we do not conduct pretraining in Chinese.

3 If there are more than 1 entity with the same minimum edit distance, a random one
is chosen.
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– ExtEnD [4] formulates NED as a span extraction task by concatenating
mention context and candidate entity names (titles) as a sequence, feeding
the sequence to a pretrained encoder and extracting answer spans to pick the
correct entity. We re-implement and train ExtEnD on our datasets.

– LUKE4 [27] is a global NED method based on BERT. We re-implement and
train LUKE on our datasets. Note we do not conduct pretraining in Chinese.

More details of the implementations are described in Appendix A.

Table 2. Performance of our method compared with baselines on WikiCMAG and
WikiSM test set (Best method in bold). w/ CR and w/o CR denote with and with-
out coreference resolution post-processing, respectively. Note that we do not conduct
pretraining for GENRE and LUKE in our implementations. Also note that diaNED
uses pretrained embeddings and mention and entity counts from Wikipedia, meaning
that it involves external training resource so that it is not directly comparable to other
methods which do not include any additional feature.

Type Method InKB Micro F1
WikiCMAG WikiSM
w/o CR w/ CR w/o CR w/ CR

Non-temporal BM25 13.54 18.66 4.56 5.32
GPT 3.5-ZS 25.49 50.35 21.17 25.60
MED 27.01 55.28 21.29 30.54
GENRE (2021) [9] 65.53 74.95 52.60 57.67
LUKE (2022) [27] 40.92 41.68 25.73 24.21
ExtEnD (2022) [4] 66.80 77.78 55.01 58.43

Temporal diaNED (2018) [2] 73.12 81.02 60.33 61.60
Ours 83.46 87.34 62.72 66.92

− diachronic information 72.21 81.17 59.44 63.50
− sample re-weighting 80.88 86.43 62.34 66.54

The performance of our method and the baselines are shown in Table 2.
Following convention, InKB micro F1 is used to measure the performance of the
models. The result clearly indicates that our model outperforms all baselines
significantly, with a 6.32 and 5.32 F1 increase compared to the second best on
WikiCMAG and WikiSM respectively.

Among non-temporal models, we find that GENRE and ExtEnD have simi-
lar performance on both datasets. While the former formulates NED as seq2seq
task and the latter as extraction task, both of them utilize solely entity title
information and ignore entity descriptions, which is also vital for correct dis-
ambiguation. LUKE, which relies heavily on entity embeddings, shows poor
result without pretraining, which is expensive. All of the above methods ignore
4 The name comes from that of their public GitHub repository.
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diachronic information, which is very helpful when disambiguating entities on a
KB that contains entities from a huge time span. GPT 3.5-ZS, without access
to external knowledge and without tuning, also performs poorly.

Among temporal methods, diaNED is also outperformed significantly by our
model, which does not come as a surprise since diaNED is based on gradient
boosting trees and static word and entity embeddings. It is worth noting, how-
ever, that diaNED is still competitive with non-temporal neural models. Unlike
all above, our model successfully integrates diachronic information and entity
description during inference, boosting the performance considerably.

5.3 Analysis

OOD Performance. Table 3 is the result for OOD experiment. It is demon-
strated that our model gains a competitive OOD performance when training on
WikiCMAG and testing on WikiSM.

Table 3. Out-of-distribution (OOD) performance of our method compared with base-
lines when training on WikiCMAG and evaluating on WikiSM. w/ CR and w/ CR
denote with and without coreference resolution post-processing, respectively.

Type Method InKB Micro F1
w/o CR w/ CR

Non-temporal GENRE [9] 44.36 47.53
ExtEnD [4] 50.70 55.38
LUKE [27] 41.83 39.03

Temporal diaNED [2] 51.33 55.13
Ours 48.09 52.29

The Effect of Incorporating Diachronic Information. Table 2 shows that
reranker’s InKB Micro F1 drops sharply by 6.17 and 3.42 on WikiCMAG and
WikiSM, indicating that diachronic information is indeed crucial.

The Effect of Sample Re-Weighting. Table 2 shows that removing sample re-
weighting causes a performance degradation on both datasets, which is especially
significant on WikiCMAG. We furthur compute the performance of models on
0, 1 and 3-shot entities5 on the two datasets, shown in Fig. 2. It is obvious that
across the datasets and different shots, removing sample re-weighting generally
leads to a worse performance. This is an evidence that sample re-weighting can
help our model perform better on unseen or rare entities. Still, under some
settings the performance of model without diachronic information surpasses that
of the full model. This might be due to the fact that the number of few-shot
samples is too small, causing some randomness in results.
5 Here k-shot means that the correct entity occurs k times in the training data.
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Fig. 2. {0,1,3}-shot performance of our method compared with baselines on WikiC-
MAG and WikiSM without coreference resolution

Table 4. Cases of predictions of our models and baselines without coreference resolu-
tion. Mentions are colored purple. Original text is in traditional Chinese. -DI represents
our model variant without diachronic information. Italicized entity names are trans-
lated directly from Chinese since the entity does not have a corresponding English
Wikipedia page.

Dataset Mention and context Time Prediction

Ours Ours (-DI) diaNED ExtEnD GENRE

WikiCMAG 以秦王俊为扬州总管四十四州诸

军事

隋 ✓扬州(隋朝) ✗扬州(古代) ✓扬州(隋朝) ✗扬州(古代) ✗扬州(古代)

Appointing Prince Jun of
Qin as the Chief Comman-
der of Military Affairs for
the forty-four provinces in
Yangzhou

Sui Yangzhou
(Sui)

Yangzhou
(ancient
China)

Yangzhou
(Sui)

Yangzhou
(ancient
China)

Yangzhou
(ancient
China)

WikiSM 正统七年十二月奉昭皇后神主庙 明 ✓诚孝昭皇后 ✗昭怀皇后 ✗刘昭妃(明神
宗)

✗章献明肃皇

后

✗昭慈圣献皇

后

In the twelfth month of
the seventh year of the
Zhengtong era, sacrifices
were offered to the ances-
tral shrine of the Empress
Zhao

Ming Empress
Zhang
(Hongxi)

Empress
Liu (Zhe-
zong)

Concubine
Zhao
(Shen-
zong)

Empress
Liu (Zhen-
zong)

Empress
Meng

6 Discussion

We conduct case analysis to see how our method improves diachronic NED
performance. As is shown in Table 4, for the case from WikiCMAG, despite
the fact that all models give the answer Yangzhou (扬州), all non-temporal
models point to a wrong entity, Yangzhou (ancient China), which seems correct
at the first sight but is actually wrong. In truth, the “Yangzhou” in text refers
to the province created in 589 AD whose administrative center is Jiangdu (江
都, today’s Yangzhou city), which is the same as the correct answer. However,
Yangzhou (ancient China) mainly represents the administrative zone with the
same name before 589 AD and during 620–626 AD, which does not have any
connection to today’s Yangzhou. Nevertheless, ours and diaNED produce right
result. For the second case, only our model gives correct entity. Apart from
diaNED, all other models that are non-temporal predict persons from Song (宋)
dynasty, which conflicts with the time of the document. Although diaNED gives
an answer from the correct dynasty, it fails to output the exact correct person
due to its limitations in semantic understanding.



316 Z. Deng et al.

7 Conclusion

We propose a novel diachronic named entity disambiguation method which inte-
grates temporal information to pretrained language model as natural language
expression to enhance performance on diachronic corpora. We introduce a novel
sample re-weighting formula for NED which penalizes mention-entity pairs with
high frequency. We present two new human-annotated named entity disambigua-
tion dataset, namely WikiCMAG and WikiSM. Experiments on the two datasets
indicate that our method significantly outperforms recent baseline, proving the
effectiveness of incorporating diachronic feature. Our method also gains compet-
itive performance in out-of-distribution setting.

This paper also has some limitations. Our study currently only covers Chinese
language and may be extended to other languages in the future. The thematic
and stylistic diversity of the proposed datasets is also limited. Further research
directions might include cross-language diachronic NED and improving out-of-
distribution and zero- or few-shot abilities.

Acknowledgements. This research is supported by the NSFC project “the Construc-
tion of the Knowledge Graph for the History of Chinese Confucianism” (Grant No.
72010107003).

Appendix A. Implementation Details

Details of our implementations are listed as follows. Unless otherwise specified,
we adopt the same hyperparameters as in the original works for baseline methods.
Apart from GPT 3.5-ZS, all the baselines below use candidate entities generated
by our fully-trained retriever, for it has a better performance than commonly
used entity retrieval method in English NED benchmarks.

GPT 3.5-ZS. We use gpt-3.5-turbo with following prompt:

{{paragraph}}
Which entity does "{{mention}}" in the paragraph above refer to in
Wikipedia? Output the entity title directly.

We manually pick out the answer if the response contains irrelevant informa-
tion. Only exact matches are counted.

diaNED. We use Wikipedia2Vec [26] to obtain pretrained Chinese word and
entity embeddings. Temporal vector dimensions are altered to 2500 to represent
years 500 BC to 2000 AD. Document creation time is replaced by the approx-
imate year described by the document. We use regular expressions to extract
year expressions from Chinese Wikipedia.

GENRE. We use bart-base-chinese6 to initialize the parameters.

6 https://huggingface.co/fnlp/bart-base-chinese.

https://huggingface.co/fnlp/bart-base-chinese
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ExtEnD. We use SikuRoBERTa for re-implementation because there is no pre-
trained Longformer in ancient Chinese.

LUKE. We use SikuRoBERTa to initialize the parameters.

Ours. See Table 5 for major hyperparameters of our model. We use
SikuRoBERTa to initialize the parameters. See Fig. 3 for the plot of our re-
weighting function with hyperparameters from Table 5.

Fig. 3. The plot of re-weighting function with our hyperparameters.

Table 5. Major hyperparameters in the experiment

Hyperparameter Value

Batch size of retriever 64
# Hard negatives (k) 4
# Candidates for reranker 32
Temperature of loss function (γ) 8
Learning rate (retriever) 2e-6
Learning rate (reranker) 1e-5
Gradient accumulation steps (retriever) 4
Gradient accumulation steps (reranker) 4
Training epochs (retriever) 2
Training epochs (reranker) 2
Length of mention left/right context 64
Re-weighting parameter β1 2.5
Re-weighting parameter β2 1.0
Re-weighting parameter β3 0.4
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Abstract. Bipartite networks are capable of representing complex sys-
tems that involve two distinct types of objects. However, there are lim-
itations to the existing bipartite networks: 1) It is inadequate in char-
acterizing multi-relationships among objects in complex systems, as it is
restricted to depict only one type of relationship. 2) It is limited to static
representations of complex systems, hampering their ability to describe
dynamic changes in the interactions among objects over time. There-
fore, the Dynamic Multi-Relationship Bipartite Network (DMBN) model
is introduced, which not only models the dynamic multi-relationships
between two types of objects in complex systems, but also enables
dynamic prediction of the intricate relationships between objects. Exten-
sive experiments were conducted on complex systems, and the results
indicate that the DMBN model is significantly better than the baseline
methods across multiple evaluation metrics, thereby proving the effec-
tiveness of the DMBN.

Keywords: Multi-relationships aggregation · Feature Representation ·
Dynamic prediction

1 Introduction

With the development of complex network theory, many complex systems can be
described by complex networks [1–5]. A typical complex network comprises nodes
and edges, wherein nodes are indicative of objects within a complex system, and
edges signify the intricate relationships between these objects [6–8]. A distinctive
type of network model exists within complex networks, known as bipartite net-
works. Bipartite networks consist of two distinct types of nodes, wherein edges
are solely present between nodes of different types [9–11]. For instance, bipar-
tite network models can be used to represent purchase relationships between
users and items, therapeutic relationships between drugs and diseases, as well
as invocation relationships between users and services [12–14].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 320–331, 2024.
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Traditional bipartite networks are primarily modeled based on a static, single-
type relationship between two types of objects. However, in real complex sys-
tems, there exist multi-relationships that change over time between two types
of objects [15–17]. Each relationship between objects harbors distinct seman-
tic information, making it infeasible to capture the intricate semantic relation-
ship among objects solely based on a singular relationship [18,19]. In addition,
traditional bipartite network modeling cannot capture the dynamic interaction
information between objects, prompting the need for alternative methodologies
in the field of network modeling and analysis.

Therefore, the present paper proposes a novel Dynamic Multi-Relationships
Bipartite Network (DMBN) model, designed to effectively model the dynamic
multi-relationships that exist between two distinct types of objects in real com-
plex systems. Compared with five existing baseline models, namely DMF, LTSC,
TSQP, DLP, and MBN, the DMBN model exhibits superior performance. The
main contributions of this paper can be summarized as follows:

(1) A DMBN model is proposed, which can dynamically describe multi-
relationships between two types of objects.

(2) Representation methods for multi-relationship aggregation features and
preference features are proposed, which can provide features for dynamic pre-
diction.

(3) Experiments on real datasets show that DMBN significantly outperforms
baseline methods, proving the effectiveness of the DMBN model.

2 Related Work

A bipartite network is a special type of complex network that consists of two
distinct types of nodes and one type of edge, with edges only existing between
nodes of different types. The structural characteristics of bipartite networks can
be used to describe complex systems consisting of two different types of objects.
The characterization and analysis of real complex systems based on bipartite
networks can reveal information transmission mechanisms, predict information
propagation paths, and explore the relationship between complex system struc-
tures and functionalities, providing a scientific basis for decision-making in rele-
vant complex systems. For instance, Fu proposed MVGCN, a robust and effective
bipartite network link prediction framework for biomedical applications [20]. The
framework is based on bipartite networks in biomedical research and can per-
form link prediction tasks. Jafari proposed a drug combination strategy method
based on bipartite network modeling, which model drug and patient sample (can-
cer cells) response data as a bipartite network and formulates effective multi-
targeted drug combination plans based on community structures [21]. Zhang
introduced graph neural on bipartite networks and proposed the BCGNN model
for graph classification tasks. This model is able to effectively capture relation-
ships between nodes of the same type in bipartite networks and preserve the
structural information of the bipartite graph [22]. Bipartite networks have been
proven to be a useful tool for depicting real complex systems and conducting
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relevant studies and applications. Therefore, this paper implements modeling
of multi-relationships between objects in complex systems based on bipartite
networks.

3 DMBN Model

3.1 Framework Overview

The overall framework of DMBN is shown in Fig. 1. DMBN models and predicts
dynamic multi-relationships between two types of objects in complex systems,
which includes two parts: DMBN construction and dynamic prediction. In the
DMBN construction part: firstly, the DMBN is proposed to describe the dynamic
multi-relationships between objects. Then, different relationships with varying
degrees of importance are aggregated based on attention mechanisms to obtain
multi-relationships aggregated features. In the dynamic prediction part: firstly,
the preference features of nodes are mined based on the similarity between same-
type nodes in the network. Then, the temporal features of node pairs, which are
represented by the concatenation of the multi-relationships aggregated features
and preference features, are fed into the prediction model (GRU) to achieve the
prediction of relationships.

Fig. 1. The overall framework of DMBN.
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3.2 DMBN Construction

Definition of DMBN. The DMBN model comprises node sets U and V , type
set L, time set T , and edge set E. The DMBN is defined as GDMB=(U , V , L,
T , E), where U={u1, u2, ...} and V ={v1, v2, . . .} respectively represent different
types of node sets, L={l1, l2, . . .} represents the set of edge types, T={t1, t2, . . .}
represents the set of time instances, and E={e1, e2, . . .} represents the set of edges.
The DMBN is represented by the adjacency matrix, ADMB={At1

MB , At2
MB , . . .},

where At1
MB=At1

l1 & At1
l2 & . . . denotes the set of adjacency matrices under different

relationship at time t1.

Multi-relationships Aggregation Based on Attention. There are multi-
relationships between two types of nodes in a DMBN, and each relationship
contains different semantic information. The key to analyzing and researching
DMBNs lies in aggregating the relationships that exist with semantic differ-
ences between them. Hence, this paper proposes a multi-relationship aggrega-
tion method based on the attention mechanism. The method assigns weights
to each relationship based on their relative importance, in order to reflect the
significance of different relationships, primarily in terms of weights.

DMBNs can be represented by adjacency matrices, which are based on dif-
ferent time periods and various relationships. For example, At

l represents the
adjacency matrix at time t and relationship type l. This paper adopts an atten-
tion mechanism to aggregate multi-relationships, considering the significance of
each relationship, as shown in formula (1).

At
MBA =

h∑

i=1

WliA
t
li (1)

At
MBA represents the adjacency matrix after multi-relationship aggregation

at time t. Wli denotes the importance of relationship type li, At
li

represents the
adjacency matrix corresponding to relationship type li at time t, and h is the
number of relationship types.

The multi-relationship aggregation based on attention mechanism can effec-
tively capture the significance of diverse relationships. Therefore, this paper aims
to extract the multi-relationship aggregation features for nodes u and v. The cor-
responding methodology is presented in formulas (2)–(3).

atu = At
MBA(i :) (2)

atv = At
MBA(: j) (3)

In this context, atu and atv respectively indicate the multi-relationship aggre-
gation features of node u and node v at time t. At

MBA(i:) denotes the i-th row
of the adjacency matrix, while At

MBA(:j) indicates its j-th column.
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3.3 Dynamic Prediction

Feature Representation Based on Similarity. In real complex systems,
similarities among objects have the potential to influence the evolution of the
complex system, as well as the intricate relationships between objects. There-
fore, this paper proposes a preference feature representation method based on
the similarity among objects. Based on the initial feature and Pearson correla-
tion coefficient (PCC), the similarity between objects of the same type is calcu-
lated. As shown in formula (4). The intuitive feature of complex systems is the
interactional relationships among their constituent objects, which can reflect the
preferences of these objects to some extent. Therefore, this paper is based on
the interaction relationship between objects as the initial feature.

sim(x, y) =

∑n
p=1 (xp − x̄) (yp − ȳ)

√∑n
p=1 (xp − x̄)

∑n
p=1 (yp − ȳ)

(4)

Here, x and y represent objects of the same type, p represent the position of
the initial feature, and x̄ and ȳ represent the mean of the initial feature.

Based on the adjacency matrix At
l for time t and relationship l, the similarity

feature matrices Stlu and Stlv are obtained for u-type nodes and v-type nodes
under this time and complex relationship. In this paper, the final similarity
feature matrix is obtained by summing the similarity matrices under various
complex relationships. The specific formulas are shown in formulas (5)–(6).

Stu =
h∑

i=1

Stliu (5)

Stv =
h∑

i=1

Stliv (6)

Here, Stu and Stv represent the similarity feature matrix of u-type nodes and
v-type nodes at time t, respectively; Stliu represents the similarity feature matrix
of u-type nodes under relationship type li at time t; h denotes the number of
relationship types.

Based on the similarity between nodes of the same type, the preference fea-
tures of nodes u and v are extracted in this paper, as shown in formulas (7)–(8).

stu = Stu(i :) (7)

stv = Stv(j :) (8)

Here, stu and stv represent the preference features of node u and node v at
time t, respectively. (i:) and (j:) represent the i-th and j-th rows of the matrix,
respectively.
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Dynamic Multi-relationships Prediction. The motivation of this paper is
to predict the complex relationships among nodes in DMBNs based on the his-
torical features of the nodes. These historical features include multi-relationship
aggregation features and preference features. Multi-relationship aggregation fea-
tures can reflect the importance of different relationships, while preference fea-
tures can reflect the preferences of nodes. Therefore, this paper is based on the
concatenation of multi-relationship aggregation features and preference features
to obtain node features, as shown in formulas (9)–(10).

gtu = atu ⊕ stu (9)

gtv = atv ⊕ stv (10)

In this context, gtu and gtv respectively denote the features of node u and
node v at time t, while the symbol ⊕ indicates the concatenation of features.

This paper obtains the temporal feature ft of node pair u-v at time t based
on feature concatenation, as shown in formula (11).

ft = gtu ⊕ gtu (11)

This paper employs the Gate Recurrent Unit (GRU) model to mine implicit
information. As a variant of LSTM, this model features a simpler structure, fewer
parameters, and faster training speed. By feeding the vector hk obtained from
the final time step output of GRU into a fully connected network, the predicted
relationship between nodes u and v can be obtained, as shown in formula (12).

ŷ = Relu (Whk + b) (12)

Here, W and b are weight matrices for adaptive learning, and ŷ represents the
predicted value.

In this paper, predicting relationships among objects is regarded as a regres-
sion problem, and its loss function is shown in formula (13).

L = α∗ 1
M

M∑

i=1

(yi − ŷi)
2 + (1 − α)∗

∑

j

w2
j (13)

In this equation, yi represents the true relationship between nodes u and v,
ŷ represents the predicted relationship, M denotes the number of samples, wj

is a learnable parameter,
∑

j w2
j represents the regularization term, α is used to

balance the importance of the regularization term.

4 Experiment and Results

4.1 Dataset

This paper constructs DMBN based on various complex relationships among
complex objects, and performs dynamic prediction of target relationships. The
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dataset is sourced from various complex relationships between users and items
on the Taobao platform [23], including browse (Pv), favorite (Fav), add-to-cart
(Cart) and purchase (Buy), among others. The experiments in this paper fol-
low the experimental setup of MBN [28], and three datasets were obtained as
experimental data using the same preprocessing method. Moreover, the com-
plex relationships between users and items in the three datasets were rearranged
based on their temporal order. In the experimental process, each dataset was
divided into five equal parts, where one part was used as a testing set and the
remaining parts were used as training sets. This process was repeated five times.

4.2 Evaluation Metrics

This paper constructs a DMBN based on various relationships between users and
items, and dynamically predicts the relationships based on the temporal features
of DMBN. In the real world, merchants are more concerned with the purchasing
relationships. Therefore, this paper regards the purchasing relationship as the
ultimate goal. To address the issue of imbalanced data resulting from using
negative samples that do not have any relationships between users and items,
this paper adopts a regression model-based evaluation metric to measure the
performance of DMBN. This approach allows for a more accurate assessment of
the predictive performance of the model when dealing with highly imbalanced
datasets. The mean absolute error (MAE) and root mean square error (RMSE)
were used to evaluate the performance of the predictions in the experiments.

4.3 Baseline Methods

The effectiveness of DMBN is evaluated based on the following five baseline
methods. DMF [24]: DMF is a matrix factorization model based on neural net-
work structures. LTSC [25]: LTSC is a feature-enhanced service classification
model based on attention mechanisms and convolutional neural networks (CNN).
TSQP [26]: TSQP is a QoS prediction method based on deep learning, which
aims to perform time-aware service QoS prediction tasks through feature integra-
tion. DLP [27]: DLP is a link prediction model that employs the local structures
of a bipartite network. MBN [28]: MBN is a network model that is designed to
model the various complex relationships between two types of objects in the real
world.

4.4 Results

Performance Comparison. The performance comparison results between
DMBN and baseline methods based on two evaluation metrics, namely MAE
and RMSE, are presented in Table 1. The experimental results demonstrate
that DMBN outperforms the baseline methods on all the evaluation metrics.
The performance improvements are primarily attributed to the following rea-
sons: 1): Modeling based on the DMBN can characterize the existence of multi-
relationships in complex systems. 2): Dynamic modeling can effectively retain
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both historical and current information among objects. 3): Feature representa-
tion based on similarity can to some extent reflect the preference features of
objects. Moreover, the following observation results were further summarized:

Table 1. Performance comparison of DMBN and baseline methods.

Method User Behavior 1 User Behavior 2 User Behavior 3
RMSE MAE RMSE MAE RMSE MAE

DMF 0.477 0.438 0.488 0.434 0.472 0.424
LTSC 1.503 1.212 1.541 1.502 1.536 1.511
TSQP 1.371 0.784 1.675 0.915 1.583 0.886
DLP 2.718 1.437 2.566 1.051 2.393 1.251
MBN 0.471 0.387 0.473 0.393 0.470 0.388
DMBN 0.319 0.270 0.277 0.197 0.351 0.282

(1) Based on RMSE evaluation metric, the DLP model exhibits the worst
performance. DLP predicts the link relationships between nodes based on the
local structural information of the bipartite network. This methodology neces-
sitates a significant quantity of edge relationships within the bipartite network
to extract more structural features that can distinguish differences in target
node. However, the relationships present in real complex systems are typically
sparse. When constructing bipartite networks based on complex relationships
and extracting local structural features, the limited structural information con-
tained in the features may not be sufficient to provide accurate and effective
information for predictions, which consequently may result in suboptimal per-
formance.

(2) Based on the MAE evaluation metric, the LTSC model exhibits poor
performance. The LTSC model extracts feature representations based on a word
embedding model, and enhances the embedding representation using a label
attention mechanism. However, the users and items in the dataset of this paper
are mainly represented in the form of IDs, which cannot extract features based
on word embedding models. Therefore, utilizing solely the IDs of users and items
as features would not be effective in extracting meaningful information.

(3) MBN exhibits superior performance when compared to the other base-
line methods. MBN has the ability to model a variety of complex relationships
among objects in a complex system and can overcome the limitations of tradi-
tional bipartite networks, which can only model a single type of edge relation-
ship. At the same time, an attention mechanism based on the relationship level
is designed to fuse multiple relationships and realize the importance distinction
of each relationship. Moreover, the superior performance of DMBN relative to
MBN indicates that incorporating dynamic factors into modeling can signifi-
cantly enhance the predictive performance of the model.
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Impact of Multi-relationship. In this work, we examine the effects of multi-
relationship modeling strategies on performance, with a primary focus on DMBN
modeling based on double and multiple relationships.

Fig. 2. Modeling based on double relationships.

Initially, we investigate the modeling strategy based on double relationships,
where the network is modeled based on two types of relationships. The exper-
imental results demonstrated in Fig. 2 show that the model achieves optimal
performance when modeled based on “Cart” and “Buy” relationships. In addi-
tion to the “Buy” relationship, adding other relationships still achieves good
predictive performance, demonstrating the importance of the “Buy” relationship
in enhancing the model performance. Moreover, when modeling is based on a
combination of two relationships, that without the “Pv” relationship performs
better than that with the “Pv” relationship, indicating the limitations of the
“Pv” relationship in improving the model performance.

Fig. 3. Modeling based on multiple relationships.

Next, we investigate the modeling strategy based on multi-relationships,
where the network is modeled based on a variety of relationships.
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The experimental results in Fig. 3 demonstrate that the modeling of the “Far”,
“Cart”, and “Buy” relationships yields the best predictive performance. This indi-
cates the importance of these three relationships for predicting the target rela-
tionship. However, it is noteworthy that the predictive performance is not opti-
mal when modeling based on the four relationships. It is proposed that the “Pv”
relationship is a ubiquitous factor between users and items. Therefore, including
this relationship in the modeling may introduce unnecessary noise, interfere with
the model’s recognition of the target relationship, and result in a decrease in pre-
dictive performance. Furthermore, incorporating the “Buy” relationship in the
multi-relationship modeling yields significantly superior performance, thereby
underscoring the paramount importance of this relationship in augmenting the
predictive capabilities of model.

Fig. 4. The impact of time on model performance.

The Impact of Time. This paper performs temporal segmentation of the
dataset based on a 24-hour cutoff for partitioning. As illustrated in Fig. 4, the
predictive performance of the model improves with the increase of time, which
indicates that incorporating historical information can effectively enhance the
predictive capability of model. In addition, the introduction of historical infor-
mation leads to a remarkable improvement in the performance of the model
within a short time frame. This could be attributed to the model’s incapability
of capturing enough historical cues when the temporal window is too brief. At
time interval of 4, the model’s performance temporarily decreases, possibly due
to the redundant interaction information between users and items present in
the historical data at that moment. As the time interval increases, the model’s
performance further improves, highlighting the significant impact of historical
information on enhancing model performance.
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5 Conclusion

This paper proposes a DMBN model to address the challenge of modeling
dynamic multi-relationships between objects in complex systems. The main inno-
vation of DMBN can be summarized as follows: 1) A novel framework, the DMBN
model, is proposed to tackle the formidable task of modeling intricate and diverse
dynamic relationships that exist between two types of objects in complex sys-
tems. 2) A multi-relationship aggregation feature representation method and a
preference feature mining method are proposed, and the dynamic prediction of
the target relationship is achieved by concatenating these features. 3) Experimen-
tal results on a real complex system demonstrate the DMBN’s modeling ability
and outstanding performance in predicting target relationships. In our future
endeavors, we intend to incorporate more intricate objects within the network
modeling framework, aiming to enhance the comprehensive characterization of
real complex systems.
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Abstract. Image multi-label classification datasets are often partially
labeled (for each sample, only the labels on some categories are known).
One popular solution for training convolutional neural networks is treat-
ing all unknown labels as negative labels, named Negative mode. But it
produces wrong labels unevenly over categories, decreasing the binary
classification performance on different categories to varying degrees. On
the other hand, although Ignore mode that ignores the contributions
of unknown labels may be less effective than Negative mode, it ensures
the data have no additional wrong labels, which is what Negative mode
lacks. In this paper, we propose Category-wise Fine-Tuning (CFT), a
new post-training method that can be applied to a model trained with
Negative mode to improve its performance on each category indepen-
dently. Specifically, CFT uses Ignore mode to one-by-one fine-tune the
logistic regressions (LRs) in the classification layer. The use of Ignore
mode reduces the performance decreases caused by the wrong labels of
Negative mode during training. Particularly, Genetic Algorithm (GA)
and binary crossentropy are used in CFT for fine-tuning the LRs. The
effectiveness of our methods was evaluated on the CheXpert competi-
tion dataset and achieves state-of-the-art results, to our knowledge. A
single model submitted to the competition server for the official evalua-
tion achieves mAUC 91.82% on the test set, which is the highest single
model score in the leaderboard and literature. Moreover, our ensemble
achieves mAUC 93.33% (The competition was recently closed. We evalu-
ate the ensemble on a local machine after the test set is released and can
be downloaded.) on the test set, superior to the best in the leaderboard
and literature (93.05%). Besides, the effectiveness of our methods is also
evaluated on the partially labeled versions of the MS-COCO dataset.

Keywords: Partial Labels · Partial Annotations · Multi-Label
Classification · Multi-Label Recognition

1 Introduction

Image multi-label classification (MLC) is a typical computer vision problem that
classifies the presence (positive) or absence (negative) of multiple categories in
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each image. As an image usually contains multiple objects or concepts, it is
more practical than its counterpart single-label classification and hence has a
wide range of applications like medical image interpretation [6,7,21].

A crucial challenge of training convolutional neural networks (CNNs) for
image MLC is the training data is often partially labeled [17,27]. That is, for
each image sample, only the labels on some categories are known, and the rest are
unknown. It is because the manual collection of fully labeled data is expensive
[13], especially when the numbers of categories and samples are very large.

A popular and effective solution for training CNN with partially labeled data
is treating all unknown labels as negative labels [2,3,26,34], named Negative
mode [1]. This mode is based on the prior knowledge of MLC datasets that
negative labels are usually much more than positive labels [28]. Nevertheless,
this mode produces wrong labels to the training data, as some unknown labels’
ground truths are positive labels instead of negative labels. These wrong labels
are usually unevenly distributed over different categories [1]. The categories with
more wrong labels suffer from more harm. Therefore, different categories suffer
from varying degrees of performance decreases.

On the other hand, another solution is ignoring the contributions of unknown
labels [1,13], named Ignore mode [1]. This mode may be less effective than
Negative mode [26], as it does not utilize the prior knowledge that negative labels
are in the majority. Even so, it ensures the training data have no additional wrong
labels, which is a vital advantage that Negative mode lacks. Therefore, several
work utilize this vital advantage of Ignore to improve Negative mode for training
CNNs beginning with initial parameters [1,26].

In this paper, we propose Category-wise Fine-Tuning (CFT), a new post-
training method that can be applied to a CNN that has been trained with
Negative mode to improve its binary classification performance on each category
independently. Therefore, CFT is very different from most approaches that train
a CNN from initial parameters [1,26]. Specifically, CFT uses Ignore mode to
one-by-one fine-tune the logistic regressions (LRs) in the classification layer, in
which each LR outputs the binary classification result on one category. The use
of Ignore mode reduces the performance decreases caused by the wrong labels
of Negative mode during training. The one-by-one fine-tuning can improve the
performance on each category independently without affecting the performance
on other categories.

While applying CFT to a CNN, the LRs may prefer different fine-tuning
configurations (optimization methods, methods for handling untypical labels in
particular MLC datasets, etc.) to achieve higher performance. Therefore, we
additionally use a greedy selection for CFT to enable choosing the best config-
uration for each LR from multiple configuration candidates.

During experiments, we found using binary crossentropy (BCE) loss with
backpropagation for fine-tuning an LR sometimes unwantedly decreases the per-
formance like AUC (area under the receiver operating characteristic curve). On
the other hand, Genetic Algorithm (GA) [29] for fine-tuning can directly improve
the performance, avoiding performance drops caused by minimizing BCE.
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Sufficient experiments were conducted on the CheXpert [21] competition
dataset and the partially labeled versions of the MS-COCO [28] standard MLC
dataset to evaluate the effectiveness of our methods. Especially, our methods
achieve state-of-the-art on the CheXpert dataset, to the best of our knowledge.
We submitted a single CNN to the competition server1 for the official evaluation
on the test set. It achieves mAUC 91.82%, which is the highest single model
score in the leaderboard and literature. After that, the competition server was
closed and the test set is released. Therefore, our ensemble composed of 5 single
CNNs was evaluated on a local machine and achieves mAUC 93.33% on the test
set, superior to the best in the leaderboard and literature (mAUC 93.05% [44]).

2 Related Work

Several approaches were proposed to address MLC with partial labels. Binary
Relevance [15] converts MLC to multiple binary classification tasks, but it usually
fails to model the label dependencies and is less scalable to a large number
of categories. [23,41,43] adopted low-rank learning, [39] used a mixed graph
to encode a network of label dependency, [3,12] predicted unknown labels by
learning label relations, and [8,24,38] predicted unknown labels by posterior
inference. However, most of these approaches cannot be well-adapted for training
deep models, as they require putting all training data into memory or solving
costly optimization problems.

Some approaches train deep models with partial labels by exploiting image
and category dependencies. Durand et al. [13] proposed predicting unknown
labels based on curriculum learning with graph neural networks to model the
correlations between categories. IMCL [20] interactively learns a model with a
similarity learner which discovers label and image dependencies. SST [5] and
HST [4] explore the image-specific occurrence and category-specific feature sim-
ilarities to complement unknown labels. SARB [32] complements unknown labels
by learning and blending category-specific feature representation across different
images. However, most of these approaches require particular model architectures
or training schemes.

Negative mode and Ignore mode are more prevalent in contrast with the
complex approaches aforementioned. Ignore mode simply ignores the contribu-
tions of unknown labels (e.g., partial-BCE loss [13] and partial asymmetric loss
[1]) while Negative mode [2,3,26,34] treats all unknown labels as negative labels.
Several work (including this paper) aim to improve Negative mode with Ignore
mode, as introduced in Sect. 1. Kundu et al. [26] proposed a method to soften
the signal of the wrong labels of Negative mode by exploiting the image and label
relationships, but it does not avoid some categories training on too many wrong
labels. Ben-Brunch et al. [1] proposed Selective approach that can adjust the
training mode for each category to be either Negative or Ignore, but it requires
the presence frequency of every category which is unavailable in partially labeled
datasets.
1 https://stanfordmlgroup.github.io/competitions/chexpert/.

https://stanfordmlgroup.github.io/competitions/chexpert/
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Unlike most previous approaches that aim to train high performance models
beginning with initial parameters, the proposed CFT is a post-training method
based on Ignore mode that can be applied to models trained with Negative mode
to further improve the performance. Moreover, CFT can independently improve
the classification performance on each category. Hence, CFT may be able to
further improve the performance of the models trained with other approaches
mentioned above.

3 Methods

This section presents the proposed CFT, the greedy selection for selecting fine-
tuning configurations, and GA for fine-tuning, as summarized in Fig. 1.

Notations. Considering a C-category image MLC task with a training set D ={
(I,y)i

}
. Each sample (I,y) consists of an image I and a label vector y =

[y1, ..., yC ] ∈ {−1, 1, 0}C where the cth (c ∈ {1, ..., C}) element yc is the label
on category c and it is assigned to be either −1 (negative), 1 (positive), or 0
(unknown). A deep neural network (typically CNN) Baseline has been trained
on the training set D with Negative mode. The architecture of Baseline consists
of: (1) a backbone b transforms an input image I to a feature vector z = b(I) ∈
R

Z ; and (2) a C-unit fully-connected layer h with Sigmoid activation transforms
a feature vector z to an output vector ŷ = h(z) = [ŷ1, ..., ŷC ] ∈ [0, 1]C , where
the cth element ŷc is the output representing the binary classification result on
category c. To better illustrate CFT, we equivalently regard the fully-connected
layer h as C independent logistic regressions (LRs) h1, ..., hC , as shown in Fig. 1
left. The cth LR hc transforms a feature vector z to an output ŷc = hc(z).

3.1 Category-Wise Fine-Tuning (CFT)

The proposed CFT is a post-training method that can be applied to Baseline.
CFT uses Ignore mode to one-by-one fine-tune the LRs h1, ..., hC to improve
its performance on each category independently. Therefore, the backbone b is
always unchanged.

Specifically, the procedure of CFT has C steps (i.e., determined by the num-
ber of categories C). The goal of the cth step (c = {1, ..., C}) is to independently
improve the performance on category c through fine-tuning Baseline. That is,
the fine-tuning only improves the performance on category c, meanwhile, keep-
ing the performance on other categories unchanged. Hence, each category can
be independently improved without any concerns of harming other categories.

To achieve this goal, at the cth step, only the cth LR hc is fine-tuned instead
of the whole Baseline. It is because changing all the parameters of Baseline will
change the performance on all categories, which does not match the goal. On the
other hand, changing the parameters of hc only affects the output ŷc on category
c and does not affect the outputs on other categories, which matches the goal.
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Fig. 1. The overview of CFT and the greedy selection.

At the cth step, the cth LR hc is fine-tuned using binary crossentropy (BCE)
loss with backpropagation (BP), which is popular for optimizing binary classifi-
cation models. Ignore mode is used to reduce the performance decrease caused
by the wrong labels of Negative mode during training. Particularly, hc is fine-
tuned on a new training set Dc generated from the original training set D for
the use of Ignore mode and reducing computation cost, as shown in Fig. 1 right.
We first select the samples from D where the label on category c is known (i.e.,
yc ∈ {−1, 1}) to be the samples in Dc. This selection ensures hc is fine-tuned with
Ignore mode. Then, as the backbone b is always the same, we convert the image I
of each sample to a feature vector z = b(I) in advance to avoid unnecessary com-
putation during fine-tuning. Lastly, the unnecessary labels on other categories
are dropped. Formally, the new training set Dc =

{
(z, yc)i

}
is generated by:

Dc =
{
T((I,y))

∣
∣(I,y) ∈ D, yc ∈ {−1, 1}}

where T((I,y)) =
(
b(I), yc

)
= (z, yc).

3.2 Greedy Selection for Fine-Tuning Configuration Selection

While applying CFT to Baseline, as the LRs are independent to each other, each
LR can be fine-tuned with different configurations to achieve higher performance.
The configurations can be different optimization methods (e.g., BCE loss and the
below-introduced GA), methods for handling the untypical labels that appear
in the CheXpert dataset (see Sect. 4.1), batch sizes, learning rates, etc.

Hence, for each LR, we can additionally compare multiple fine-tuning con-
figuration candidates and select the best one based on the results, referred to as
greedy selection, as shown in Fig. 1 middle. For example, assume we apply CFT
to Baseline that has 5 LRs h1, ..., h5 (5 categories). We can additionally compare
BCE loss and GA, then choose the best configuration for each LR. A possible
result is, h1, h4, h5 uses BCE loss, while h2, h3 uses GA.

3.3 Fine-Tuning Logistic Regressions (LRs) Using Genetic
Algorithm

During the experiments on the CheXpert dataset (performance metric is AUC,
higher is better), we found that fine-tuning an LR using BCE loss sometimes
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unwantedly decreases AUC. A concrete example is in Fig. 2 which shows the
learning curves of fine-tuning the LR of the “Atelectasis” category. In both
the training curves and the validation curves, minimizing BCE can cause AUC
decreases. It is because minimizing BCE is generally used for optimizing classi-
fication accuracy [40], which does not necessarily achieve the best possible AUC
[40] or AP (average precision) [33] that are popular metrics for image MLC.

Therefore, we propose using Genetic Algorithm (GA) [29] to fine-tune each
LR. GA is a global search algorithm inspired by the principle of the evolution
theory. In nature, individuals which are more adapted to the environment have
higher chances to survive and produce offspring. This process keeps repeating
over generations until the best individual is found.

GA has shown its feasibility for training neural networks [10,18,30] and has
several advantages in comparison to BCE loss. (1) GA is a direct search method
[37] that can directly improve the performance computed by a metric, which
avoids the potential performance decreases caused by minimizing BCE; and (2)
BCE loss relies on backpropagation which is easy to trap in local optima and
difficult to escape it to find a better solution [18]. GA runs multiple solutions
simultaneously, which helps to escape from local optima [37].

4 Experimental Results and Discussion

We conducted sufficient experiments on the CheXpert competition dataset
(Sect. 4.1) and the partially labeled versions of the MS-COCO [28] standard
MLC dataset (Sect. 4.2) to evaluate the effectiveness of the proposed methods.

4.1 The CheXpert Chest X-Ray Image MLC Competition Dataset

Dataset. CheXpert [21] is a large-scale chest X-ray image 14-category MLC
competition dataset. The training set has 223,414 image samples. Labels are
automatically extracted from the free text reports. Labels are either positive,
negative, unknown (the term is blank in the original paper), or uncertain. Note-
worthy, the uncertain labels in this dataset are untypical in partially labeled
datasets and have different semantic meanings from unknown labels. An uncer-
tain label captures both the uncertainty in diagnosis and ambiguity in the report,
while an unknown label implies no mentions are found in the report. Hence, we
do not simply consider the uncertain labels as unknown labels. We handle the
uncertain labels in other ways instead, as described in the experimental settings
below. The validation set has 234 image samples. A label is manually assigned
as either positive or negative. The test set has 668 image samples. A label is
manually assigned as either positive or negative. The test set is private and
is reserved for the competition. Models must be submitted to the competition
server for the official evaluation on the test set. The competition leaderboard
is available at https://stanfordmlgroup.github.io/competitions/chexpert/. The
official performance metric is used, which is computed by the mean AUC
(mAUC) on the 5 categories: Atelectasis, Cardiomegaly, Consolidation, Edema,
and Pleural Effusion.

https://stanfordmlgroup.github.io/competitions/chexpert/
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Baseline Training. Baseline is a DenseNet-121 [19] CNN with an input res-
olution 2242. The parameters trained on ImageNet [11] are used as the initial
parameters. Baseline is trained on the training set for 10 epochs. We follow the
previous state-of-the-art [31,44] to treat unknown labels as negative (Negative
mode) and treat uncertain labels as positive with label smoothing [31]. Images
are rescaled to [0, 1]. We use the same data augmentation as in [6,7]: horizon-
tal flip, rotate ±20◦, and scale ±3%. BCE loss with batch size 32 and Adam
(lr = 1× 10−4) [25] is used to update parameters. The checkpoint that achieves
the highest validation mAUC is saved. Baseline achieves mAUC 89.6% on the
validation set (as reported in Table 1) which is already very high for a single
CNN. E.g., the single CNN of 2nd place on the competition leaderboard achieves
mAUC 89.4% [31].

Ablation Study on CFT. We apply CFT to Baseline to improve its per-
formance. The default BCE loss is used to fine-tune each LR, referred to as
(CFT-BCE). Besides, we study two variants of CFT-BCE:

1. CFT-BCE-simu: All the LRs are fine-tuned simultaneously (i.e., fine-tune
the whole classification layer), instead of fine-tuning each LR one-by-one.
Partial-BCE loss [13] is used to enable Ignore mode.

2. CFT-BCE-Nega: Each LR is fine-tuned with Negative mode, instead of
Ignore mode.

Full-batch gradient descent (lr = 1 × 10−4) is used to update parameters
for stability. We treat the uncertain labels as unknown labels, so the uncertain
labels are ignored in CFT. The number of epochs is 500.

Table 1 shows the results. CFT-BCE and its variants successfully improve
the mAUC of Baseline. Particularly, CFT-BCE achieves the highest improve-
ment (mAUC +0.3%). CFT-BCE-simu is less effective (+0.1%), because one-
by-one fine-tuning allows individually saving the best checkpoint for each LR,
thus achieving better mAUC. CFT-BCE-Negative is also less effective (+0.1%),
demonstrating the use Ignore Mode can effectively reduce the performance
decreases caused by the wrong labels of Negative mode during training.

Table 1. Ablation study on CFT, AUC%.

Method Ate Car Con Ede P.E Mean

Baseline 85.5 84.2 93.3 92.7 92.3 89.6
CFT-BCE-simu 85.7 84.0 93.3 92.8 92.4 89.7
CFT-BCE-Nega 85.6 84.2 93.4 92.9 92.4 89.7
CFT-BCE 85.6 85.0 93.5 92.9 92.5 89.9

Table 2. Ablation study on GA, AUC%.

Config Ate Car Con Ede P.E Mean

CFT-BCE 85.6 85.0 93.5 92.9 92.5 89.9
CFT-WMW 87.2 87.9 94.7 92.9 92.5 91.0
CFT-AUCM 89.1 87.7 93.8 93.2 92.4 91.2
CFT-GA 88.8 88.6 94.5 93.0 92.7 91.5
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Ablation Study on GA. We study four different optimization methods for
fine-tuning LRs to investigate the effectiveness of GA: (1) the default BCE
loss used above (CFT-BCE), (2) GA (CFT-GA), (3) the loss proposed in [40],
referred to as WMW loss (CFT-WMW), and (4) AUC margin loss (CFT-AUCM)
[44]. WMW and AUC margin losses are particularly designed for AUC maximiza-
tion.

For CFT-GA, we use the GA implementation of PyGAD [14]. The number
of generations is 500. An individual represents the parameters of the LR, where
one position of the individual represents one parameter. Decoding is the inverse
operation of encoding. The number of individuals is 30. All individuals are ini-
tialized by encoding the original parameters. The fitness function is set to be
the training mAUC. Roulette wheel selection is used to select 14 individuals
as parents. 10 of the parents are additionally kept as individuals in the next
generation. 2-point crossover is used with a probability of 80%. Mutation proba-
bility is set to be 2%. When a mutation occurs, 1% of the positions are mutated
by adding random scalars drawn from [−0.02, 0.02]. The individual that attains
the highest fitness score at every generation is validated instead of all individ-
uals to reduce the risk of overfitting. The individual that achieves the highest
validation mAUC is decoded and saved. For CFT-WMW, stochastic gradient
descent (lr = 1 × 10−3,momentum = 0.9) with batch size 32768 is used due to
memory lack. For CFT-AUCM , we follow the original paper [44] to use PESG
(lr = 1 × 10−2,margin = 1) [16]. Full batch size is used.

Table 2 shows all methods successfully improve the AUCs on all 5 categories.
Particularly, GA is the most effective (mAUC +1.9%), followed by AUCM loss
(+1.6%), WMW loss (+1.4%). BCE loss is the least effective (+0.3%).

Although WMW and AUCM losses are designed for AUC maximization, they
are less effective than GA, probably they rely on backpropagation which is easy
to trap on local optima. On the other hand, GA can directly optimize AUC and is
easier to escape from local optima. BCE loss is the least effective, as minimizing
BCE can lead to AUC drops. E.g., on “Atelectasis” category (Fig. 2).

Fig. 2. Learning curves of using BCE loss to
fine-tune the LR on Atelectasis. Minimizing
BCE loss can decrease AUC.

Table 3. Greedy selection for
exploiting uncertain labels, AUC%.

Method Ate Car Con Ede P.E Mean
Unknown 88.8 88.6 94.5 93.0 92.7 91.5
Positive 88.6 87.9 93.8 93.1 92.8 91.3
Negative 85.5 88.2 95.6 93.0 92.4 90.9
Greedy 88.8 88.6 95.6 93.1 92.8 91.8
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Greedy Selection for Exploiting Uncertain Labels. In the above ablation
studies, treating uncertain labels as unknown may be sub-optimal, as previous
studies in this dataset show that treating uncertain labels as positive tends
to achieve higher performance [31]. Therefore, we compare three methods for
handling uncertain labels with CFT-GA: treat as unknown labels (same as in
ablation studies), positive labels [21], and negative labels [21].

Table 3 shows that different categories prefer different methods. Hence, we
use the greedy selection to select the best method for each LR, eventually achiev-
ing mAUC 91.8%, which is +2.2% higher than Baseline mAUC 89.6%. In the
following comparison section, we refer to this model as CFT-GA-Greedy.

Table 4. Comparison to other state-of-the-art approaches on the test set, AUC%.

Model Type Rank Approach Ate Car Con Ede P.E Mean

Single Model 147 Chong et al. [7] 85.67 89.30 82.15 90.92 95.56 88.72

151 Multiview (R-50) [22] 85.60 90.85 81.07 89.45 95.85 88.60

134 Multiview (D-121) [22] 86.49 90.95 83.99 89.62 96.34 89.50

127 PTRN + Single Model [6] 85.66 89.06 86.89 90.94 95.47 89.61

53 CFT-GA-Greedy 88.58 90.20 90.99 93.06 96.26 91.82

Ensemble 102 PTRN + Ensemble [6] 85.73 89.90 90.57 91.66 95.04 90.58

98 Stanford Baseline [21] 85.50 89.77 89.76 91.56 96.67 90.65

5 YWW [42] 88.18 93.96 93.43 92.72 96.15 92.89

2 Hierarchical Learning [31] 90.13 93.18 92.11 92.89 96.68 93.00

1 DAM [44] 88.65 93.72 93.21 93.00 96.64 93.05

- CFT-GA-Greedy-Ensemble 91.52 93.73 91.57 93.33 96.50 93.33

Comparison to State-of-the-art Approaches. We compare CFT-GA-
Greedy to other state-of-the-art approaches on the test set. Most approaches
treat unknown labels as negative labels, hence can be considered as strong base-
lines of Negative mode for the comparison. Table 4 shows the comparison.

Single Model. We submitted CFT-GA-Greedy to the competition server for
official evaluation. It achieves mAUC 91.82% which is the highest single model
AUC in the leaderboard and literature, to the best of our knowledge.

Ensemble. We build an ensemble composed of CFT-GA-Greedy and another
4 CNNs developed by our proposed methods, referred to as CFT-GA-Greedy-
Ensemble. Similar to 2nd on the competition leaderboard [31], we use test time
augmentation [36] for more robust predictions: scale ±5%, rotate ±5◦, trans-
late ±5◦. Since the competition was suddenly closed, our ensemble cannot be
submitted for the official evaluation. After the test set was released and can be
downloaded, we evaluate our ensemble on a local machine. Our ensemble achieves
mAUC 93.33% which superiors the best in the leaderboard and literature, to the
best of our knowledge.
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4.2 Partially Labeled Versions of MS-COCO

Dataset. MS-COCO [28] (2014 split) is a standard MLC dataset comprising 80
categories. The training and the validation sets consist of around 80k and 40k
image samples, respectively. We follow the work on MS-COCO (e.g., [34]) to use
mean AP (mAP) as the performance metric.

As the training data is fully labeled, different schemes of partial labels can
be simulated by dropping some labels. Particularly, we study our methods under
the proportions of known labels of 10%, 20%, ..., 90%, respectively. To simulate
these schemes, we randomly drop 90%, 80%, ..., 10% of labels, respectively.

Table 5. Results on partially labeled versions of MS-COCO dataset. In mAP %.
“Average” column is the average mAP over label proportions 10% to 90%. (Bolded is
the best, underlined is the 2nd best)

Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Average

Baseline 54.8 63.1 68.9 72.0 74.1 75.9 77.9 79.2 80.6 71.84

CFT-BCE-simu 54.7 63.1 68.9 73.0 74.9 76.7 78.4 79.6 80.6 72.20

CFT-BCE-Negative 56.6 65.3 70.4 73.4 75.3 77.0 78.8 80.0 81.3 73.11

CFT-BCE 59.3 67.7 72.6 75.0 76.6 78.2 79.6 80.7 81.6 74.58

CFT-GA 57.4 65.6 71.0 73.8 75.6 77.4 79.1 80.4 81.4 73.52

CFT-Greedy 59.3 67.7 72.6 75.0 76.6 78.2 79.7 80.8 81.7 74.61

Baseline Training. We follow most of the settings of [34] to train Baseline,
as they achieved state-of-the-art CNN on the original MS-COCO (i.e., fully
labeled). Baseline is a TResNet-L [35] with an input resolution 4482 . The
parameters trained on ImageNet are used as the initial parameters. Negative
mode is used to handle the unknown labels. We use batch size 8, asymmetric
loss [34], and Adam (lr = 2×10−4) to update the parameters. We use AutoAug-
ment [9] with pretrained ImageNet policy as the data augmentation method.
Normalization of mean 0 and variance 1 is applied to the input images. The
checkpoint that achieves the highest validation mAP is saved. The performance
of Baseline under different label proportions are reported in Table 5.

Ablation Study on CFT. We apply CFT to Baseline to improve its per-
formance. The default BCE loss is used to fine-tune each LR, referred to as
CFT-BCE. Similar to the experiments on CheXpert, we also study the two vari-
ants of CFT-BCE: CFT-BCE-simu and CFT-BCE-Negative. Full-batch gradient
descent (lr = 1 × 10−2,monentum = 0.9) is used and the number of epochs is
5000.

CFT-BCE improves the average mAP by 2.74%, CFT-BCE-simu improves
0.36%, and CFT-BCE-Negative improves 1.27%. Both variants are less effective
than CFT-BCE, demonstrating the effectiveness of one-by-one fine-tuning and
Ignore mode.
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Noteworthy, CFT-BCE-Negative does not use Ignore mode. Although it is
less effective than using Ignore mode, it still can improve the average mAP.
It implies that this improvement is likely to be gained from somewhere else
instead of from reducing the performance decreases caused by the wrong labels of
Negative mode during training. Therefore, CFT may be able to improve models
trained with fully labeled data, which requires further investigation.

Ablation Study on GA. We compare GA to the default BCE loss (used in
above) for fine-tuning each LR. The number of generations is 2000. The popu-
lation size is 50. All the individuals of the initial population are encoded from
the original parameters. The best individual of the current generation is selected
as one individual of the next generation. The parents are selected using roulette
wheel selection. During crossover, 20% of the positions of two parents are ran-
domly switched to produce offspring. Each offspring has a 50% chance of being
mutated by adding a random scalar between [−0.001, 0.001] to each position.

GA improves the average mAP by 1.68%. However, it is generally less effective
than BCE loss (2.74%). The key reasons may be (1) minimizing BCE does not
necessarily lead to AP drops, and (2) BCE loss relies on backpropagation which
is generally more efficient than GA.

Greedy Selection. We use greedy selection for choosing the best optimization
methods between BCE loss and GA for each LR, referred to as CFT-Greedy.
CFT-Greedy improves the average mAP by 2.77%, which is further higher than
CFT-BCE by 0.03%. It implies that the greedy selection has chosen GA for the
fine-tuning of a small proportion of LRs.

5 Conclusion

In this paper, we propose a new post-training method called CFT which one-
by-one fine-tunes the LRs in a model trained with Negative mode to improve its
classification performance of each category independently further. Two optimiza-
tion methods (BCE loss and GA) are tested for fine-tuning LRs. The effectiveness
is evaluated on the CheXpert competition dataset and the partially labeled ver-
sions of the MS-COCO standard MLC dataset. Especially, CFT achieves state-
of-the-art on the CheXpert dataset (single model AUC 91.82% and ensemble
AUC 93.33%, on the test set).
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Abstract. The recommendation of stock ranking has always been a
challenging task in the financial technology (FinTech) field. Achieving an
excellent stock ranking result in stock ranking recommendation (SRR)
depends on mining the temporal relations within the stock and the com-
plex spatial relations among the stocks. However, existing studies only
consider the temporal relation features of stocks or introduce noise when
extracting spatial relation features, which limits the performance of stock
ranking recommendation tasks. To address this challenge, we propose the
Dynamic Temporal Spatial Relation Network (DTSRN), which con-
structs a spatial relation graph with dynamic stock temporal relation
features and extracts dynamic spatial relation features from different
views for the stock ranking recommendation. Specifically, we construct
learnable global-view and multi-view spatial graphs with stock temporal
relation features and then employ efficient graph convolution operations
to obtain the final stock representation. We extensively evaluate our
method on two real-world datasets and compare it with several state-
of-the-art approaches. The experimental results show that our proposed
method outperforms the state-of-the-art baseline methods.

Keywords: Temporal spatial relation networks · Graph neural
networks · Stock ranking recommendation

1 Introduction

The recent development of financial markets has drawn attention to stock rank-
ing recommendations due to their potentially high returns [18,21]. However,
stock ranking recommendations are challenging due to the complex temporal
relations within the stock and spatial relations among stocks.

Early research [1,30] treated multiple stock ranking recommendation prob-
lems as independent time series forecasting problems with stock temporal fea-
ture extraction, ignoring the spatial relation features among stocks, which limits
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the performance of the stock ranking recommendation task. However, in real-
ity, stocks are interrelated. There is a rich signal in the relationship between
stocks (or companies) [16]. For example, there is a spatial correlation in stock
price trends between companies that are related, as shown in Fig. 1, Kweichow
Moutai Company Limited (MOUTAI Inc) and Wuliangye Yibin Company Lim-
ited (WULIANGYE Inc), which belong to the same industry, have similar long-
term stock price trends. In addition, the stock changes of suppliers interact
with the stock price changes of their upstream and downstream companies [8],
such as BYD Inc. and Ganfeng Lithium Group Co., Ltd (GLG Inc), Contem-
porary Amperex Technology Company Limited (CATL Inc), and Guangzhou
Tinci Materials Technology Co., Ltd (GTMT Inc). Since there are correlations
between companies in the real world, they have a corresponding spatial corre-
lation in the stock price feature space. Mining the spatial relationships between
different stock price time series effectively improves the performance of the stock
ranking recommendation. To incorporate stock spatial relation features, He et
al. [10] proposed a static-dynamic graph neural network (SDGNN) to extract
spatial relation features and improve the performance of the stock ranking rec-
ommendations. Unfortunately, SDGNN constructs a dense stock static graph
using custom stock ID information to extract static spatial relation features
without using practical temporal relation features of stock. The process intro-
duces non-negligible noise in spatial feature extraction, causing a performance
loss for stock ranking recommendations.

To address this problem, we propose the Dynamic Temporal Spatial
Relation Network (DTSRN) method. DTSRN utilizes the gate recurrent unit
network (GRU) to capture the temporal relation feature matrix of stocks. Next,
it constructs a dynamic global-view spatial relation graph using a global similar-
ity matrix with the stock temporal relation feature matrix. DTSRN also creates
a dynamic multi-view spatial relation graph by applying a self-attention mech-
anism to the stock temporal relation feature matrix. Then, the stock dynamic
global-view and multi-view spatial relation features are extracted using an effi-
cient graph convolution operation. Finally, DTSRN fuses the dynamic global-
view and multi-view spatial relation features for stock ranking recommenda-
tions. We validate the performance of our method on multiple real datasets. Our
method can outperform all baseline methods, demonstrating the superiority of
DTSRN. The main contributions of this work are summarized as follows:

– We intuitively reveal the spatial correlation between stocks in the feature
space and analyze the limitations of existing spatial relation feature extraction
methods for the stock ranking recommendations.

– We propose the DTSRN, which can simultaneously mine the spatial relation
feature of stocks from the global view and local multi-view based on the
practical stock relation feature for stock ranking recommendations.

– We have conducted extensive experiments on multiple real-world datasets.
The experimental results show that our proposed DTSRN method obtains
the best stock ranking recommendation performance compared to the baseline
method.
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Fig. 1. An example of a correlation of stock price trends between different compa-
nies. The Y-axis represents the standardized stock price, and the X-axis represents
time. MOUTAI Inc and WULIANGYE Inc belong to the same industry. BYD Inc,
GLG Inc, CATL Inc, and GTMT Inc have upstream and downstream industry chain
relationships.

2 Related Work

Our work is directly related to recent efforts in utilizing temporal-spatial rela-
tions for stock ranking recommendations and dynamic graphs for stock ranking
recommendations.

2.1 Stock Ranking Recommendation with Temporal-Spatial
Relations

Wang et al. [23] introduced the Deep Co-investment Network Learning (Deep-
CNL) method. Feng et al. [8] presented a novel deep-learning solution called
Relational Stock Ranking (RSR) for the stock ranking recommendation. Exist-
ing methods fail to adequately capture temporal trends because the recurrent
neural networks (RNNs) or convolutional neural networks (CNNs) employed in
these methods cannot capture long-range temporal sequences. Wu et al. [24]
propose Graph WaveNet, a novel graph neural network architecture for spatial-
temporal graph modeling to address these limitations. To this end, Sawhney et
al. [19] introduce STHGCN: Spatio-Temporal Hypergraph Convolution Network,
which is the first neural hypergraph model for stock trend forecasting. Zhou et
al. [31] propose a generic time series forecasting framework called Dandelion.
This framework utilizes the consistency of multiple modalities and explores the
relationships among multiple tasks using a deep neural network. Cheong et al. [5]
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present the STCNN-RN model, a spatiotemporal convolutional neural network-
based relational network that learns complex correlations among multiple finan-
cial time-series datasets. They utilize genetic algorithms with a constrained gene
to identify outlier time points for companies by fitting the STCNN-RN model
and subsequently use these outlier points to detect abnormal situations. Wang et
al. [22] propose the Hierarchical Adaptive Temporal-Relational Network (HATR)
as a novel method for characterizing and predicting stock evolutions. However,
this approach fails to respond effectively to the dynamic changes in relational
graphs. Therefore, Xiang et al. [25] propose a temporal and heterogeneous graph
neural network-based (THGNN) approach to effectively learn the dynamic rela-
tions among price movements in financial time series.

2.2 Stock Ranking Recommendation with Dynamic Graph

Liu et al. [14] conducted a study on anticipating the stock market of renowned
companies using a knowledge graph approach. The objective is to develop a
model that predicts stock price movements by leveraging a knowledge graph
constructed from the financial news of renowned companies. Chen et al. [3] refer
to the regression problem involving multiple inter-connected data entities as
“dynamic network regression”. The primary aim of Matsunaga et al. [15] is to
evaluate the effectiveness of this approach across diverse markets and longer time
horizons through backtesting using a rolling window analysis. To address this
objective, Sawhney et al. [19] propose STHGCN: Spatio-Temporal Hypergraph
Convolution Network, which is the first neural hypergraph model for forecasting
stock trends. Patil et al. [17] conducted a study on stock market recommenda-
tions using an ensemble of graph theory, machine learning, and deep learning
models. They proposed a novel approach based on graph theory. Ying et al. [28]
propose TRAN, a time-aware graph relational attention network, for a stock
recommendation based on return ratio ranking. Yoon et al. [29] propose Anom-
Rank, an online algorithm for detecting anomalies in dynamic graphs. Cheng et
al. [4] propose AD-GAT, an attribute-driven graph attention network, to tackle
the challenges of modeling momentum spillovers. Cai et al. [2] propose StrGNN,
an end-to-end structural temporal Graph Neural Network model designed for
detecting anomalous edges in dynamic graphs. Gao et al. [9] consider the rela-
tionships between stocks (corporations) through a stock relation graph.

3 Preliminary

This section will introduce some definitions of our work and the problem of stock
ranking recommendations.

3.1 Stock Series Data

We denote the set of N stocks as S = {S1, S2, · · · , Si, · · · , SN}. For each stock
Si, the historical series Xi

t ∈ RL×U includes features such as opening price,
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closing price, high price, low price, volume, etc., where L is the length of the
series and U is the dimension of the original stock series features. We use Xt ={
X1

t ,X2
t , · · · ,Xi

t , · · · ,XN
t

}
to represent the set of original stock series features

corresponding to the stocks.

3.2 Stock Ranking Recommendation

The stock ranking score yi
t+1 for stock Si on date t+1 is defined as the percentage

change in the closing price of the stock between day t and t + 1. The closing
price change can be calculated as follows:

yi
t+1 =

Priceit+1 − Priceit
Priceit

, (1)

where the stock ranking score yi
t+1 represents the label of our recommendations

task. Priceit is the closing price of stock Si at date t, and yi
t+1 is the rate of change

in the closing price of stock Si at date t+1. Our objective is to learn a function
f that takes the stock series Xt as inputs and outputs the stock ranking score
ŷi
t+1 of stock Si at date t+1. We rank all stocks in descending order based on the

stock score ŷi
t+1 to obtain a ranking set Ŷt+1 =

{
ŷ1
t+1, ŷ

2
t+1, · · · , ŷi

t+1, · · · , ŷN
t+1

}

for date t+1. Finally, we select the top n ranked stocks as recommended stocks
based on the ranking set Ŷt+1.

Fig. 2. The overall framework of the proposed DTSRN. The DTSRN contains two
paths, the first one is the dynamic global-view spatial relation extraction path, this pro-
cess utilizes a global similarity matrix with the stock temporal relation feature matrix
to construct a dynamic global-view spatial relation graph. The second is a dynamic
multi-view spatial relation extraction path, this process utilizes the self-attention mech-
anism to construct a dynamic multi-view spatial relation graph among stocks based on
their temporal features. By employing efficient Graph Convolution Operations (GCO),
DTSRN extracts distinct relation features of stock from the dynamic global-view and
multi-view spatial relation graph. Finally, DTSRN concatenates global-view and multi-
view spatial relation features as perceptron inputs for stock ranking recommendation
tasks.
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4 Methodology

Figure 2 depicts our proposed model, DTSRN, which comprises various mod-
ules, such as temporal feature extraction, dynamic global-view and multi-view
spatial relation graph construction, and relation feature fusion. In this section,
we elaborate on each module in detail.

4.1 Temporal Relation Extraction

The GRU network is utilized for encoding the stock series and extracting their
temporal relation features. To be specific, we set the sliding window size to m
and the sliding step size to n in this study. Subsequently, for a sliding window
of the time series, Xi

t =
{
xi
t−m, · · · , xi

t

}
of stock Si, Xi

t is fed as input to the
GRU network, and the temporal relation feature representation of stock Si is
obtained at the time t. The calculation formula is as follows.

hi
t = GRU

(
hi
t−1, x

i
t

)
, (2)

where hi
t ∈ RUh is the hidden state of the GRU network for stock series Xi

t

at time t, hi
t−1 is the hidden state at time t − 1, and Uh is the hidden cell

dimension of the GRU network. The GRU network outputs a temporal relation
feature matrix Ht for N stocks in the sliding window stock series Xi

t , where each
row represents the temporal relation feature vector hi

t of stock Si at time t.

4.2 Dynamic Global-View Spatial Relation Extraction

We use the temporal relation feature matrix Ht of stocks at different moments
to extract dynamic spatial relations. The dynamic global-view spatial relation
graph Ag is constructed using cosine similarity to measure the relation between
stock series at different moments. Ag is an N ∗N square matrix, where N denotes
the number of stocks and element Aij

t denotes the strength of the dynamic spatial
relation between stock Si and stock Sj at moment t, and element Aij

t is calculated
as shown below.

Aij
t = Cosine

(
hi
t, h

j
t

)
=

hi
t · hj

t
∥
∥hi

t

∥
∥ ·

∥
∥
∥hj

t

∥
∥
∥

, (3)

where hi
t ∈ RUh is the temporal relation features of stock Si at moment t, ||·||

is the Euclidean distance. We use the row normalization operation to normalize
the dynamic global-view spatial relation graph Ag. The normalization process is
shown in Eq. 4.

λij
gt =

exp
(
Aij

t

)

∑N
k=0exp

(
Aik

t

) , (4)

λij
gt denotes the element of the i-th row and j-th column of the dynamic global-

view spatial relation graph Ag after normalization.



352 Y. Zhong et al.

4.3 Dynamic Multi-view Spatial Relation Extraction

We use the multi-view self-attention similarity calculation method to mine
dynamic multi-view spatial relations [13]. Firstly, we apply an MLP to transform
the temporal relation feature matrix Ht from dimension Uh to Us, resulting in
Hmlp

t . Next, we divide each row of Hmlp
t equally into v views, where each equally

divided feature vector has length Us/v. We then reconstruct the feature matrix
Hmlp

t into the temporal matrix Hre
t with dimensions (N , v, Us/v). We transform

the dimension of Hre
t to (v, N , Us/v) to obtain the multi-view temporal relation

matrix Qv for v views. Finally, we calculate the spatial relation graph Aviewp

between N stocks for each view using Eq. 5, resulting in different dynamic view
spatial relations.

Aviewp
= dropout

(
Qviewp

QT
viewp√

d

)

, (5)

where Qviewp
is a view of the multi-view temporal relation matrix Qv. p ∈ [1, v],

d is Us/v. The Aviewp
are normalized separately using the softmax function

to construct v different dynamic multi-view spatial relation graphs Am. The
normalization process is shown in Eq. 6.

λij
mt =

exp
(
Aij

viewp

)

∑N
k=0exp

(
Aik

viewp

) , (6)

λij
mt denotes the elements of the i-th row and j-th column in the dynamic multi-

view spatial relation graph Am after normalization. Different dynamic multi-view
spatial relation graphs (Am) can provide a more comprehensive description of
the various segmentation patterns between stock series.

4.4 Dynamic Temporal Spatial Relation Aggregation

We utilize efficient graph convolution without learnable parameters to extract
the stock spatial relation features from the temporal relation feature matrix Ht

based on the dynamic global-view spatial relation graph Ag and different multi-
view spatial relation graphs Am. The aggregation process can be described using
the following equation:

zgi =
∑N

k=0λ
ik
gth

k
t , (7)

zgi is the i-th row feature of the dynamic global-view spatial relation matrix Zg,
λik
gt denotes the i-th row k-th column element of the dynamic global-view spatial

relation graph Ag, and hk
t is the k-th row stock temporal relation feature vector

of the temporal relation feature matrix Ht.

zpmi =
∑N

k=0λ
ik
mth

k
t , (8)

zpmi is the i-th row feature vector of the p-th dynamic multi-view spatial relation
feature matrix Zp

m, p ∈ [1, v] and λik
mt denotes the i-th row k-th column element
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of the multi-view spatial relation graph Am. To capture the overall relationship
between different stocks over time, we fuse v different dynamic multi-view spatial
relation feature matrices using the sum pooling method to obtain the dynamic
multi-view spatial relation feature matrix Zm

4.5 Ranking Recommendation

Stock Ranking Score: The stock ranking recommendation is a regression task.
To fuse the dynamic global-view spatial relation feature vector zgi ∈ R

Uh with
the dynamic multi-view spatial relation feature vector zmi ∈ R

Uh , DTSRN uses
the concatenate operation to obtain the dense representation h ∈ R

2Uh of the
stock in the ranking recommendation module. Then, the multi-layer perception
(MLP) as the activation function is used to calculate the recommendations label
stock ranking score ŷt+1 ∈ R. The calculation of the recommendations label
stock ranking score is shown below.

ŷt+1 =
(
ReLU

(
[zgi; zmi]W

′
1 + b

′
1

))
W

′
2 + b

′
2, (9)

where W
′
1 ∈ R

2Uh×Uh and W
′
2 ∈ R

Uh are the learnable parameters of the fully
connected layer; b

′
1 ∈ R

Uh and b
′
2 ∈ R are the learnable biases. The [;] is repre-

sented as a concatenate operation.

Loss Function: Giving the true value yi
t+1, yj

t+1 and predicted ranking score
ŷi
t+1, ŷj

t+1 if yi
t+1>yj

t+1, then we expect ŷi
t+1>ŷj

t+1, therefore, we combine point-
by-point regression loss and pairwise ranking-aware loss as follows.

L (ŷt+1, yt+1) = ||ŷt+1 − yt+1||2

+ μ

N∑

i=0

N∑

j=0

max
(
0,−

(
ŷi
t+1 − ŷj

t+1

) (
yi
t+1 − yj

t+1

))
,

(10)

where μ is the hyperparameter that balances the two loss terms.

5 Experiments

In this section, we further conduct extensive experiments on real stock market
data to evaluate the validity of our method.

5.1 Datasets

Our experiments use historical stock series data, and the datasets are published
on the open-source quantitative investment platform Qlib1 [27]. Table 1 shows
the detailed statistics of these datasets.

1 https://github.com/microsoft/qlib.

https://github.com/microsoft/qlib
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Stock Datasets: We evaluate two popular and representative stock pools: CSI
100 and CSI 300. The CSI 100 and CSI 300 are the largest 100 and 300 stocks
in the China A-share Market. The CSI 100 index reflects the performance of
the most influential large-cap stock market, and the CSI 300 index reflects the
overall performance of the China Ashare market.

Stock Features: We use the stock characteristics of Alpha360 in Qlib. Alpha360
dataset contains six stock data per day, including the opening price, closing
price, high price, low price, volume-weighted average price (VWAP), and volume.
Alpha360 looks back 60 d to construct 360-dimensional historical stock data as
the stock characteristics of the stock. We use the characteristics of CSI 300 and
CSI 100 stocks from January 1, 2007, to December 31, 2020, and split them
chronologically to obtain the training set (January 2007 to December 1, 2014),
the validation set (January 2015 to December 3, 2016) and the test set (January
2017 to December 2020). We used three years of test data, which is sufficient to
validate the stability of DTSRN.

Table 1. Statistics of the Datasets

Datasets CSI100/CSI300

Train(Tr) Period 01/01/2007-12/31/2014
Val(V) Period 01/01/2015-12/31/2016
Test(Te) Period 01/01/2017-12/31/2020

5.2 Experimental Settings

Evaluation Metrics: based on a previous study [26], we assessed the results
of the stock ranking recommendation by two widely used metrics: Information
Coefficient (IC) and Rank IC, defined as follows.

IC
(
yt, ŷt

)
= corr

(
yt, ŷt

)
, (11)

Rank IC
(
yt, ŷt

)
= corr (rankyt , rankŷt) , (12)

where IC is the Pearson correlation coefficient between the labels and recom-
mendations, Rank IC is Spearman’s rank correlation coefficient. corr (·) is the
Pearson’s correlation coefficient, rankyt and rankŷt are the rankings of labels
and recommendations respectively from high to low. We use the average daily
IC and Rank IC to evaluate the results of stock ranking forecasts.

Moreover, for a stock ranking recommendations model, the accuracy of its
first N recommendations is more important for real stock investments. Therefore,
we introduce another evaluation metric, precision@N, to evaluate the accuracy
of the model’s top N recommendations. For example, if N is 30 and 15 of the top
30 recommendations have positive labels, the precision@30 is 0.5. We evaluated
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the model with N values of 3, 5, 10, and 30 for comparison with existing studies,
and the detailed evaluation results are presented in Table 2.

Parameter Settings: Our model was implemented using the PyTorch frame-
work and optimized with Adam at a learning rate of 0.0004. We performed a
grid search for the parameters to obtain the optimal hyperparameters. Specif-
ically, we searched for the optimal size of the view v in the multi-view spatial
relation extraction and the number of hidden units Uh in the GRU by exploring
the ranges [2, 3, 4, 5, 6] and [16, 32, 64, 128], respectively. We also adjusted the
value of μ in the loss function between 0.1 and 0.5. The model was trained for
100 epochs.

5.3 Baselines Methods

To demonstrate the effectiveness of our method, we compare it with previous
baseline methods, including:

– MLP: a three-layer multilayer perceptron (MLP) with 512 units on each
layer.

– SFM [30]: a recurrent neural network (RNN) variant that decomposes hid-
den states into multiple frequency components to model multiple frequency
patterns.

– GRU [6]: a stock ranking recommendations method based on gated recursive
unit (GRU) networks.

– LSTM [11]: a long short-term memory (LSTM) network suitable for dealing
with time series forecasting problems.

– ALSTM [7]: a variant of LSTM with a time-concerned aggregation layer for
aggregating information from all hidden states in previous timestamps.

– ALSTM+TRA [12]: an ALSTM extension that uses a temporal routing
adapter (TRA) to model multiple transaction patterns.

– GATs [20]: a predictive model that uses graphical attention networks (GATs)
to embed GRU-encoded stocks into stock graphs. We use stocks as nodes to
construct stock graphs, and two stocks are related when they share the same
predefined concepts.

– HIST [26]: a model based on a bipartite graph of stock concepts to handle
spatial correlations between stocks.

– SDGNN [10]: a stock ranking recommendation model based on a graph
learning module to learn static and dynamic graphs.

6 Results and Analysis

Table 2 presents the experimental results for our model and other baselines, with
the best results for each metric marked in bold.
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Table 2. Evaluation results on the datasets.

Model CSI100 CSI300
IC Rank IC Precision@N(↑) IC Rank IC Precision@N(↑)
(↑) (↑) 3 5 10 30 (↑) (↑) 3 5 10 30

MLP 0.071 0.067 56.53 56.17 55.49 53.55 0.082 0.079 57.21 57.10 56.75 55.56
SFM 0.081 0.074 57.79 56.96 55.92 53.88 0.102 0.096 59.84 58.28 57.89 56.82
GRU 0.103 0.097 59.97 58.99 58.37 55.09 0.113 0.108 59.95 59.28 58.59 57.43
LSTM 0.097 0.091 60.12 59.49 59.04 54.77 0.104 0.098 59.51 59.27 58.40 56.98
ALSTM 0.102 0.097 60.79 59.76 58.13 55.00 0.115 0.109 59.51 59.33 58.92 57.47
ALSTM+TRA 0.107 0.102 60.27 59.09 57.66 55.16 0.119 0.112 60.45 59.52 59.16 58.24
GATs 0.096 0.090 59.17 58.71 57.48 54.59 0.111 0.105 60.49 59.96 59.02 57.41
HIST 0.120 0.115 61.87 60.82 59.38 56.04 0.131 0.126 61.60 61.08 60.51 58.79
SDGNN 0.126 0.120 62.49 61.41 59.81 56.39 0.137 0.132 62.23 61.76 61.18 59.56
DTSRN 0.137 0.132 62.85 61.79 60.68 56.84 0.146 0.141 62.72 62.03 61.37 59.74

6.1 Overall Performance

Table 2 highlights the importance of IC and Rank IC metrics in the stock rank-
ing recommendation, and our model outperforms all baseline methods on both
metrics. For instance, in the CSI 100 and CSI 300 datasets, IC and Rank IC val-
ues are 0.137, 0.132, 0.146, and 0.141, respectively. Moreover, our model achieves
the highest Precision@N metric score of 62.85% and 62.72%, respectively. Gen-
erally, the precision@N value tends to be below 50%. The experimental results
validate the effectiveness of DTSRN in leveraging the temporal relation features
of stocks to construct dynamic spatial relation graphs from the global view and
local multi-view and extract the dynamic spatial relation features of stocks for
the stock ranking recommendation.

Table 3. The results of the ablation study. In this table, global-view and multi-view are
the dynamic global-view spatial relation extraction pathway and the dynamic multi-
view spatial relation extraction pathway, respectively (corresponding to Sects. 4.2 and
4.3). Sum Pooling denotes the last pooling operation module in the multi-view pathway.
The symbol of and indicate the presence or absence of the component in the variant.
The AvgPre is the average of different precision@N values where N are 3,5,10, and 30.

Global-view Multi-view Sum Pooling CSI 100 CSI 300
IC(↑) Rank IC(↑) AvgPre(↑) IC(↑) Rank IC(↑) AvgPre(↑)

0.131 0.126 60.24 0.140 0.136 61.22
0.135 0.130 60.40 0.144 0.139 61.37
0.137 0.132 60.54 0.146 0.141 61.47

6.2 Ablation Study

Impact of Global-view Spatial Relation: DTSRN-G is a variant of DTSRN
that only uses dynamic global spatial relation features for stock ranking recom-
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mendation tasks. Compared with the baseline method SDGNN, the DTSRN-G
method can obtain performance advantages, which shows that the non-negligible
noise introduced by the static relation graph based on the stock ID in SDGNN
limits the performance of the stock ranking recommendation (Table 3).

Impact of Multi-view Spatial Relation: DTSRN-M is a variation of DTSRN
that preserves the dynamic multi-view spatial relation features while discarding
the dynamic global view spatial relation features. By comparing the perfor-
mance of DTSRN-G and DTSRN-M, we found that the self-attention-based
multi-view spatial relation construction method effectively mines segmentation
patterns in the original feature space, resulting in better model performance.
Our experimental results show that the proposed DTSRN method outperforms
other approaches, indicating the effectiveness of the two spatial relation graph
construction methods in capturing the spatial relation features of stocks based
on temporal relation features, ultimately improving the performance of stock
ranking recommendations (Table 3).

7 Conclusion

This paper proposes a novel method called DTSRN for stock ranking recom-
mendation tasks. Two dynamic spatial relation graphs are constructed from the
global view and local multi-view to capture the spatial relations among stocks.
DTSRN extracts spatial relation features using efficient graph convolution oper-
ations from these dynamic spatial relation graphs to improve recommendations
performance. Experimental results demonstrate that our model outperforms all
baseline models on multiple real-world datasets.
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Abstract. Affected by the distribution differences of ground objects, multispec-
tral remote sensing images are characterized by long-tailed distribution, that is, a
few classes (head classes) contain many instances, while most classes (tail classes
or called rare classes) contain only a few instances. The class imbalanced data
brings a great challenge to the semantic segmentation task of multispectral remote
sensing images. To conquer this problem, this paper proposes a novel contrastive
learning method (CoLM) for semantic segmentation of multispectral remote sens-
ing images with class imbalance. Firstly, we propose a semantic consistency con-
straint tomaximize the similarity of semantic feature embeddings of the same class
in the feature space, then a rebalancing sampling strategy is proposed to dynami-
cally select the hard-to-predict samples in each class as anchor samples to impose
additional supervision, and use pixel-level supervised contrastive loss to improve
the separability of rare classes in the decision space. The experimental results on
two long-tailed remote sensing datasets show that our method can be easily inte-
grated into existing segmentation models, effectively improving the segmentation
accuracy of rare classes without increasing additional inference costs.

Keywords: Semantic Consistency · Rebalance Sampling Strategy · Contrastive
Learning · Multispectral Remote Sensing Images · Semantic Segmentation

1 Introduction

Multispectral remote sensing images have a large imaging range and are usually charac-
terized by a long-tailed distribution due to the distribution differences of ground objects
in the real world. Long-tailed remote sensing data or referred to as class imbalance data
allows head classes containing the majority of instances to dominate the model training
process. Thus, the model can fit head-class instances well during inference, while gen-
eralization over rare-class instances is weak, thus compromising the overall recognition
performance of the model [1]. Li et al. [2] further explored and found that the model
trained by class imbalance data will project rare-class instances closer to or even across
classifier decision boundaries, resulting in indistinguishable decision boundaries of rare
classes while head classes are virtually unaffected. Traditional methods mainly focus
on increasing the training instances of rare classes by data resampling [3] or adjusting
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the loss weight ratio of rare classes by designing different loss re-weighting schemes to
improve the recognition accuracy of rare classes [4], such as Focal loss [5],WCE loss [6],
etc., but they also impair the performance of head classes [7]. There are also two-stage
decoupled learning methods that improve the decision boundaries of rare classes by
retraining the classifier [8, 9], but the two-stage training approach makes the model very
sensitive to the choice of hyperparameters, which also increases the training difficulty.

In recent years, contrastive learning has attracted a lot of attention from researchers.
Contrastive learning is a type of metric learning [10], which aims to learn a model that
can encode the same class of data similarly and make the encoding results of different
classes as different as possible. Contrastive learning regards different augmented views
of the same sample as a set of positive sample pairs and other samples as their negative
samples, with the core idea of aligning positive sample pairs to increase intra-class
compactness and excluding negative sample pairs to increase the inter-class distance.
Contrastive learning has made tremendous progress on image classification tasks. Some
contrastive learning methods, such as SimCLR [11] and MoCo [12], have achieved
state-of-the-art performance on several popular benchmarks, showing great potential
for feature representation learning and recognition of long-tailed data [13]. Kang et al.
[14] found experimentally that contrastive learning can learn a more linearly separable
feature space from long-tailed data and improve robustness to class imbalanced data.

Unlike image classification tasks, semantic segmentation as a pixel-level classifica-
tion task requires the classification of massive pixel instances. Recently, some works
have been investigating the introduction of contrastive learning into semantic segmen-
tation to improve the segmentation performance of the model. For example, Wang et al.
[15] proposed a cross-image pixel contrastive method to model the global contextual
information of pixels in multiple images, which performs better than semantic segmen-
tation methods that focus only on mining local dependencies between pixels in a single
image. Li et al. [16] proposed a global-local matching contrastive learning network to
enhance the feature embedding similarity of the same class of remote sensing data at the
image level and pixel level, respectively. Zhong et al. [17] proposed pixel consistency
contrastive loss to enhance the prediction consistency of different augmented views of
the original image, enabling the model can extract common features of the same class of
data. Different from image-level contrastive learning, pixel-level contrastive learning in
semantic segmentation suffers from the challenge of high computational costs due to a
large number of pixels that need to be contrasted. To reduce the potential computational
costs, Liu et al. [18] proposed to sample a few samples in each class with confidence
less than a preset threshold as the anchor samples of this class to impose contrastive
supervision. However, the performance of the model is limited by choice of the thresh-
old value. As mentioned above, current works focus on using contrastive learning to
improve the representation ability of semantic segmentation models, and these methods
are designed based on balanced data. They are not suitable for remote sensing data that
are usually characterized by long-tailed distribution in real situations. To address this
problem, this paper proposes a novel contrastive learning method (CoLM) for semantic
segmentation of multispectral remote sensing images with class imbalance, which can
effectively improve the segmentation accuracy of rare classes while not compromising
the overall segmentation performance of the model. To the best of our knowledge, in
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the field of semantic segmentation, this is the first attempt to use the idea of contrastive
learning to solve the long-tailed problem of multispectral remote sensing data. Inspired
by the principle of label space consistency [17], we propose the semantic consistency
constraint to enhance the similarity of semantic feature embeddings of the same class and
reduce the distribution bias in the feature space. The fundamental reason for the degrada-
tion of model segmentation performance caused by imbalanced data is that head classes
containing most instances dominate the training process, i.e., the model focuses more
on the loss convergence of head classes and neglects that of the rare classes. Therefore, a
rebalancing sampling strategy is proposed to enhance the attention of the model to rare
classes, and the supervised contrastive loss [19] is extended to pixel-level classification
tasks to improve the separability of rare classes in the decision space.

The main contributions of this paper are summarized as follows:

1. We propose the semantic consistency constraint to make the semantic feature embed-
dings of the same classmore similar bymaximizing the semantic consistency between
the high-level feature maps of the original image and its augmented view.

2. We develop a rebalancing sampling strategy to strengthen the attention of the seg-
mentation model to rare classes by dynamically sampling the same number of
hard-to-predict samples as possible for each class to impose additional contrastive
supervision.

3. This paper provides new insights for the study of semantic segmentation of remote
sensing images with class imbalance, and the proposed method can be easily
integrated into existing segmentation models, which is very flexible and convenient.

2 Methodology

Ground Truth

fSEG

Semantic 

feature space

A
u
g Semantic consistency

constraint

Encoder

False color

Augmented view

Decision space

Rebalancing sampling

Encoder

Decoder

G

G

fPROJ

fSEG: Segmentation head

fPROJ: Project head

: Cross-entropy loss

: Pixel-level supervised contrastive loss

Fig. 1. The framework of the proposed CoLM. The segmentation head f SEG represents the clas-
sification layer of the decoder and is used to calculate the cross-entropy loss, and the project head
f PROJ consists of a multilayer perceptron for computing the pixel-level supervised contrastive
loss.
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In this section, we describe the proposed CoLM in detail. Figure 1 illustrates the
framework of CoLM, which contains three key components: semantic consistency con-
straint, rebalancing sampling strategy, and pixel-level supervised contrastive loss (LPSC).
Each part is described separately in the following.

2.1 Semantic Consistency Constraint

The output segmentation masks of different spatially invariant augmented views of the
original image should be consistent after passing through the segmentation network.
Similarly, the semantic consistency principle should exist in the semantic feature space,
i.e., the high-level semantic feature maps extracted from different augmented views
after feature extraction by encoder should maintain semantic consistency. Based on
semantic consistency theory, we propose a semantic consistency constraint to make the
feature embeddings of the same class in the feature space more similar. To improve the
generalization ability of the model while preserving the integrity of the original image
information as much as possible, we train the model by both the original image and its
augmented view instead of learning only the features of different augmented views of
the original image as in previous works. The input multispectral remote sensing image
is denoted as X ∈ RN×H×W , where N, H, and W represent the number of spectral
bands, height, and width of the image, respectively, and its augmented view is denoted
as X′ ∈ RN×H×W (histogram equalization enhancement is used in the experiments and
also can be others). The feature maps G and G′ are obtained separately by the shared
parameter encoder (see Fig. 1), after which the semantic consistency constraint is applied
to the feature maps. The semantic consistency constraint loss is defined as follows:

LSCC = −log
[
max

(
S
(
g(i,j), g(i,j)′

))] = −log

[

max

(

exp

(
g(i,j) · g(i,j)′∥∥g(i,j)

∥∥∥∥g(i,j)′
∥∥

))]

(1)

where S(·) denotes the cosine similarity metric function, g(i,j) represents the feature
vector with the spatial index (i, j) of the feature map G (from the original image), and
g(i,j)′ represents the feature vector with the spatial index (i, j) of the featuremapG′ (from
the augmented view). The similarity of semantic feature embeddings of the same class
is improved by minimizing the semantic consistency constraint loss, i.e., maximizing
the cosine similarity of the feature vectors g(i,j) and g(i,j)′, which enables the model
to extract semantic invariant features of the same class. To avoid introducing additional
computational costs, we only decode the feature maps extracted from the original image.

2.2 Rebalancing Sampling Strategy

The head classes in class imbalance data contain most of the instances and dominate
the training process, leading the model to focus more on the loss convergence of head
classes and neglect that of rare classes. To address this problem,we propose a rebalancing
sampling strategy to sample the same number of difficult samples as possible for each
class and impose additional contrastive supervision, thus achieving a class rebalancing
paradigm.Generally, awell-trained segmentationmodelwill showgoodfitting ability for
most samples. However, due to the characteristics of remote sensing images, i.e., same
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objects may have different spectrums and different objects may have the same spectrum,
the model may output poor or even wrong predictions for some difficult samples (i.e.,
hard-to-predict samples), which will affect the overall segmentation performance of the
model. Especially, this phenomenon is more obvious in the case of class imbalance. In
view of this, we sample a few difficult samples with the lowest prediction probability
per class as anchor samples to impose additional contrastive supervision. We define a
sparse sampling set T in each mini-batch, where T = {t1, t2, . . . , tc} and tc denotes the
sampling queue of class c. The sampling formula is defined as follows:

tc = Ranklow→highPc
[
p1 : ps; ps+1 : pn

]
row↓ (2)

where Pc denotes the predicted probability matrix of class c in each mini-batch. We
reorder the predictionmatrix of each class rowby row (row ↓) according to themagnitude
of the prediction probability from low to high (low → high), and select the top s samples
with the lowest prediction probability in each row as the anchor sample set. In our
experiments, s is set to 8.

For class c, if all samples of other classes in each mini-batch are sampled as its
negative samples for supervised contrastive learning, it will cause a large amount of
space storage and computational costs. Also, randomly sampling negative samples is not
an appropriate solution, because some outlier (noisy) samples can also cause misfitting
of the model. Therefore, we calculate the prototypes of other classes and find the top k
samples that are closest to their prototypes in the feature space as the negative sample set
of class c, and use the prototype of class c as the positive sample of this class. Formally,
the sampling formula for positive/negative samples is defined as follows:

z+
c = ec = 1

|Vc|
∑

x∈Vc
x (3)

z−
c ∈ topkmin(‖xc − ec‖) (4)

where z+/−
c denotes the positive/negative samples of class c, Vc represents the set of

class c’s feature vectors, ec denotes the prototype of class c, c represents the other
classes (excluding class c), and k is set to 64 in the experiments.

2.3 Pixel-Level Supervised Contrastive Loss

After determining the anchor samples and their corresponding positive/negative samples
of each class, additional contrastive supervision is applied to the anchor samples of each
class. The pixel-level supervised contrastive loss is defined as follows:

LPSC =
C∑

c

LPSC
c (5)

LPSC
c =

∑

zc∈Dc
−log

exp
[
S
(
zc, z+

c

)
/τ

]

exp
[
S
(
zc, z

+
c
)
/τ

] + ∑
z−c ∈Nc

exp
[
S
(
zc, z

−
c
)
/τ

] (6)
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whereDc represents the anchor sample set of class c andNc denotes its negative sample
set. C denotes the total number of classes. τ is a hyperparameter to control the strength
of penalties on negative samples with high similarity to the anchor sample, which is set
to 0.1 in the experiments. By minimizing the pixel-level supervised contrastive loss, the
expression of samples of the same class in the decision space tends to be consistent. For
rare classes, additional contrastive supervision can make the decision boundary of rare
classes more separable. The total loss of the model is defined as follows:

LALL = LCE + LSCC + LPSC (7)

where LCE denotes the cross-entropy loss function. Through the joint constraint of
the three losses, CoLM can significantly improve the segmentation performance of the
baselinemodel formultispectral remote sensing imageswith class imbalance. Algorithm
1 shows the implementation details of CoLM.

3 Experiments

In this section, we select several latest semantic segmentation methods that performwell
on the benchmark remote sensing dataset (i.e., ISPRS Potsdam dataset): Deeplabv3 +
[20], MsanlfNet [21], and MANet [22] as baseline models for experiments to verify the
effectiveness of the proposed CoLM.

Deeplabv3+: This method adopts resnet101 [23] as the feature extraction backbone,
and contains atrous convolution with three atrous rates of 6, 12, and 18 to expand the
effective receptive field of the model.
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MsanlfNet: The feature extraction backbone of MsanlfNet is resnet50, which con-
tains a multi-scale attention module and a non-local filtering module to improve the
model’s ability to capture contextual information.

MANet: MANet uses resnet50 as the feature extraction backbone and introduces a
linear attention mechanism in the encoding stage to refine the extracted features.

Four indicators are adopted to evaluate the model comprehensively: overall accuracy
(OA), per-class F1 score, mean F1 score (Mean F1), and mean intersection over union
(MIoU).

3.1 Datasets

We evaluate the proposed CoLM on two long-tailed remote sensing datasets: RIT-18
[24] and LASA-JILIN.

Table 1. The category distribution rates of datasets.

RIT-18 LASA-JILIN

Class Name Percentage (%) Class Name Percentage (%)

Road markings 3.93 × 10–1 Road* 4.26 × 100

Tree 1.55 × 10–1 Farmland* 3.63 × 100

Building 4.53 × 10–1 Snow 7.46 × 100

Vehicle 1.12 × 10–1 Construction land 1.20 × 101

Person* 4.20 × 10–3 Building 5.33 × 100

Lifeguard chair* 7.00 × 10–3 Greenland* 2.54 × 100

Picnic table 3.27 × 10–2 Mountain land 6.25 × 101

Orange landing pad* 2.10 × 10–3 Water* 2.06 × 100

Water buoy* 2.30 × 10–3 - -

Rocks 1.27 × 100 - -

Other vegetation 1.48 × 100 - -

Grass 3.05 × 101 - -

Sand 2.02 × 101 - -

Lake 1.65 × 101 - -

Pond 2.44 × 100 - -

Asphalt 1.12 × 101 - -

Gini coefficient 0.71 Gini coefficient 0.61

RIT-18: The RIT-18 dataset is a multispectral remote sensing dataset with a severely
imbalanced class distribution. It has six spectral bands with a spectral range of 490–
900 nm, a ground sampling distance of 4.7 cm, and 16 land-cover classes. The image
size of the training set is 9393 × 5642, and the image size of the test set is 8833 × 6918.
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We have counted the class distribution rate of the RIT-18 dataset, as shown in Table 1.
Classes with a pixel proportion less than 0.01% are defined as rare classes and marked
with * for this dataset. The Gini coefficient is used to assess the long-tailed degree of the
dataset [25], with values ranging from 0 to 1. A larger Gini coefficient indicates a more
imbalanced class distribution of the dataset. The Gini coefficient of the ideal dataset is 0,
i.e., an equal number of instances in each class. In contrast, the Gini coefficient of long-
tailed datasets is usually above 0.5. As can be seen from Table 1, the Gini coefficient of
the RIT-18 dataset even reaches 0.71.

LASA-JILIN: The LASA-JILIN dataset is collected by the JILIN-1 satellite over
Lhasa,China. It contains 50 images, eachwith an average size of 5000×4214, containing
four spectral bands, with a ground sampling distance of 0.75m, and containing 8 land-
cover classes. We divide 25 of these images into the training set and the rest into the test
set. Table 1 shows the class distribution rate of the LASA-JILIN dataset, and the classes
with a pixel proportion less than 5% are marked as rare classes with *.

3.2 Experimental Setup

For a fair comparison, all methods are implemented on the Pytorch platform and share
the basic experimental settings: the initial learning rate is 0.0003, the batch size is 16,
and the maximum numbers of epochs for the RIT-18 and LASA-JILIN datasets are set
to 150 and 50, respectively. Additionally, other hyperparameter settings are consistent
with the original paper, respectively. All images are cropped to a size of 256 × 256 for
training and testing. The project head fPROJ maps each high-dimensional vector to 32
dimensions for computing pixel-level supervised contrastive loss, and it is applied only
during the training phase and removed during inference.

3.3 Experimental Results and Analysis

Experimental results of the RIT-18 dataset: The quantitative experimental results of
the RIT-18 dataset are shown in Table 2, and Fig. 2 shows segmentation result maps
of different methods. The baseline models have low segmentation accuracy in some
classes, especially for rare classes. They do not even detect any instance of some rare
classes, resulting in low Mean F1 and MIoU scores. It can be seen that CoLM effec-
tively improves the segmentation accuracy of baseline models for rare classes, and also
slightly improve the OA score, showing consistent performance improvement on the
three baseline models. Deeplabv3 + adopts multiple atrous convolutions to capture the
multi-scale features of the image, and the overall segmentation performance is better
than the other two baseline models. However, it still fails to identify the “Water Buoy”
class. Deeplabv3 + _CoLM can detect the “Water Buoy” class, and the MIoU score has
increased by 5.08%. TheMsanlfNet andMANetmethods applymultiple attention layers
in the encoding stage, which may make the models focus more on the feature extraction
of head classes, but neglect rare classes, leading to poor performance in Mean F1 and
MIoU scores. Combining CoLM, the segmentation performance of the baseline models
is significantly improved, especially for MANet, with 13.00% and 9.88% improvement
in Mean F1 and MIoU scores, respectively, proving the effectiveness of the proposed
method. For rare classes with very few instances, such as the “Orange landing pad” class,
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the F1 score of MsanlfNet_CoLM increases from 0 to 63.28% compared to the baseline
model MsanlfNet. However, for the “Person” class, the improvement is only 3.52%. We
further investigate the spectral curves of the RIT-18 dataset (see Fig. 3) and find that the
spectral feature distribution of the “Person” class is more similar to that of other classes.
In contrast, the “Orange landing pad” class has better spectral differentiation, which can
result in a relatively significant improvement.

Fig.2. Segmentation result maps obtained by different methods on the RIT-18 dataset.

Experimental results of the LASA-JILIN dataset: Table 3 shows the quantitative
results of the LASA-JILIN dataset, and the segmentation result maps obtained by differ-
ent methods are shown in Fig. 4. Compared with RIT-18, the LASA-JILIN dataset is a
large-scale dataset, and its class distribution is also more balanced. Therefore, all base-
line models obtain better experimental results on the LASA-JILIN dataset. It is further
observed that CoLM is still able to steadily improve the segmentation accuracy of the
baseline models on most classes, with 0.75%/3.56%/3.38% improvement in OA/Mean
F1/MIoU scores on the MANet baseline model, respectively.
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Fig. 3. Spectral curves of the RIT-18 dataset.

To evaluate the computational costs introduced by CoLM, Table 4 shows the training
time and inference time of different methods on the two datasets, RIT-18 and LASA-
JILIN. CoLM increases the training time of the baseline models slightly. Still, it substan-
tially improves the segmentation performance for most rare classes without increasing
any inference costs, which is essential for practical applications.

3.4 Parameter Analysis on the Number of Sampled Samples

The number of anchor samples s and the number of negative samples kwill affect the per-
formance of CoLM to some extent. In this section, extensive experiments are conducted
on the RIT-18 dataset to explore the optimal combination of these two parameters,
and the other experimental settings remain consistent with the previous experiments.
Figure 5 shows the experimental results obtained by applying different combinations of
parameters on the three baseline models. In general, the model tends to obtain better
performance when sampling more anchor and negative samples, but excessively super-
vised samples also result in more memory usage and computational costs. In addition,
we sample negative samples from the center of each class, which may introduce noisy
samples when the number of sampled negative samples k is too large. This, in turn, leads
to a degradation of the model’s performance. The experimental results of three baseline
models show that the models can achieve more stable performance when the parameter
combination (s, k) is set to (8, 64). Therefore, this parameter combination has also been
applied to the LASA-JILIN dataset.
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Table 4. The training time in hours (h) and test time in seconds (s) of different methods.

Method RIT-18 LASA-JILIN

Training time
(h)

Inference time (s) Training time
(h)

Inference time (s)

Deeplabv3 + 3.17 15.53 2.85 157.61

Deeplabv3 +
_CoLM

3.28 15.53 3.69 157.61

MsanlfNet 2.03 14.69 2.15 81.36

MsanlfNet_CoLM 2.70 14.69 3.20 81.36

MANet 3.09 15.12 2.46 134.73

MANet_CoLM 3.19 15.12 3.25 134.73

3.5 Ablation Experiments

As mentioned above, the proposed CoLM consists of three critical components: seman-
tic consistency constraint (SCC), rebalancing sampling strategy (RSS), and pixel-level
supervised contrastive loss (PSC).

This section presents some ablation experimental results and analysis to further
explore the performance impact of different components on the baseline models. Table 5
shows the results of the ablation experiments on the RIT-18 and LASA-JILIN datasets.
SCC and RSS-PSC denote the experimental results obtained by applying semantic con-
sistency constraint and pixel-level supervised contrastive loss (working together with the
rebalancing sampling strategy), respectively. Overall, the different components achieve
better performance gains on the baselinemodel, especially on the RIT-18 dataset with the
extremely imbalanced class distribution. SCC can prompt the model to extract semantic
invariant features of the same class, i.e., common features, thus effectively enhancing the
model’s feature expression ability. After applying the SCC component on the baseline
model MsanlfNet, the MIoU score on the RIT-18 dataset improved by 2.69%. RSS-PSC
uses the rebalancing sampling strategy to sample the same number of hard-to-predict
samples for each class, and imposes additional contrastive supervision on them through
pixel-level supervised contrastive loss, making the decision space more linearly separa-
ble and improving the prediction accuracy of difficult samples. Through the collaboration
of SCC and RSS-PSC, CoLM significantly enhances the segmentation performance of
the baseline models.



Semantic Segmentation of Multispectral Remote Sensing 373

Fig. 4. Segmentation result maps obtained by different methods on the LASA-JILIN dataset.

Fig. 5. Parameter sensitivity analysis of the number of anchor samples (s) and the number of
negative samples (k) on the RIT-18 dataset.
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Table 5. Results of ablation experiments.

RIT-18 LASA-JILIN

Method MIoU Method MIoU

Deeplabv3 + SCC 49.42 (+1.44) Deeplabv3 + SCC 51.43 (+1.29)

RSS-PSC 49.77 (+1.79) RSS-PSC 52.12 (+1.98)

CoLM 53.48 (+5.50) CoLM 52.69 (+2.55)

MsanlfNet SCC 40.34 (+2.69) MsanlfNet SCC 49.95 (+1.26)

RSS-PSC 41.57 (+3.92) RSS-PSC 49.98 (+1.29)

CoLM 42.73 (+5.08) CoLM 50.59 (+1.90)

MANet SCC 47.26 (+5.90) MANet SCC 51.08 (+1.69)

RSS-PSC 48.18 (+6.82) RSS-PSC 51.53 (+2.14)

CoLM 51.24 (+9.88) CoLM 52.77 (+3.38)

4 Conclusion

In this paper, we propose a novel contrastive learning method for semantic segmentation
of multispectral remote sensing images with class imbalance. The experimental results
on two long-tailed remote sensing datasets show thatCoLMcan significantly improve the
segmentation performance of the baseline models for rare classes without any additional
inference costs, and is easily integrated into existing semantic segmentation models. Our
work is a beneficial attempt to segment long-tailed remote sensing data using contrastive
learning, and more innovations in this direction are expected in the future.

Acknowledgements. This work is supported by the Second Tibetan Plateau Scientific Expedition
and Research under Grant 2019QZKK0405.
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Abstract. Computer vision has emerged as a cost-effective and conve-
nient solution for identifying hazardous smoke emissions in industrial
settings. However, in practical scenarios, the performance of existing
methods can be affected by complex smoke characteristics and fluctu-
ating environmental factors. To address these challenges, we propose a
novel detection model called ESTNet. ESTNet utilizes both smoke tex-
ture features and unique motion features to enhance smoke detection.
The Shallow Feature Enhancement Module (SFE) specifically enhances
the learning of smoke texture features. The Spatio-temporal Feature
Learning Module (SFL) effectively differentiates smoke from other inter-
fering factors, enabling the establishment of smoke spatio-temporal fea-
ture learning. Notably, this module can be easily integrated into existing
2D CNNs, making it a versatile plug-and-play component. Furthermore,
to improve the representation of the video, we employ Multi-Temporal
Spans Fusion (MTSF) to incorporate information from multiple frames.
This fusion technique allows us to obtain a comprehensive feature rep-
resentation of the entire video. Extensive experiments and visualizations
are conducted, demonstrating the effectiveness of our proposed method
with state-of-the-art competitors.

Keywords: Smoke detection · Spatio-temporal learning · Video
understanding

1 Introduction

Smoke poses a pervasive threat to various industrial environments, including
chemical plants, power plants, and manufacturing facilities, endangering the
safety of personnel and causing irreparable harm to the ecosystem. Therefore,
smoke detection is critical for accident prevention, personnel safety, and envi-
ronmental protection. However, conventional smoke detection techniques, such
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Fig. 1. The elucidation of static and dynamic characteristics of smoke within the video
demonstrates that, in comparison to other interference (indicated in green lines), smoke
exhibits versatile motion properties and irregular edge features (indicated in red lines).
(Color figure online)

as sensors and alarms, exhibit limited efficacy in complex industrial settings,
and their accuracy is significantly impacted by environmental factors in the sur-
rounding areas.

To enhance detection precision while ensuring cost-effectiveness, the scien-
tific community has recently explored vision-based methods for detecting smoke.
Prior research works relied on physical or manually engineered features to dif-
ferentiate smoke. For instance, Tian et al. [13] proposed a method for smoke
feature extraction based on edge detection and gradient information. Addition-
ally, Yuan et al. [18] extracted smoke characteristics in intricate settings by
using a characteristic discriminator and formulated a classifier based on non-
linear dimensionality reduction and Gaussian processes which yielded elevated
classification accuracy and robustness. Likewise, Lee et al. [9] employed color
and texture as smoke features for image encoding and trained support vector
machine (SVM) classifiers using vectorized features. However, those traditional
approaches confront limitations in the extraction and comprehension of smoke
features, thereby impacting detection’s performance.

Compared to conventional techniques, vision-based smoke detection algo-
rithms utilizing deep learning algorithms can automatically extract smoke fea-
tures, improve algorithm effectiveness and efficiency, and transform the detec-
tion and management of smoke hazards in industrial settings. Yin et al. [17]
extracted features and applied classification utilizing convolutional neural net-
works. Similarly, Hsu et al. [7] employed general video understanding techniques
for identifying smoke videos, while Cao et al. [1] leveraged two-stream networks
for learning smoke motion information. Nevertheless, these approaches did not
originate from designing networks based on the fundamental smoke traits. As a
result, they may not effectively differentiate smoke from other interfering factors
at the primary level.
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In smoke detection, a challenge lies in differentiating between smoke and
steam. While they are morphologically similar, their physical structures differ:
smoke consists of solid particles, while steam is comprised of fine droplets, result-
ing in distinct textural and color features between the two. As a result, tech-
niques that are solely based on smoke’s textural characteristics [9,13] experience
reduced accuracy in practical detection. Smoke is commonly observed in blue
or discolored hues, owing to pollutants, while steam appears as white. More-
over, smoke and steam display distinguishable motion patterns. Smoke particles
disperse outward and downward, influenced by air currents, inducing rotational
and turbulent motion, as depicted in Fig. 1. On the contrary, steam typically
discharges from fixed pipes, leading to motion in defined directions and having
limited boundaries. Smoke’s motion display relatively greater randomness due
to the lack of a set emission point.

Therefore, we propose an end-to-end network architecture based on spatio-
temporal cooperative learning for smoke video detection. The framework utilizes
our designed SFL module, which leverages the difference between adjacent frame
features to focus on motion information and uses a single-stream network to
effectively detect smoke’s characteristic spatial and temporal features, allowing
for the characterization and differentiation of smoke videos. We design a novel
SFE module to learn a multi-level feature representation of smoke based on its
spatial characteristics and propose a new MTSF module that takes into account
the characteristics of video tasks to help the interaction of temporal dimension
information. These modules can operate as plug-and-play modules and can be
easily integrated with existing 2D backbone networks. The key contributions of
this framework are:

– We propose an end-to-end network architecture incorporating spatio-
temporal collaborative learning for smoke video detection. The framework
is based on our designed SFL module, by utilizing a Single-Stream Network,
it efficiently detects smoke-specific features from both spatial and temporal
dimensions for the characterization and distinction of smoke videos.

– We develop a novel SFE module to learn the low-level features of smoke
and design MTSF to facilitate better interaction among temporal dimension
information. Both modules can function as plug-and-play components and
can be easily integrated with existing 2D backbone networks.

– Extensive experiments and visualizations demonstrate the effectiveness of our
model, which outperforms other models in both performance and results on
the RISE dataset, which is closest to real-world detection scenarios.

2 Our Method

We utilize Xception [3] pretrained on ImageNet [4] as our backbone. As the
characteristics of smoke tend to be concentrated in the shallow layers, we employ
the SFE structure, illustrated in Fig. 3, to aid in our acquisition of shallow-
level texture features. To mitigate any undesired interferences, such as clouds or
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Fig. 2. Overview of the proposed framework. The frame sequence input is enhanced in
the 2D CNN backbone network through the utilization of the Shallow Feature Enhance-
ment module (SFE), which facilitates the extraction of texture feature information. The
backbone network is integrated with the Spatio-temporal Feature Learning module,
which enables the extraction of motion feature information on the temporal difference
between the preceding and succeeding frames. Furthermore, the Multi-temporal Spans
Fusion module fuses the sequence information to obtain video-level information.

steam, we devise the SFL module to extract the motion features of smoke. The
final classification results are obtained by aggregating the standardized video
through MTSF, and a diagram of our framework can be seen in Fig. 2.

2.1 Shallow Enhanced Feature Extraction Module

Numerous studies [6,14] on smoke detection have demonstrated that low-level
feature information pertaining to color and texture is vital for smoke detec-
tion. Consequently, we devise a modified Xception architecture to extract spatial
domain features. Employing the last layer features of Xception directly, however,
would neglect the shallow texture layer features. Thus, we reconstructe the Xcep-
tion output using multiscale and designed the SFE module to guide the network
with an attention mechanism, compelling the network to learn more elementary
information features.

Given the sparse sampled fragment x ∈ R
T×C×H×W , where T,C,H and W

are 8, 3, 224, and 224, both shallow output and final output are extracted from
different stages of the network flow, yielding shallow feature fs and final fea-
ture ff of a single-frame image. Generally, smoke features are prominent in the
textural information of shallow features. To further enhance the artifacts embed-
ded in the shallow features, SFE module comprising upsampling, downsampling,
and attention mechanisms, as illustrated in Fig. 3. The features xs in the shal-
low stream of the network are obtained after feature subtraction to acquire the
feature xm reflecting the motion features in the image, whereupon the multi-
headed attention mechanism aids in learning the regions that correspond with
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Fig. 3. The architecture of shallow enhance Xception. Our improved Xception enhance
latent feature through SFE module.

the motion features of smoke. The shallow texture information fs is refined by
the SFE module:

fs = Conv [Atten (xm, xs, xs))] , (1)

where Atten denotes the multi-head attention mechanism, the input xm

serves as the query, while xs serves as the key and value. Conv denotes point-wise
convolution. We visualize the output feature maps in Fig. 5 for illustration.

2.2 Smoke Spatio-Temporal Feature Learning

Practical smoke detection is challenging due to the presence of numerous inter-
fering factors, such as steam and clouds. While these factors share spatial texture
similarities with smoke, they differ significantly in motion features. To this end,
we propose the Spatio-temporal Feature Learning module (SFL), a joint mod-
eling paradigm for smoke spatio-temporal features. SFL captures and utilizes
smoke motion within frame sequences without requiring additional inputs or
temporal feature pathways.

Specifically, by leveraging SFE-enhanced feature extraction, we acquire fea-
tures on each frame and construct motion features in both horizontal and vertical
directions based on differences in adjacent features to learn the unique spatio-
temporal representation of smoke motion, as illustrated in Fig. 2. To achieve
optimal performance, we propose a three-path architecture in SFL to provide
processing pathways at various resolutions. Given the input feature sequence
X ∈ R

T×C×H×W =
{
x1, x2, ..., xT

}
, we first reduce each frame-level feature

channels to 1/r for efficiency, then pool them along the vertical and horizontal
directions to obtain xh ∈ R

C/r×1×H and xw ∈ R
C/r×W×1. Taking the vertical

direction motion feature xw as an example, the feature-level motion difference
at frame t is calculated as follows:

mt
w = Conv1

(
xt+1
w

) − xt
w, t ∈ {1, 2, ..., T − 1} , (2)
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where Conv1 denotes a smooth convolution with a kernel size of 1 × 3. This
smoothing operation mitigates the interference of video jitter on smoke motion
extraction. We attain the motion information mT

w for frame T by averaging the
motion features of T −1 frames. Subsequently, we obtain the vertical slice motion
map MW by concatenating frame feature differences:

Mw =
T

‖
i=1

mi
w, (3)

where Mw ∈ R
T×C/r×W×1 contains the most of vertical direction motion feature

of smoke video, ‖ denotes the concatenation operation along the time dimension,
and similarly, the horizontal slice motion features Mh ∈ R

T×C/r×1×H . The tem-
poral difference operation can effectively extract motion feature information from
the video without introducing any additional parameters.

To capture Smoke-specific motion, we further design a multi-fields-of-views
structure for efficient smoke motion extraction, which contains smoke vertical
motion enhancement(SVE) and smoke horizontal motion enhancement(SHE).
SVE is used to enhance Mw and SHE is used to enhance Mh. We elaborate on the
pathway of Mw, as shown in Fig. 2, it takes Mw as input and has three branches
to extract multi-level representations: (1) skip connection, (2) downsampling,
1 × 3 horizontal convolution, and upsampling, (3) 1 × 3 horizontal convolution.
The Mh part has a similar structure except for the 3 × 1 convolution along
the vertical dimension. The features of the three branches are summed up by
element-wise addition:

Msvew =
3∑

i=1

Branchi(Mw), (4)

where Msvew ∈ R
T×C/r×W×1 denote smoke motion enhanced by SVE, Branchi

represent different branches. Using the same approach, one can obtain Msheh

enhanced through SHE. Then, followed by concatenate Msvew and Msheh in
spatial dimension, the confidence map of smoke motion Ms is calculated:

Ms = σ [Convr (Msvew ‖ Msheh)] , (5)

where Ms ∈ R
T×C×(H+W )×1 represents the smoke motion attention map in

both directions, σ denotes the sigma function. We can split Ms along the spatial
dimension into vertical smoke motion attention map Msw and horizontal smoke
motion attention map Msh. By using these two smoke motion attention maps,
we can guide the network to learn smoke’s specific motion features:

fSFL =
1
2

× [Msw + Msh] � X, (6)

where fSFL ∈ R
T×C×H×W denotes the output spatio-temporal features of SFL,

� represent the element-wise multiplication.
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2.3 Multi-temporal Spans Fusion Module

Smoke is a production accident with no fixed duration from initiation to ces-
sation, nor a designated discharge channel. Thus, smoke motion characteristics
not only exist in short-term motion differences between adjacent frames, such
as irregular boundary alterations and uncertain movement directions, but also
in long-term motion features, including smoke’s duration and drifting direction-
attributes specific to smoke.

To better obtain a global semantic representation of smoke motion, we pro-
pose a global temporal aggregation strategy called MTSF, which adaptively
emphasizes the spatio-temporal features of smoke within the video by calcu-
lating global information across multiple temporal spans. As shown in Fig. 2,
the input of MTSF is the spatio-temporal feature f ∈ R

T×C×(H/8)×(W/8) =
{f1, f2, . . . , fT }, obtained from the backbone after being enhanced by SFE and
SFL. We employ dilated max-pooling operations on different temporal dimen-
sions and obtain temporal information Vi on various temporal scales by control-
ling the dilation rate, with the vector length of d.

Vi = Maxpool(T
k ,1,k) {f1, f2, ..., fT } , (7)

where T
k , 1, and k represent the kernel size, stride, and dilation rate in the

maxpooling operation. Following convention, we set k to pyramidal timescale
settings, with k ∈ {

20, 21, 2log2T−1
}
, obtaining Vi ∈ R

(T−1)×d (for 20+21+ . . .+
2log2T−1 = T−1). Subsequently, the global semantics on different temporal scales
are compressed into feature vectors Vat reflecting the corresponding temporal
scale statistics. The specific operation is as follows:

Vat =
1
d

d∑

i=1

(Vi) , (8)

where and the weighted temporal scale aggregated information as Vat ∈
R

(T−1)×1.
To capture the cross-timescale interdependencies and generalize the depen-

dency on the temporal dimension, we calculate the cosine similarity between
time weight features in Vi =

{
v1, v2, . . . , v(T−1)

}
at different time steps:

Si,j = 1 −
〈

vi
‖vi‖2

,
vj

‖vj‖2

〉
, (9)

where Si,j forms similarity matrix S ∈ R
(T−1)×(T−1), We then use a non-linear

activation function to perform a weighted perceptive activation on the product
of similarity and time features, converting it into an attention map, and the
output of MTSF fmtsf is calculated as follows:

fmtsf = Agg {Vat, Softmax [(VatW1 + W2S)W3]} . (10)

where Agg denotes the weighted summation of timescale features Vat along tem-
poral dimension, Sa represent the multi-timescale weights, Softmax denotes
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softmax function, W1 ∈ R
1×(T−1), W2 ∈ R

(T−1)×(T−1) and W3 ∈ R
(T−1)×1 are

the learnable parameters of fully-connected layer. At last, we feed fmtsf into the
classifier to get the video-level smoke detection result.

3 Experiments

In this section, we first introduce the evaluation datasets and implementation
details. Extensive results show the superior performance achieved by our EST-
Net compared with baselines and other state-of-the-art methods on the RISE
dataset. Then, in ablation studies, we investigate the importance of SFE, SFL,
and MTSF for real-time smoke detection. Finally, we visualize these modules
for mining spatio-temporal clues of smoke, qualitatively demonstrating EST-
Net’s superiority in the aspects of smoke spatio-temporal features and motion
modeling.

3.1 Datasets

The RISE Smoke Video Dataset [7] consists of 12,567 clips captured from 19
different viewpoints by cameras monitoring three industrial facilities at three
locations. The RISE dataset presents a challenging video classification task, as
it encompasses a variety of smoke emission features under different weather con-
ditions such as haze, fog, snow, and clouds. According to the different camera
positions aCnd shooting times, the RISE dataset has six different partition cri-
teria for training and testing, denoted as S0 to S5. We will perform independent
training and testing on each partition to simulate real industrial smoke detection
tasks.

3.2 Implementation Details

For each video, we employ a global average sampling strategy to extract eight
frames from video segments. We apply wildly-used data augmentation, including
random resizing, horizontal flipping and cropping, perspective transformation,
area erasing, and color jittering. The computational server has an Nvidia A40
GPU and an Intel Xeon Silver 4210R processor. During the training process,
we set the batch size to 16 and the initial learning rate to 0.0002, decaying by
a factor of 10 after every 10 epochs. We optimize the binary cross-entropy loss
function using the Adam optimizer, with a weight decay rate of 0.003.

3.3 Comparisons on RISE

We compared our proposed method with a range of baseline approaches, includ-
ing Support Vector Machine classifiers and prevalent 2D CNN networks such as
Xception [3] and Resnext [16]. As we consider smoke detection a video action
classification task, we focused on comparisons with common video understanding
networks, such as the Inception-based I3D network [2] (RGB-I3D) and methods
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incorporating video understanding modules. Specifically, we compared the RGB-
I3D-LSTM, which integrates an LSTM [5] at the last layer of the I3D model
to establish temporal context relations; the RGB-I3D-NL, which appends Non-
Local blocks [15] in the last layer of the I3D model; the RGB-I3D-TSM, which
embeds TSM [10] in each layer of the Inception model; and the RGB-I3D-TC,
which adds a Timeception [8] layer to the final initial layer. STCNet [1] is a
smoke detection-specific two-stream network that utilizes both RGB and frame
differences as input. Beyond RGB video input, we also provided optical flow
frames based on preprocessed TVL1 optical flow computation. Both Flow-I3D
and Flow-SVM adopt the same model architecture as I3D and SVM, respectively,
while taking optical flow frames as input.

On the RISE dataset, we tested all models against six different testing set
partitions, using F1-score as the evaluation criterion, result as shown in Table 1
and 2 (Fig. 4).

Table 1. F1-Scores for comparing different methods on RISE dataset

Model S0 S1 S2 S3 S4 S5 Average Params Flops
RGB-SVM .57 .70 .67 .67 .57 .53 .618 – –
Flow-SVM .42 .59 .47 .63 .52 .47 .517 – –
RGB-Xcep [3] .79 .81 .82 .86 .77 .78 .805 20.83M 36.8G
Plain SE-Resnext [16] .83 .82 .84 .85 .78 .83 .826 26.6M 34.4G
RGB-I3D [2] .80 .84 .82 .87 .82 .75 .817 12.3M 62.8G
Flow-I3D [2] .55 .58 .51 .68 .65 .50 .578 12.3M 62.8G
RGB-I3D-LSTM [5] .80 .84 .82 .85 .83 .74 .813 38.0M 63.0G
RGB-I3D-TSM [10] .81 .84 .82 .87 .80 .74 .813 12.3M 62.7G
RGB-I3D-NL [15] .81 .84 .83 .87 .81 .74 .817 12.3M 62.8G
RGB-I3D-TC [8] .81 .84 .84 .87 .81 .77 .823 12.5M 62.9G
STCNet [1] .88 .89 .87 .89 .86 .88 .878 52.1M 68.9G
ESTNet(Ours) .90 .89 .89 .90 .87 .88 .888 23.8M 75.5G

Table 2. Evaluation of ESTNet(Proposed) on the test set for each split.

Metric S0 S1 S2 S3 S4 S5 Average
Precision .95 .94 .95 .94 .93 .92 .938
Recall .85 .84 .83 .86 .81 .84 .838
F-score .90 .89 .89 .90 .87 .88 .888

3.4 Ablation Study

This section reports the systematic ablation studies on the RISE dataset for
evaluating the efficacy and rationality of each component. To measure the per-
formance, we use the F1-score as the evaluation metric. We investigate the
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Fig. 4. An illustration of the feature distribution of I3D, STCNet, and our model on
the RISE(S0) dataset. Red points represent video with smoke and blue points represent
clear video.

Fig. 5. Visualization of the input and output features of SFE. The characteristics of
smoke in the spatio domain can be effectively learned and enhanced through SFE, thus
enabling the detection of smoke based on spatio-temporal characteristics via SFL.

individual contribution of every module by designing and separately removing
them in the following variants: (1) without any components; (2) SFL only; (3)
SFL+MTSF; (4) SFE+SFL; (5) SFE+SFL+MTSF. We present the contribu-
tions of each module to the F1-score in Table 3. The results demonstrate that
the performance of the baseline model without any additional components is
poor, with a notable deficiency in S4, at 0.77. The experimental outcomes sug-
gest that all three components have a positive influence on the final prediction
outcome, with a minimum of 1.4% performance improvement in each category.
The most optimal performance is attained when all modules are jointly utilized,
achieving a score of 0.9 on S0. This result demonstrates the effectiveness of our
approach (Fig. 6).

Table 3. Study on component effectiveness on the test set for each split.

Model S0 S1 S2 S3 S4 S5 Average
Baseline(Xception) .79 .81 .82 .86 .77 .78 .805
SFE .80 .83 .83 .86 .82 .79 .822
SFL+MTSF .83 .84 .85 .85 .82 .80 .836
SFE+SFL .89 .89 .87 .88 .84 .84 .868
SFE+SFL+MTSF .90 .89 .89 .90 .87 .88 .888
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Fig. 6. The visualization of the output from our model. The backbone of our module is
Xception. The heatmap region displays how different modules guide the model to focus
on smoke’s specific motion information rather than just texture information similar
to smoke. This approach enables the model to distinguish smoke from other similar
textures and identify it based on its specific motion features, which is crucial in smoke
detection and tracking.

3.5 Visualization Analysis

In the visualization analysis, we first visualize the features extracted from the
backbone network with the smoke texture information-enhanced Shallow Fea-
ture Enhancement (SFE) module, see Fig. 5, to confirm that the SFE indeed
enhances the smoke texture features. Furthermore, we employ Grad-CAM [12]
to investigate how our module progressively guides the network to focus on
genuine smoke regions. Lastly, we apply t-SNE [11] to feature visualization of
the extracted features from various models to determine if they can distinguish
between videos with and without smoke.

4 Conclusion

In this paper, we propose a novel smoke detection algorithm that can detect the
presence of smoke in videos. We design our network based on the unique spatio-
temporal features of smoke, specifically its texture and motion characteristics.
To this end, we employ SFE to force the network to learn texture features, SFL
to model smoke motion features, and MTFS to aggregate video representations
that reflect smoke features. Leveraging these designs, our end-to-end model only
requires RGB video input and has a small model size, making it practical for
deployment in industrial settings. With the experiments conducted on the RISE
dataset and comparison against the existing state-of-the-art methods, we have
validated the effectiveness of the proposed method.
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Abstract. Aiming at the problems of poor image quality, unstable
training process and slow convergence speed in the data expansion
method for generating countermeasures network, this paper proposes a
RS-GAN tire defect image generative model. Compared with traditional
generative adversarial networks, RS-GAN integrates residual networks
and attention mechanisms into an RSNet embedded in the adversarial
network structure to improve the model’s feature extraction ability; at
the same time, the loss function JS divergence of the traditional gener-
ation countermeasure network is replaced by Wasserstein distance with
gradient penalty term to improve the stability of model training. The
experimental results show that the FID value of tire defect images gen-
erated by the RS-GAN model can reach 86.75, which is superior to the
images generated by DCGAN, WGAN, CGAN, and SAGAN. Moreover,
it has achieved more competitive results on SSIM and PSNR. The RS-
GAN model can stably generate high-quality tire defect images, provid-
ing an effective way to expand the tire defect dataset and alleviating the
small sample problem faced by the development of deep learning in the
field of defect detection.

Keywords: Generative Adversarial Network · Dataset Expansion ·
Defect Detection

1 Introduction

At present, many tire manufacturers’ detection methods for tire defects are still
in the manual observation stage, which makes it difficult to control the errors
and easily leads to errors and omissions, greatly reducing the efficiency of tire
detection [16].
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Deep learning is widely used in defect detection. Data is the core of deep
learning [4]. The quality and scope of the data set directly affect the detection
effect. If the data set is too small, the model is prone to non convergence and
overfitting in the training process [20], resulting in low defect detection accuracy
and poor effect. However, in actual industrial production, due to the complex
process of collecting defect images, the defect images of tires are severely insuf-
ficient, and the relevant dataset is very limited.

Expanding data through generative models is an effective way to solve the
small sample problem. Goodfellow et al. [5] proposed the Generative Adver-
sarial Network (GAN) in 2014, which generates new samples by learning fea-
ture distributions. However, the generated images have poor quality, unstable
training, and are prone to gradient explosions. In recent years, more and more
researchers have improved and optimized based on GAN, and many new models
have emerged. Mehdi et al. [15] proposed a Conditional Generative Adversarial
Network (CGAN) by adding conditional supervised sample generation to the
network, which can generate samples in a predetermined direction, but does not
solve the problem of training instability. Radforo et al. [13] proposed a deep
convolutional generative adversarial network (DCGAN), which uses a convolu-
tional layer with step size to replace the pooling layer and fully connected layer
of GAN, and adds a batch normalization layer (BN layer) to increase training
stability. The proposal of DCGAN basically determines the basic structure of
generating adversarial networks, but this structure still has problems such as
limited feature extraction ability and unstable model training.

In order to solve the above problems, this paper proposes a RS-GAN tire
defect image generative model based on DCGAN. The model integrates the
attention mechanism and residual network into an RSNet and embeds it in
DCGAN, and uses Wasserstein distance with gradient penalty term to replace
the JS divergence used by the original loss function of DCGAN. The addition
of residual networks increases the depth of the network, enabling the model
to extract deeper image features. The attention mechanism has the feature of
automatically assigning weights, allowing the model to learn more useful texture
information and suppress useless noise information.

2 Related Work

2.1 Attention Mechanism

Traditional convolutional neural networks, when used as generators to generate
images, are unable to connect two pixels that are far apart due to the fixed
and limited size of the convolutional kernel and the limited focus area. During
the training process, only local information of the image can be learned, which
can easily lead to errors in the generated samples [3]. The attention mechanism
SENet [8] first performs the Squeeze operation on the feature map obtained by
convolution. The Squeeze operation uses global average pooling to expand the
receptive field, encodes the entire spatial feature on a dimension into a global
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feature, and obtains the weight of each channel. The process can be expressed
by formula (1):

z = fsq(x) =
1

H × W

H∑

i=1

W∑

j=1

xi,j (1)

In the formula, z represents the global feature; fsq represents the Squeeze oper-
ation; x represents the input feature map; H represents the height of the feature
map; W represents the width of the feature map; xi,j represents the feature
vector representing of the i row and j column pixels.

Then perform an Excitation operation on the global features, learn the rela-
tionships between each channel, and apply weights to the feature map to obtain
the final features. This process can be represented by formula (2):

s = fex(z,W ) = σ (W2δ (W1z)) (2)

In the formula,s represents the incentive score vector; fex represents incentive
operation; σ represents the sigmoid function; δ represents ReLu activation func-
tion.

2.2 Residual Networks and RSNet

For neural networks, ideally, the deeper the layers of the network, the better its
performance. However, in the actual training process, as the network gradually
deepens, there are often problems such as gradient instability, training difficul-
ties, network degradation, etc. [11]. To solve the above problems, Kaiming He
et al. [10] proposed a residual network (ResNet) based on convolutional neural
networks (CNN) [1]. The core of ResNet is the introduction of residual blocks,
which use skip connections or shortcuts to skip certain convolutional layers,
effectively solving problems such as gradient explosion and network degrada-
tion.Multiple residual blocks are linearly connected to form a residual network,
and the structure of the residual blocks is shown in Fig. 2(d).

Traditional generative adversarial networks have the problem of having fewer
convolutional layers and incomplete feature extraction. However, simply deepen-
ing the layers of the network can lead to problems such as slow model calculation
speed, gradient explosion, and network degradation [18]. Therefore, residual net-
works with skip connection structures are introduced to suppress gradient explo-
sion and network degradation. However, residual networks do not have a direct
advantage in extracting features, but instead achieve the most ideal effect by
continuously delving deeper into the representation of more features layer by
layer.

To address this issue, it is proposed to embed the attention mechanism SENet
into the residual block, and to compensate for the shortcomings of the residual
network in feature representation by automatically assigning weights through
the attention mechanism. Based on the characteristics of the attention mecha-
nism of ”plug and play” and the principle of not damaging the original network
structure, SENet is embedded after the residual branch of each residual block
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before aggregation. In this article, the residual block embedded in SENet is
referred to as RSNet. The addition of RSNet only enhances the network’s abil-
ity to extract features through deeper network layers and attention mechanisms,
without changing the number of channels and image size of RSNet input. The
structure of RSNet is shown in Fig. 2(c).

3 RS-GAN Tire Defect Image Generative Model

3.1 RS-GAN Model Framework

DCGAN is proposed on the basis of GAN. The idea of the algorithm is derived
from the zero sum game in game theory [15]. On the basis of GAN, DCGAN
adopts a full convolution network, and uses a convolution layer with step size to
replace the pooling layer of generators and discriminators, Use 1×1 convolution
replaces the fully connected layer in the structure; Apply the BN layer to every
layer except for the output layer of the generator and the input layer of the
discriminator; Except for the last layer of the generator, the rest of the layers
use ReLu activation function and Leaky ReLu activation function, and the last
layer uses Tanh activation function and Sigmoid activation function.

DCGAN consists of a generator and a discriminator. The generator gener-
ates as close to real samples as possible, and the discriminator distinguishes
between the generated and real samples. The two optimize their respective abil-
ities through continuous iteration, ultimately achieving Nash equilibrium. The
objective function of the game between the generator and discriminator can be
represented by formula (3):

min
G

max
D

V (D,G) = Ex∼Pr(x)[log(D(x))] + Ez∼Pg(z)[log(1 − D(G(z)))] (3)

In the formula, x represents the real sample data; Pr(x) represents the probabil-
ity distribution of x ; E is the mathematical expectation; z is a random variable;
Pg(z) is the probability distribution of z; V (D,G) represents the value functions
for discriminators and generators.

This article improves on the basis of DCGAN, and the overall process of tire
defect image generation is shown in Fig. 1. Firstly, a set of uniformly distributed
random noise Z is fed into the generator as input, and the output generates sam-
ple G (z); Then, both the real sample and the generated sample G (z) are input
into the discriminator to determine the authenticity of the generated sample G
(z). The discriminator has a convolutional structure, aiming to determine the
probability of true samples as 1. The generator has a transposed convolutional
structure, aiming to prevent the discriminator from determining the authenticity
of the generated samples. By continuously competing with iterative optimization
generators and discriminators, the generated images become closer to real sam-
ples to achieve the goal of generating defect images. Although DCGAN is widely
used in the field of data augmentation, there are still some problems, such as
model collapse, slow convergence speed, and excessively free and uncontrollable
sample generation.
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Fig. 1. Overall framework for defect image generation.

3.2 Generators and Discriminators for RS-GAN

As the core of the entire network, the generator aims to generate tire defect
images. The structure of the RS-GAN generator is shown in Fig. 2(a). Input
a 100 dimensional linear vector into the model, reconstruct it into a 256×8×8
feature map through a linear layer, and introduce RSNet before the feature map
is sent to the deconvolution layer. The addition of RSNet only improves the
network’s feature extraction ability and does not change the size and number of
channels of the output feature map. Send the output characteristic maps into the
transposed convolution layer, BN layer, and ReLu Activation function layer in
turn to get the characteristic maps of 128×16×16. Then, after two deconvolution
layers, except that Tanh is used as the Activation function for network output,
each other convolution layer uses ReLu as the Activation function. The 256×8×8

Fig. 2. The framework of the proposed RS-GAN model. (a) Generator structure (b)
Discriminator structure (c) RSNet structure (d) Weight Layer structure
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feature maps input by the generator are subjected to a series of operations such
as 3×64×64 deconvolutions to obtain 3 generated samples as the output of the
generator.

The structure of the RS-GAN discriminator is shown in Fig. 2(b). The input
of the discriminator is the output image of the generator, and the discriminator
consists of three convolutional layers. The feature map of input 3×64×64 is
continuously convolved into a feature map of 256×8×8. The activation function
of three-layer convolution uses Leaky ReLu. RSNet and BN layers are added
before the second and third layer convolutions. The Dropout layer is added after
the layering in Volumes 1 and 3 to prevent the discriminator from being too
optimized and causing overfitting in training. Finally, the 256×8×8 feature map
is passed through a sigmoid activation function to obtain the probability of true
or false samples generated by the generator.

3.3 Optimization of Loss Function

For traditional generative adversarial networks, simply improving the structure
of the network model cannot fundamentally solve the problems of difficult train-
ing and unstable gradients in generative networks. There is a problem with the
loss function JS divergence used by the traditional generation countermeasure
network. When the real distribution and the generated distribution do not inter-
sect, the JS divergence will become constant, resulting in unstable training of
the gradient disappearance model. For this reason, Gulrjani et al. [6] proposed
to use Wasserstein distance with gradient penalty term to improve the loss func-
tion. Wasserstein distance has the advantage of smoothness, reflecting the dis-
tance between the real distribution probability and the generated distribution
probability. The smaller Wasserstein distance, the more similar the real distribu-
tion and the generated distribution, the smaller the gap between the generated
samples and the real samples. The Wasserstein distance can be represented by
formula (4):

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x − y‖] (4)

In the formula, Pr represents the true distribution probability; Pg represents
the probability of generating a distribution; Π (Pr, Pg) represents the set of joint
distribution (Pr, Pg) ; γ represents a joint distribution; inf represents the lower
bound; x represents a real sample; y represents the generated sample; ‖x − y‖
represents the distance between x and y.

In order to solve the problem of JS divergence prone to sudden changes, a
penalty term Lipschitz function [2] is introduced while using Wasserstein distance
to constrain the discriminator weight by limiting the variation amplitude of
the objective function. The loss function of generator and discriminator can be
expressed by formula (5) and formula (6) respectively:

LG = Ex∼Pr
(D(x)) − Ex∼Pg

(D(x)) (5)

LD = Ex∼Pr
(1−D(G(z)))−Ex∼Pg

(D(x))+λEn∼Pn

(
(‖∇nD(n)‖P − 1)2

)
(6)
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In the formula: n represents the random difference between the real distribution
and the generated distribution; Pn represents the difference between the real
distribution and the generated distribution; λ represents the coefficient of the
regularization term; ∇nD(n) represents a gradient constraint.

4 Experimental Results and Analysis

4.1 Evaluation Indicators and Generated Image Display

Reference [14] points out that there is no fixed indicator for evaluating the effec-
tiveness of GAN generated images. In order to more objectively reflect the qual-
ity of generated images, FID (Freechet Perception Distance Score) [7], SSIM
(Structural Similarity Index) [17], and PSNR (Peak Signal-to-Noise Ratio) [9]
were used as the main indicators for evaluating the quality of generated images
in this experiment. FID calculates the distance between the feature vectors of
the real image and the generated image. The smaller the FID value, the closer
the generated image is to the real image [19]. FID extracts the features of both
real and generated images through a pre trained Inception v3 network, and the
calculation formula can be expressed by formula (7):

FID = ‖μr − μg‖2 + Tr
(
σr + σg − 2 (σrσg)

1/2
)

(7)

In the formula,μr is the mean of real image features; μg is the mean of generated
image features; σr is the variance of real image features; σg is the variance of
the generated image features.

SSIM is commonly used to evaluate the similarity between two images. The
range of SSIM is 0–1, and a larger SSIM value indicates that the two images are
closer. For both real and generated images, SSIM can be represented by formula
(8):

SSIM(r, g) =
(2μrμg + c1) (σrg + c2)(

μ2
r + μ2

g + c1

) (
σ2

r + σ2
g + c2

) (8)

In the formula, σrg is the covariance between the real image and the generated
image; c1c2 is a constant.

PSNR is obtained by calculating the error between the pixels corresponding
to the real sample and the generated sample. The higher the PSNR value, the
higher the quality of the generated image. PSNR can be represented by formula
(9):

PSNR = 10 · log10

(
MAX2

I

MSE

)
(9)

In the formula, MSE is the mean square deviation between the real image and
the generated image; MAX is the maximum pixel value in the image.

Figure 3 shows the display of tire defect images generated by RS-GAN. In
order to demonstrate in more detail the effects of images generated by different
iterations, one generated image is selected as a display after every 200 iterations
during the training process, as shown in Fig. 4. As shown in Fig. 4, RS-GAN can
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Fig. 3. Generate image display Fig. 4. Iterative training display

generate defects at 600 iterations, but the generated image is severely distorted
at this time; when the iteration reaches 1400 times, the generated image is greatly
improved, but the degree of background gridding is very severe; when iterating
to 1800 times, the generated image is already close to the real image, except
for some grids on the edge of the image; when the iteration reaches 2000–2500
times, the generated image is already very close to the real image

4.2 Results and Analysis of Ablation Experiments

RS-GAN adopts three improvement measures to improve the original DCGAN,
namely embedding residual structure and attention mechanism into the DCGAN
structure; Wasserstein distance with gradient penalty term is used to replace
the loss function of the original DCGAN. In order to verify the gain effect of
improvement measures on the generated images of the model, ablation exper-
iments were designed to verify the improvement effects of three improvement
measures on the model. Select DCGAN as the baseline model, and add residual
network (DCGAN Resnet), attention mechanism (DCGAN SENet), and Wasser-
stein distance with gradient penalty term (DCGAN Wasserstein) to the baseline
model. For these five models, the ablation experiment uses the same Learning
rate, iteration number and other indicators to ensure the accuracy of the exper-
iment as much as possible. From both qualitative and quantitative perspectives,
it verifies the gains of improvement measures on the model.

Figure 5 qualitatively displays the images generated by five models of abla-
tion experiments. From Fig. 5 (a), (b), (c), and (d), it can be seen that the images
generated by the four models already have a rough outline of defects, but the
edges of the defects are blurry, easy to fuse with the background, and there
are many false textures, resulting in low image quality. Although the images
generated by DCGAN have defects, they cannot be fully generated. DCGAN
Wasserstein did not experience gradient explosion or other issues during the
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training process; DCGAN-SENet can roughly generate defect shapes; But the
background is severely blurred; DCGAN-ResNet can distinguish defects from
the background, and the image background is clearer, but the generated defect
shape is not obvious and severely distorted. The image generated by RS-GAN
has clearer defect edges, significantly reduced image noise points, and a clear dis-
tinction between the overall defect and background, resulting in a more realistic
image.

Fig. 5. Results of ablation experiments. (a) Baseline (b) DCGAN-Wasserstein (c)
DCGAN-SENet (d) DCGAN-ResNet (e) RS-GAN.

From a quantitative perspective, the FID, SSIM, and PSNR values of the
images generated by the five models of ablation experiments were compared,
and the results are shown in Table 1. From Table 1, it can be seen that the
FID values of the images generated based on the three improvement measures
are all lower than Baseline, and the FID value of the images generated by RS-
GAN is 86.75, which is much lower than 125.77 of the images generated by
Baseline. The SSIM and PSNR values of the generated images based on three
improvement measures are higher than those of Baseline. In summary, combining
the experimental results from both qualitative and quantitative perspectives, it
can be concluded that all three improvement measures for RS-GAN are beneficial
for improving the quality of generated images.
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Table 1. Quantitative evaluation of ablation experiments.

Models FID SSIM PSNR

Baseline 125.77 0.64 27.45

DCGAN-Wasserstein 120.14 0.65 28.07

DCGAN-SENet 99.98 0.75 31.41

DCGAN-ResNet 102.37 0.73 30.62

RS-GAN 86.75 0.86 35.15

4.3 Results and Analysis of Comparative Experiments

In order to further verify the superiority of RS-GAN compared to existing main-
stream models, RS-GAN was compared qualitatively and quantitatively with
existing mainstream DCGAN, WGAN, CGAN, and SAGAN. WGAN replaces
the loss function of the traditional generation countermeasure network with
Wasserstein distance without adding penalty coefficient; CGAN adds conditional
constraints to the inputs of the generator and discriminator; SAGAN incorpo-
rates self attention mechanism into the model structure.

Fig. 6. Results of comparative experiments. (a) DCGAN (b) WGAN (c) CGAN (d)
SAGAN (e) RS-GAN.

Figure 6 qualitatively displays the images generated by the five models in the
comparative experiment. From Fig. 6, it can be seen that although the images
generated by DCGAN generate defects, they cannot be fully generated. WGAN
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Table 2. Quantitative evaluation of comparative experiments.

Models FID SSIM PSNR

Baseline 125.77 0.64 27.45

WGAN 113.45 0.72 29.37

CGAN 105.24 0.74 30.86

SAGAN 96.68 0.79 33.88

RS-GAN 86.75 0.86 35.15

only improved the loss function, and there was no gradient explosion and other
problems in the training process. The image generated by CGAN has blurry
edges and severe background gridding. SAGAN with self attention mechanism
can generate clearer defects, but the edges of the defects are blurry and there are
many noise points in the background. Compared with the other four models, the
image generated by RS-GAN shows clearer defect shapes, more natural fusion
of defects and background, significant improvement in background meshing, and
no issues such as gradient explosion during training.

From a quantitative perspective, the FID, SSIM, and PSNR values of the
images generated by the five models of ablation experiments were compared,
and the results are shown in Table 2. From Table 2, it can be seen that the FID
value of RS-GAN generated images is 86.75, which is lower than the other four
comparative models; The SSIM and PSNR values were 0.86 and 35.15, respec-
tively, which were higher than the four comparative models. In summary, com-
bining experimental results from both qualitative and quantitative perspectives,
RS-GAN has better performance in generating tire image compared to DCGAN,
WGAN, CGAN, and SAGAN.

5 Conclusion

On the basis of DCGAN, this paper proposes to improve it from two aspects
of network structure and loss function, which effectively improves the problems
of low image quality, slow convergence speed and unstable training of tradi-
tional generation countermeasure network. In terms of network structure, the
residual network and attention mechanism (SENet) are fused into an RSNet
and embedded into DCGAN to enhance the model’s feature extraction ability.
In terms of loss function, Wasserstein distance with gradient penalty term is
used to replace the JS divergence used by the original DCGAN to improve the
convergence speed and stability of the model. Using FID, SSIM, and PSNR as
evaluation indicators for image generation, the experimental results show that
the RS-GAN model generates images with a FID value of 86.75, and SSIM and
PSNR can reach 0.86 and 35.15 respectively, resulting in better image quality
than DCGAN, WGAN, CGAN, and SAGAN. This model can generate high-
quality tire defect images, providing theoretical reference and methodological
basis for expanding the defect sample dataset, and thus promoting the develop-
ment of deep learning in the field of tire defect detection. However, this model
is not ideal in improving the diversity of defect images, and future research will
continue with the aim of generating multiple types of defect images.
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Abstract. Few-shot object detection (FSOD) methods learn to detect
novel objects from a few data, which also requires reusing base class data
if detecting base objects is necessary. However, in some real applications,
it is difficult to obtain old class data due to privacy or limited stor-
age capacity, causing catastrophic forgetting when learning new classes.
Therefore, incremental few-shot object detection (iFSOD) has attracted
the attention of researchers in recent years. The iFSOD methods con-
tinuously learn novel classes and not forget learned knowledge without
storing old class data. In this paper, we propose a novel method using
novel-registrable weights and region-level contrastive learning (NWRC)
for iFSOD. First, we use novel-registrable weights for RoI classification,
which memorizes class-specific weights to alleviate forgetting old knowl-
edge and registers new weights for novel classes. Then we propose region-
level contrastive learning in the base training stage by proposal box aug-
mentation, enhancing the generalizability of the feature representations
and plasticity of the detector. We verify the effectiveness of our method
on two experimental settings of iFSOD on COCO and VOC datasets.
The results show that our method has the ability to learn novel classes
with a few-shot dataset and not forget old classes.

Keywords: Few-shot learning · Incremental learning · Object
detection · Contrastive learning

1 Introduction

Deep neural networks have achieved excellent results in object detection task [24].
In some daily life applications, object detection systems should update networks
to detect objects of new classes continuously. However, deep neural networks
often need a large dataset for training and will overfit when training on a few
data in a naive way. Researches on few-shot object detection (FSOD) [7,31] train
the network on large amounts of data from base classes and then learn on a few
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 400–412, 2024.
https://doi.org/10.1007/978-981-99-8145-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8145-8_31&domain=pdf
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Fig. 1. The training data and performance of different methods when learning novel
classes. Our method NWRC performs better on iFSOD without old data memory.

data from novel classes, so that the network can detect novel classes objects.
However, when fine-tuning on novel classes, it is unworthy to lose the ability
to detect the abundant base class objects. Therefore, some researchers propose
generalized few-shot object detection (gFSOD) [27], which considers both the
performance of base classes and novel classes in the fine-tuning stage. Although
the research on gFSOD is very successful [23,28], this training pattern needs
memory to store part or all of the base class data and learn all novel classes
concurrently. We hope the object detector can continuously learn new classes
with only a few training samples after base training on a large dataset and not
forget old knowledge without storing old class data. This means the detector
needs to have the capability of class-incremental learning. This problem setting
is called incremental few-shot object detection (iFSOD) [22].

Pérez-Rúa et al. [22] proposed a meta-learning approach named ONCE after
raising the iFSOD problem. ONCE trains a code generator to get weights from
the support set of novel classes. As a pioneering work, ONCE has limited perfor-
mance in solving iFSOD problems, as shown in Fig. 1(a). After that, LEAST [18]
introduces knowledge distillation into iFSOD. However, as shown in Fig. 1(b),
LEAST still needs to store base-class samples for knowledge distillation, which
has limitations in the iFSOD setting.

In this paper, we choose fine-tuning-based TFA [27] as the baseline and con-
sider addressing the iFSOD problem following two aspects: novel-registrable
weights and region-level contrastive learning. The advantages of our method
compared to other methods are shown in Fig. 1(c).

First, we use novel-registrable weights (NRW) for RoI classification. When
using the fully-connected classifier, the outputs of new class neurons will be
higher, thereby inhibiting the confidences of old classes, causing catastrophic for-
getting. We use the novel-registrable weights that memorize class-specific weights
to alleviate forgetting old knowledge and register new weights for new classes.
Inspired by [14,27,30], we conduct cosine similarity between classification fea-
tures and weights in NRW to get balanced outputs. We further remove weights
for the background to guarantee separability of potential foreground classes.
NRW can avoid forgetting in a fixed feature space and achieve incremental capa-
bility.

Second, we propose region-level contrastive learning (RLCL) in the base
training stage to enhance the feature extractor. As a self-supervised learning
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method, contrastive learning can efficiently mine information in images and learn
good representations without any labels [2,12]. There are challenges in introduc-
ing self-supervised contrastive learning into iFSOD, including plural objects and
proposals with semantic overlapping. We propose to view regions as instances for
contrast and use proposal box augmentation to realize region-level contrastive
learning to the object detection task and apply it in the base training stage. It
can enhance the detector to extract more generalized features and have better
capability to learn few-shot novel classes.

Our contributions are summarized as follows:

– We use novel-registrable weights for RoI classification, which alleviates for-
getting and achieves incremental capability.

– We propose region-level contrastive learning applied in the base training
stage, which propels the feature extractor to get more generalized features
and enhance the plasticity of the detector.

– Our experimental results on COCO and VOC datasets show that our method
has a good ability to learn new classes with a few-shot dataset and does not
forget old classes.

2 Related Works

FSOD. Few-shot object detection methods include two categories, meta-
learning-based methods [7,15,17] and fine-tuning-based methods [23,26–28]. The
former learns a few-shot paradigm on base classes training data and applies the
paradigm to novel classes data. The latter usually performs better than the for-
mer on the FSOD problem. TFA [27] first proposes a simple FSOD strategy
that only needs to fine-tune the RoI classifier and regressor of the detector when
learning novel classes. Based on TFA, FSCE [26] carefully adjusts hyperparam-
eters and fine-tunes part of the feature extractor, and introduces supervised
contrastive learning into fine-tuning stage to enhance the separability of novel
and base classes. DeFRCN [23] decouples features for RPN and RoI, alleviating
mismatched goals between different losses. MFDC [28] introduces knowledge dis-
tillation into FSOD, which explicitly transfers the knowledge of base classes to
novel classes. The above fine-tuning-based approaches freeze all or most layers
of the feature extractor in the fine-tuning stage to avoid overfitting.

iFSOD. As same as FSOD, incremental few-shot object detection also has two
kinds of methods, meta-learning-based methods [4,22,32] and fine-tuning-based
methods [18,19]. ONCE [22] and Sylph [32] train hypernetworks on base train-
ing data to generate class codes as part of parameters in the detector. While
fine-tuning based approaches have better performance than meta-learning-based
ones. LEAST [18] uses knowledge distillation strategy to prevent forgetting old
knowledge in the fine-tuning stage. [19] proposes a double-branch framework to
decouple the feature representation of base and novel classes. iMTFA [8] uses
Mask R-CNN detector, which can also deal with the iFSOD problem while solv-
ing incremental few-shot instance segmentation. It implements the incremental
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mode with a non-trainable cosine similarity classifier based on the TFA strat-
egy. These methods need to store base-classes images or features for knowledge
inheritance, which takes up more memory but is inefficient.

Contrastive Learning. Contrastive learning learns representations by con-
trasting positive and negative pairs [11]. [5] treats each instance as a class and
extends contrastive learning as a self-supervised learning paradigm. SimCLR [2]
systematically depicts the structure of contrastive learning and expounds on
the effects of data augmentation, loss function, and other factors on contrastive
learning. MoCo [12] sets up a dynamic queue to expand the number of negative
samples in the loss function, and momentum updating that ensures the continu-
ity of the encoder. BYOL [10] proposes a novel strategy without using negative
pairs for contrast while the training does not collapse. SimSiam [3] designs a
simple Siamese network to learn representations based on the analysis of BYOL.
Common contrastive learning methods are self-supervised. SupCon [16] proposes
a supervised contrastive learning method. FSCE [26] introduces supervised con-
trastive learning into the gFSOD fine-tuning to enlarge the difference of inter-
class features. Different from FSCE, we introduce self-supervised contrastive
learning into iFSOD base training so that the feature extractor can get more
generalized features.

3 Method

3.1 Problem Formulation

The fine-tuning based incremental few-shot object detection training process
consists of two stages, base training and fine-tuning. The fine-tuning stage is
split into different incremental phases, {φ1, φ2, ..., φT }. Therefore we can define
the base training stage as φ0. Each phase φt uses only the training dataset Dt =
{(xt

i, y
t
i)}Mt

i=1, where xt
i is the input image with N objects and yt

i = {(ct
i,j , b

t
i,j)}Nt

i
j=1

represents the labels and box locations of objects in the image. Note that each
label in phase t only belongs to the classes of phase t, namely ct

i,j ∈ Ct, and the
classes of different phases do not overlap, namely Ct1 ∩ Ct2 = ∅, t1 �= t2. Under
the setting of K-shot,

∑Mt

i=1 N t
i = K |Ct| when t > 0, and

∑Mt

i=1 N t
i � K |Ct|

when t = 0.
The entire iFSOD training process is as follows: Firstly, we train the detector

on abundant base classes training data D0 to obtain a base detector F0. Secondly,
the detector is fine-tuned on novel classes data. Specifically, the detector Ft−1

is pushed to the next new phase for fine-tuning on new classes training data Dt

to obtain a new detector Ft. The detector Ft can detect objects of old classes
cold ∈ ⋃t−1

τ=0 Cτ and new classes cnew ∈ Ct.

3.2 Novel-Registrable Weights

Faster-RCNN uses a fully-connected layer as the RoI classifier [24]. It can linearly
map high-dimensional features to scores of classes. We can regard the part before
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the classifier and regressor as a feature extractor. Few-shot novel class data
cannot support the training of complex feature extractor which contains rich
knowledge. The knowledge required by novel classes is transferred from the base
classes. We freeze the feature extractor in the fine-tuning stage to preserve base-
classes knowledge and prevent overfitting a few novel class data.

The feature space is fixed in the fine-tuning stage on account of the frozen
feature extractor. To avoid forgetting old classes, the weights of the old class
neurons in the classifier should also be retained and fixed [30]. For any input
image, the output logits of the old class neurons are constant. During training,
the logits will sequentially go through softmax activation layer and cross-entropy
loss [9], namely

Lt
cls = − 1

No

No∑

i=1

log
exp li,gt

∑Nt
c

j=1 exp li,j + exp li,bg

(1)

where No is the number of sampled RoIs, N t
c =

∑t
τ=0 |Cτ | is the total number

of classes in phase t, and li,j is the j-th output logit of i-th proposed objects.
gt means ground-truth class and bg means background class. Since gt ∈ Ct ∪
{bg} and the distribution of li,j(j /∈ Ct) is constant, the mean of li,j(j ∈ Ct)
distribution will be higher than that of li,j(j /∈ Ct) as the loss descends. That
means the confidences of old classes will be inhibited. The imbalance problem
leads to forgetting in the classifier.

To better memorize the old classes and enhance the incremental ability,
we use novel-registrable weights (NRW), shown in Fig. 2. Each weight vector
in NRW corresponds to a class. When the detector learns new classes, NRW
will register a new weight vector for each new class and randomly initialize
them. Inspired by [14,27,30], output logits are calculated by cosine similarity of
features and weights to avoid inhibiting the confidences of old classes, namely

Fig. 2. Novel-registrable weights for RoI clas-
sification. Black arrows mean normalization,
mapping features and weights to cosine similar-
ity metric space. Locks mean frozen parameters.
Weights for the background are removed.

li,j = α
ri · wj

‖ri‖‖wj‖ (2)

where ri is i-th feature, wj is the
weight vector of j-th class, and
α is a scaling factor. Compared
with the fully-connected layer, the
logits calculated by cosine simi-
larity are balanced for different
classes, contributing to the reg-
istration ability. Note that the
NRW can be regarded as a train-
able nearest-distance-based clas-
sifier with weight vectors as adap-
tive prototypes. It is undesirable
that the features of background
boxes are concentrated around one prototype, thereby reducing the separability
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of potential objects. Therefore, we remove the weights for the background class
in NRW, and the logit of the background class is calculated indirectly according
to the highest logit of foreground classes, namely

li,bg = 1 − max
j∈Call

li,j (3)

where Call =
⋃t

τ=0 Cτ . In this way, the foreground class outputs of the back-
ground instances can be suppressed as the loss decreases.

Fig. 3. Illustration of region-level contrastive learning, based on Faster R-CNN detec-
tor. The proposal boxes generated by the RPN of the online branch are directly sub-
mitted to the RoI head for routine detection training. At the same time, they are
augmented into two groups for two branches to perform RoI pooling. Features for clas-
sification extracted by the RoI head from these two groups forward propagate through
an MLP and a predictor (online-only). The outputs are put into the contrastive loss.
Parameters of the entire target branch are shared with the online branch and do not
require back-propagation.

3.3 Region-Level Contrastive Learning

We choose to freeze the feature extractor in fine-tuning stage, which limits the
plasticity of the network. For few-shot novel classes, the knowledge required for
detection is transferred from base-classes knowledge. The potential objects in
the background are the key to extracting generalized knowledge. Considering
that there is no annotation in the background, we introduce self-supervised con-
trastive learning, which treats each image instance as a class and guides the
network to learn representations by instance discrimination [29].

Applying contrastive learning to object detection has two challenges. Firstly,
in the detection task, there could be more than one object in an image. Different
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locations in an image have noticeable semantic differences. Therefore, instead
of viewing each image as an instance, we treat the objects in proposal boxes as
instances for contrast. Secondly, we counted the IoU values between proposal
boxes proposed by RPN on VOC test set. 59.1% of pairs have overlapping areas,
and 20.9% of pairs have more than 0.3 IoU values which cannot be considered
negative pairs. We apply contrastive learning without using negative pairs similar
to BYOL [10] and SimSiam [3].

To solve the above problems, we propose region-level contrastive learning to
enhance the feature extractor, as shown in Fig. 3. Similar to the structure of
BYOL, our method has two branches named online branch and target branch.
Two branches take two randomly augmented views vo and vt from image x as
input, respectively. The online branch also performs regular detection training
while participating in contrastive learning. RPN of the online branch calculates
the proposal boxes set Po. The mapping from each box po ∈ Po to target branch
box pt is resolved based on the image augmentation information. As we hypoth-
esize that RPN is class-agnostic like other approaches [8,27], the boxes proposed
by RPN can be regarded as containing base class objects and other potential
objects. We cannot directly contrast po and pt, because the convolutional neural
network in the backbone has translation invariance [1]. We randomly offset the
location of proposal boxes as an augmentation to enhance contrastive learning.
Note that due to the cropping operation in image augmentation, some aug-
mented box pairs have small overlapping areas and should be removed. Then
we get filtered augmented sets P̂o and P̂t. RoI pooled features are calculated by
RoI-Align pooling on the feature maps fo and ft. These features are input to
RoI feature extractor F . Similar to [10], the outputs are projected by an MLP
G, and a predictor P is used in the online branch to predict the outputs of the
target branch. The contrastive loss is expressed as follows:

Lctr = 1 − 1
∣
∣
∣P̂o

∣
∣
∣

∑

p̂o∈P̂o,p̂t∈P̂t

〈P (R(fo, p̂o)), R(ft, p̂t)〉 (4)

where 〈·, ·〉 is cosine similarity which can be expressed by Eq. 2 without α. R(·, ·)
is the abbreviation of mapping G(F (RoIAlign(·, ·))).

Finally, we define the loss function for base training as

Lbase = Lrpn + Lcls + Lreg + λLctr (5)

where the first three items are the regular loss of Faster-RCNN and λ is a scale
of contrastive loss.

4 Experiments

4.1 Experimental Setting

We perform experiments on PASCAL VOC [6] and MS COCO [20] benchmarks.
For VOC, we adopt the data splits and training examples provided by [27]. 15 of



NWRC 407

Table 1. iFSOD performance on COCO val set. APn, APb, and APm are AP of base
classes, novel classes, and the mean of all classes. MRCN is Mask R-CNN detector.
FRCN is Faster R-CNN. R50 and R101 are ResNet backbones. 10 random sets of novel
classes samples are considered in our results. Bold and underline indicate the best and
the second-best.

Method Detector 1-shot 5-shot 10-shot

APn APb APm APn APb APm APn APb APm

ONCE [22] CentreNet-R50 0.7 17.9 13.6 1.0 17.9 13.7 1.2 17.9 13.7

iMTFA [8] MRCN-R50-FPN 3.2 27.8 21.7 6.1 24.1 19.6 7.0 23.4 19.3

LEAST [18] FRCN-R101-C4 4.4 24.6 19.6 9.4 25.2 21.3 12.5 23.1 20.5

Sylph [32] FCOS-R50-FPN 0.9 29.8 22.6 1.4 35.5 27.0 1.6 35.8 27.3

ours FRCN-R50-FPN 2.8 37.3 28.7 7.1 37.3 29.8 9.1 37.3 30.3

20 classes are base classes, and others are novel classes. The training data come
from trainval sets of VOC 2007 and 2012, and evaluation data come from test set
of VOC 2007. We report AP50 for VOC results. For COCO, we adopt the data
split used by previous few-shot object detection [15,23,26–28] and incremental
few-shot object detection works [18,22,32]. COCO has a total of 80 classes, of
which 20 classes are included in VOC. These 20 classes are used as novel classes,
and the remaining 60 classes are regarded as base classes. Each novel class has
K ∈ {1, 5, 10} instances in training data. We evaluate our trained model on the
COCO minival set with 5000 images as in [15] and report COCO-style mAP .

We use Faster-RCNN [24] as the basic detection framework, which includes
ResNet-50 [13] pre-trained on ImageNet [25] with FPN [21] as the backbone.
The difference is that we decouple the classification and regression features in
the RoI head. We adopt SGD with a momentum of 0.9 and a weight decay
of 0.0001. For VOC, we train the network with a batch size of 2 on 1 TITAN
Xp GPU and set the learning rate to 0.0025 for base training and 0.000125 for
fine-tuning. For COCO, we train with a batch size of 16 on 8 TITAN X GPUS
and set the learning rate to 0.02 for base training and 0.001 for fine-tuning.
The hyper-parameter α in Eq. 2 is set to 20 and λ in Eq. 5 is set to 0.2. Both
MLP and predictor consist of a fully-connected layer, a ReLU function, and a
fully-connected layer.

4.2 Incremental Few-Shot Object Detection

We first conduct experiments under a simple iFSOD setting, similar to the FSOD
setting that adds all novel classes simultaneously in the fine-tuning stage. The
difference is that no base-class data is used for fine-tuning. We compare our
method with existing iFSOD methods: ONCE [22], iMTFA [8], LEAST [18],
Sylph [32] in Table 1.

Among those methods, ONCE and Sylph are meta-learning-based methods.
The performance of such methods is much worse than other methods based
on fine-tuning, though the former do not require fine-tuning that introduces
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additional training costs [32]. We mainly compare our results with other fine-
tuning-based methods. Our method obviously outperforms iMTFA. iMTFA [8]
uses Mask-RCNN as the detection framework, which can handle the detection
task while aiming at the segmentation task. It uses a cosine similarity classifier
which uses the mean of embeddings of all training instances as the weights. In
this way, the model can easily overfit the training data on new classes, which
results in limited test performance. Note that our method is slightly inferior
to iMTFA in the 1-shot setting, because the latter uses a class-agnostic box
regressor while we use a class-specific one.

Our approach performs much better than LEAST on base classes. LEAST
[18] uses knowledge distillation to alleviate forgetting of old classes and unfreezes
the feature extractor to improve the plasticity of new classes. Their experiments
show that although naively applying knowledge distillation can perform bet-
ter for new-classes detection, the ability to alleviate forgetting is limited if old
classes data are not stored in the memory. In contrast, our method uses a more
straightforward strategy to alleviate the forgetting of old classes to a greater
extent. However, our performance on novel classes is slightly lower than LEAST.
We think the reason is that the basic detection architectures of the two methods
are different, and the unfrozen RoI head has better plasticity.

4.3 Continuous iFSOD

Fig. 4. Continuous iFSOD on COCO dataset.

We evaluate the performance of
our method in a continuous incre-
mental setting. Only one class is
added per phase in the fine-tuning
stage. This setting better reflects
the incremental few-shot object
detection problem compared to
Sect. 4.2. For COCO, this means
that the fine-tuning stage has a
total of 20 phases. The results are
shown in Fig. 4.

Compared with the basic
method TFA, as the phase increases, the base classes performance of our method
has a limited decline. The overall performance is improved significantly. Differ-
ent from TFA, the AP score of our method is stable over different phases. Our
method also outperforms other methods in this setting. The performance of
ONCE is stable throughout the incremental process, while the overall AP score
is low [22]. LEAST has good performance only with old class samples in memory.
However, when the old class data are unavailable, its AP will even decrease to
0 [18].
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4.4 Ablation Study

We test the effect of novel-registrable weights (NRW) and region-level contrastive
learning (RLCL) on the iFSOD setting, as shown in Table 2. As a method to
tackle the FSOD problem, TFA is clearly not equipped to avoid catastrophic
forgetting. The forgetting problem is greatly alleviated with NRW. Besides, when
RLCL is added to the base training process, the performance of novel classes
is further improved. Considering light datasets are closer to scenarios where
annotations are not easily attainable, we also conduct ablation studies on VOC
dataset, as shown in Table 3. With fewer base classes, training on VOC dataset
is more significantly aided by region-level contrastive learning. The results of
these experiments show that NRW can greatly alleviate forgetting and improve
overall performance. RLCL can promote the generalization of the base model to
further improve the performance of novel classes.

Table 2. Ablation study on COCO
with 10 shots.

Method APn APb APm

TFA 9.1 19.8 17.1

TFA+NRW 9.1 37.330.3

TFA+NRW+RLCL9.4 37.2 30.3

Table 3. Ablation study on VOC
split 1 with 3 shots.

Method APn APb APm

TFA 33.8 69.4 60.5

TFA+NRW 51.6 80.5 73.3

TFA+NRW+RLCL 54.1 80.7 74.0

Table 4. Ablation study for differ-
ent NRW operations.

Method APn APb APm

NRW-fo 31.7 63.1 55.2

NRW-bg 44.2 80.2 71.2

NRW 51.6 80.5 73.3

Table 5. Ablation study for RLCL
augmentation.

img box APn APb APm

� 50.9 80.0 72.7

� 53.5 80.7 73.9

� � 54.1 80.7 74.0

We also conduct ablation studies on NRW, as shown in Table 4. NRW-fo
means only freezing old class wights, and NRW-bg is NRW that assigns weights
to the background class. Experimental results prove the correctness of our theory
in Sect. 3.2. Ablation studies on image and proposal box augmentation for region-
level contrastive learning are shown in Table 5. The results show the effectiveness
of two augmentations.
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5 Conclusion

We have proposed NWRC to tackle the incremental few-shot object detection
(iFSOD) problem. NWRC uses novel-registrable weights for RoI classification to
achieve incremental capability and avoid catastrophic forgetting. We proposed
region-level contrastive learning to enhance learning ability for few-shot novel
classes. We verify the effectiveness of NWRC by conducting experiments on
COCO and VOC datasets. NWRC performs well under two settings of iFSOD.
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Abstract. Accurate semantic segmentation of surgical instruments
from images captured by the laparoscopic system plays a crucial role in
ensuring the reliability of vision-based Robot-Assisted Minimally Inva-
sive Surgery. Despite numerous notable advancements in semantic seg-
mentation, the achieved segmentation accuracy still falls short of meeting
the requirements for surgical safety. To enhance the accuracy further, we
propose several modifications to a conventional medical image segmen-
tation network, including a modified Feature Pyramid Module. Within
this modified module, Patch-Embedding with varying rates and Self-
Attention Blocks are employed to mitigate the loss of feature informa-
tion while simultaneously expanding the receptive field. As for the net-
work architecture, all feature maps extracted by the encoder are seam-
lessly integrated into the proposed modified Feature Pyramid Module
via element-wise connections. The resulting output from this module is
then transmitted to the decoder blocks at each stage. Considering these
hybrid properties, the proposed method is called Hybrid U-Net. Subse-
quently, multiple experiments were conducted on two available medical
datasets and the experimental results reveal that our proposed method
outperforms the recent methods in terms of accuracy on both medical
datasets.

Keywords: Computer vision · Deep learning · Semantic
segmentation · Medical image processing · Surgical robotics

1 Introduction

In a class of Robot-Assisted Minimally Invasive Surgery (RMIS) [21], in order for
the surgical robot to accurately respond to the surgeon’s operation and improve
surgical efficiency while ensuring patient safety, it is essential to extract the pixel
regions of the surgical instruments in the images captured by the endoscopy
system [1,2]. The above process can be performed with the image semantic
segmentation with Deep Neural Networks which is a pixel-level classification
task and the output image is typically required to have the same size/resolution
as the original input image. To provide a more intuitive understanding, we utilize
Fig. 1 to directly showcase surgical instruments image segmentation [2,11].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 413–426, 2024.
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Fig. 1. Example images from the MICCAI EndoVis 2017 Dataset and Kvasir-
Instrument, along with the corresponding outputs of the proposed network.

Image segmentation with Deep Neural Networks holds a significant advan-
tage over traditional methods due to its strong generalization capability. There
is no need to manually re-select feature spaces or redesign network structures
when dealing with different types of surgical instruments. Currently, Vision
Transformer (ViT-like) brings a new dynamism to vision tasks. It focuses more
on semantic information than Convolutional Neural Networks (CNN) by incor-
porating Self-Attention mechanisms [6,16,17]. However, the complete ViT-like
structure incurs high computational and time costs.

The proposed network is based on an encoder-decoder architecture, with the
pre-trained EfficentNetV2-M serving as the encoder, and the decoder is designed
to be simple yet effective. An effective module was constructed using the Self-
Attention mechanism instead of an entire ViT-like structure. Additionally, a
comprehensive feature fusion method is devised to restore detailed feature infor-
mation at various scales required for network decoding. Experimental results
demonstrate that our proposed method achieves the highest MIOU for all three
sub-tasks (binary segmentation, instrument parts segmentation, and instrument
type segmentation. Figure 2 for an intuitive representation) on the MICCAI
EndoVis 2017 test set, and the highest MIOU and Dice (Dice coefficient) were
obtained in the binary segmentation task on the test set of Kvasir-Instrument.

We believe that the main contributions of this paper are as follows:

– Hybrid U-net for semantic segmentation of surgical instruments is proposed,
which achieves harmony among Skip-Connection, EfficientNet-V2-M, Fea-
ture Pyramid Module, and Self-Attention Blocks. Our approach outperforms
recent methods on two widely-used medical datasets, demonstrating signifi-
cant improvements.

– An idea is proposed to use Patch-Embedding with different rates, instead
of conventional pooling layers or dilated convolutions, for obtaining receptive
fields of different scales. Subsequently, Self-Attention Blocks are concatenated
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Fig. 2. Intuitive pictures of the three sub-tasks in the MICCAI EndoVis 2017 Dataset.
The leftmost image represents the original image, followed by the labels for binary
segmentation, instrument parts segmentation, and instrument type segmentation. Dif-
ferent instruments or instrument parts are marked with distinct colors as required.

to construct a Feature Pyramid Module. This module takes input feature
information from all scales, not just the highest level. The purpose of this
novel module is to enhance the network’s ability to capture short-range details
at different scales, thereby achieving improved feature representation and
fusion.

Our code and trained model will be published in https://github.com/WY-
2022/Hybrid-U-Net soon.

2 Related Work

U-Net [24] introduced a Skip-Connection between each layer of the encoder and
decoder to compensate for the loss of image details during feature extraction.
By combining this novel feature fusion approach with a step-by-step resolu-
tion recovery strategy, UNet-like networks [3,9,10,14,19,22,23] have achieved
remarkable results in high-resolution image segmentation. Building upon U-Net,
UNet3+ [8] further enhances the architecture by connecting encoder blocks from
different stages to all decoder blocks using Skip-Connections. It also applies a
similar strategy between decoder blocks. The integration of Skip-Connections
and the step-by-step resolution recovery strategy significantly advances high-
resolution medical image segmentation. However, their use alone does not greatly
enhance the feature representation capability of networks, resulting in relatively
limited performance improvement.

For the relatively low-resolution semantic segmentation task, a novel Feature
Pyramid Module (FPM) was designed in PSPNet [31] to efficiently utilize the
highest-level feature information extracted by the encoder. In the FPM, the
highest-level feature information is passed through four down-sampling layers
with different rates, resulting in different scales of receptive fields. Subsequently,
the feature information is recovered to its initial size and fused as the input of
the decoder. A similar FPM (Atrous Spatial Pyramid Pooling) is designed in
DeepLabV3+ [5] proposed by Google. The main difference between them lies
in how to obtain different scales of receptive fields, the DeepLabV3+ is using
an atrous convolution layer with different convolution kernel sizes instead of the
pooling layer in PSPNet. UperNet [29] uses a more straightforward idea, which

https://github.com/WY-2022/Hybrid-U-Net
https://github.com/WY-2022/Hybrid-U-Net
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can be seen as replacing the bottom convolutional layer in the U-Net that further
processes the highest-level feature information with an FPM, finally the output
of the FPM and the feature information of different decoder blocks are fused to
an intermediate scale and then the features are more adequate. [13,15] are the
combination of FPM and Skip-Connection. An attractive work is DSRD-Net [18]
which constructs a sub-encoder to form a dual-stream encoder while applying
FPM. Although the semantic information provided by FPM is adequate, relying
solely on it may result in a network that is more suitable for object detection
rather than segmentation. This is because the latter often demands more precise
image restoration and finer-grained levels of detail. Moreover, When dealing
with input images of low resolution, the semantic information of the highest-
level feature map becomes indistinct, and the incorporation of an FPM may not
further enhance the semantic information effectively.

In summary, we aim to combine the advantages of FPM and Skip-Connection
while addressing the limitations of FPM in learning short-range information.
This integration is intended to achieve better semantic segmentation of surgical
instrument images.

3 Method

In this study, we integrate the concepts of Skip-Connections and FPM and incor-
porate only a few self-attention modules, rather than a complete ViT-like struc-
ture, to enhance the segmentation performance. Additionally, we have developed
a concise decoder module as part of this study. Figure 3 illustrates the overall
architecture of our proposed network.

3.1 Encoder

Inspired by TernausNet [9], this work uses the EfficientNetV2-M [26] to serve
the encoder after removing the fully connected layer. The remaining part can be
divided into one stem layer and six blocks. Unlike EfficientPS [20], which only
selects the feature map with the largest number of channels per size, we use
Fusion of Same Size Feature (FSSF) to make full use of the feature maps with
the same size and the different number of channels generated by EfficientNetV2-
M scaling at the same size. The process of FSSF can be expressed as Fig. 3(a)
and (b). In this way, these feature maps can be divided into five stages according
to their size, and the decoder will be arranged according to this number.

3.2 Modified Feature Pyramid Module: TSPP

Our modified FPM is internally divided into six branches. The first branch uti-
lizes a 1 × 1 convolutional layer followed by subsequent batch normalization and
nonlinearity layers to enhance salient features in the input feature map. The
second, third, and fourth branches perform patch embedding at different rates
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Fig. 3. Network Overview. (a) Overall structure of proposed network. The arrows in
this sub-figure represent the Skip-Connection of the feature maps. They are labeled
with different colors to easily distinguish which level of feature map they start from,
and ⊕ for element-wise tensor concatenation. (b) The structure of Fusion of Same Size
Feature (FSSF) operator in (a). (c) Structure of a single decoder block in the proposed
network.

Fig. 4. The TSPP architecture. The shape of feature maps at each step is indicated.
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and apply position encoding using linear layers, and these branches are subse-
quently concatenated and connected to two stacked SwinTransformerV2 blocks
to achieve the self-attention mechanism and do not share the weights. The fifth
branch incorporates a global average pooling layer, which acts as a spatial-level
attention mechanism to extract global information from the input of the module.
The outputs of the five branches are up-sampled to same size. Additionally, a
Skip-Connection is introduced as the sixth integration branch to fuse the up-
sampled results with the input of the module. Finally, a FSSF is utilized to
facilitate feature fusion and complementarity across the different branches. The
modified FPM is referred to as TSPP (Transformer-Spatial-Pyramid-Pooling),
as depicted in Fig. 4. Additionally, the feature maps from all five stages of the
encoder, as described in Sect. 3.1, are also input to this module.

This approach ensures that the module retains the idea of capturing different
scale receptive fields while avoiding the loss of short-range feature details caused
by accepting only the highest-level feature map as input or utilizing pooling
layers and high-rate dilated convolutions.

3.3 Seamless Skip-Connection

Inspired by the concepts of information fusion for different stages of the encode-
decode process in [8,30], we further enhanced the network structure with the
techniques described in Sect. 3.2. The feature maps of each size extracted by the
encoder are element-wise concatenated and used as input to the TSPP. And Skip-
Connections are set between the TSPP and the decoder, allowing the TSPP’s
outputs to be introduced before each decoding stage. The arrows of different
colors at the bottom of Fig. 3(a) provide a helpful visualization to understand
the “Seamless” directly.

We believed that the problem of over-segmentation, which may arise from
the direct inclusion of background noise information retained in low-level fea-
ture maps with the conventional skip-connection strategy, can be avoided by
employing a skip-connection strategy similar to UNet3+ between the encoder
and decoder, and by feeding feature maps of all scales into the TSPP before they
are distributed to their respective decoder blocks.

3.4 Decoder

The decoder block, as illustrated in Fig. 3(c), consists of three layers. In each
decoding stage, the input is initially up-sampled using bilinear interpolation.
Subsequently, a combination layer comprising of a 3 × 3 convolutional layer,
batch normalization, and SiLU is employed to process the input and recover
image details. The SiLU activation function is chosen due to its desirable proper-
ties, such as lacking upper and lower bounds, smoothness, and non-monotonicity,
which have been shown to be effective, especially in deeper networks [7]. Follow-
ing this, another combination layer involving a 1 × 1 convolutional operation,
batch normalization, and SiLU is utilized. This additional layer serves to fur-
ther enhance the non-linear mapping capability and adjust the output channel
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dimension. The resulting output is subsequently forwarded to the next decoder.
The decoding process consists of five decoder blocks, aligning with the number
of feature map levels extracted by the encoder.

4 Experiments and Results

4.1 Datasets

1. MICCAI EndoVis 2017 Dataset [2]: From the MICCAI Endovis Challenge
2017. It consists of 3000 images with a resolution of 1920*1080 and is divided
into 1800 images for training and 1200 images for testing. This dataset pro-
vides annotation information for all three sub-tasks. To preprocess the images,
we cropped each original frame to remove the black canvas surrounding the
valid pixel area and resized the images to 1280*1024 resolution.

2. Kvasir-Instrument [11]: The images and videos were collected using standard
endoscopy equipment. For the binary segmentation task, this dataset consists
of 472 images for training and 118 images for the test with corresponding
labels. According to the experimental details of [11], the resolution of all
images in this dataset was resized to 512*512.

4.2 Evaluation Metrics

The evaluation of accuracy follows the two most important metrics consistently
used in the field of image segmentation: MIOU and Dice:

MIOU(A,B) =
1
n

n∑

i=1

|Ai ∩ Bi|
|Ai ∪ Bi| , (1)

Dice(A,B) =
1
n

n∑

i=1

2|Ai ∩ Bi|
|Ai| + |Bi| , (2)

where n represents the number of image-label pairs in the dataset.
They are used to measure the similarity of set A (images) and set B (lables),

both with a value range of 0 to 1, higher is better.

4.3 Experimental Details

The proposed network was implemented using PyTorch 1.10.0, CUDA 11.3, and
CUDNN 8.0, leveraging the API provided by timm [28]. For training stability,
we employed the AdamW optimizer with a warm-cosine learning rate schedule.
Regular augmentation was performed on the training set. The loss function used
in all experiments was proposed by TernausNet [9].

To preliminarily evaluate the performance of our approach, we followed a
four-fold cross-validation strategy on the MICCAI EndoVis 2017 training set,
consistent with previous work. The validation results of the three sub-tasks were
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Table 1. Segmentation results per task. Mean Intersection over Union, Dice coefficient,
Percentage form. The highest scoring method is shown in bold.

Task: Binary segmentation Parts segmentation Instruments segmentation

Model MIOU,% Dice,% MIOU,% Dice,% MIOU,% Dice,%
U-Net 75.44 84.37 48.41 60.75 15.80 23.59
TernausNet-11 81.14 88.07 62.23 74.25 34.61 45.86
TernausNet-16 83.60 90.01 65.50 75.97 33.78 44.95
LinkNet-34 82.36 88.87 34.55 41.26 22.47 24.71
A Holistically-Nested U-Net 86.45 92.20
StreoScenNet [19] 80.82 87.86 66.23 77.57 45.37 56.25
MF-TAPNet [14] 87.56 93.37 67.92 77.05 36.62 48.01
Ours 84.31 90.17 68.42 78.50 51.16 60.51

compared with other outstanding methods, as presented in Table 1. Based on
these validation scores, we formulated a training strategy. Specifically, we used a
batch size of 8 and an initial learning rate of 1e-5. The learning rate underwent a
warm-up phase for the first 3 epochs, linearly increasing to 1e-4, then followed a
cosine curve for 51 epochs, gradually decreasing. And then the model was saved
for testing. The same training strategy was applied for the Kvasir-Instrument.

4.4 Results on MICCAI EndoVis 2017 Dataset

All three sub-tasks of this dataset were tested, and the comparison results
between the proposed method and recent methods in each subset are shown
in Table 2 for the binary segmentation task, Table 3 for the instrument parts
segmentation task, and Table 4 for the instrument type segmentation task. The
calculation of MIOU has taken into account the evaluation rules in the MICCAI
Endovis Challenge 2017.

As shown in Table 2, for the binary segmentation task, our approach achieves
better performance than the challenge winner MIT in 9 out of 10 test subsets,
including the average performance metric. The MIOU of our method is 0.922,
which is 3.4 points higher than the team MIT. Although our approach did not
yield the best results on Dataset 7, it is still comparable with other methods. Our
method also outperforms the recent method ST-MTL [10] on five test subsets,
with an improvement of 1.3% points. A visual result example of the binary
segmentation task is shown in Fig. 1(a).

In Table 3, quantitative results from the nine participating teams, the recent
method, and our method on the instrument part segmentation task are presented
(TUM’s method is not in plain Deep Learning). As can be seen, our result is
3.8% points better than the challenge winner MIT, and 1.2% points higher than
the recent method DSRD-Net [18]. Our method achieves the best results on
seven subsets and is also comparable on the other three subsets. A visual result
example of the instrument parts segmentation task is shown in Fig. 5(b).
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Table 2. The MIOU for the binary segmentation task on ENDOVIS 2017 TEST SET.
Our method achieves the best results on 5 subsets. The highest scoring method is
shown in bold.

NCT UB BIT MIT SIAT UCL TUM Delhi UA UW DSRD [18] ST-MTL [10] Ours

Dataset 1 0.784 0.807 0.275 0.854 0.625 0.631 0.760 0.408 0.413 0.337 0.835 0.805 0.896
Dataset 2 0.788 0.806 0.282 0.794 0.669 0.645 0.799 0.524 0.463 0.289 0.803 0.826 0.850
Dataset 3 0.926 0.914 0.455 0.949 0.897 0.895 0.916 0.743 0.703 0.483 0.959 0.978 0.962
Dataset 4 0.934 0.925 0.310 0.949 0.907 0.883 0.915 0.782 0.751 0.678 0.959 0.968 0.959
Dataset 5 0.701 0.740 0.220 0.862 0.604 0.719 0.810 0.528 0.375 0.219 0.933 0.892 0.902
Dataset 6 0.876 0.890 0.338 0.922 0.843 0.852 0.873 0.292 0.667 0.619 0.933 0.955 0.936
Dataset 7 0.846 0.930 0.404 0.856 0.832 0.710 0.844 0.593 0.362 0.325 0.951 0.913 0.845
Dataset 8 0.881 0.904 0.366 0.937 0.513 0.517 0.895 0.562 0.797 0.506 0.943 0.953 0.957
Dataset 9 0.789 0.855 0.236 0.865 0.839 0.808 0.877 0.626 0.539 0.377 0.817 0.886 0.925
Dataset 10 0.899 0.917 0.403 0.905 0.899 0.869 0.909 0.715 0.689 0.603 0.867 0.927 0.937
MIOU 0.843 0.875 0.326 0.888 0.803 0.785 0.873 0.612 0.591 0.461 0.878 0.909 0.922

Table 3. The MIOU for the parts segmentation task where the metric used is MIOU
over all classes. Our method achieves the best results on 7 subsets. The highest scoring
method is shown in bold.

NCT UB BIT MIT SIAT UCL TUM UA UW DSRD [18] Ours

Dataset 1 0.723 0.715 0.317 0.737 0.591 0.611 0.708 0.485 0.235 0.680 0.766
Dataset 2 0.705 0.725 0.294 0.792 0.632 0.606 0.740 0.559 0.244 0.751 0.825
Dataset 3 0.809 0.779 0.319 0.825 0.753 0.692 0.787 0.640 0.239 0.846 0.889
Dataset 4 0.845 0.737 0.304 0.902 0.792 0.630 0.815 0.692 0.238 0.873 0.926
Dataset 5 0.607 0.565 0.280 0.695 0.509 0.541 0.624 0.473 0.240 0.745 0.824
Dataset 6 0.731 0.763 0.271 0.802 0.677 0.668 0.756 0.608 0.235 0.833 0.855
Dataset 7 0.729 0.747 0.359 0.655 0.604 0.523 0.727 0.438 0.207 0.735 0.602
Dataset 8 0.644 0.721 0.300 0.737 0.496 0.441 0.680 0.604 0.236 0.795 0.869
Dataset 9 0.561 0.597 0.273 0.650 0.655 0.600 0.736 0.551 0.221 0.702 0.687
Dataset 10 0.788 0.767 0.273 0.762 0.751 0.713 0.807 0.637 0.241 0.787 0.774
MIOU 0.699 0.700 0.289 0.737 0.667 0.623 0.751 0.578 0.357 0.763 0.775

Table 4. The MIOU for the type segmentation task where the metric used is MIOU
over all classes. The highest scoring method is shown in bold.

NCT UB MIT SIAT UCL UA BAR [23] PAA [22] ST-MTL [10] Ours

Dataset 1 0.056 0.111 0.177 0.138 0.073 0.068 0.104 0.106 0.276 0.108
Dataset 2 0.499 0.722 0.766 0.013 0.481 0.244 0.801 0.819 0.830 0.809
Dataset 3 0.926 0.864 0.611 0.537 0.496 0.765 0.919 0.923 0.931 0.924
Dataset 4 0.551 0.680 0.871 0.223 0.204 0.677 0.934 0.945 0.951 0.928
Dataset 5 0.442 0.443 0.649 0.017 0.301 0.001 0.830 0.836 0.492 0.774
Dataset 6 0.109 0.371 0.593 0.462 0.246 0.400 0.615 0.625 0.501 0.748
Dataset 7 0.393 0.416 0.305 0.102 0.071 0.000 0.534 0.435 0.480 0.412
Dataset 8 0.441 0.384 0.833 0.028 0.109 0.357 0.897 0.869 0.707 0.892
Dataset 9 0.247 0.106 0.357 0.315 0.272 0.040 0.352 0.318 0.409 0.536
Dataset 10 0.552 0.709 0.609 0.791 0.583 0.715 0.810 0.858 0.832 0.875
MIOU 0.409 0.453 0.542 0.371 0.337 0.346 0.643 0.641 0.633 0.702
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The test results for the instrument type segmentation task on this dataset
are illustrated in Table 4. Although our method achieves the best results on only
three subsets, the MIOU is still the highest due to the well done on the two
subsets with the most images, 9 and 10, and the scores on other subsets are also
comparable. Compared with the recent method BARNet, it is observed that
our method can further improve the MIOU from 0.643 to 0.702. Furthermore,
a visual result example of the instrument type segmentation task is shown in
Fig. 5(c).

Fig. 5. Examples of three sub-tasks and predicted results on MICCAI EndoVis 2017
Dataset and Kvasir-Instrument: (a) Binary segmentation, (b) Instrument part seg-
mentation, (c) Instrument type segmentation on MICCAI EndoVis 2017 dataset, and
(d) Semantic segmentation for Kvasir-Instrument. Each subfigure includes the original
image, prediction, and label, and the third row depicts a mismatched case.

4.5 Results on Kvasir-Instrument

To assess the generalization performance of the proposed method, we conducted
evaluations on the Kvasir-Instrument dataset. To offer further visualization,
Fig. 5(d) presents the segmentation results obtained by our proposed network
for the Kvasir-Instrument. A comprehensive list of recent methods tested on this
dataset, along with their corresponding results, is presented in Table 5.

Results show that our method achieves 0.9344 MIOU and 0.9646 Dice,
exceeding other methods to a not insignificant extent. The second-ranking
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Table 5. Comparison of the numerical results of our method with the recent method
for the segmentation task on the Kvasir-Instrument. The highest scoring method is
shown in bold.

Methods Backbone Network MIOU Dice

U-Net – 0.8578 0.9158
U-Net with Backbone [27] Inception-ResNet-v2 0.9167 0.9501
DoubleU-Net [12] VGG-19 0.8430 0.9038
ResUNet++ [13] – 0.8635 0.9140
MSDFNet [15] ResNet50 0.8910 0.9334
SegNet [3] – 0.7146 0.8086
DeepLabV3+ [5] – 0.8701 0.9211
DSRD-Net [18] – 0.9157 0.9513
Ours EfficientNetV2-M 0.9344 0.9646

method is U-Net with Inception-ResNet-v2 [25] as the backbone, which achieves
0.9167 MIOU and 0.9501 Dice. Compared with it, our approach has improved
by 1.77%, which may have reached a performance bottleneck.

4.6 Ablation Studies

To understand whether the superior performance comes from the EfficientNetV2-
M or this Hybrid U-Net design, and to see if each modification works, some
ablation experiments were conducted on Kvasir-Instrument.

First, EfficientNetV2-M was used to serve as the encoder in two excep-
tional networks. As shown in Table 6, with the same training strategy, the pro-
posed network scores higher than both PSPNet and DeepLabV3+, although
EfficientNetV2-M brings a significant boost to them.

Table 6. Comparison of the numerical results when using the same backbone.

Methods Backbone MIOU Dice

PSPNet ResNet50 0.8268 0.8981
EfficientNetV2-M 0.9002 0.9437

DeepLabV3+ [5] – 0.8701 0.9211
EfficientNetV2-M 0.9256 0.9597

Ours EfficientNetV2-M 0.9344 0.9646

Second, the decoder blocks of the network were configured as shown in
Fig. 3(c) to further test various aspects proposed in Sect. 3. As indicated in
Table 7, each modification improves the evaluation score compared to the vanilla
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network (the first row in Table 7), which is roughly equivalent to a U-Net with
EfficientNetV2-M as the backbone. Removing any modification results in a
decrease in the network’s segmentation ability, only if all modifications coex-
ist can the network achieve a state of harmony and attain the highest MIOU
and Dice.

Table 7. Experimental results of whether each modification actually works.

FSSF TSPP Seamless MIOU Dice

0.9175 0.9535
� 0.9244 0.9581

� 0.9294 0.9583
� 0.9299 0.9620

� � 0.9335 0.9638
� � 0.9259 0.9592

� � 0.9289 0.9610
� � � 0.9344 0.9646

5 Conclusion and Discussion

This work presents the Hybrid U-Net, which achieves harmony among Skip-
Connection, EfficientNet-V2-M, Feature Pyramid Module, and Self-Attention
Blocks. We introduce Patch-Embedding with varying rates to capture diverse
receptive fields and preserve feature information in the Feature Pyramid Mod-
ule. Additionally, we propose TSPP, a modified Feature Pyramid Module, and
utilize feature maps for image detail recovery through TSPP and Seamless Skip-
Connection.

Experimental results demonstrate the superior accuracy of the Hybrid U-Net
compared to recent methods on MICCAI EndoVis 2017 datasets and Kvasir-
Instrument. Ablation studies confirm the effectiveness of the proposed improve-
ments. However, limitations remain, including relatively high training time con-
sumption and memory usage, despite considering these factors during network
design. Regarding TSPP, future research may involve utilizing more advanced
transformer blocks and exploring Neural Architecture Search techniques [4] to
achieve a more optimized internal structure, potentially leading to even more
beneficial outcomes.
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Abstract. Domain Neural Machine Translation (NMT) with small
data- sets requires continual learning to incorporate new knowledge, as
catastrophic forgetting is the main challenge that causes the model to for-
get old knowledge during fine-tuning. Additionally, most studies ignore
the multi-stage domain adaptation of NMT. To address these issues, we
propose a multi-stage incremental framework for domain NMT based on
knowledge distillation. We also analyze how the supervised signals of the
golden label and the teacher model work within a stage. Results show
that the teacher model can only benefit the student model in the early
epochs, while harms it in the later epochs. To solve this problem, we
propose using two training objectives to encourage the early and later
training. For early epochs, conventional continual learning is retained to
fully leverage the teacher model and integrate old knowledge. For the
later epochs, the bidirectional marginal loss is used to get rid of the
negative impact of the teacher model. The experiments show that our
method outperforms multiple continual learning methods, with an aver-
age improvement of 1.11 and 1.06 on two domain translation tasks.

Keywords: Neural machine translation · Continual learning ·
Knowledge distillation

1 Introduction

Neural Machine Translation (NMT) [19,20] has achieved good performance with
large-scale datasets, but it still struggles with domain translation using small
datasets. In practical applications, new domain data is usually available in the
form of streams through channels such as the Internet. To improve the capa-
bilities of a domain NMT model, it needs to continually incorporate new data.
However, fine-tuning the old model with new data directly leads to catastrophic
forgetting [7]. Mixing old and new data for retraining solves this problem, but it
is inefficient. Additionally, sometimes we cannot access the old data due to data
privacy or storage restrictions.

Continual learning, also known as incremental learning, is used to address
the problem of catastrophic forgetting. Common methods include knowledge dis-
tillation [15,23] and regularization [2,18]. Knowledge distillation uses a teacher-
student framework to preserve old knowledge into the new model. Regularization
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 427–439, 2024.
https://doi.org/10.1007/978-981-99-8145-8_33
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adds regularization terms to prevent the model from overfitting on new data.
In NMT, most studies focus on cross-domain increment [10] and language incre-
ment based on multilingual NMT models [3,8]. Little attention has been paid to
in-domain increment [4]. Furthermore, most methods only consider single-stage
increment, while multi-stage increment [4,11] is ignored.

In order to address the problem of catastrophic forgetting, This paper inves-
tigates multi-stage continual learning of domain NMT without accessing transla-
tion memory. We propose a multi-stage incremental framework based on knowl-
edge distillation, which uses the last stage model as the teacher model and ini-
tialization model for the current stage. The framework fine-tunes the student
model using only new data. We analyze the changes of the supervised signal
of the golden label and the teacher model within one stage, and find that the
teacher model only benefits the student model in the early epochs. However, it
prevents the student model from absorbing new knowledge in the later epochs.
Based on these findings, we train the student model in two steps using different
training objectives. In the first step, we retain the conventional continual learn-
ing loss to fully integrate the old knowledge of the teacher model. In the second
step, we use the bidirectional marginal loss to ensure that the student model
maintains a certain distance from the teacher model. We conduct multi-stage
incremental experiments using English-Chinese (En-Zh) and German-English
(De-En) domain datasets. The results show that our method provides stable
improvement.

Our contributions are as follows:

• We propose a simple multi-stage incremental framework for domain NMT
based on knowledge distillation.

• We analyze how knowledge distillation plays a role in continual learning and
propose using bidirectional marginal loss to alleviate the negative impact of
knowledge distillation.

• We demonstrate the effectiveness of our method through experiments in
domain translation tasks.

2 Related Work

2.1 Continual Learning

Continual learning is studied to solve the catastrophic forgetting problem. In
NLP, methods are divided into two categories: distillation-based methods and
regularization-based methods. The former close the gap between the student
model and the teacher model by introducing an additional loss function. The
latter make use of regularization terms, such as L2 and EWC [18], to limit
the variation of parameters. [11] evaluates various continual learning methods
for pretrained language models in multi-stage cross-domain increment and time
increment scenarios. Distillation-based methods are found to be the most effec-
tive. The translation experiment results of [4] also arrive at similar conclusions.
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2.2 Knowledge Distillation

Traditional knowledge distillation involves using a simple-structured student
model to simulate the output of a trained teacher model with a complex struc-
ture, in order to compress the model [5,6,12]. However, knowledge distillation
used for continual learning is to retain the knowledge from the old model to the
new model. Knowledge distillation methods in NMT include word-level distilla-
tion [14,15] and sequence-level distillation [9,15]. Recent studies are as follows:
[22] proposes an online knowledge distillation method to prevent overfitting by
generating a teacher model from the checkpoints in real time. [10] limits the
updating of parameters to a low forgetting risk regions. These methods are stud-
ied in a single-stage increment. [4] proposes a knowledge distillation method for
multi-stage increments and conducts multi-stage in-domain incremental experi-
ments. However, these experiments are only carried out on large-scale datasets
and lack consideration for small domains. In addition, all the above methods give
full trust to the teacher model and use a fixed weight throughout the training
process.

3 Method

3.1 Multi-stage Incremental Framework

The multi-stage incremental framework for domain NMT is illustrated in Fig. 1.
It consists of sequential teacher-student models, where each stage exclusively
employs the new dataset as the training set, last stage model as the teacher model
for knowledge distillation, and initialization model for fine-tuning. In particular,
the first stage uses either an NMT pretrained model or a general domain model
for initialization. To complete domain adaptation quickly, knowledge distillation
is not used in stage1. The training objective is shown in Eq. 1, where Lgold and
LKD represent the supervised signal of the golden label and the teacher model,
respectively. The weight of knowledge distillation w is set to 0 in stage1.

LCL = Lgold + wLKD (1)

Lgold is the cross-entropy loss function, as in Eq. 2. For a sentence pair (x, y), x
and y are the source and target sentences; ŷs is the student model output; θs is
the student model parameters.

Lgold(x, y, θs) = CE(y, ŷs)
= − log P (ŷs = y|x, θs)

(2)

LKD uses Kullback-Leibler (KL) divergence to measure the difference between
the student model output ŷs and the teacher model output ŷt, as in Eq. 3. Here,
θt is the teacher model parameters. ϕ(·) is the KL divergence function for the
token level. ŷsi and ŷti are on behalf of the ith token of the model output. I is
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Fig. 1. The multi-stage incremental framework for domain NMT. “FT” represents
fine-tuning. “KD” represents knowledge distillation.

the output length. k represents the kth token in the vocabulary V .

LKD(x, θs, θt) = KL ( ŷs‖ ŷt)

=
I∑

i=1

|V |∑

k=1

ϕ(ŷsi, ŷti, k)
(3)

The specific description of ϕ(·) is given in Eq. 4. P and Q are the conditional
probability distributions of the output of the student model and the teacher
model.

ϕ(ŷsi, ŷti, k) = P
(
ŷsi = k|ŷs1:i−1, x, θs

)
log

P
(
ŷsi = k|ŷs1:i−1, x, θs

)

Q
(
ŷti = k|ŷt1:i−1, x, θt

) (4)

3.2 Analysis of KD

To further analyze how Lgold and LKD work within a stage, we test different
knowledge distillation weights w. The BLEU scores are shown in Table 1. The
changes of Lgold and LKD during training is shown in Fig. 2. This is the exper-
imental result of stage2 of En-Zh, and we present the experimental details in
Sect. 4.

The best performance is achieved when w is set to 0.5. We find that Lgold

keeps decreasing with the training steps, while LKD has a significant rebound
after the decrease. This finding is consistent with the common sense that the
teacher model of our proposed framework is a weaker in-domain model that
does not always provide beneficial reference for all new samples. We define the
rebound starting point as p. Prior to p, the decrease in LKD indicates that the
student model updates in the same direction as the teacher model, providing a
beneficial supervised signal. The student model completes the integration of old
and new knowledge at these early epochs. After p, the bounce in LKD indicates
that the teacher model can no longer provide favorable guidance to the student
model, prevents it from absorbing new knowledge in later epochs.
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Table 1. BLEU scores for different knowledge distillation weights.

w BLEU

0 (fine-tune) 55.75

0.1 55.71

0.3 55.76

0.5 56.12

0.7 55.63

0.9 55.92

uncertainty 55.91

Fig. 2. The changes of Lgold and LKD with fixed weight. The horizontal coordinates of
each subplot are the epoch numbers, and the vertical coordinates arethe average losses
of all updates in each epoch.

LKD also shows a rebound when w is less than 0.5. However, the student
model focuses more on fitting the gold label, resulting in premature convergence
and insufficient integration of old and new knowledge. When w is larger than 0.5,
the BLEU score remains low even though LKD keeps decreasing. This suggests
that placing more emphasis on the teacher model does not serve to improve
performance.

In addition to the fixed weight, we also experimented with learnable weights.
We construct learnable weights inspired by uncertainty weighting [13] in multi-
task learning (MTL), as in Eq. 5. It uses learnable parameters σ1 and σ2 to
dynamically adjust the weights. The weight of Lgold is w1= 1

2σ2
1
; The weight

of LKD is w2= 1
2σ2

2
; the third term on the right-hand side of Eq. 5 is the bal-

ance term that prevents the unrestricted decrease of w1 and w2. The changes of
Lgold, LKD, w1 and w2 are shown in Fig. 3. We find that w1 decreases while w2

increases with the training steps. After the 10th epoch, the increasing trend of w2

is more obvious because LKD can no longer decrease. This suggests that uncer-
tainty weighting would give greater weight to emphasize the task with slower
loss decline, but it departs from our expectation of reducing the KD weight at
later epochs. Therefore, using learnable weight is not appropriate.

LMTL =
1

2σ2
1

Lgold +
1

2σ2
2

LKD + log σ1σ2 (5)
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Fig. 3. The changes of losses and weights with uncertainty weighting.

Fig. 4. Diagram of our method.

In conclusion, treating Lgold and LKD with a fixed weight during a training
session is harmful to the student model. Additionally, the learnable weight is not
effective in a continual learning scenario, and it is unrealistic to conduct multiple
experiments to find the best weight for each stage.

3.3 Alleviate the Negative Impact of KD

To alleviate the negative impact of knowledge distillation in later epochs, we
encourage the update direction of the student model using different training
objectives in two steps. In the first step, the student model utilizes the old
knowledge of the teacher model. In the second step, the model further learns
new knowledge from the golden labels. Our method is shown in Eq. 6: before
p, we keep the original continual learning loss; After p, we use bidirectional
marginal loss (BML) instead of LKD. Here, j represents the jth epoch.

LCL =
{ Lgold + wLKD, j ≤ p

Lgold + wLBML, j > p
(6)

The bidirectional marginal loss function, as shown in Eq. 7, aims to converge
the KL divergence ϕ to the interval [β, α], rather than minimizing it to 0. The
lower bound β controls the student model to maintain a certain distance from
the teacher model and the upper bound α ensures that the student model is
updated in roughly the same direction as the teacher model. When [β, α] is [0,
0], Eq. 6 is equivalent to Eq. 1.
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Algorithm 1: Multi-stage training process
Data: Initialization model θinit, max stage S, max epoch E, batch set B
Result: Domain model θs

1 p ← +∞;
2 θt ← θs ← θinit;
3 for s ← 1 to S do
4 θt ← θs;
5 for j ← 1 to E do
6 for b ← 1 to |B| do
7 compute the loss ljb of the bth batch by Eq. 6;

8 θs ← θs − ∂ljb
∂θs

;

9 end

10 lj ← ∑|B|
b=1 ljb;

11 if j>0 and p = +∞ and lj−1<lj then
12 p ← j;
13 end

14 end

15 end

LBML =
I∑

i=1

|V |∑

k=1

Relu(−ϕ + β) + Relu(ϕ − α) (7)

The diagram of our method is shown in Fig. 4. Compared to the original
continual learning loss, our method aligns the model update direction closer to
the golden label. The interval [β, α] allows the student model to reduce the
degree of dependence on the teacher’s supervised signal within a certain range.
The overall training process is shown in Algorithm 1.

4 Experiments

We conduct experiments on two domain translation tasks: English-Chinese (En-
Zh) patent domain and German-English (De-En) IT domain.

4.1 Data Preparation

En-Zh. We use the patent dataset of CCF DBCI1, which contains 100k parallel
sentences. jieba2 is used as the tool for Chinese text segmentation. The output
is evaluated after tokenization using sacremoses3.

1 https://www.datafountain.cn/special/BDCI2021/competition.
2 https://github.com/fxsjy/jieba.
3 https://github.com/alvations/sacremoses.

https://www.datafountain.cn/special/BDCI2021/competition
https://github.com/fxsjy/jieba
https://github.com/alvations/sacremoses
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De-En. We use the IT dataset clustered by [1], which contains 223k parallel
sentences.

To simulate the multi-stage experimental scenario, we divided the training
set into 10 parts. Only 10% of the training set is used at each stage. In order to
fairly compare the domain translation capability, the valid set and the test set
are consistent in all stages. All languages use subword-nmt4 for BPE.

4.2 Baselines

Our proposed method is compared with 6 baselines:
upper bound All the data from the current and previous stages are mixed

and used to fine-tune the pre-trained model. This method makes full use of all
knowledge and serves as an upper bound for all methods.

fine-tune Only use the data of the current stage to fine-tune the model from
the last stage.

word KD [15] The method uses KL divergence between the output word
distribution of the student and teacher model as LKD.

reg KD [14] This method uses the cross entropy between the output word
distribution of the student and teacher model as LKD.

selective KD [21] In this method, samples with high word cross entropy are
selected for knowledge distillation. Our experiments use the batch-level selection
strategy of the method.

CLNMT [4] A method for dynamically adjusting the weight of knowledge
distillation at each stage with a hyperparameter setting of 0.5.

4.3 Implementation Details

We use the multilingual pre-trained NMT model mRASP [16] as the initialization
model for stage1 and use its language tag and inference method in all subsequent
stages. Since large-scale general datasets of En-Zh and De-En are already being
used in the mRASP pre-training process, we do not perform additional language
transfer training.

The Transformer [20] architecture we use contains 6 layers of encoder, 6
layers of decoder, and 16 attention heads. The hidden size is 1024. The source
and target embedding layers share the parameters.

We use the fairseq5 toolkit to implement the method. For training, we use
Adam optimizer; Lgold uses label smoothed cross-entropy with a factor of 0.1,
learning rate is 2e-5 and drop-out rate is set to 0.2. For inference, beam is set to 5;
SacreBLEU [17] is used to evaluate the accuracy and fluency of the translation.
We evaluate the average checkpoint of the five consecutive best checkpoints. For
hyperparameters, w for word KD and our method is 0.5, for reg KD is 0.1 and
for selective KD is 1. p is the LKD rebound point by automatic detection. In the
main results, [β, α] of our method is set to [0, 0.1] for En-Zh and [0.1, 0.2] for
De-En.
4 https://github.com/rsennrich/subword-nmt.
5 https://github.com/facebookresearch/fairseq.

https://github.com/rsennrich/subword-nmt
https://github.com/facebookresearch/fairseq
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Table 2. BLEU scores of multiple methods at different stages. The upper and lower
subtables show the experimental results of En-Zh and De-En. The first row is the
stage number. The last column shows the average comparison results between different
methods and fine-tuning.

En-Zh 1 2 3 4 5 6 7 8 9 10 Δavg

upper bound 57.11 59.18 60.00 61.08 61.41 61.94 62.41 62.61 63.18 63.86 +2.21

fine-tune 57.11 58.37 58.69 59.08 59.40 59.80 59.86 59.96 60.34 60.26 –

word KD 57.11 58.70 59.67 59.77 60.22 60.40 60.61 60.63 61.15 61.01 +0.71

reg KD 57.11 58.58 59.54 59.77 60.16 60.19 60.36 60.73 61.02 60.76 +0.59

selective KD 57.11 58.41 58.79 59.11 59.38 59.28 59.50 59.62 60.04 60.02 −0.18

CLNMT 57.11 58.82 59.68 60.11 60.47 60.64 60.58 60.87 60.97 60.94 +0.81

ours 57.11 58.93 59.78 60.07 60.51 60.72 60.95 61.51 61.65 61.60 +1.11

De-En 1 2 3 4 5 6 7 8 9 10 Δ avg.

upper bound 36.52 40.68 40.99 41.89 42.50 43.21 43.68 43.82 44.23 44.60 +2.71

fine-tune 36.52 38.38 39.32 39.80 40.19 40.40 40.54 40.94 40.81 40.87 –

word KD 36.52 39.31 39.59 40.38 40.53 41.01 40.97 41.24 41.14 41.40 +0.48

reg KD 36.52 38.94 39.59 40.27 40.43 40.97 41.27 41.48 41.42 41.57 +0.52

selective KD 36.52 38.75 39.44 39.84 40.43 40.62 40.78 40.83 40.85 40.98 +0.14

CLNMT 36.52 39.33 39.69 40.33 40.48 40.89 40.98 40.99 40.98 41.45 +0.43

ours 36.52 39.76 40.11 40.69 41.02 41.34 41.93 41.67 42.03 42.25 +1.06

4.4 Main Results

Table 2 shows the main results. Our method outperforms multiple continual
learning methods in most stages, but falls short of upper bound. Compared to
fine-tune, our method had an average of 1.11 improvement on the En-Zh exper-
iment and 1.06 improvement on the De-En experiment. This indicates that our
method is effective in alleviating catastrophic forgetting. The BLEU score of our
method on stage5 surpasses that of fine-tuning on stage10, indicating that our
method has a stronger ability to integrate old and new knowledge. In compari-
son to three knowledge distillation methods (word KD, reg KD, selective KD),
our method exhibits a stable improvement in all stages. This demonstrates the
negative impact of the teacher model in later epochs and the benefits of bidirec-
tional marginal loss. When using continual learning, it is important to consider
the quality of the teacher model. It is worth noting that selective KD does not
perform well in multi-stage incremental scenarios. This suggests that selecting
samples based on certain attributes is not suitable for continual learning because
the teacher model is not fully utilized. In the first five stages of the En-Zh exper-
iment, the BLEU of CLNMT is similar to that of our method. However, in the
latter stages, the BLEU of CLNMT noticeably decreases, indicating that the
advantage of dynamically calculating weights does not last for multiple stages.
In contrast, our method maintains its advantages even after multiple stages.
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Table 3. BLEU scores with different [β, α]. The upper and lower subtables show the
stage2 experimental results of En-Zh and De-En. The first column is the value of β.
The first row is the value of α.

En-Zh 0 0.1 0.2 De-En 0 0.1 0.2

0 58.70 58.93 58.76 0 39.31 39.64 39.52

0.1 – 58.85 58.81 0.1 – 39.58 39.76

0.2 – – 58.79 0.2 – – 39.63

4.5 Hyperparameters

We conducted experiments at stage2 with different combinations of β and α,
and the results are shown in Table 3. The best BML interval for En-Zh is [0,
0.1] and for De-En is [0.1, 0.2]. We believe that this is related to language and
domain features. The diagonal of the table (β = α) demonstrate an improvement
for [0.1, 0.1] and [0.2, 0.2] over [0, 0], suggesting that a certain distance between
the student model and the teacher model is beneficial for improving performance.
The remaining results (β<α) suggest that BML provides a more flexible range
for updating the parameters of the student model, bringing it closer to the golden
label in this range.

4.6 Case Study

This section uses case studies to determine whether our method is effective in
alleviating catastrophic forgetting, as shown in Table 4. Fine-tune has obvious
catastrophic forgetting, such as “instant messaging protocols” and “a request to
send a notification about your reception” translated correctly in stage2 but mis-
translated in stage10. Compared to fine-tune, our method alleviates this problem.
In addition, fine-tune retains same errors from stage2 to stage10, such as “cause
problems with other applications”, “send KMail a rejection or a normal replie”,
while our method is correct. This suggests that our method has the ability to
integrate old and new knowledge in a way that fine-tune lacks.
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Table 4. Samples of the De-En IT domain test set with different methods at dif-
ferent stages. “Red” indicates mistranslation. “Blue’’ indicates corresponding correct
translation.

source Verwendete Instant-Messeging-Protokolle und installierte

-Module (offizielle sowie inoffizielle)

reference Instant Messaging protocols you use, and plugins you have
installed (official and unofficial)

fine-tune (stage2) Used instant messaging protocols and installed modules (official
and unofficial)

fine-tune (stage10) Used instant measurement protocols and installed plugins
(official and informal)

ours (stage10) Instant messaging protocols and installed plugins (official and
unofficial).

source Dies kann dazu führen, dass das System sehr langsam reagiert,
und es kann zu weiteren Problemen mit anderen Programmen
führen. Sind Sie sicher, dass Sie das Bild skalieren möchten?

reference This can reduce system responsiveness and cause other
application resource problems. Are you sure you want to scale
the image?

fine-tune (stage2) This can cause the system to react very slowly, and may cause
problems with other applications. Are you sure you want to
scale the image?

fine-tune (stage10) This can cause the system to react very slowly, and may cause
other applications. Are you sure you want to scale the image?

ours (stage10) This can reduce system responsiveness and cause other
application resource problems. Are you sure you want to scale
the image?

source Diese Nachricht enthält die Anforderung einer
Empfangsbestätigung, aber die Bestätigung soll an mehr als

eine Adresse versendet werden. Sie können die Anforderung
ignorieren, KMail eine Ablehnung oder eine normale Antwort
senden lassen

reference This message contains a request to send a notification about
your reception of the message, but it is requested to send the
notification to more than one address. You can either ignore the
request or let KMail send a “denied” or normal response

fine-tune (stage2) This message contains the request for a receipt confirmation,
but the confirmation should be sent to more than one address.
You can ignore the request or send KMail a rejection or a
normal replie

fine-tune (stage10) This message contains a request for acknowledgement but the
confirmation should be sent to more than one address. You can
ignore the request or send KMail a refusal or a normal response

ours (stage10) This message contains a request for confirmation of receiving,
but the confirmation is to be sent to more than one address.
You can ignore the request or let KMail send a denied, or send a
normal response
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5 Conclusion

In this paper, we propose a multi-stage incremental framework for domain NMT
based on knowledge distillation to address catastrophic forgetting and in-domain
continual learning. Through extensive experimental analysis, we find that using
knowledge distillation with a fixed weight only benefits the student model in
the early epochs and harms it in the later epochs. Based on this observation,
we propose a two-step training method that uses the bidirectional marginal loss
instead of the regular continual learning loss. Our experiments show that our
method outperforms others in multiple stages.
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Abstract. Machine reading comprehension is a fundamental in natural
language understanding. Existing large-scale pre-trained language mod-
els and graph neural network-based models have achieved good gains
on logical reasoning of text. However, neither of them can give a com-
plete reasoning chain, while symbolic logic-based reasoning is explicit and
explainable. Therefore, we propose a framework LoGEK that integrates
symbolic Logic and Graph neural networks for reasoning, while lever-
aging External Knowledge to augment the logical graph. The LoGEK
model consists of three parts: logic extraction and extension, logical
graph reasoning and answer prediction. Specifically, LoGEK extracts and
extends logic set from the unstructured text. Then the logical graph rea-
soning module uses external knowledge to extend the original logical
graph. After that, the model uses a path-based relational graph neu-
ral network to model the extended logical graph. Finally, the prediction
module performs answer prediction based on graph embeddings and text
embeddings. We conduct experiments on benchmark datasets for logi-
cal reasoning to evaluate the performance of LoGEK. The experimental
results show that the accuracy of the method in this paper is better than
the baseline models, which verifies the effectiveness of the method.

Keywords: Machine Reading Comprehension · Symbolic Reasoning ·
External Knowledge · Relational Graph Neural Network

1 Introduction

Machine Reading Comprehension (MRC) is a popular task in natural language
processing and understanding. Based on the given context and question, the
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task is to identify the most suitable answer from a set of candidate options.
It is expected that the model can give the reasoning process, which is explicit
and can be explained. Symbolic logic-based reasoning is usually explainable and
transferable while GNN-based reasoning excels in reasoning by modeling paths
from the question nodes to the answer nodes, showcasing powerful path modeling
capabilities. Another challenge is the lack of reasoning chains due to insufficient
context information. Models can only reason from the given context and struggle
with scenarios that require external commonsense knowledge. Therefore, exter-
nal knowledge can enable models to have a better understanding of contextual
semantics and background knowledge during the reasoning process.

In recent years, large-scale pre-trained language models (PLMs) have made
significant breakthroughs in many NLP tasks. Among them, the most represen-
tative are ChatGPT and GPT4, which contribute impressive reasoning capa-
bilities to the community [2,3]. There have been quite a lot of researches on
how to make better use of PLMs for reasoning [24,30]. But their effectiveness
often deteriorates when specific knowledge is missing or when there is a lack of
semantic knowledge in the corpus. Additionally, pre-trained language models are
unable to provide explainable predictions since the implicit learning in “black-
box” mode makes it challenging to explicitly state the knowledge used in the
reasoning process while predicting answers.

This paper proposes the following approach: (1) combining symbolic logic
reasoning with graph neural networks to accurately answer questions while
outputting explainable reasoning paths; (2) introducing external knowledge to
enhance the reasoning chains when background information is insufficient, fur-
ther improving the accuracy of question answering. The main contributions
include:

• We propose a model named LoGEK which combines logic rules with neural
networks to infer the logical structure using a relational graph model and
enhances the explainability of the model.

• We integrate external knowledge into the existing logical graph. The logical
symbols and relations are extracted from the external knowledge and added
to the symbolic logical graph to improve the logic chain.

• Comprehensive experiments demonstrate the effectiveness of LoGEK, which
outperforms state-of-the-art models on two datasets.

2 Related Work

Symbolic Logic-Based QA. The method based on symbolic logic rules has
been widely discussed in the research of question answering and reasoning
because of its high accuracy and strong explainability. The mainstream methods
of exploring logical rules generally combine either probabilistic logic method or
knowledge embedding method. Zhang et al. [28] proposed a probabilistic logi-
cal reasoning framework combined with GNN, ExpressGNN. The GQE model
[7] embeds a query as a point in a vector space. Ren et al. [19] put forward
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the Query2Box model, which encodes positive first-order logical queries into
rectangular boxes. Their method effectively solves the problem of positive first-
order logical query reasoning, and improves the explainability. BetaE model [20]
improves the Query2Box model with beta embedding method, and uses prob-
ability distributions with bounded support to embed a query or an entity into
Beta distribution, thus being able to model uncertainty. Yang et al. [25] proposed
an efficient neural network-based inductive learning model (NLIL), transform-
ing the relational path in multi-hop reasoning into a chain-like first-order logic
rule to solve the problem of inductive logic programming (ILP), which extends
the logical expression effectively. Wang et al. [23] proposed a context extension
framework and introduced logic-driven contrastive learning to better capture
logical relationships.

GNN-Based QA. The method based on GNN first forms a graph of the ques-
tion context and the answers, and then deduces the answer on the graph. Lin
et al. [12] effectively utilized the external structured commonsense knowledge
graph to perform reasoning and proposed KagNet, a knowledge-aware graph
network. The multi-hop graph relation network MHGRN [6] proposed by Feng
et al. can model multiple relational paths on a large scale demonstrably, and
proposes a structured relational attention mechanism for multi-hop path model-
ing. Asai et al. [1] proposed a graph-based cyclic retrieval method to learn how
to retrieve reasoning paths in Wikipedia. This method is divided into a retriever
and a reader. Chen et al. [4] proposed HGN which deals with context at both
discourse level and word level to provide a more fine-grained relation extraction.
Neural-symbolic models have also made some progress. Li et al. [11] proposed
AdaLoGN, which applies message passing to logical graphs to achieve mutual
iterative reinforcement of neural reasoning and symbolic reasoning. To address
the overfitting and poor generalization caused by annotation sparsity, Jiao et
al. [8] designed a meta-path guided contrastive learning method to perform self-
supervised pre-training on unlabeled text data.

3 Methodology

3.1 Logic Extraction and Extension

Logic Recognition. Logic recognition realizes the recognition and extraction
of logical symbols from unstructured text. Specifically, we use a constituency
parser [9] to extract the noun phrases and gerund phrases in the text as basic
symbols, denoted as {α, β, γ, ...}. Then, logical symbols are combined using
the set of logical connectors {¬, →} to form a set of logical expressions like
{(α→β)...}, where “¬” represents the negation operation, and “→” represents
the conditional relationship between two logical symbols. If the logical symbol α
is negated by a negation word, a new logical symbol ¬α is created by adding a
negation connector before α. As shown in the logic recognition module in Fig. 1,
there are three logical symbols α, β, γ and two logical expressions: (¬α→¬β)
and (¬β→¬γ).
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Fig. 1. The overall architecture of LoGEK.

Logic Extension. After the basic logic is identified, there are also some implicit
expressions that need to be inferred and extended. First, the logical expressions
that have been determined and exist in all sentences in the context are combined
into a set of logical expressions S, and the logical equivalence law is used to
infer and further expand implicit logical expressions. The logical equivalence law
follows the laws of contraposition [21] and transitivity [29]:

(α → β) ⇒ (¬β → ¬α) (1)

(α → β) ∧ (β → γ) ⇒ (α → γ) (2)

Therefore, the expanded set of implicit logical expressions forms the extension
set SE of the current logical expression set S in Fig. 1.

Logic Textualization. Firstly, relevant expressions for each operation are
selected from SE. The identified expressions from the options are compared with
the expressions in the expansion set (using text overlap). If an expression in the
expansion set contains the same logical symbol as the option expression, the
expression from the expansion set is added to the option’s expressions to form
an expression expansion set for that option. So the expressions related to each
option are added to the corresponding option expression, forming the expression
expansion set for each option. To convert all logical expressions into natural lan-
guage text, a conversion template is defined. All logical expressions related to
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an option are filled into the template and concatenated into a sentence, which
is then converted into natural language text and used as the extended context
for that option. An example is given in Table 1.

Table 1. A template of converting a logical expression into text.

Logical expression (γ→α)

Template If γ, then α.
Extended context If you are able to write your essays using a word

processing, then you have keyboarding skills

3.2 Logical Graph Reasoning

External Knowledge Fusion. After extracting logical symbols, expanding
logical text, and converting logic into natural language text, external knowl-
edge can be added to the logical graph through knowledge concept matching.
We use a large-scale commonsense knowledge base ConceptNet [13] as exter-
nal knowledge to enrich the original logic graph. Specifically, n-grams of sen-
tences can be precisely matched with concepts in the knowledge graph. For
example, for “sitting too close to watch TV can cause pain”, the exact match-
ing results are {sitting, close, watch_tv, pain, ...}. However, the matched con-
cepts are not always needed and can introduce noise. Therefore, this paper
uses stemming and stop-word filtering for soft matching to mitigate this effect.
We select 17 types of relations in ConceptNet to match with the original log-
ical graph nodes, including “cause”, “is_a”, “part_of”, “related_to”, “antonym”,
“capable_of”, “not_capable_of”, “derived”, “made_of”, “desires”, “not_desires”,
“used_for”, “has_subevent”, “has_context”, “has_property”, “receives_action”
and “at_location”. If a node in the original logical graph has one of these rela-
tions with a node in ConceptNet, the node from ConceptNet and the relation
are added to the logical graph.

Logical Graph Reasoning. We encode the constructed logical graph using
Multi-Hop Graph Relation Networks (MHGRN) [6]. First, we use a pre-trained
language model to encode the text, obtaining a token sequence and extract node
features. Then, node type-specific linear transformations are applied to the input
node features to enable the model to perceive node information φ:

xi = Uφ(i)hi + bφ(i) (3)

where U and b are learnable parameters of type specific to node i. For all rela-
tional paths, RGCN is used to perform one-hop message passing:

zk
i =

∑

(j,r1,...,rk,i)∈Φk

α (j, r1, . . . , rk, i) /dk
i ·

WK
0 · · · W k+1

0 W k
rk

· · · W 1
r1

xj (1 ≤ k ≤ K)
(4)
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where (j, r1, . . . , rk, i) is the path of length K, Φk is the path set, W t
r is the

learnable parameter matrix, α (j, r1, . . . , rk, i) is the attention score and dk
i is

the normalization factor. Then, information from paths of different lengths is
aggregated through the attention mechanism:

zi =
K∑

k=1

softmax
(
bilinear

(
s, zk

i

)) · zk
i (5)

Finally, the output node embedding is obtained through the nonlinear activation
function:

h′
i = σ (V hi + V ′zi) (6)

The structured attention mechanism transforms the problem of computing atten-
tion scores into a probability problem based on the semantic vectors of the
relation sequence. This allows for an effective parameterization of the attention
scores α (j, r1, . . . , rk, i). It is treated as a relation sequence conditioned on the
semantic vector s, which can be modeled by a probabilistic graphical model, such
as conditional random field:

α (j, r1, . . . , rk, i) = p (φ(j), r1, . . . , rk, φ(i) | s) (7)

3.3 Answer Prediction

Finally, we calculate the confidence of candidate answer using the embedding of
the question q, text s, and graph G. The graph representation is obtained from
the node vector using attention pooling. The graph vector and semantic vector
are input into an MLP to calculate the confidence score ρ(q, a) = MLP (s ⊕ g),
and the answer with the highest score is output. The training process aims to
maximize the confidence score of the answer â by minimizing the cross-entropy
loss:

L = Eq,â,C

[
− log

exp(ρ(q, â))∑
a∈C exp(ρ(q, a))

]
(8)

4 Experiments

4.1 Dataset

The Reclor dataset [27], which consists of high-quality practice exam questions
from GMAT, LSAT, and other sources. It includes 6138 logical reasoning ques-
tions which are divided into 17 categories, such as sufficient assumption and
necessary assumption, as shown in Table 2. It contains a training set, a develop-
ment set, and a test set, with 4638, 500, and 1500 instances, respectively.

The LogiQA dataset [14] is derived from publicly available questions from
the National Civil Servants Examination of China. It contains 8678 instances,
which are divided in the same way.
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Table 2. Statistics of Reclor dataset.

Statistics Reclor LogiQA

Context type Written text Written text
Number of options 4 4
Number of context 6138 8768
Number of questions 6138 8768
Vocab size 26576 37963
Context length 73.6 76.87
Question length 17.0 12.03
Option length 20.6 15.83

4.2 Experimental Settings

Baseline. The baseline pre-trained models for multiple -choice question answer-
ing include GPT [17], GPT-2 [18], BERT [5], XLNet [26], RoBERTa [16], and
ALBERT [10]. The logic-driven context extension framework LReasoner [23].
The baseline muli-hop reasoning models include RGCN [22], KagNet [12], and
MHGRN [6].

Experimental Environment. The system environment of this paper is the
Ubuntu 18.10 Linux operating system, with Python 3.6 as the Python environ-
ment. The models used in this study are implemented in Python 3.6 and PyTorch
1.3.1 on GPUs.

Parameter Configuration. This paper uses cross-entropy loss and adopts
RAdam [15] as the optimizer. For text semantic vector encoding, RoBERTa-
large and ALBERT-xxlarge-v2 are used, both with a learning rate of 1e-5, a
hidden layer size of 1024, a batch size of 2, and fine-tuning on ReClor for 20
epochs. The NLTK version used is 3.4.5. The learning rates of the graph encoders
RGCN, KagNet, and MHGRN in the compared models are 1e-3, 1e-3, and 1e-4,
respectively.

4.3 Experimental Results

Table 3 presents the answer prediction accuracy of our model compared with
baseline models on the Reclor dataset. Overall, the prediction accuracy of our
model on the validation set of the Reclor dataset is 66.8 (LoGEKRoBERTa) and
71.8 (LoGEKALBERT) respectively. From the results, it can be observed that
the answer prediction accuracy of the baseline pre-trained models are generally
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Table 3. The accuracy scores on Reclor. Bold indicates the best values. “w/o EK”
means remove external knowledge. “w/o RG” means remove relational GNN network.

Models Dev Test

GPT – 45.4
GPT-2 – 47.2
BERT – 49.8
XLNet – 56.0
RGCN 68.1 62.5
KagNet 62.5 57.1
MHGRN 66.3 69.4
RoBERTa 62.1 55.6
LreasonerRoBERTa 64.7 58.2
LoGEKRoBERTa(ours) 66.8 60.4
ALBERT 66.5 62.1
LreasonerALBERT 70.8 69.4
LoGEKALBERT(ours) 71.8 70.2

LoGEKALBERT w/o EK 71.6 70.0
LoGEKALBERT w/o RG 70.8 69.4

Table 4. The accuracy scores on LogiQA. Bold indicates the best values.

Model Dev Test

RoBERTa 35.8 30.1
LreasonerRoBERTa 38.4 33.5
LoGEKRoBERTa(ours) 41.1 33.9
ALBERT 50.5 44.2
LreasonerALBERT 54.8 47.3
LoGEKALBERT(ours) 55.9 48.8

lower than those of the logical reasoning framework (Lreasoner), which indi-
cates that the logical reasoning framework algorithm is more capable of answer-
ing logical questions and demonstrates the effectiveness of the framework for
accurately predicting answers. LreasonerRoBERTa and LreasonerALBERT perform
better than their respective baseline models RoBERTa and ALBERT, indicating
that the logical reasoning framework is robust and can effectively perform logical
reasoning on different pre-trained models. Even though the performance of the
baseline model ALBERT is already good, the addition of the logical reasoning
framework still achieves higher accuracy.

LreasonerALBERT achieves the highest accuracy of 71.8, which is 5.5 points
higher than MHGRN, indicating that the logical reasoning framework has a
significant effect on answering logical questions. The poor performance of the
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KagNet and MHGRN is due to their better suitability for answering common
sense questions and their insufficient ability to answer logical questions.

Table 4 shows the results of the explainable reasoning models incorporat-
ing external knowledge on the LogiQA dataset. It indicates that our method is
still effective on different datasets. The model incorporating external knowledge
achieves higher accuracy in answer prediction compared to the model without
external knowledge, further verifying the effectiveness of incorporating external
knowledge in logical reasoning. However, horizontally speaking, the model’s pre-
dictions on the LogiQA dataset generally have lower accuracy than those on the
Reclor dataset. The analysis shows that this may be due to two reasons. Firstly,
the LogiQA dataset as a whole is more logical and difficult, making it relatively
difficult for the model to understand the problem. Secondly, because most of
the questions in the dataset are from the National Civil Servants Examination
of China, some obscure words which are difficult to translate into English are
expressed in Chinese in the English version of the dataset, causing the model
unable to analyze the problem with the original algorithm, resulting in lower
accuracy.

Fig. 2. Case study. It shows a specific case and the reasoning process of the model.
Four different colors are used to mark phrases in the context to display different logical
symbols. Underlined phrases represent other symbols different from contextual logic
symbols, and bold phrases indicate different semantic expressions. The options marked
by “× (�)” are the wrong(predicted) options predicted by the model before(after)
adding external knowledge.

4.4 Ablation Study

Table 3 shows the comparison study between ALBERT and RGCN-based base-
line models, in order to investigate the effectiveness of different modules. The
evaluation metric is Accuracy. From the results of the baseline models, it can
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be seen that the performance of RGCN is better than ALBERT, indicating that
the graph structure with relationships has a more superior and structured text
representation compared to PLMs, which makes the semantic expression of the
model more sufficient, resulting in more accurate predictions. The advantages
of the graph structure are more evident after the logical extension framework is
introduced. Furthermore, after incorporating external knowledge, the accuracy
of the model’s answer prediction is further improved, indicating that external
knowledge plays a significant role in enhancing the model’s explainability.

4.5 Case Study

Figure 2 shows an example of the reasoning process and reveals the important
role of external knowledge fusion in improving model performance. Before com-
bining external knowledge, the correctness of choice A and choice C in the
case is indistinguishable, because both options correspond to the expression
of logical symbolic reasoning, and the model incorrectly selects A as the cor-
rect answer based on the priority of the judgment condition. After combining
external knowledge, A special expression with an antisense can be identified
in option A. Through the concept matching of external knowledge, “only” in
option A matches “every” in ConceptNet as an antonym, and “everyone” in con-
text matches the derivative of “every”. Therefore, the expression of choice A does
not match the context. The model can select option C as the most reasonable
answer, which logically and semantically matches the extended implicit logical
expression. It can be seen that the method integrating external knowledge not
only improves the reasoning chain, but also makes the model predict the answer
more accurately. Meanwhile, the inference path is output, which further improves
the explainability of the model.

5 Conclusion

This paper focuses on the complex logical reasoning task. We combine the
strengths of neural-based and symbolic logical-based methods to improve the
explainability of reasoning. We also integrate external knowledge which can help
the model to understand the background knowledge of the context. The model
is verified on two logical datasets. The results show that the explainable rea-
soning algorithm integrated with external knowledge has a significant effect on
improving the accuracy and explainability of the model’s answer prediction.
Although ConceptNet has extensive and diverse knowledge content, each knowl-
edge base has its limitations. Considering the scarcity and varying quality of
logical datasets, in future research work, we will look for ways to construct more
rigorous and diverse logical datasets to improve the model’s robustness and gen-
eralization ability.
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Abstract. Multi-label learning (MLL) refers to a learning task where
each instance is associated with a set of labels. However, in most real-
world applications, the labeling process is very expensive and time con-
suming. Partially multi-label learning (PML) refers to MLL where only
a part of the labels are correctly annotated and the rest are false pos-
itive labels. The main purpose of PML is to learn and predict unseen
multi-label data with less annotation cost. To address the ambiguities
in the label set, existing popular PML research attempts to extract the
label confidence for each candidate label. These methods mainly per-
form disambiguation by considering the correlation among labels or/and
features. However, in PML because of noisy labels, the true correlation
among labels is corrupted. These methods can be easily misled by noisy
false-positive labels. In this paper, we propose Partial Multi-Label learn-
ing method via Constraint Clustering (PML-CC ) to address PML based
on the underlying structure of data. PML-CC gradually extracts high-
confidence labels and then uses them to extract the rest labels. To find the
high-confidence labels, it solves PML as a clustering task while consid-
ering extracted information from previous steps as constraints. In each
step, PML-CC updates the extracted labels and uses them to extract
the other labels. Experimental results show that our method success-
fully tackles PML tasks and outperforms the state-of-the-art methods
on artificial and real-world datasets.

Keywords: partial multi-label learning · constraint clustering ·
disambiguation

1 Introduction

Multi-label learning (MLL) is a supervised learning task where each sample is
associated with multiple labels [20]. MLL has been used for many real-world
applications such as text, image, audio, video, and gene classification [15] and
could successfully address them. However, in some applications such as image
annotation, the true label sets of objects are not available. In such a partially
multi-label learning (PML) setting [7], similar to MLL, each instance is labeled
with a set of labels. However, for each training instance only a part of the
labels are correctly annotated and the rest are false positive labels. MLL is a
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 453–469, 2024.
https://doi.org/10.1007/978-981-99-8145-8_35
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challenging problem and partially labeled data makes it even more challenging.
The main purpose of using partially labeled data is to learn to predict unseen
multi-label data with less annotation cost than in the MLL case [19]. Since
collecting partially labeled training data is less costly and easier, the demand
for PML solutions in many real-world applications is increasing. For example,
many annotation tasks can be done by non-experts with faster and cheaper, but
resulting in more label noise [4].

In recent years several methods have been proposed specifically for PML
tasks. Most of these methods attempt to extract the label confidence for each
candidate label, which is then used to assess the probability of a label being
the ground-truth. PML-lc [14] is proposed to learn the label confidence based
on label correlation. PML-fp [14] calculates label confidence based on feature
correlations. PML-LMNN [4] deals with PML via Large Margin Nearest Neigh-
bour Embeddings. It attempts to exploit the ground-truth labels by considering
feature and label correlations. To deal with asymmetric correlation among labels
PML-SALC [24] is proposed based on sparse asymmetric label correlations.
These methods mainly perform disambiguation by considering the correlation
among labels and/or features. However, in PML data because of noisy labels
the true correlation among labels and/or features are corrupted. Therefore, the
methods which consider label/feature correlations lead to the propagation of
errors during model updates. To deal with this challenge, PARTICLE [22] is
proposed to use the structure of the data. By adapting label propagation, PAR-
TICLE identifies high-confidence labels based on KNN minimum error recon-
struction. Utilizing structural information of the feature space can improve the
performance of a model. However, in PML labels usually correlate only with a
subset of the features. Therefore, methods that use the complete feature set are
frequently misled by irrelevant features. Nevertheless, due to the noisy labels and
imbalanced data, it is normally not possible to determine the relevant features
for each label accurately. Thus, a successful solution for PML should be able
to tackle the following challenges: 1) noisy labels; 2) corrupted correlation; 3)
irrelevant features for each label, and 4) imbalanced data.

Existing methods addressing the MLL are categorized into three main groups,
e.g., first-order, second-order, and higher-order [13]. Methods in the first-order
approach consider labels separately. These methods showed promising results
especially when there is a weak correlation among labels or the correlation is
corrupted [8]. Inspired by the first-order approach, in this paper we propose an
adaptive model for the PML task (PML-CC ). PML-CC considers each label sep-
arately and gradually extracts high-confidence instances and relevant features for
each label and uses them to improve its performance. For each label l ∈ L, PML-
CC keeps three datasets: a positive (Sl

P ), negative (Sl
N ), and ”do-not-know”

(Sl
D) dataset. In each iteration, PML-CC utilizes fuzzy-c-means clustering to

calculate the probability for each instance x and each label l. During clustering
PML-CC tries to minimize the cost of clustering while considering the member
of Sl

P and Sl
N stay in their cluster. To deal with imbalanced data, PML-CC

adaptively calculates weights for clustering penalty errors based on the imbal-
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ance ratio. After clustering, PML-CC updates Sl
P and Sl

N and extracts relevant
features for each label. PML-CC repeats this procedure until there is no change
in the datasets.

To demonstrate the success of PML-CC, we empirically compare the perfor-
mance of PML-CC with existing state-of-the-art methods on several real-world
and synthetic datasets. The empirical results demonstrate that our method suc-
cessfully tackles PML tasks and outperforms the state-of-the-art methods.

2 Related Work

The main goal of the partial multi-label learning framework is to learn a pre-
dictor for multi-label data from noisy training data. Partial multi-label learning
(PML) is a fusion of partial-label learning (PLL) and multi-label learning (MLL).
PML and PLL both are weakly supervised learning frameworks where trained
on partially observed training data. PML and MLL both deal with multi-label
data where each instance is associated with a set of labels.

Multi-Label Learning is a general form of traditional single-label learning,
where each instance is associated with a set of labels. MLL aims to predict a set
of labels for a new unseen instance [13]. Existing methods can be categorized into
two main groups: 1) Algorithm adaption methods change the existing single label
algorithms to tackle the MLL such as ML-KNN [23]; 2) Problem transformation
methods to transform MLL to a traditional learning paradigm [9].

Partial Label Learning is a multi-class weakly supervised learning framework
where among a set of candidate labels for each instance of training data only one
label is ground-truth and the rest are false positive labels. The main difference
between PML and PLL is that in the PLL we know that there is just one true
label for each instance where it is unknown in PML [6].

Partial Multi-Label Learning is a multi-label weakly learning framework
where the only subset of candidate labels of training data are ground-truth and
the rest are false positive. Most existing methods perform disambiguation to
identify ground-truth labels. PML-lc and PML-fp [14] are proposed based on
label ranking optimization. PML-lc uses label correlation and PML-fp uses fea-
ture correlation to identify the true ranking of labels. fMLP [21] is proposed
to improve PML-lc and PML-fp by considering label and feature correlation.
PML-LRS [11] is another method that is proposed based on label ranking. It
uses sparse decomposition and low-rank by considering label and feature interde-
pendencies. The label matrix is decomposed into an irrelevant label matrix and
a ground-truth label matrix. During optimization, the ground-truth label matrix
and feature mapping matrix are bound to be low rank and the irrelevant label
matrix is forced to be sparse. To capture the label confidence MUSSER [6] opti-
mizes the label correlation and feature correlation simultaneously. DRAMA [12]
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contains two steps. In the first step, it identifies the label confidence by using the
feature manifold. Then a gradient boosting model is utilized to fit the label con-
fidantes. On each boosting round, the feature space is augmented by the elicited
labels to explore the label consolations. PARTICLE [22] is proposed to decrease
the effect of the false positive labels. It extracts reliable labels among candidate
labels and then uses these labels to train a multi-label classifier based on pairwise
label ranking. PML-LD [18] is proposed based on the correlation among labels
and topological information of the feature space. To recover the label distribu-
tion PML-LD uses label enhancement technique [17]. PML-DM [16] considered
the noisy labels are not random and the noises happen based on ambiguity on
contents of the samples. To identify the noisy labels and recover the ground-
truth information, PML-DM simultaneously optimizes a noisy label identifier
and a multi-label classifier.

3 Proposed Method

In the PML task the training data with L labels is defined as D = {Xi, yi}N
i=1,

where X ∈ N × Rd contains N training instances. The ith instance Xi denotes
the d-dimensional feature vector. Xi may associate with more than a label
yi ∈ {0, 1}L. Among these labels, only part of them are ground-truth label(s)
and the rest are noisy labels. Each instance is associated at least with one
label [14]. Existing methods, mainly perform disambiguating based on the corre-
lation among labels or/and among features. However, due to noisy labels, these
relations are corrupted and mislead the algorithms.

We propose Partial Multi-Label learning method via Constraint Clustering
(PML-CC ). Our proposed method is based on two main characteristics of data.
First, the instances of a class are often close to each other rather than instances
of different classes (clustering assumption) [1]. Second, each label frequently is
associated with some parts of feature space [6,21]. PML-CC contains two major
components: Clustering and Feature Selection. It uses these components in three
steps: 1) Pre-clustering : for each label l ∈ L a fuzzy clustering algorithm [1]
clusters the training data. After the high confident instances are identified, it
updates the datasets of positive and negative samples (Sl

P and Sl
N ); 2) Feature

Selection: for each label l ∈ L the irrelevant features are removed from the feature
space of the label; 3) Clustering : for each label l ∈ L, the clustering algorithm
is applied on Sl

D while considering Sl
P and Sl

N as constraints. Then PML-CC
repeats the second and third steps until there is no change in the datasets.

3.1 Pre-clustering

For each label l ∈ L, PML-CC creates three datasets including: 1) Sl
P contains

positive samples; 2) Sl
N contains the negative samples, and 3) Sl

D do-not-know
samples. PML-CC utilizes fuzzy clustering to cluster Sl = Sl

P ∪Sl
N ∪Sl

D. Besides
the performance, fuzzy clustering does assign a probability to each sample for
each label. That probability can be edited in next steps and PML-CC can correct
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its mistake. Then highly confident samples are added to Sl
P . During clustering,

instances belonging to Sl
P and Sl

N are used as constraints that the algorithm
should keep them in their cluster. Based on the definition of the PML problem
we know two facts about the labels [4,19,24]. First, each instance is associated
with at least one label. Second, if a sample is tagged for a label we are not sure
about its real label but if a sample is not tagged for a label we are sure the
sample does not belong to the label. So based on these facts we initial the Sl

P

and Sl
N as follows. If an instance Xi is not associated with the label l ∈ L we add

it to Sl
N . If an instance Xi is only associated with one label l ∈ L we add Xi to

Sl
P . Then for each label l ∈ L we utilize a fuzzy clustering algorithm. Equation

(1) shows the objective function for the clustering task for each label.

J(U,Z) =
2∑

j=1

N∑

i=1

Uijdij(xi, zj) + A1

2∑

j=1

N∑

i=1

Uij log Uij+

A2

∑

m|Xm∈Ci

∑

n|Xn∈Ci

m �=n

2∑

k=1

K∑

p=1
p�=k

UmkUnp + A3

∑

m|Xm∈Ci

∑

n|Xn∈Cj

i�=j

2∑

k=1

UmkUnk

subject to
2∑

j=1

Uij = 1, Uij ∈ (0, 1], 1 ≤ i ≤ N,

(1)

where Zj is the center of cluster j. Uij is the probability of instance Xi belongs to
cluster j. dij(xi, zj) is square of Euclidean distance of Xi and Zj . N is the number
of instances. A1, A2, A3 are coefficients. In Eq. (1) the first two terms belong to
the fuzzy c-means (FCM ) algorithm. FCM attempts to partition instances into 2
different clusters (positive and negative). For reaching this goal FCM tries to find
the optimal values for centers of cluster Z = {Z0, Z1} and simultaneously finds
the best values for membership for each instance to each cluster. In Eq. (1) the
second term is the weighted entropy. This term forces the clusters to contribute
to the association of instances. The third penalty term is added for conditions
that instances from the same class appear in different clusters. The last term is
another penalty term we added for the case that instances of different classes
happen in a cluster. The last two-term in Eq. (1) only is applied for the instances
of Sl

D and Sl
N .

Equation (1) does not have a closed-form solution. For solving this problem
an alternate optimization is used to find optimal values for Z and U . Thus in
each step, first Z is fixed and the optimal value of U with respect to the value
of the membership matrix is calculated then U is fixed and the optimal value
for centers Z with respect to U is calculated. Then the new value of J(U,Z)
based on new values of U and Z is calculated. These steps are repeated until
there is no difference between the value of J(U,Z) in the last and current steps.
To calculate the optimal value for Zjp, in this step we consider fixed value for U
and take derivative and set it to zero, then:
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Zjp =

N∑

i=1

Uipxip

N∑

i=1

Uij

(2)

To calculate the optimal value of Uij , the Lagrange multipliers technique is
used in order that the sum of membership for each instance will be equal to one.
The optimal value for Uij is calculated in the same way the optimal value for
Zjp is calculated. By considering Z is fixed and derivative to zero, the optimal
value for Uij is obtained as follows:

Uij =
exp

(−dij(xi, zj)
A1

)
exp

(−A2ψij

A1

)
exp

(−A3Ψij

A1

)

2∑
p=1

exp
(−dip(xi, zp)

A1

)
exp

(−A2ψip

A1

)
exp

(−A3Ψip

A1

) (3)

ψij =
∑

n|Xi∈Cm,Xn∈Cm

i�=n

K∑

k=1
k �=j

Unk , Ψij =
∑

n|Xi∈Cm,Xn∈Cp

m �=p

Unj (4)

The minimization procedure is given in Algorithm 2. The algorithm returns the
optimal values for U and Z. The detailed proof is described in the supplementary
material (Appendix .1).

3.2 Feature Selection (FS)

Since it is known that each instance of training data at least is associated with
one of the labels, instance Xi ∈ Sl

D is added to Sl
P where l is the label with the

highest membership value l = argmaxl({Ui,l}l=L
l=1 ). Then, as a further optimiza-

tion procedure, PML-CC determines the relevant features for each label based
on the information that has been extracted from the data. In multi-label data,
each label is usually associated with a subset of the feature space and the rest
of the features are irrelevant. These irrelevant features hinder classifiers to learn
the labels properly [21].

To deal with this challenge, the first norm regularization is used. The L1

regularization tends to push some of the less important features’ corresponding
weights to zero. As a result, this effectively removes those features from the
model, leading to a simpler and potentially more accurate model by eliminating
irrelevant features from the data. For each label l ∈ L a cost function L1(l) is
defined as follows:

L1(l) = min
ωl

(
1
2

N∑

j=1

(Xjωi − yj)2 + η|ωl |) =
1
2
‖y − Xω‖22 + η‖ω‖ (5)

where ω ∈ Rm × RL is matrix and ωl is weight vector for label l ∈ L.
For simplicity, we consider ωl = ω and show how our proposed method solves
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the problem for label l ∈ L. Then we can generalize the solution for other
labels. Equation (5) shows the cost function for L1 norm. However, there is no
closed-form solution for this minimization. To solve this optimization, Proximal
Gradient Descent Algorithm (PGDA) [2] is used. L(ω) in Eq. (6) is convex and
differentiable. R(ω) is convex but not differentiable.

1
2
‖y − Xω‖22

︸ ︷︷ ︸
L(ω)

+ η‖ω‖︸ ︷︷ ︸
R(ω)

(6)

Then the proximal gradient method iteration will be as follows:

ωt+1 = proxαR(ωt − α∇L(ωt)) (7)

where

∇L(ω) = XT (Xω − y)

proxα(ω̂) = argmin
ω

R(ω) +
1
2α

‖ω − ω̂‖22

= argmin
ω

η‖ω‖ +
1
2α

‖ω − ω̂‖22 = Sηα(ω̂)

(8)

Sηα(ω̂) is the soft-shareholding operator as follows:

[Sηα(ω̂)]i =

⎧
⎪⎨

⎪⎩

ω̂i − η if ω̂i > η

0 if − η < ω̂i < η, i = 1, .., n

ω̂i + η if ω̂i < −η

(9)

Based on Eq. (7) and (8) and (9) proximal gradient update is:

ωt+1 = Sηα(ωt + αXT (y − Xωt)) (10)

Equation (5) determines relevant features for label l ∈ L based on the
extracted information. Since this information (SP and SN ) is noisy and incom-
plete, using only relevant features results in over-fitting. To avoid the over-
fitting, inspired by the drop-out algorithm [10], in each step, PML-CC randomly
removes 50% of detected irrelevant features and keeps the rest.

3.3 Clustering

In the last step, PML-CC again uses the constraint fuzzy-c-means algorithm
(Eq. 1). In this step, PML-CC uses the updated SP and SN that were obtained
during the first step (3.1) and only considers the relevant features for each label
(3.2). Algorithm (1) shows the general workflow of our proposed method.



460 S. K. Siahroudi and D. Kudenko

Algorithm 1 PML-CC
Require: Data,Labels,Features,α, η, A1, A2, A3
Ensure: U,Z
1: Initialize SP , SN ,SD

2: Z, U ←Minimization(Sl
P , Sl

N , Sl
D, A1, A2, A3)

3: for i in (len(Data)) do

4: k = argmaxk({Ui,k}k=L
k=1 )

5: Update(Sl
P , Sl

N , Sl
D)

6: end for
7: while J(U(t), Z(t))! = J(U(t+1), Z(t+1)) do

8: Ŝl
P , Ŝl

N , Ŝl
D ←Feature SelectionS(Sl

P , Sl
N , Sl

D, α, η)# Based on subsection 3.2

9: Z, U ←Minimization(Ŝl
P , Ŝl

N , Ŝl
D, A1, A2, A3)

10: Update(Sl
P , Sl

N , Sl
D)

11: t ← t + 1
12: end while

4 Experiment

4.1 Dataset

To show the performance of our proposed method, we conduct several experi-
ments on a variety of real-world datasets (Music-emotion, Music-style, YeastBP,
and MIRFlickr [4]) and synthetic datasets (Enron, CAL500, Mediamill, and
Corel5k)1. The datasets focus on different applications including image anno-
tation (MIRFlickr), text categorization (Enron), music recognition (Music-
emotion), biology (YeastBP), and video annotation (Mediamill). Table 1 shows
the characteristics of these datasets [16]. The synthetic datasets are Multi-label
but are not PML. To construct PML data, we add random noise to them. For
example, the average number of ground-truth labels (avg.GLs) of Enron is 3.38,
to make Enron 7, we added some noises to increase the avg.GLs to 7.

Algorithm 2 Minimization.
1: function MIZ(Sl

P , Sl
N , Sl

D, A1, A2, A3)

2: Z(0), U(0) ← RandomNumber
3: t ← 0
4: while true do
5: calculate U(t+1) by using Eq (3) where Z(t) is fixed.

6: calculate Z(t+1) using Eq (2) where U(t) is fixed .

7: if J(U(t), Z(t)) == J(U(t+1), Z(t))or J(U(t), Z(t)) == J(U(t), Z(t+1)) then
8: Break
9: end if
10: t ← t + 1
11: end while
12: Return (Z(t), U(t))
13: end function

1 http://mulan.sourceforge.netdatasets.html/ and https://meka.sourceforge.net/
datasets.

http://mulan.sourceforge.netdatasets.html/
https://meka.sourceforge.net/datasets
https://meka.sourceforge.net/datasets
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Table 1. Characteristics of real-world and Synthetic datasets. avg. #GLs is the
average number of ground-truth labels and avg. #CLs is the average number of
candidate labels.

Dataset #Examples #Features #Class avg.#GLs avg.#CLs

MIRFlickr 10433 100 7 1.77 3.35

Music-emotion 6833 98 11 2.42 5.29

Music-style 6839 98 10 1.44 6.04

YeastBP 560 5,548 217 21.56 30.43

Enron 1702 1001 53 3.38 7,11

CAL500 502 68 174 26.04 45,65

Corel5k 5000 499 374 3.52 7,9

Mediamill 43907 120 101 4.38 9,13

4.2 Metrics

The evaluation metrics of multi-label learning algorithms are different from tra-
ditional single-label learning. Several criteria for multi-label learning have been
proposed in the literature: hamming loss, one error, average precision, coverage,
and ranking loss are used to show the performance of our proposed method.
These five metrics are commonly used for multi-label and partially multi-label
learning. For hamming loss, one error, coverage metrics, and ranking loss smaller
values show better performance. For average precision it is the larger values.
More details about multi-label performance metrics can be found in [20]

4.3 Competitors

We compare the performance of PML-CC with the following state-of-the-art
PML algorithms. PML-LMNNE (LMNNE) [4], PARTICLE [22], DRAMA [12],
fPML [21], PML-LRS [11], MUSER [6]. The trade-off parameters of all competi-
tors algorithms are set to the values suggested in the respective papers.

4.4 Experimental Results

We report the performance of our method and the Competitor methods on four
real-world and eight synthetic datasets. The performance is shown in term of
the five performance metrics described in previous section. Table 2 shows the
performance of our proposed method in the term of hamming loss where the
smaller value means better performance. Table 3 shows the performance of our
proposed method in the term of average precision where the larger value means
better performance. Similar results are achieved for other metrics. The result for
other metrics are reported in Appendix .2. Based on overall results, the following
observation can be made:
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– On 83% of datasets (10 out of 12) on each evaluation metric, PML-CC out-
performs all the competitors.

– Out of 412 (12 datasets × 7 methods × 5 metrics) comparisons, PML-CC
ranks 1st in 83% cases.

– PML-CC significantly outperforms PARTICLE, PML-LRS, DRAMA, and
fpml on all combinations of datasets and metrics.

– PML-CC outperforms MUSER and PML-LMNNE in 86% cases.

Table 2. The result of PML-CC and other competitors in term of hamming loss
on real-world and synthetic datasets (mean±standard deviation). The best method is
highlighted by bold text and the runner-up is shown as italic text.

Dataset PML-CC LMNNE PARTICLE DRAMA fPML PML-LRS MUSER

MIRFlickr .143±.021 .145±.016 .193±.017 .219±.014 .223±.022 .237±.012 .193±.056

Music-emotion .210±.012 .281±.010 .360±.012 .318±.013 .452±.025 .381±.028 .284±.023

Music-style .158±.012 .162±.011 .173±.021 .169±.031 .338±.027 .379±.023 .173±.016

YeastBP .102±.016 .161±.014 .236±.012 .227±.021 .214±.015 .182±.009 .158±.012

Enron 7 .067±.013 .097±.012 .286.005 .183±.022 .115±.017 .207±.021 .108±.003

Enron 11 .069±.017 .121±.011 .303±.005 .209±.013 .128±.018 .209±.014 .123±.014

CAL500 45 .152±.016 .260±.013 .271±.024 .235±.017 .268±.015 .282±.013 .279±.024

CAL500 65 .201±.016 .285±.016 .357±.032 .327±.036 .288±.015 .327±.026 .283±.014

Corel5k 7 .008±.006 .007±.002 .015±.006 .013±.012 .009±.002 .008±.006 .009±.003

Corel5k 11 .010±.005 .011±.004 .038±.006 .021±.005 .018±.013 .019±.002 .012±.005

Mediamill 9 .054±.018 .059±.013 .098±.014 .101±.020 .065±.007 .072±.023 .087±.021

Mediamill 13 .062±.012 .122±.010 .145±.018 .201±.027 .513±.021 .191±.017 .183±.012

The post-hoc Bonferroni-Dunn [3] test is used to further investigate the dif-
ferences in the results and compute the critical difference. In Fig. 1, for each
performance measure, the algorithms not connected with PML-CC in the CD
diagram have a significantly different performance.

Fig. 1. post-hoc Bonferroni-Dunn test, comparing the average rank of PML-CC on all
datasets, for hamming loss (A) average precision (B) .

4.5 Parameters Analysis

There are three parameters for the clustering step. These parameters are respon-
sible for the weight of errors (penalty weight). A1 is the weight for term
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Table 3. The result of our proposed method and other competitors in terms of average
precision on real-world and synthetic datasets (mean±standard deviation). The best
method is highlighted by bold text and the runner-up is shown as italic text.

Dataset PML-CC LMNNE PARTICLE DRAMA fPML PML-LRS MUSER

MIRFlickr .861±.015 .831±.012 .685±.017 .707±.014 .731±.015 .796±.012 .801±.016

Music-emotion .663±.016 .611±.017 .527±.006 .582±.012 .538±.015 .516±.014 .598±.033

Music-style .732±.034 .726±.024 .717±.031 .693±.013 .659±.017 .716±.018 .718±.013

YeastBP .206±.024 .152±.023 .082±.031 .083±.017 .096±.021 .085±.023 .154±.031

Enron 7 .680±.018 .779±.010 .601±.006 .613±.002 .751±.012 .782±.011 .771±.003

Enron 11 .679±.021 .694±.006 .587±.006 .556±.012 .670±.006 .683±.007 .681±.005

CAL500 45 622±.021 .615±.021 .446±.024 .563±.027 .531±.025 .516±.023 .620±.014

CAL500 65 .502±.017 .480±.011 .432±.012 .481±.015 .412±.022 .448±.014 .479±.018

Corel5k 7 .332±.014 .289±.010 .205±.036 .235±.014 .264±.017 .237±.013 .280±.003

Corel5k 11 .311±.012 .282±.005 .196±.012 .218±.025 .258±.015 .217±.011 .276±.015

Mediamill 9 .766±.023 .765±.018 .756±.018 .687±.017 .695±.017 .689±.010 .716±.012

Mediamill 13 .736±.021 .733±.016 .699±.024 .698±.014 .674±.018 .686±.013 .702±.021

∑2
j=1

∑N
i=1 Uij log Uij in Eq. (1). Figure 2A shows that the minimum value of

Uij log Uij occurs when Uij is around 0.4. This term forces the samples to asso-
ciate with all the clusters and hinders the membership of a sample to a cluster to
be very small (zero) or very high (one). Similarly, in Eq. (3), it is shown that the
values of the other terms are divided by A1. That means a big value of A1, keeps
all the membership values close to each other. That makes the optimization pro-
cess very slow and sometimes leads it to a local minimum. On the other hand,
a small value of A1 magnifies the role of other terms in Eq. (3) (e.g. distance).
That leads the optimization process to a local minimum or a loop and never
stops.

Fig. 2. Shows the behavior of penalty terms in Eq. (1). (A) shows the values for
U × logU for different U . (B) is a diagram that shows the values for Uij × Uip for
different Ui,j .

A2 and A3 are weights for the third and fourth terms in Eq. (1). These penalty
terms are applied when two samples of different classes happen in a cluster,
or two samples of a class happen in different clusters. As Fig. 2.B shows, the
minimum value of Uij × Uip happens when Uij is close to zero and Uip is
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close to one, and vice versa. Thus, these terms try to decrease the probability
that samples of different classes happen in the same cluster and samples of the
same class happen in different clusters. Big values for A2 and A3 decrease the
role of other terms in Eq. (1) and samples are assigned to the clusters based on
theses terms. Small values for theses weights allow mistakes and increase the
weight of other terms in Eq. (1). Figure 3 shows the effect of different values
of A1, A2, A3 on the performance of PML-CC. Figure 3A, Fig. 3B, and Fig. 3.C
show the performance of PML-CC on Music-emotion dataset for different values
of A2, A3, A1 respectively.

Fig. 3. The effect of different values of A1, A2, A3 on the performance of PML-CC on
Music-emotion dataset.

4.6 Time Complexity

The main component of PML-CC is FCM. The time complexity of FCM is
O(N × C2 × d × i) [1]. N in number of samples, C is number of clusters, d is
number of attributes and i is number of iteration. In our method, FCM is run
for each label for two clusters. That means the time complexity of PML-CC is
O(N×d×i×L) where L is the number of labels. With this time complexity PML-
CC can handle most of the existing datasets in a reasonable time. However, for
a big real-world dataset FCM makes PML-CC very slow. Several fast versions
of FCM have been proposed in recent years. For example, Kolen [5] proposed a
novel method that dramatically decreases the run time of FCM. Thus, for the
big datasets, PML-CC can utilize the fast version of FCM to deal with the time
complexity.

5 Conclusion

In this paper, we proposed a novel PML learning method, PML-CC, based on
constraint clustering. Unlike existing methods, our method is not based on cor-
relation among labels and/or features. It is a first-order multi-label learning
algorithm that considers each label separately. PML-CC learns its model in iter-
ations. In each step, it extracts some information from the data and then uses
the information to improve its model and performance. Experimental results on
a variety of real-world and synthetic datasets using a wide range of performance
metrics show that PML-CC outperforms existing state-of-the-art algorithms.
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Appendix

.1 Proof of Formula

In this section, the detail of the optimization of Eq. (1) is given. The goal of
this optimization is to find the optimal value for cluster centers ([Z]k×m×L) and
the fuzzy membership ([U ]k×m×L). Where k is the number of classes for each
label. Since each label is a binary class we set k = 2. m is the size of the feature
and L is the number of labels. For making the optimization procedure easier
for the reader, the procedure is described for a single label. Thus we consider
cluster centers ([Z]2×m) and the fuzzy membership ([U ]2×m) for only one label.
For the rest of the labels, we repeat the procedure. The Eq. (1) does not have a
close form solution. To solve this problem an alternating optimization approach
is used. Equation (1) is a constraint non-linear optimization form. By using
Lagrange multipliers the following function is obtained.

J(U, Z) =
2∑

j=1

N∑

i=1

Uijdij(xi, zj) + A1

2∑

j=1

N∑

i=1

Uij log Uij + A2

∑

m|Xm∈Ci

∑

n|Xn∈Ci

m �=n

2∑

k=1

K∑

p=1
p�=k

UmkUnp

+ A3

∑

m|Xm∈Ci

∑

n|Xn∈Cj

i�=j

2∑

k=1

UmkUnk +
N∑

i=1

λi(
2∑

j=1

Uij − 1)

(11)

Lemma 1. The optimal value for Uij when Z are fixed is equal to :

Uij =
exp

( −dij(xi,zj)−A2ψij−A3Ψij
A1

)

∑2
p=1 exp

( −dip(xi,zp)−A2ψip−A3Ψip
A1

) (12)

Proof. To find the optimal value for each Uij we take derivative of Eq. (11)
respect to each Uij and set it to zero as follows:

∂J(U, Z)

∂Uij

= 0

dij(xi, zj) + A1(1 + logUij) + A2(
∑

n|Xi∈Cm,Xn∈Cp

m �=p

2∑

k=1
�=j

Unk) + A3(
∑

n|Xi,Xn∈Cm

Unj) + λi = 0

(13)
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By setting ψij and Ψij as follows:

ψij =
∑

n|Xi∈Cm,Xn∈Cm

i�=n

K∑

k=1
k �=j

Unk, Ψij =
∑

n|Xi∈Cm,Xn∈Cp

m �=p

Unj (14)

By solving Eq. (13), Uij will be obtained as follows:

Uij = exp(−1) exp

( −dij(xi, zj) − A2ψij − A3Ψij

A1

)
exp(

−λi

A1
) (15)

Since
∑2

j=1 = 1 the Lagrange multiplier can obtained as follows:

2∑

j=1

exp(−1) exp

( −dij(xi, zj) − A2ψij − A3Ψij

A1

)
exp(

−λi

A1
) =

exp(−1) exp(
−λi

A1
)

2∑

j=1

exp

( −dij(xi, zj) − A2ψij − A3Ψij

A1

)
= 1

=> exp(
−λi

A1
) =

1

exp(−1)
∑2

j=1 exp
( −dij(xi,zj)−A2ψij−A3Ψij

A1

)

(16)

By substituting Eq. (16) in Eq. (15) the closed form solution for uij (Eq. (12))
will be obtained and completes the proof of lemma.

Lemma 2. If the U (fuzzy memberships) are fixed, the optimal value for Z
(cluster centers) are equal to equation (17).

Zjp =

∑N
i=1 Uijxip∑N

i=1 Uij

(17)

Proof. Again the alternative approach is used. First, The U are fixed then the
optimal values for Z is obtained by taking derivative of Eq. (11) respect to each
cluster center and set it to zero.

∂J(U, Z)

∂Zjp

= 0 =>

N∑

i=1

2Uij(Zjp − xip) = 0 => Zjp =

∑N
i=1 Uijxip∑N

i=1 Uij

(18)

Lemma 3. U and Z are local optimum of J(U,Z) if Zij and Uij are calculated
using Eq. (17) and (12) and A1, A2, A3 > 0

Proof. Let J(U) be J(U,Z) when Z are fixed, J(Z) be J(U,Z) when U are
fixed and A1, A2, A3 > 0. Then, the Hessian H(J(Z)) and H(J(U)) matrices are
calculated as follows:

hfg,ij(J(U)) =
∂

∂fg

∂J(U)
∂Uij

=
{ A1

Uij
, iff=i,g=j

0, otherwise
(19)

hfg,il(J(Z)) =
∂

∂fg

∂J(Z)
∂Zip

=
{∑2

j=1 2Uij , iff=i,g=p

0, otherwise
(20)
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Equation (19) and (20) shows H(J(Z)) and H(J(U)) are diagonal matrices.
Since A1 > 0 and 0 < Uij ≤ 1, the Hessian matrices are positive definite. Thus
Eq. (12) and (17) are sufficient conditions to minimize J(U) and J(Z).

.2 Additional Excremental Result

Tables 4,5,6 show the performance of our proposed method in the term of ranking
loss and coverage respectively.

Table 4. The result of our proposed method and other competitors in term of ranking
loss on real-world and synthetic datasets (mean±standard deviation)

Dataset PML-CC LMNNE PARTICLE DRAMA fPML PML-LRS MUSER

MIRFlickr .070±.007 .072±.004 .203±.007 .189±.010 .146±.008 .107±.002 .093±.006

Music-emotion .161±.023 .182±.019 .260±.005 .218±.013 .254±.006 .281±.005 .189±.021

Music-style .163±.014 .169±.012 .182±.021 .178±.013 .267±.013 .179±.007 .171±.006

YeastBP .240±.029 .347±.038 .436±.032 .407±.021 .382±.036 .418±.031 .341±.015

Enron 7 .040±.019 .110±.012 .297±.007 .194±.012 .338±.004 .207±.021 .114±.003

Enron 11 .050±.019 .119±.014 .312±.006 .210±.015 .341±.002 .215±.017 .123±.004

CAL500 45 .087±.011 .183±.013 .353±.014 .235±.007 .316±.008 .281±.013 .179±.024

CAL500 65 .129±.011 .256±.017 .471±.012 .317±.016 .365±.014 .347±.016 .213±.021

Corel5k 7 .039±.013 .013±.007 .345±.070 .193±.052 .161±.013 .193±.016 .015±.004

Corel5k 11 .045±.011 .017±.003 .383±.056 .201±.065 .171±.014 .202±.021 .017±.005

Mediamill 9 .046±.029 .121±.010 .135±.008 .219±.012 .226±.009 .193±.107 .173±.002

Mediamill 13 .053±.026 .153±017 .198±.004 .301±.007 .316±.015 .212±.023 .187±.021

Table 5. The result of our proposed method and other competitors in term of one
error on real-world and synthetic datasets (mean±standard deviation).

Dataset PML-CC LMNNE PARTICLE DRAMA fPML PML-LRS MUSER

MIRFlickr .127±.012 .187±.010 .263±.013 .289±.016 .346±.021 .497±.031 .223±.026

Music-emotion .450±.017 .521±.016 .560±.015 .568±.023 .554±.026 .581±.025 .539±.022

Music-style .401±.016 .417±.014 .460±.025 .458±.014 .454±.025 .481±.028 .439±.021

YeastBP .660±.027 .911±.021 .936±.030 .941±.025 982±.016 .918±.021 .907±.027

Enron 7 .164±.020 .207±.014 .297±.027 .294±.022 .338±.004 .215±.027 .214±.024

Enron 11 .124±.021 .218±.012 .312±.016 .310±.015 .341±.022 .307±.021 .223±.013

CAL500 45 .110±.013 .169±.011 .171±.014 .235±.007 .265±.008 .181±.013 .176±.024

CAL500 65 .161±.014 .236±.017 .363±.012 .337±.016 .356±.014 .247±.016 .233±.021

Corel5k 7 .252±.023 .213±.011 .345±.025 .281±.052 .261±.013 .292±.016 .215±.014

Corel5k 11 .280±.027 .225±014 .383±.056 .293±.035 .297±.024 .293±.011 .227±.019

Mediamill 9 .211±.009 .212±.011 .235±.021 .297±.016 .311±.022 .293±.017 .237±.012

Mediamill 13 .196±.012 .231±.016 .298±.015 .301±.012 .316±.016 .312±.023 .277±.021
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Table 6. The result of PML-CC and other competitors in term of coverage on
real-world and synthetic datasets (mean±standard deviation).

Dataset PML-CC LMNNE PARTICLE DRAMA fPML PML-LRS MUSER

MIRFlickr .190±.031 .210±.007 .263±.007 .289±.010 .248±.008 .287±.002 .233±.016

Music-emotion .300±.012 .381±.010 .461±.005 .428±.013 .434±.006 .483±.005 .387±.021

Music-style .195±.025 .203±.017 .208±.021 .217±.032 .367±.013 .279±.007 .216±.006

YeastBP .321±.021 .426±.022 .731±.032 .417±.025 .489±.036 .668±.031 .431±.015

Enron 7 .195±.003 .306±.005 .397±.007 .394±.012 .431±.004 .415±.021 .314±.033

Enron 11 .270±.011 .311±.019 .416±.026 .415±.015 .446±.022 .417±.017 .323±.024

CAL500 45 .704±.035 .715±.031 .872±.024 .838±.027 .936±.038 .865±.033 .679±.027

CAL500 65 .718±041 .736±.026 .953±.012 .917±.016 .955±.014 .878±.016 .712±.012

Corel5k 7 .178±.015 .227±.013 .415±.070 .439±.052 .361±.011 .372±.015 .238±.014

Corel5k 11 .186±.019 .255±.021 .463±.026 .451±.025 .373±.014 .393±.021 .278±.005

Mediamill 9 .105 ±.014 .185±.016 .211±.018 .317±.012 .266±.013 .291±.107 .212±.022

Mediamill 13 .125 ±.026 .193±.022 .298±.024 .321±.027 .362±.015 .322±.021 .215±.010
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Abstract. Generating a summary from a set of documents remains
a challenging task. Abstractive multi-document summarization (MDS)
methods have shown remarkable advantages when compared with extrac-
tive MDS. They can express the original document information in new
sentences with higher continuity and readability. However, mainstream
abstractive models, which are pre-trained on sentence pairs rather than
entire documents, often fail to effectively capture long-range dependen-
cies throughout the document. To address these issues, we propose a
novel abstractive MDS model that aims to succinctly inject semantic
and structural information of elementary discourse units into the model
to improve its generative ability. In particular, we first extract semantic
features by splitting the single document into discourses and building
the discourse tree. Then, we design discourse Patterns to convert the
raw document text and trees into a linearized format while guarantee-
ing corresponding relationships. Finally, we employ an abstractive model
to generate target summaries with the processed input sequence and to
learn the discourse semantic information. Extensive experiments show
that our model outperforms current mainstream MDS methods in the
ROUGE evaluation. This indicates the superiority of our proposed model
and the capacity of the abstractive model with the hybrid pattern.

Keywords: Discourse Rhetorical Structure · Abstractive
Summarization · Multi-document · LongT5

1 Introduction

Multi-document summarization (MDS) is a technique that compresses multi-
ple topic-related documents into a concise summary without losing important
information. Previously, most MDS tasks are approached using extractive sum-
marization [18], which involved scoring and ranking sentences in the documents
to extract critical sentences while ensuring diversity. However, extractive summa-
rization faced challenges in handling redundancy and contradictions across multi-
ple documents [22]. In recent studies, abstractive summarization has emerged as
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a preferred approach, generating summaries with new words or sentences based
on semantic analysis. This method aims to achieve better diversity and reduce
redundancy, resulting in summaries that resemble human-written summaries.
However, these methods primarily concentrate on optimizing the summary gen-
eration process without adequately addressing the challenge of capturing the
long-term dependencies present throughout the document. Documents are not
simply a stack of text sequences. Instead, they are compositions of Elementary
Discourse Units (EDUs) linked to each other.

Fig. 1. An example RST-style discourse tree.

Rhetorical Structure Theory (RST), recognized as the primary linguistic
framework for Discourse Rhetorical Structure (DRS) [14], offers a comprehensive
representation of the document in the form of a discourse tree. The discourse tree,
depicted in Fig. 1, exhibits a hierarchical structure where each leaf node corre-
sponds to an Elementary Discourse Unit (EDU). These EDUs are interconnected
by rhetorical and nuclearity relations, resulting in the formation of higher-level
discourse units (DUs). Rhetorical relations serve the purpose of describing the
functional and semantic relationships between EDUs, while nuclearity is char-
acterized by nucleus (N) and satellite (S) tags, attributing greater importance
to the nucleus. By incorporating structural elements, rhetorical analysis, and
the notion of nucleus, discourse trees effectively capture the text’s organization,
rendering them valuable for text summarization purposes.

Previous studies have shown that discourse trees can capture structural and
semantic information between EDUs, which is effective for single document sum-
marization (SDS). Therefore, we attempt to apply the discourse rhetorical struc-
ture information in the MDS task. In accordance with the characteristics of MDS
task, we propose to construct a discourse tree for each single document and
design discourse patterns to merge them. This method not only reduces compu-
tational complexity, but also better preserves the distinct characteristics of each
single document while capturing the relationships between them, as opposed to
constructing the discourse tree for the entire set of documents.

The main contribution is threefold: (i) We propose a discourse-aware abstrac-
tive summarization model for MDS task, which operates on an elementary
discourse unit level to capture rich semantic and structural information and



472 M. Han et al.

generate overall coherent summaries. (ii) We design new patterns to form the
documents and discourse trees in a flat sequence as the input of the abstractive
model. These patterns are well-designed to avoid explicit modeling of structure
with the guarantee of corresponding relationships. (iii) Our model achieves a new
state of the art on the Multi-Document Summarization Dataset, outperforming
other abstractive models.

2 Related Work

2.1 Discourse Rhetorical Structure Based Multi-document
Summarization

Rhetorical Structure Theory (RST) is a comprehensive theory of text organi-
zation [14]. It has gained increasing attention and has been applied to various
high-level NLP applications, including text summarization, following Marcu’s
earlier works on RST parsing [17]. The authors of RST have hypothesized that
the nucleus in the discourse tree (DT) can serve as an adequate summarization
of the text, a notion first validated by Marcu [16]. Louis et al. [13] have demon-
strated that the structure features, such as the position in the global structure
of the whole text, of the DT are the most useful for computing the salience of
text spans. For MDS, Zahri et al. [23] address the redundancy issue by utilizing
DT for cluster-based MDS. They leverage rhetorical relations between sentences
to group similar sentences into multiple clusters, thereby identifying themes of
common information from which candidate summary sentences are extracted.

2.2 Abstractive Multi-document Summarization

With the development of representation learning for NLP [2] and large-scale
datasets [4], some studies have achieved promising results on abstractive MDS
[7]. See at all [20] propose Pointer Generator Network (PGN) to overcome the
problems of factual errors and high redundancy in the MDS. Liu et al. [11] intro-
duce Transformer to MDS tasks, aiming to generate a Wikipedia article from a
given topic and set of references. Their model selects a series of top-K tokens
and feeds them into a Transformer based decoder-only sequence transduction
model to generate Wikipedia articles. Raffel et al. [19]. propose T5, which is a
transformer based text-to-text pre-trained language model that is gaining pop-
ularity for its unified framework that converts all text-based language problems
into a text-to-text format. More recently, Guo et al. [5]. extend the original T5
encoder with global-local attention sparsity patterns to handle long inputs. In
this work, we propose an effective method to combine pre-trained LMs with our
discourse tree and make them able to process much longer inputs effectively.

3 Discourse Patterns Construction

In this section, we first introduce the process of generating discourse trees. And
then explain how we construct discourse patterns used in the abstractive model.
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3.1 Tree Generation Model

The process of the discourse tree construction can be separated into two stages:
Elementary Discourse Unit segmentation (EDU segmentation) and Discourse
Rhetorical Structure parsing (DRS parsing).EDU segmentation approach builds
upon the work of Zhang et al. [25], employing a sequence-to-sequence model
for EDU segmentation. The segmentation model learns to capture the intra-
document features and cast the EDU segmentation problem as a sequence label-
ing task. Given the token sequence Doci = {x1, x2, ..., xn} as input. Firstly, they
employ bi-directional GRUs and intra-sentence dependency structures to obtain
the refined vectors {h′

0, h
′
1, ..., h

′
n}. After that, they take the refined vectors as

input to a BiGRU encoder to generate candidate EDU boundaries {e0, e1, ..., en}.
Finally, taking the concatenation of the last hidden states en in both directions
as the input of the decoder. The decoder’s outputs {d0, di, dj , ...} are employed
to determine the segmentation boundaries {ei−1, ej−1, ..., en} for the EDUs.

Fig. 2. A parsing example of the attention-based encoder-decoder.

After obtaining EDUs, we follow the setting of Zhang et al. [26], employ-
ing the pre-trained DRS parser to construct the discourse tree. The pars-
ing process is illustrated in Fig. 2. Given a text containing six EDUs =
{EDU1, EDU2, ..., EDU6}, the encoder encodes them to obtain contextual rep-
resentations he = {he1, he2, ..., he6}. We name the split position between any
two EDUs as a split point. The split point encoder is responsible for encod-
ing each split point. In particular, we feed the sequence of encoded EDUs he

into a bi-directional GRU network to get the final sequence of encoded EDUs
h′
e = {h′

e0, h
′
e1, ..., h

′
e7}. We use a CNN net with a window of 2 and a stride size

of 1 to compute the final split point representation hs = {hs0, hs1, ..., hs6}.
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The decoding process is essentially the process of iteratively searching for
the segmentation points of the subregions within a given sequence (1, 2, 3, 4,
5, 6). The initial stack contains the segmentation point between the beginning
and end of the entire discourse (0, 6). And then, the arrows in red indicate
the selected split points at each time step. The discourse tree is built after 5
iterations with the split points (3, 1, 2, 4, 5) detected in turn. When generating
the discourse tree, for each edge containing an N-R (Nuclearity and Rhetoric)
label, it is pruned from the original tree and labeled as an unknown label, and
then a classifier is used to classify it, resulting in the final N-R label.

3.2 Discourse Patterns

Upon obtaining the discourse tree, the sentence’s structure, logical meaning, and
functional implications become apparent. To augment the abstractive model’s
ability to comprehend tree information, we introduce eight types of discourse
patterns. In particular, the discourse tree is encoded in a parenthetical for-
mat that preserves its hierarchical structure and then transformed into a flat
sequence using a predefined ordering scheme. Subsequently, we inject rhetori-
cal and nuclear information into the parenthetical format, allowing the model
to capture more accurately the interdependencies and relative significance of
various EDUs within the discourse.

As illustrated in Fig. 3 (a), we employ the following two strategies to encode
the discourse tree in parenthetical format, injecting structural information into
the original text, where the EDUs represent the content of each discourse. DFS-
based parenthetical format follows the natural traversal order of the tree, i.e.,
the root node is processed first, followed by the left subtree, and finally the right
subtree. Since the EDUs in the discourse tree are arranged in a specific order,
during the DFS process, each EDU will be visited before its parent node, ensuring
the preservation of its original order. BFS-based parenthetical format is
employed to systematically investigate the discourse tree structure by traversing
it level by level, thereby offering a comprehensive breadth-wise perspective. This
strategy enables the analysis of hierarchical relationships by prioritizing nodes
within the same level before proceeding to the subsequent level.

Rhetorical relations showcase the semantic relationships and information flow
between EDUs. For example, in Fig. 2, EDU2 and EDU3 are linked together
through a "background" relation, forming a higher-level discourse unit (DU2),
which is subsequently integrated with EDU1 through an "attribution" relation.
By recognizing rhetorical relations, the abstractive summarization model can
accurately capture important arguments, resulting in more logical summaries.
We utilize the label embedding technique to incorporate rhetorical relations into
the parenthetical format, resulting in novel discourse patterns. This discourse
pattern seamlessly integrates the structural and rhetorical information from the
original text, serving as the input text for the abstractive summarization model.
By leveraging the embedded labels, the abstractive model is able to better under-
stand the structure and relationships within the document, guiding the genera-
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Fig. 3. Example of discourse patterns.

tion of summaries that maintain consistent logical and semantic relations with
the original text.

The nodes of the discourse tree are connected by nuclear relations. Nuclearity
includes nucleus (N) and satellite (S) tags, where the nucleus is considered more
important than the satellite. As illustrated in Fig. 3 (b), label embedding and
tree reconstruction are employed to integrate the nuclear relations into the par-
enthetical format to form novel discourse patterns. Similar to Fig. 2 (a), We use
< N > and < S > labels help the abstractive model recognize the importance
of the text adjacent to the labels. On the other hand, the reconstruction of the
discourse tree is specifically focused on re-establishing the hierarchical organiza-
tion of discourse based on nuclear information. In the discourse tree, the lower
level conventionally pertains to sentence or phrase structures, whereas the higher
level encompasses paragraph or document structures. Employing a Bottom-Up
selection process, we preserve the nucleus and satellite relations found within the
initial three levels. Subsequently, at other levels, we adopt a bottom-up approach
to amalgamate the EDUs associated with the nucleus relations, thereby form-
ing DUs. For instance, in the case of the discourse tree depicted in Fig. 2, we
convert it into a serialized representation as ((EDU1, EDU2), (EDU4, EDU5)).
This merging process purposefully retains and accentuates the nuclear relations
that are identified as pivotal and pertinent, effectively manifesting them within
higher-level structures. Furthermore, through the Up-Bottom selection pro-
cess, we conserve the nucleus and satellite relations at the initial and final lay-
ers. For the intermediate layers, we employ an up-bottom approach to amal-
gamate the EDUs linked to the nuclear relations into DUs. For example, for
the discourse tree in Fig. 2, we transform it into a serialized representation
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as ((EDU2, EDU3), (EDU5, EDU6)).This merging process allows for selective
transmission and expansion of the information related to upper-level nuclear
relations based on their significance and relevance, thereby reflecting them in
lower-level structures.

The cohesive relations in RST combine nuclear relations with rhetorical rela-
tions, offering a more comprehensive understanding of the semantic aspects of
the text. Specifically, Elaboration : the nucleus that expresses a state, while the
satellite provides further description of that state. Attribution : the nucleus con-
sists of a discourse unit, and the satellite indicates the speaker’s identity. The
example in Fig. 2 also serves as evidence to support this claim. Therefore, we
integrate nucleus and rhetorical information through label embedding to add
new semantic information for the abstractive model, forming discourse patterns
as depicted in Fig. 3 (c).

4 Model Description

This section describes our model, which is an abstractive model based on dis-
course tree. The overall architecture is presented in Fig. 4. Given a set of doc-
uments {Doc1,Doc2, ...Docm}, the goal of our model is to generate a word
sequence S = {y1, y2, ..., yn} as the summary. Our model consists of four major
components: EDU Segmentation, DRS Parsing, Discourse Patterns and Summa-
rization Generation.

Fig. 4. Overview of proposed model

We utilize the LongT5 model [5] to generate summaries. After obtaining
the discourse patterns for each single document, we concatenate them to form
the new input sequence X for the LongT5 model. And then, we provide the
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input sequence X to the encoder and the target sequence Y to the decoder.
The long sequence X is turned into digital by the encoder. It uses Transient
Global Attention (TGlobal), which focuses on the words in each encoder layer.
The decoder gets the output sequence Ŷ by using the encoding information.
The output sequence Ŷ with the target sequence Y using the CrossEntropy Loss
function. And the model performance is improved by continuously reducing the
loss value:

loss = − 1
N

N∑

i=1

K∑

j=1

Yi log Ŷi +
λ

2
|θy|2 (1)

where i is the index of the data samples, j is the index of the word list, Yi is the
target word, Ŷ is the predicted word, N is the total number of samples, K is the
word list size, θy is the model parameter, and λ is the L2′s regular parameter.

The LongT5 model has undergone extensive pre-training, resulting in a sub-
stantial enhancement of its language knowledge and semantic comprehension.
Notably, it combines the traditional encoder self-attention layer with local atten-
tion or Transient Global Attention (TGlobal), thereby augmenting its capacity to
process long text input. To further bolster its performance, the model adopts the
GSG strategy in PEGASUS [24], a prominent approach that successfully guides
the generation of summaries. Through meticulous fine-tuning, the LongT5 model
demonstrates remarkable adaptability to the demanding conditions of MDS
tasks [3].

5 Experiments

This section starts with describing the dataset, evaluation metrics and training
details. We then analyze model performance and finally conduct ablation studies.

5.1 Dataset and Evaluation Metrics

In this study, we use Multi-News [4] dataset for our experiments. This dataset
includes 56,216 article-summary pairs, with each example consisting of 2–10
source documents and a summary. Each article is collected from real-life scenarios
and the golden summaries are written by multiple experts, which ensures the
data quality. Following the setting from Fabbri et al. [4], we divide the original
dataset into a training set (80%, 44,972 ), a validation set (10%, 5,622), and
a testing set (10%, 5,622). Like most previous works, we use the F1 of the
ROUGE-N and ROUGE-L for performance evaluation [9].

5.2 Training Details

The segmentation system is implemented with PyTorch framework. We employed
the 300D word embeddings provided by GloVe and used the Stanford CoreNLP
toolkit [15] to obtain POS tags and intra-sentence dependency structures. For
DRS parsing model learning, The learning rate is 1e − 6, the batch size is 5
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and the training epochs are 20. Additionally, we choose LongT5 large (770M)
as the generative model. All models were trained on a V100 (GPU). Due to the
limitation of GPU memory, the input document is truncated to the first 1500
words. The output length is set to 300 words at maximum and 200 words at
minimum. The learning rate is 1e − 6. AdaFactor [21] is the optimizer. Beam
Search is used in the decoder with beam size set to 9.

5.3 Main Result

We compare the proposed model with various strong baselines in Table 1, where,

• LEAD-3 [6]: LEAD-3 concatenates the first three sentences of each article
on the same topic as a summary.

• TextRank [10]: It is a graph-based ranking model to extract salient sentences
from documents.

• MMR [1]: It calculates the relevance between sentences and raw documents
to score candidate sentences for the summary generation.

• BERTSUM [12]: It applies BERT to label each sentence and sentences
labeled 1 are selected as summary.

• PGN-MMR [8]: PG-MMR is based on PGN and incorporates the MMR
algorithm to reweight the importance distribution of sentences used for sum-
mary extraction.

• LongT5 [5]: It is an extension of the T5 model. LongT5 model can handle
longer input sequences based on GSG and TGlobal.

Table 1. Evaluation Results

Model ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 39.78 11.92 18.18
TextRank 41.42 13.37 19.44
MMR 41.89 13.34 19.04
BERTSUM 42.93 13.98 19.74
PGN-MMR 42.22 13.65 19.06
LongT5(1.5k input) 42.86 13.28 20.39
Our(1.5k input) 45.23 14.59 21.35

Table 1 summarizes the evaluation results on the Multi-News dataset. The
first block shows four popular extractive baselines, and the second block shows
two strong abstractive baselines. The last block shows the results of our models.
Our model adopts the DFS-based parenthetical format strategy illustrated in
Fig. 3 (c). This approach incorporates three types of information: structural,
rhetorical, and nuclear. The results demonstrate that our model outperforms
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other models. Compared to the LongT5 baseline model, our model achieves
2.37/1.31/0.96 improvements on ROUGE-1, ROUGE-2, and ROUGE-L. The
evaluation results of the Multi-News dataset demonstrates the effectiveness of our
model in capturing semantic relationships between discourse segments, leading
to significant improvements in MDS tasks.

5.4 Ablation Study

As shown in Fig. 5, we employ ablation experiments to analyze the influence of
different information on the generated summaries. Compared to using LongT5
alone, when only the structure information of the discourse tree (ST) is added,
the performance is improved by 0.35/0.01 on ROUGE-1 and ROUGE-L; When
structural and rhetorical information (ST+RH) are added, the performance is
improved by 1.78/0.32; When structural and nuclear information (ST+NU) are
added, the performance is improved by 1.73/0.60. The results show that the
discourse tree’s structural, rhetorical, and nuclear information all contribute to
the MDS tasks. By analyzing ROUGE metrics and summary content, it can
be deduced that the structural information of discourse trees can aid models in
identifying which portions are crucial and which ones can be omitted. Rhetori-
cal information can assist models in recognizing key concepts and details within
the text, thereby enhancing the capture of the essential content of the origi-
nal text. Nuclear information can aid generative models in accurately identify-
ing and extracting pivotal textual information. Therefore, by integrating these
three pieces of information, our proposed model (ST+NU+RH) achieves the
best performance, the ROUGE value is improved by 2.37/0.96. Compared to
the DFS-based parenthetical format, it is evident that the BFS-based paren-
thetical format places a stronger emphasis on the correlation between elements
at the same level. However, it also sacrifices continuity. Consequently, its perfor-
mance on the Rouge-L is lower than that of the DFS-based parenthetical format.

Fig. 5. Ablation study on the DRS
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Nevertheless, its performance on the Rouge-1 surpasses that of the DFS-based
parenthetical format.

6 Conclusion

In this paper, we propose a novel abstractive MDS model that integrates a joint
DRS to capture semantic information. Experimental results demonstrate that
our model achieves the-state-of-the art results on summarization. Our study is
still a primary effort toward abstractive MDS. Future work we can do includes
alleviating the requirement of a good pre-trained abstractive summarization
model, designing better methods to help the abstractive model understand the
discourse tree, and investigating our approach based on other model architec-
tures [18].
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Abstract. Voice conversion is a technique that generates speeches with
text contents identical to source speeches and timbre features similar to
reference speeches. This paper proposes MelMAE-VC, a neural network
for non-parallel many-to-many voice conversion that utilizes pre-trained
Masked Autoencoders (MAEs) for representation learning. Our neural
network mainly consists of transformer layers and no recurrent units,
aiming to achieve better scalability and parallel computing capability.
We follow a similar scheme of image-based MAE in the pre-training
phase that conceals a portion of the input spectrogram; then we set
up a vanilla autoencoding task for training. The encoder yields latent
representation from the visible subset of the full spectrogram; then the
decoder reconstructs the full spectrogram from the representation of only
visible patches. To achieve voice conversion, we adopt the pre-trained
encoder to extract preliminary features, and then use a speaker embed-
der to control timbre information of synthesized spectrograms. The style
transfer decoder could be either a simple autoencoder or a conditional
variational autoencoder (CVAE) that mixes timbre and text informa-
tion from different utterances. The optimization goal of voice conversion
model training is a hybrid loss function that combines reconstruction
loss, style loss, and stochastic similarity. Results show that our model
speeds up and simplifies the training process, and has better modularity
and scalability while achieving similar performance compared with other
models.

Keywords: Voice conversion · Masked autoencoders · Audio
processing

1 Introduction

In recent years, speech synthesis has benefited from the development of comput-
ing hardware and the introduction of advancing deep-learning models. Depend-
ing on specific scenarios, there are two major approaches to speech synthesis:
voice conversion (VC) and text-to-speech (TTS). Voice conversion transfers the
timbre of speech segments to another timbre while preserving its semantic con-
tents, and TTS generates speech waveform from given text contents. Both tech-
niques have found their social or industrial applications e.g. identity obscuring
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 482–494, 2024.
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and encryption, speech enhancing and augmentation [22], and media content
creation [12,24] etc.

Compared to TTS, voice conversion models are capable of generating speech
with richness and vividness in terms of expression, because speech input contains
higher-level information in comparison with either plain or labeled text. As a
practical result, voice conversion models would be preferable to TTS in applica-
tions that require precise control over emotion and expression. Commonly, voice
conversion is performed on time-frequency spectrograms (e.g. Mel spectrograms)
followed by a vocoder to convert spectrograms back to waveforms [14,18,19].
Few end-to-end approaches that directly manipulate raw audio waveforms were
proposed [17].

Voice conversion technique presents three main challenges: the lack of par-
allel data, the ability to generalize, and the balance between complexity and
performance. Parallel data i.e. voice data with the same text contents but spo-
ken by different people, are useful in disentangling text from other information
in latent space, but can be difficult to collect or collate. In contrast, non-parallel
data are almost unlimited and easier to obtain. The generalization ability of
voice conversion models is mainly reflected by their source and target domain
of transformation and their performance on unseen data. Models with many-to-
many conversion functionality and few- or zero-shot conversion capability are
more challenging. Finally, although scaling up a network and processing more
categories of information are common and effective approaches to achieve better
performance, the improvement does not always justify the higher computational
cost required.

Many voice conversion networks rely on independent modules to process spe-
cific information for better conversion results. For example, HiFi-VC utilizes an
automatic speech recognition (ASR) module to explicitly match output text [11];
and AutoVC utilizes an embedder that maps the input spectrogram into a latent
space where embeddings are clustered by speakers’ identity [20]. The approaches
with independent modules usually lead to additional training or even incompat-
ibility issues because they may use different configurations. Being similar to a
multi-functional taschenmesser that can handle various needs, a universal frame-
work for audio tasks would be ideal and suitable in practice.

In this paper, we propose MelMAE-VC, a voice conversion network capable
of many-to-many conversion with non-parallel training. The network consists of
three components: MelMAE encoder, speaker embedder, and decoder for voice
style transfer. MelMAE encoder is based on a variant of the Masked Autoencoder
(MAE) [4] that is designed for spectrogram learning as a universal framework
and pre-train method. With proper pre-training, the encoder gains the capabil-
ity of extracting latent representation from input spectrogram. The embedder
maps the encoder latent representation into speaker embedding that describes
speakers’ timbre. The style transfer decoder disentangles voice features from
text contents and recomposites them to yield converted spectrogram, enabling
voice conversion from an arbitrary speaker to another. The loss function of voice
conversion network is a hybrid loss that combines style, content, and reconstruc-
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tion error. The MAE framework variant shows great flexibility and scalability in
MelMAE-VC and significantly accelerates pre-training and fine-tuning for voice
conversion tasks. As a byproduct, we also verify the acceleration effect of MAE
framework when training and fine-tuning for speaker verification tasks. More-
over, our network mainly utilizes vision transformer layers and is free of recurrent
units, which can further reduce the computational cost of training and inference.

In summary, our main contributions are in three aspects:

– We propose a voice conversion network that performs voice conversion
between arbitrary source and target speaker, without parallel data required
in training.

– We introduce the Masked Autoencoder to audio processing, not only for clas-
sification tasks, but also style transfer tasks which are more challenging.

– The network we proposed has lower complexity, better scalability, and parallel
computing capability of training and inference.

The rest of this paper is organized as follows. Section 2 summarizes studies
that directly relate to or inspire our work. Section 3 shows an overview of the
voice conversion network as well as detailed designs. Section 4 demonstrates the
experiments and analyzes the results. Section 5 concludes this paper.

2 Related Work

Models with Masking Technique. The idea of concealing a portion of infor-
mation has been commonly utilized in neural networks. By masking part of
the input and training model to reconstruct masked contents, the model gains
better generalization ability to downstream tasks. This idea is implemented in
various pre-training models in natural language processing (NLP), e.g. GPT
[21] and BERT [3] that large-scale downstream models usually derive from.
Masked autoencoder [4] introduces a similar pre-training approach to computer
vision (CV) and further extends itself to audio signal processing [5]. Besides, pre-
training approach, reconstruction from masked information can also be the main
goal in certain applications [10]. In these contexts, masking and reconstruction
is an approach of adding noise and denoising that serves as an auxiliary task
to encourage neural networks to generate content based on visible information,
similar to image inpainting.

Voice Conversion Networks. VC networks transfer acoustic characteristics
of a given speech while preserving its semantic contents. The conversion could
be performed on raw waveforms [17] or various types of time-frequency spectro-
grams. GANs and (variational) autoencoders are commonly used, while trans-
formers for voice conversion still remain under-explored. CycleGAN-VC and its
incremental iterations [7–10] are based on GAN architecture that transfers styles
via traditional residual networks and variations of GAN loss. AutoVC [20] is
based on autoencoder architecture that uses a bottleneck to filter and separate
text and identity information to achieve voice conversion.
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Fig. 1. Workflow of MelMAE-VC network. The details of implementation are omit-
ted. We cross-assemble speaker embedding and latent representation, then train the
voice conversion network with an autoencoding task. As for inference, the latent rep-
resentation of source and the speaker embedding of reference are combined to yield
a converted spectrogram. Converted spectrogram can also be generated by combining
latent representation and speaker from source and target separately, then feeding them
into the transfer decoder as query and key-value input respectively.

3 MelMAE-VC

In Sects. 3 and 4, the notation scheme is described as follows. Let x denote
Mel spectrograms, y denote encoder latent representation, and z denote speaker
embedding. Superscript denotes speaker’s identity or convert sequence e.g. xA

and xA→B for Mel spectrograms of the original utterance from speaker A and
its conversion with speaker B’s timbre respectively. Prime mark (′) in super-
script suggests the value originates from another utterance of the same speaker
e.g. xA→A′

for converted spectrogram with source and reference being different
utterances from the same speaker.

In this section, we present the architecture of a voice style transfer net-
work based on MAE. We name it MelMAE-VC, as it is an adaptation of MAE
that performs voice conversion on Mel spectrograms. Figure 1 demonstrates the
basic training and inference workflow of MelMAE-VC. As shown in the figure,
our MelMAE-VC has three major components: the MAE encoder, the speaker
embedder, and the style transfer decoder. The output of the decoder is converted
Mel spectrograms with the text contents of source and timbre features of ref-
erence. The converted spectrograms eventually get transformed into waveforms
by a HiFi-GAN vocoder [14] .

3.1 Pre-train Network MelMAE

Our voice conversion model MelMAE-VC derives from a pre-train network which
we name MelMAE. The pre-train network shares a similar architecture with its
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Fig. 2. MelMAE pre-training network. Implementation details of MAE encoder (same
as in Fig. 1) and MAE decoder are demonstrated. Mask tokens are randomly generated
by the encoder with mask ratio configuration, and later fed into the decoder to indicate
whether a patch is visible or not. Fixed sine-cosine position embeddings for 2D patch
grids are added to MAE encoder and decoder respectively.

visual prototype MAE as Fig. 2 shows. Minor changes have been made, mainly
to enable MelMAE learning from Mel spectrograms with flexible duration. Mel-
MAE accepts logarithm amplitude Mel spectrograms as input of the encoder
and generates latent representation of visible patches; then the decoder recon-
structs the full spectrogram from the latent representation and mask tokens.
The decoder could be a relatively simple and shallow network, as long as the
reconstructed audio waveforms (synthesized by HiFi-GAN vocoder [14] from
reconstructed Mel spectrograms) have good perceptual quality and similarity
compared with original audio.

The objective of MelMAE pre-training phase is patch-wise averaged MSE
between source and reconstructed spectrograms. Although the original MAE for
visual tasks prefers MSE on masked patches over MSE on all patches, the differ-
ence is minor in reconstruction and other downstream tasks [4]. We assume such
characteristic is similar in spectrogram tasks and choose patch-wise averaged
MSE on all patches because it is relatively simple and indeed shows negligible
difference in performance of spectrogram learning tasks.

The patch-wise weighted reconstruction loss LRec is described as Eq. 1a,
where x and x̂ denotes source and reconstructed spectrogram respectively, p
denotes patch-wise weight and ⊗ denotes patch-wise multiplication. In our case,
we mainly used a simplified version that evaluates error on all patches (i.e. p = 1
and

∑
p is the number of patches nPat) as Eq. 1b shows.

LRec(x, x̂,p) = E

[
1

∑
p

‖(x − x̂) ⊗ p1/2‖22
]

(1a)

LRec(x, x̂) = E

[
1

nPat
‖(x − x̂)‖22

]

(1b)
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3.2 Speaker Embedder

The speaker embedder is an extension of MelMAE that maps patched latent
representation tensors to D-vectors for speaker verification. As Fig. 3 shows, it
has several layers of ViT blocks, followed by a linear projection layer, and finally
an L2-normalization layer.

GE2E Softmax Loss [23] is used when training the speaker embedder.
Although the original decoder is unnecessary in the inference phase of speaker
verification, we keep the decoder and yield latent representation either directly
or with an autoencoding route before feeding into the speaker embedder. As
a result, the speaker embedding of raw and reconstructed spectrogram would
be nearly the same. This technique ensures forward consistency, thus enhancing
robustness of the network and avoiding overfitting.

Fig. 3. Speaker embedder. In the training phase, an alternative autoencoding workflow
can enhance robustness and avoid overfitting.

3.3 Style Transfer Decoder

The style transfer decoder is demonstrated in Fig. 4. Latent representation and
speaker embedding from source and reference spectrogram are cross-assembled
and fed into the decoder. An intuitive explanation is that, by setting up an
autoencoding task, the decoder learns to decouple content and style information
in latent representation.

The loss function is a linear combination of reconstruction loss, content loss,
and style loss. The reconstruction loss is similar to Eq. 1a. Given the source
spectrogram xA and an intra-class conversion xA→A′

or xA→B→A, the patch-
wise weighted reconstruction loss is defined as follows.

LRec1(xA,xA→A′
,p) = E

[
1

∑
p

‖(xA − xA→A′
) ⊗ p1/2‖22

]

(2a)

LRec2(xA,xA→B→A,p) = E

[
1

∑
p

‖(xA − xA→B→A) ⊗ p1/2‖22
]

(2b)
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Fig. 4. MelMAE-VC style transfer decoder. In inference, by combining speaker embed-
ding and latent representation of source and reference then feeding them into query
and key-value input of cross-attention block, the network decouples and reassembles
content and style information, yielding converted spectrogram.

A relatively simple implementation of the style transfer decoder is the autoen-
coder variant, where the content loss is defined as the MSE of source and con-
verted encoder latent representation. In CVAE implementation, the content loss
is normalized Kullback-Leibler divergence (KLD) of two Gaussian distribution
that describes source and converted spectrogram.

LCntAE(yA,yA→B) = E

[
‖(yA − yA→B)‖22

]
(3a)

LCntCV AE(μA,μA→B ,σA,σA→B) = KLD(μA,μA→B ,σA,σA→B) (3b)

The style loss is the MSE between speaker embedding of reference and converted
spectrogram.

LSty(zB ,zA→B) = E

[
‖(zB − zA→B)‖22

]
(4)

The hybrid loss function is the linear combination of reconstruction loss, content
loss, and style loss.

L = λRecLRec + λCntLCnt + λStyLSty (5)

4 Experiments

4.1 Conditions of Experiments

Dataset. The dataset we used in this paper is VoxCeleb1 [16] and VoxCeleb2
[2]. VoxCeleb1 contains ∼ 150K utterances from 1211 speakers in the dev par-
tition, and ∼ 5K utterances from 40 speakers in the test partition. VoxCeleb2
contains ∼ 1M utterances from 5994 speakers in the dev partition, and ∼ 36K
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utterances from 112 speakers in the test partition. The utterances are spoken in
English and extracted from online videos of celebrities, without fully eliminating
background noise. Speakers in dev sets and test sets have no overlap. To balance
the number of data used in training, up to 100 utterances of each speaker are
randomly selected from the dev partition of both datasets, summing up to ∼
620K utterances.

The original sample rate of VoxCeleb1 and VoxCeleb2 data is 16000 Hz.
We up-sampled the waveforms to 22050 Hz and normalized audio waveforms
by loudness before computing Mel spectrograms. We used the following configu-
ration to generate Mel spectrograms from raw waveforms: number of Mel bands
nMel = 80, FFT window length of STFT nFFT = 1024, hop length of STFT
dhop = 256, fmin = 0, fmax = 8000, and Mel spectrogram magnitude p = 1.
Finally, we took the logarithm of the amplitude of Mel spectrograms.

Network Configurations. The pre-trained model is MelMAE. The encoder
consists of 8 layers of 16-head ViT blocks that encode each 80×4 Mel spectrogram
patch into a 256-dimension latent representation. The decoder uses an identity
mapping instead of linear projection at the very beginning and consists of 8
layers of 16-head ViT blocks, eventually reconstructing the spectrogram from
the encoder latent representation.

The speaker embedder is a shallow network that consists of only 2 layers of
8-head ViT block and a linear projection layer. It digests masked or fully-visible
encoder latent representation to yield a 64-dimension D-vector.

We implement a CVAE-based style transfer decoder in MelMAE-VC. The
encoder latent representation is projected into a 16-dimension vector per patch.
The D-vector is duplicated to match the number of patches and then concate-
nated with the projected encoder latent representation to form a joint tensor.
The CVAE encodes the joint tensor into parameters of 16-dimension Gaussian
distributions for every patch, eventually yielding a 256-dimension decoder latent
representation. The rest of the style transfer decoder mainly contains 8 layers of
16-head cross-attention ViT blocks and 2 layers of 16-head regular ViT blocks.

Training Process. We pre-train the MAE encoder and decoder on the dev set
of VoxCeleb1. The batch size is set to 64. In the first 800K iterations, we use
patch-wise normalized MSE loss on unmasked patches and AdamW as optimizer
[13,15], with momentum β1 = 0.9, β2 = 0.95, learning rate initialized as 1e-3 and
gradually reduced to 1e-5, mask ratio initialized with 10% infimum and supre-
mum and gradually increased supremum from 10% to 75%. Then we switched
to normalized MSE loss on all patches and trained for 1.6M iterations, with the
mask ratio randomly chosen between 0 and 75% every batch.

The speaker embedder is trained on a randomly selected subset of VoxCeleb1
and VoxCeleb2 that has relatively balanced speaker classes. Each batch contains
64 speaker classes and 8 utterances each class, summing up to a total batch size
of 256. We freeze the encoder and decoder and train only the embedder using
GE2E Softmax loss [23] and SGD optimizer with the learning rate initialized
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as 1e-2 and gradually reduced to 1e-5. The scalar weight and bias in GE2E
Softmax loss are set to w = 10, b = 5 respectively, and would not vary in the
training process. We apply a gradient scaling technique described in [23] on the
linear projection layer of the embedder, the scale factor is 1e-3. We have trained
the speaker embedder for 1M iterations and achieved a 2.05% equal error rate
(EER).

The style transfer decoder is trained on the same balanced subset of Vox-
Celeb1 and VoxCeleb2. Each batch contains 16 speaker classes and 8 utterances
in each class. The centroid speaker embedding is calculated from 32 utterances of
a speaker. The linear combination multipliers of each term in hybrid loss (Eq. 5)
are simply set to 1. We freeze the rest of MelMAE-VC network and train only
the decoder for nearly 2M iterations using AdamW optimizer, with momentum
β1 = 0.9, β2 = 0.95, learning rate initialized as 1e-3 and gradually reduced to
1e-5, mask ratio randomly chosen in the range of 0 ∼ 50% each batch.

Patch size is a key hyperparameter that would affect voice conversion yield.
Our configuration set patch size to 80×4, which means that each patch contains
4 frames of Mel-scale STFT spectrum and all 80 coefficients on Mel-frequency
domain. We have attempted to train with other configurations that only differ
in patch size which does not include the entire frequency scale within a sin-
gle patch. Although such configurations work well on speaker verification tasks,
they usually do not yield audible voice conversion results. This result contra-
dicts the behavior of the network on visual style transfer tasks. Empirically,
visual styles are mostly local pixel characteristics, while voice styles are contrar-
ily defined by harmonic characteristics among the entire of frequency scale. This
causes diverted practical behaviors of a similar network on image-based tasks
and spectrogram-based tasks.

4.2 Objective Evaluation

The purpose of the objective evaluation is to investigate if text contents of recon-
structed and converted utterances are preserved. We evaluated this based on
two criteria: character error rate (CER) and word error rate (WER). The ASR
model we chose is implemented with Wav2vec2 [1] and Flashlight’s CTC beam
search decoder [6]. Ground truth transcripts are generated with this ASR infer-
ence model on re-sampled speech waveforms of VoxCeleb1 and VoxCeleb2 which
are trimmed to match the duration of Mel spectrograms.1 Both original data
and trimming operation would result in incomplete words at the beginning and
the end of the audio segment, resulting in measurement errors brought by the
context-based ASR method.

Results are shown in Table 1. We select AutoVC and MaskCycleGAN-VC
(one-to-one conversion) as the benchmark. We also list the result of HiFi-GAN
vocoder reconstruction and vanilla MelMAE reconstruction to demonstrate mea-
surement error brought by the ASR method. The AutoVC network has been
1 In our configuration, this duration is approximately 5.94 s. It is neither too short

for the context-based ASR method to process nor too long to exceed the average
duration of audio files.
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trained for 2.5M iterations on a single RTX 3090 for 170 h, while our network
achieved better results with less than 2M iterations trained on a single RTX
3090 for 140 h.

Table 1. Objective evaluation: comparison of character error rate (CER) and word
error rate (WER). Our method can achieve better CER and WER than AutoVC (many-
to-many conversion). The performance lies between AutoVC and MaskCycleGAN-VC
(one-to-one conversion).

Model CER (%) WER (%) #Parameters

MelMAE-VC 25.33 36.51 13M

AutoVC 29.04 40.02 20M

MaskCycleGAN-VC 22.71 30.75 17M

HiFi-GAN Vocoder 9.44 14.77 –

MelMAE Reconstruction 11.43 17.55 –

4.3 Subjective Evaluation

The final output is segments of audio waveform which are perceived by the
human auditory system, hence listening tests for subjective evaluation are essen-
tial for any voice conversion tasks. Besides, audio generated by three conversion
models (MelMAE-VC, AutoVC, MaskCycleGAN-VC), raw audio, and MAE-
reconstructed audio are also tested, which sets a rough reference of data degra-
dation brought by the vocoder. Note that speech segments from the original Vox-
Celeb1 and VoxCeleb2 dataset are collected without noise cancellation. Quality
and similarity are demonstrated in Fig. 5.

Quality and Naturalness. We measure the quality by the mean opinion score
(MOS) of reconstructed or converted samples. Participants are presented with
shuffled original and synthesized utterances (without parallel data) and asked
to give a score between 0 and 4 with an interval of 1. Clarity of utterance,
background noise details, and stuttering or synthesized artifacts were consid-
ered. Each aspect is worth 1 point, meaning that if an aspect delivers noticeably
degraded audio perception, then 1 point is subtracted. And if any of the aspects
significantly worsen the audio experience, then up to 1 extra point is subtracted.
Naturalness is defined by whether synthesized waveforms are statistically distin-
guishable from original ones.

Similarity. We measure the similarity also by MOS. Participants are presented
with multiple sets of waveforms generated from three models without knowing
which exact model generated the waveform. They are asked to give a score
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between 0 and 4 with an interval of 1. 4 means very similar to the reference
speaker; 0 means very similar to the source speaker; 2 means similar to neither
of the speakers.

Fig. 5. Subjective evaluation: MOS of quality and similarity. Inter-gender conversion
has relatively higher MOS similarity because gender difference makes the audio more
distinguishable.

5 Conclusions

In this paper, we propose MelMAE-VC, a voice conversion network that per-
forms few- or zero-shot many-to-many style transfer on Mel spectrograms. We
pre-trained and fine-tuned masked autoencoder framework on non-parallel open
datasets, then made modifications and added sub-modules to the framework to
perform style transfer. The results show that our network is capable of yielding
converted speech segments while maintaining the simplicity of network architec-
ture and training process. We also experimented with various network designs
under the MAE framework. As a result, we confirmed that MAE architecture is
highly scalable and flexible to adapt to a variety of objectives.

While our study has demonstrated that MelMAE network could be applied
in complex audio tasks, it has potential limitations that we would focus on and
conduct further incremental studies. One major limitation is that hyperparam-
eters related to network architecture could be sensitive to conversion results.
To reduce such sensitivity, we would like to investigate how patch size affects
the non-local transform of features in the frequency domain, especially when
certain frequencies are shifted across patch borders. In addition, we could fur-
ther improve the fidelity and quality of converted audio. We believe that this
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improvement can mainly come from various enhancements, which includes apply-
ing better denoising and augmentation technique to training data, performing
in-depth analysis and modeling of the information structure in speech audio, and
introducing loss functions defined by spectrum distortion. Moreover, we hope to
extend the applications of audio-based MAE framework for more tasks with
complexity, e.g. ASR and TTS.
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Abstract. Aspect-based sentiment analysis (ABSA) is a fine-grained entity-level
sentiment analysis task that aims to identify the emotions associated with specific
aspects or details within text. ABSA has been widely applied to various areas such
as analyzing product reviews and monitoring public opinion on social media. In
recent years, methods based on graph neural networks combined with syntac-
tic information have achieved promising results in the task of ABSA. However,
existing methods using syntactic dependency trees contain redundant informa-
tion, and the relationships with identical weights do not reflect the importance of
the aspect words and opinion words’ dependencies. Moreover, ABSA is limited
by issues such as short sentence length and informal expression. Therefore, this
paper proposes a Double Probabilistic Graph Convolutional Network (DP-GCN)
integrating multi-scale information to address the aforementioned issues. Firstly,
the original dependency tree is reshaped through pruning, creating aspect-based
syntactic dependency tree corresponding syntactic dependencyweights. Next, two
probability attention matrixes are constructed based on both semantic and syntac-
tic information. The semantic probability attention matrix represents the weighted
directed graph of semantic correlations between words. Compared with the dis-
crete adjacency matrix directly constructed by the syntax dependency tree, the
probability matrix representing the dependency relationship between words based
on syntax information contains rich syntactic information. Based on this, seman-
tic information and syntactic dependency information are separately extracted
via graph convolutional networks. Interactive attention is used to guide mutual
learning between semantic information and syntactic dependency information,
enabling full interaction and fusion of both types of information before finally
carrying out sentiment polarity classification. Our model was tested on four pub-
lic datasets, Restaurant, Laptop, Twitter and MAMS. The accuracy (ACC) and F1
score improved by 0.14% to 1.26% and 0.4% to 2.19%, respectively, indicating
its outstanding performance.
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mechanism · Syntactic dependency tree
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1 Introduction

Sentiment analysis is an important research direction in the field of natural language
processing, aimed at identifying the emotional bias in text. Compared to article-level
sentiment analysis and sentence-level sentiment analysis, ABSA is a more fine-grained
entity-level sentiment analysis task that aims to analyze and differentiate the emotional
polarity expressed by different aspects in the same sentence. For example, in the sentence
“The material of this clothes is very good but the price is expensive”, “material” and
“price” are aspect words of two aspects of the clothes. However, the emotional polarity
of “material” is positive, and the emotional polarity of “price” is negative.

The key to the ABSA task is to establish a dependency relationship between all
aspect words and their corresponding opinion words in the sentence, distinguishing
each aspect word and its associated contextual information. In earlier research, Wang
[1], Tang [2], Ma [3], Chen [4], and Fan [5] proposed various attention mechanisms to
generate sentence representations specific to aspect words and model the relationship
between aspect words and context words, achieving good results. For example,Wang [1]
proposed an attention-based long short-termmemory network forABSA tasks,where the
attention mechanism can focus on different parts of the sentence when different aspects
are inputted. Tang [2] proposed a neural attention model that adds external memory to
deep memory networks to capture the importance of each context word for inferring
the emotional polarity of aspect words. Fan [5] proposed a multi-granularity attention
network model (MGAN) to capture word-level interactions between aspect words and
context words. However, models based on attentionmechanisms are prone to mistakenly
focusing on context information unrelated to aspect words, hence the attention mech-
anism is easily affected by additional information. Recently, with the development of
graph neural networks (GNNs), using dependency parsers to parse the syntactic struc-
ture of sentences and generate syntactic dependency trees has gradually become a trend
in solving ABSA tasks. Some researchers, such as Zhang [6], Liang [7], Wang [8], Li
[9], have constructed different graph convolutional networks (GCNs) and graph atten-
tion networks (GATs), using the syntactic structure of sentences on the dependency tree
to model the syntactic relationship between aspect words and context words. However,
existing dependency trees not only contain a lot of redundant information but also assign
the same weight to the dependency relationships of each edge in the sentence, resulting
in a tree structure that neglects the importance of the dependency relationship between
aspect words and their corresponding opinion words. In addition, some sentences with
short lengths and informal expressions can cause models to perform poorly on data that
is not sensitive to syntactic information.

In this paper, we propose a dual-probability graph convolutional network (DP-GCN)
that combines multi-scale information to address the above two problems. For the first
problem, we first obtain the original syntactic dependency tree of the sentence through
the StanfordNLP parser, then reshape and prune the original tree to construct a syntactic
dependency tree with aspect words as root nodes andwith attached syntactic dependency
weights. The syntactic dependency tree reshaped in this way can not only clarify the syn-
tactic dependency relationship between aspect words and their corresponding opinion
words but also reveal the importance of the syntactic dependency information of indi-
vidual words in the sentence with respect to aspect words. For the second problem, we
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extract and combine both linear structural semantic information and tree structural syn-
tactic dependency information, respectively constructing probability attention matrices
based on semantic and dependency information.We use graph convolutional networks to
extract both semantic and syntactic dependency information, and then use an interactive
attention mechanism to guide mutual learning between the two types of information.

The main contributions of this paper are as follows:

(1) We propose a dual-probability graph convolutional network (DP-GCN) that com-
bines multi-scale information. We construct two probability attention matrices for
semantic and syntactic dependency information, respectively, and send them into
two graph convolutional networks. We utilize an interactive attention module to
interactively learn semantic information and syntactic dependency information.

(2) We propose a syntactic dependency tree based on aspect words with attached depen-
dency weights. The syntactic dependency weight reflects the importance of the syn-
tactic dependency information of individual words in the sentence with respect to
aspect words, making the syntactic dependency tree more suitable for ABSA.

(3) We conducted extensive experiments on the Restaurant dataset and Laptop dataset
of SemEval2014 [24], Twitter dataset [25], and MAMS dataset [26] to evaluate our
model, and the experimental results demonstrate the effectiveness of the DP-GCN
model.

2 Related Work

The key to the ABSA task is to establish the relationship between aspect words and their
corresponding opinion words to distinguish the emotional tendencies corresponding to
different aspect words in the same sentence. In earlier methods, feature vectors were
usually designed manually and combined with machine learning algorithms to capture
opinionwords related to aspect words [10–13]. However, this approach cannot model the
dependency relationship between aspect words and their context. Subsequently, various
attention-based models [14–17] emerged, which implicitly model the semantic relation-
ship between aspect words and context words to obtain opinion words corresponding
to sentences and aspect words, and achieved good performance. Huang et al. proposed
an attention over-attention (AOA) network, which models both aspects and sentences
jointly to capture interactions between aspects and contextual sentences. The AOA net-
work learns representations of aspects and sentences together and automatically focuses
on important parts of the sentences. Wang et al. combined a multi-level interactive bidi-
rectional gated recurrent unit (MI-bi-GRU), attention mechanism, and position features
to allow their model to focus on target and contextual words that are important for
sentiment analysis. Li et al. proposed a hierarchical attention position-aware network
(HAPN), which introduces positional embeddings to learn position-aware representa-
tions of sentences and further generates target-specific representations of contextual
words. Tan et al. argued that expressing conflicting emotions towards an aspect (i.e.,
expressing both positive and negative emotions towards it simultaneously) is a common
phenomenon. They suggested that excluding conflicting opinions is problematic and
proposed a multi-label classification model with dual attention mechanism to address
the issue of identifying conflicting opinions in existing models.
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In addition, the pre-trained language model BERT [18] has achieved significant
performance in natural language processing (NLP) tasks. Currently, many researchers
[19–21] apply BERT pre-trained models to ABSA tasks, improving the performance of
models inmodeling semantic information of sentences, and better preparing for semantic
interaction information between context and aspect words. For example, Sun et al. [19]
construct an auxiliary sentence from the aspect and transform ABSA into a “sentence
pair” classification task, and use fine-tuning BERT pre-trained models for ABSA tasks.
Liang [21] proposed a bilingual syntax-aware graph attention network (BiSyn-GAT+),
which fully utilizes the compositional tree information of a sentence’s syntax (e.g.,
phrase segmentation and hierarchical structure) to simulate sentiment contexts of each
aspect (intra-contexts) and cross-aspect sentiment relations (inter-contexts) for learning.

Currently, ABSA research mainly focuses on graph neural networks (GNNs) based
on dependency trees. These methods explicitly utilize the syntactic structure informa-
tion of sentences by extending graph convolutional network (GCN) and graph attention
network (GAT)models through syntactic dependency trees, better handling the semantic
and syntactic dependency relationships between aspect words and context, and propos-
ing some outstanding models. For example, Zhang et al. [6] first applied GCN to ABSA,
proposing a graph convolutional network on sentence dependency tree to solve the senti-
ment classification problem by utilizing dependency relationships in syntax information.
Liang et al. [7] proposed an interactive graph convolutional network, identifying impor-
tant aspect words and context words by constructing a heterogeneous graph for each
sentence. Tang et al. [22] proposed a dependency graph enhanced dual Transformer net-
work (DGEDT), which simultaneously considers both plane representation learned from
Transformers and graph-based representation learned from corresponding dependency
graph to iteratively model in an interactive manner. Specifically, DGEDT utilizes rich
structural information by constructing a text sequence graph and an enhanced depen-
dency graph, and designs a dual Transformer to model the structural information of the
two graphs and learn sentence representations from two different perspectives. Wang
et al. [8] created a unified aspect-oriented dependency tree structure, where the target
aspect is the root node, by adjusting and refining a regular dependency parse tree. They
proposed a relation graph attention network (R-GAT) to encode the new tree structure
for sentiment prediction. Tian et al. [23] explicitly employed dependency types and
used an attention mechanism to identify different types of dependencies. Li et al. [9]
proposed a dual graph convolutional network model that simultaneously considered the
complementarity of syntactic structures and the relationship of semantics.

3 Reshaped Syntactic Dependency Trees and Multi-scale
Information

3.1 Aspect-Based Syntactic Dependency Tree Corresponding Syntactic
Dependency Weights

The syntactic dependency tree obtained by a regular syntactic parser contains the depen-
dency relationships of all the words in the sentence, and all dependency relationships
have the same weight. As shown in Fig. 1, where there are many redundant dependency
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relationship types that are irrelevant to the ABSA task. However, the key to ABSA is
to establish the relationship between aspect words and their opinion words. Therefore,
reshaping and pruning the obtained syntactic dependency tree is necessary to obtain a
syntactic dependency tree that is tailored to aspect words.

Fig. 1. Syntactic dependency tree including two aspect items, “food” and “environment”, and two
corresponding opinion words, “good” and “bad,” in their context. The arrows in the figure indicate
the dependency relationships between the two words, and the labels on the arrows represent the
type of dependency relationship.

Fig. 2. In the figure, “food” is the root node, and all other dependency relationships are direct
connections with “food”.

Here are the steps to reshape and prune a regular syntactic dependency tree into a
syntactic dependency tree based on aspect words and corresponding syntactic depen-
dency weights: Firstly, we use a regular parser (StanfordNLP) to obtain the dependency
tree of the input sentence. Then, we set the aspect word as the root node and generate a
dependency tree based on the aspect word. If a sentence contains multiple aspects, then
a tree based on each aspect will be constructed. Finally, the dependency tree is pruned
so that words directly dependent on the aspect word have a dependency weight of 1 on
their edge, the dependency weight of a word that does not have a direct dependency
relationship with an aspect word is set to the reciprocal of its relative position to the
aspect word. Figure 2 shows the aspect-based syntactic dependency tree obtained after
reshaping and pruning.

3.2 Multi-scale Information

To address the lack of contextual information, this paper simultaneously uses linear-
structured semantic information and tree-structured syntactic dependency information
to reveal hidden information in the sentence.

Positional Distance. In linear-structured sentences, the position and relative distance
of each word in the sentence hold important information. By extracting the relative posi-
tional distances between each word and aspect words in the sentence, we can emphasize
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information from words closer to the aspect words and weaken information from words
farther away from the aspect words. We can then use the positional distance to calculate
the weights of each word in the sentence based on the aspect word. The calculation
formula is as follows:

pi =
⎧
⎨

⎩

1 − (js − i)/n, 0 ≤ i ≤ js
0, js ≤ i ≤ js+m

1 − (i − js+m)/n, js+m ≤ i ≤ n
(1)

Here, pi is the position weight of the i-th word, js and js+m are the start and end indexes
of the aspect word.

Dependency Distance. In the syntactic dependency information of a tree structure,
dependency distance is the shortest distance between a word in a sentence and the aspect
word in the syntactic dependency tree. Based on the dependency tree we constructed,
the formula for constructing the dependency distance is shown below.

Algorithm 1 Dependency distance algorithm based on aspect-based syntactic dependency tree

Input: index of aspect words (aspect_idx), length of this sentence (n_words), adjacency matrix (adj);

Output: distances: dependent distance sequence of each word based on the aspect word;

1: Use StanfordNLP for syntax analysis to get dependency tree and POS tags;

2: Reshape the dependency tree and transform it into a syntactic dependency tree based on aspect words.

3: distances = create an array of size n_words, the initial value is -1
4:         Set distances[aspect_idx] to 0

5:         Create an empty queue

6:         Add aspect_idx to queue 

7:         When the queue is not empty, execute the following steps in a loop:

8:                 Take a node from the left side of the queue
9:                 Traversing all neighbor nodes and corresponding weights of nodes in the adjacency matrix

10:                       If weight！= 0 and distances[neighbor]= -1

11:                      distances[neighbor] = distances[node] + weight 

12:                    Add the neighbor to the queue

13:         Return distances

Dependency Relationship. Dependency relationships can represent the syntactic rela-
tionships between words in the sentence’s tree structure. If a word has a dependency
relationship with the aspect word, then the corresponding edge in Arel is set to the weight
of the dependency for that word. If there is no dependency relationship, then the edge is
set to 0. Thus, Arel is constructed for the sentence, as shown in Fig. 3.

Fig. 3. Adjacency matrix Arel of the dependency relationship.
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Dependency Type. The type of dependency relationship is a special and important
piece of information. This paper first counts all dependency types in the dataset and
generates a dependency types dictionary. Then, a randomly initialized vector for the
initial dependency type corresponding to the text sequence S is generated, and aBiLSTM
is used to obtain a feature vector htype ∈ R

n×d , where n represents the length of the
dependency type dictionary and d is the word vector dimension of the dependency type.
Dependency types are embedded, as shown in Fig. 4.

Fig. 4. Dependency type dictionary and dependency relationship types of the sentence.

4 Proposed DP-GCN Model

Fig. 5. Double probabilistic graph convolutional network (DP-GCN) integrating multi-scale
information

Our proposed DP-GCN model is shown in Fig. 5. In the ABSA task, given a
sentence Wc = {

wc
1,w

c
2, · · ·,wa

r+1, · · ·,wa
r+m, · ··,wc

n

}
containing n words, where

Wa = {
wa
r+1, · · ·,wa

r+m

}
is the aspect word sequence. Firstly, the words in the sen-

tence are embedded into a low-dimensional vector space using an embedding matrix
E ∈ R

|v|×de , where |v| is the vocabulary size and d represents the dimension of the word
embedding. We use the StanfordNLP syntactic parser to parse the sentence and obtain
its syntactic dependency information. Next, the obtained dependency type information
is embedded into the low-dimensional vector space E ∈ R

|v|×de , where |v| is the size of
the dependency type vocabulary and d is the dimension of the dependency type word
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embedding. Then, BiLSTM or BERT is used as the sentence encoder to extract the
hidden contextual semantic representation hsem and the dependency type representation
htype.

The hidden contextual semantic representation hsem and the dependency type rep-
resentation htype of the sentence are fused with the multi-scale information. The fused
representation hinput with multi-scale information is obtained by interacting the infor-
mation through an interactive attention mechanism. Then, hinput is separately fed into
the semantic probability graph convolutional module (SemPG-GCN) and the syntac-
tic probability graph convolutional module (SynPG-GCN). Interacting attention is used
to guide the communication of semantic information and syntactic dependency infor-
mation during graph convolutions in both modules. Through masking, connection, and
aggregation of aspect nodes, the final aspect representation is formed. Finally, sentiment
polarity classification is performed using softmax. Next, we will describe the details of
the DP-GCN model in detail.

4.1 Interactive Attention

The implementation of the interactive attention layer is mainly based on self-attention
mechanism,which enables themodel to simultaneously calculate the attention of contex-
tual semantic features and dependency type features. Through the interactive attention
mechanism, the dependency type features guide the learning of contextual features,
while the contextual features guide the learning of dependency type features, as shown
in Fig. 6.

Fig. 6. Structure diagram of Interactive Attention.

4.2 Fusion of Multi-scale Information

This paper utilizes and integrates the multi-scale semantic information and multi-scale
syntactic dependency information mentioned above as inputs to the model.

Fusing Contextual Semantic Information. The positional distance is incorporated
into the contextual representation as a weight parameter of the linear structure. This
context semantic information fused with the position distance can reflect the semantic
association between different words and the aspect word in terms of distance. The fusion
formula is as follows:

hsem = F(hsem) = pi · hsem (2)
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Here, F is the positional weight function, and pi is the positional weight of the i-th
word. Thus, the closer the distance between words and the aspect word, the greater their
relevance in the sentence, and the more significant their contribution to the judgment of
sentiment polarity, since they have a higher weight value.

Fusing Syntactic Dependency Information. Integrating dependency type and depen-
dency distance information. The dependency distance reflects the importance of the
syntactic dependency between each word in the sentence and the aspect word, which
strengthens thewords that have a direct syntactic dependency relationshipwith the aspect
word and weakens those that do not have a direct relationship with the aspect word. The
formula for fusing dependency type htype with dependency distance is as follows:

htype = F
(
htype

) = T ∗ htype (3)

Here, F is the function for element-wise matrix multiplication, T is the dependency
weight matrix composed of all dependency distances ti. The multiplication is per-
formed between the dependency type hidden vector and the corresponding element
in the dependency weight matrix.

FusingSemantic InformationandSyntacticDependency Information. In this paper,
interactive attention is used to fuse semantic information and syntactic dependency
information, and the result of the fused information is used as the input to the model.
Figure 6 shows the process of the interactive attention between the multi-scale semantic
information hsem and the multi-scale syntactic dependency information htype to guide
each other’s learning.

Here, the multi-scale semantic information hsem and the multi-scale syntactic depen-
dency information htype are used as inputs to the interactive attention. According to the
Transformer model, hsem and htype are mapped to query (Qsem and Qtype), key (Ksem
and Ktype), and value (Vsem and Vtype) matrices through linear layers. The formula for
calculating hsem using htype is as follows:

Csem = softmax

(
QtypeKT

sem√
d

)

Vsem (4)

hsem = LN(hsem + Csem) (5)

Here, LN is a standardization function. Similarly, hsem is used to guide htype, as given
in the following equation:

Ctype = softmax

(
QsemKT

type√
d

)

Vtype (6)

htype = LN
(
htype + Ctype

)
(7)

Here, hsem ∈ R
n×d and htype ∈ R

n×d are both outputs of the interactive attention, and
they use each other’s feature information to enhance their own hidden representation
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abilities. Finally, the concatenated representation of the interactive semantic and syntac-
tic dependency information is used as the input to the model, as shown in the following
equation:

hinput = hsem ⊕ htype (8)

4.3 Semantic Probabilistic Graph Convolution Module

Semantic Probabilistic Graph Convolution (SemPG-GCN). In order to fully focus
the DP-GCN model on the aspect words and the corresponding opinion words, we use
the self-attention mechanism to construct a probabilistic attention matrix Asem about the
multi-scale contextual semantic hidden representation hsem, which is used as the input
to the graph convolution. The specific formula is as follows:

Asem = softmax

(
QWQ × (

KWK
)T

√
d

)

(9)

Here, Q and K are both the multi-scale contextual semantic hidden representation hsem,
while WQ and WK are learnable weight matrices, and d is the dimension of the multi-
scale contextual semantic hidden representation hsem.

Then, learn semantic information throughgraph convolutional networks. The specific
formula of graph convolution is as follows:

(10)

where hli represents the hidden representation of node i in layer l, the initial value of the
first layer is hinput. Aij represents the element value in the i-th row and j-th column of
matrix Asem. Wl is a learnable parameter matrix, hl−1

j is the hidden representation of

neighboring nodes of hl in layer l − 1, and bl is the bias term of the graph convolution.

4.4 Syntactic Probabilistic Graph Convolutional Module

Syntactic Probabilistic Graph Convolutional Networks (SynPG-GCN). Nodes that
have no dependency relationship with the aspect word are assigned 0, resulting in many
zero elements in the generated adjacency matrix, which leads to the problem of missing
information. The self-attentionmechanism is applied to thematrix to obtain a continuous
0–1 probability matrix, which makes the model more robust and advanced.

Arela = softmax
(
Arel ∗ W ∗ UT

)
(11)

whereW and U are learnable weight matrices, Arela is the probabilistic attention matrix
of syntactic information, andArel is the adjacencymatrix of the dependency relationship.

Then, learn syntactic dependency information throughgraph convolutional networks.
The specific formula of graph convolution is as follows:

(12)
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where hli represents the hidden representation of node i in layer l, the initial value of
the first layer is hinput, Aij represents the element value in the i-th row and j-th column
of matrix Arela,Wl is a learnable parameter matrix, hl−1

j is the hidden representation of

neighboring nodes of hl in layer l − 1, and bl is the bias term of the graph convolution.

4.5 Sentiment Classification

hinput Obtains hsemPG and hsynPG through SemPG-GCN and SynPG-GCN. Then, it mul-
tiplies with the aspect word masking matrix to extract the corresponding parts of the
aspect word. The mask operation obtains hsemPG and hsynPG. They are concatenated and
sent to the softmax layer to calculate the probability distribution of the input text in
positive, negative, and neutral sentiment. The specific operation is as follows:

Mi,j =
{
1, i = j = p
0, otherwise

(13)

where Mi,j represents the element value in the i-th row and j-th column of the mask
matrix. If i = j = p, which means the current position is the corresponding position
of the aspect word, then the corresponding element value is set to 1. Otherwise, the
corresponding element value is set to 0.

hsemPG = hsemPG ∗ M (14)

hsynPG = hsynPG ∗ M (15)

hout =
[
hsemPG; hsynPG

]
(16)

The probability of hout after softmax is:

P(a) = softmax(Whout + b) (17)

whereW and b are both learnable parameters, p(a) is the emotion probability distribution
of the aspect word. In the model training process, cross-entropy is used as the loss
function, and its formula is:

J = − 1

N

∑N

i=1

∑K

k=1
yi,k log

(
y
∧

i,k

)
(18)

where N denotes the number of samples, K denotes the number of classes, yi,k is the
true label of sample i belonging to class k, and y

∧

i,k is the predicted probability of the
model that the sample i belongs to class k.

5 Experiments

5.1 Dataset and Evaluation Criteria

This paper verifies the effectiveness of the DP-GCN model by conducting experiments
on four publicly available datasets, which are Laptop and Restaurant datasets from
SemEval2014 [24], Twitter dataset [25], and MAMS dataset [26]. Each sample in these
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four datasets is annotated with a sentiment label of one or more aspect words in a
sentence, and the sentiment labels have three classifications: Positive, Negative, and
Neutral. The statistical data for the number of samples in each category of the dataset is
shown in Table 1.

Table 1. Experiment Data Statistics

Dataset Positive Neutral Negative

Train Test Train Test Train Test

Laptop 994 341 464 169 870 128

Restaurant 2164 728 637 196 807 182

Twitter 1561 173 3127 346 1560 173

MAMS 3380 400 5042 607 2764 329

This experiment uses two evaluation metrics, accuracy (Acc) and macro-average F1
score (MF1), to evaluate the effectiveness of the DP-GCN model.

5.2 Parameter Setting

In this experiment, the experimental parameters of Glove and Bert are set as follows for
the four datasets. The specific experimental parameters are shown in Table 2.

Table 2. Experimental Hyperparameter Settings

Experimental parameters Set value

Num-epoch 50

Batch-size 16

Number of GCN layers 2

Number of LSTM layers 1

Number of interaction attention layers 2

Dependency type embedding dimension 40

BiLSTM hidden layer dimension 50

GCN hidden layer dimension 50

Max-length 85

L2 regularization 10–5

Adam learning rate 0.002

Input/BiLSTM/GCN dropout 0.7/0.1/0.1

Early-stopping 500
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5.3 Baseline Methods

To comprehensively evaluate the performance of our model (DP-GCN), we compared
it with the following baseline models on the four datasets:

1 ATAE-LSTM: Weighted the output of LSTM based on the attention mechanism to
extract emotional words and features.

2 IAN: Simultaneously considered information at both the word and sentence levels in
the text, and calculated the text representation using an interactive way so that the
model can better capture the relationship between words and sentences.

3 RAM:When calculating the sentiment polarity of each aspect, not only the information
of that aspect is considered, but also the information of other aspects is taken into
account. The memory vector of each aspect is matched with the current input word
vector sequence to obtain the attention vector of that aspect.

4 CDT: Used convolution on the dependency tree model to learn sentence features
representation.

5 R-GAT: Used bidirectional GAT as the basic model, and employed relation-aware
graph attention mechanism to capture the relationship between words and better
capture information in the text sequence.

6 DGEDT: This model is based on a dual-channel LSTM, combined with a dynamic
graph augmentation mechanism, which enables the utilization of both sentiment-
embedded information and semantic information present in the text.

7 DualGCN: Built two graph convolution modules to process semantic information and
syntactic dependency information.

8 T-GCN+BERT: Proposed a method that utilized a type-aware graph convolutional
network (T-GCN) to explicitly depend on the ABSA type. Attention was used in
T-GCN to distinguish different edges in the graph.

9 R-GAT+BERT: Used the pre-trained model BERT as the encoder instead of BiLSTM.

5.4 Experimental Results and Analysis

We conducted a three-class ABSA experiment on the four datasets from Sect. 4.1. The
experimental results are shown in Table 4. The results in Table 4 indicate that our model
(DP-GCN) has achieved a certain degree of improvement in both ACC and F1-score on
the four public datasets.

From the experimental results of our model and the baseline model, it can be found
that the performance of the DP-GCN model is better than models that solely use atten-
tion mechanism to capture aspect words and contextual words for modeling, such as
ATAE-LSTM, IAN, etc. This suggests that the attention mechanism may only consider
the semantic information of the sentence and cannot effectively capture the syntac-
tic dependency information corresponding to the opinion words related to the aspect
words. When dealing with longer sentences where aspects words and opinion words
have distant dependencies, it is difficult to effectively identify the relationship between
them. Models that consider the multiple aspect features of a sentence, such as RAM
and CDT, introduce additional syntactic dependency information on the basis of the
attention mechanism. However, the attention mechanism is easily affected by additional
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noise, making it difficult for the model to handle both semantic information and syn-
tactic dependency information effectively. Models that use graph neural networks (such
as R-GAT, DGEDT, DualGCN) can capture words with long-distance dependencies in
the context, which can better establish the relationship between aspect words and their
opinion words. However, when dealing with informal datasets such as Twitter, these
models have some limitations and do not consider the role of semantic information and
syntactic dependency information in identifying relationships.

The DP-GCNmodel achieved good results in terms of ACC and F1-score on the four
public datasets, indicating that the fusion of multi-scale information in the model input
has integrated more semantic and syntactic dependency information of the sentences.
The probability graph convolution module combined with an interactive attention mech-
anism enables the model to fully consider the semantic and syntactic information of the
sentences. The enhancement in the model’s performance indicates that to some extent,
the syntactic dependency tree constructed by our model can mitigate the issue of the
attention mechanism being susceptible to disruptions from noise.

In addition, the overall performance of the DP-GCN+BERT model proposed in
this paper is also better than R-GAT+BERT and T-GCN+BERT, further demonstrating
that the probability attention matrix with weighted syntactic dependency tree, semantic
information, and syntactic dependency information has good effects on downstream
tasks. Compared with the Glove-based DP-GCN model, DP-GCN+BERT improved the
ACC by 1.27%–2.85% and F1-score by −0.46%–2.61%, and achieved better results
than the non-BERT models in Table 3.

Table 3. Experimental results of different models on four public datasets

Models Restaurant Laptop Twitter MAMS

Acc F1 Acc F1 Acc F1 Acc F1

ATAE-LSTM 77.20 – 68.70 – – – – –

IAN 78.60 – 72.10 – – – – –

RAM 80.23 70.80 74.49 71.35 69.36 67.30 – –

CDT 82.30 74.02 77.19 72.99 74.66 73.66 – –

R-GAT 83.30 76.08 77.42 73.76 75.57 73.82

DGEDT 83.90 75.10 76.80 72.30 74.80 73.40 – –

DualGCN 84.27 78.08 78.48 74.74 75.92 74.29

Our DP-GCN 84.76 78.48 79.74 76.20 76.06 76.48 81.96 81.15

R-GAT+BERT 86.60 81.35 78.21 74.07 76.15 74.88 – –

T-GCN+BERT 86.16 79.95 80.88 77.03 76.45 75.25 83.68 83.07

Our DP-GCN+BERT 87.31 81.09 81.01 77.96 76.80 76.02 84.85 83.49
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5.5 Ablation Experiment

In order to further study the role of a certain module in DP-GCN model, we con-
ducted extensive ablation experiments. The results are shown in Table 4, and the specific
experiments are as follows:

(1) w/o location distance. Remove the location distance information of the model, that
is, reduce the dependency degree of the position distance in the semantic information.
As shown inTable 4, on theRestaurant, Laptop andMAMSdatasets, theACCandF1-
score have decreased to some extent after removing the position information, while
on the Twitter dataset, there is little change in ACC and F1-score. This suggests that
the position information of the words in the sentence has little effect on the model’s
performance in datasets containing a large number of informal expressions.

(2) w/o dependent type. Remove the dependence type information, and the input of
the model have only semantic information without the syntactic dependency infor-
mation. The ACC and F1-score on all four datasets have decreased after removing
the dependent type information, indicating that the dependency type information in
the sentences can supplement the semantic information to some extent, allowing the
model to learn more effective information.

(3) w/o dependent tree. Remove the tree based on the aspect word corresponding syn-
tactic dependency weight, use StanfordNLP to generate the syntactic dependency
tree, and also remove the dependency distance but retain the dependency type. The
ACCand F1-score have shown a significant decrease on all four datasets after remov-
ing the dependent tree, indicating that reshaping the syntactic dependency tree is
effective for ABSA tasks, and also suggesting that the original syntactic dependency
tree contains redundant information.

(4) w/o SemPG-GCN. Remove the semantic information graph convolution module,
and the ACC and F1-score have significantly decreased on all four datasets, indicat-
ing that the graph convolutionmodule of the semantic information is the coremodule
of this model, and suggesting that semantic information is essential for ABSA tasks.

(5) w/oSynPG-GCN.Remove the syntactic information graph convolutionmodule, and
the ACC and F1-score have decreased on all four datasets. From the experimental
results, it can be seen that the syntactic information graph convolution module can
complement the semantic information graph convolution module to some extent,
and jointly improve the performance of the model.

In summary, deleting distance information and dependency distance information
will decrease the accuracy of our DP-GCN model, which illustrates the importance of
the semantic information of the hidden linear structure and the syntactic information
of the tree structure for the input information of the model. It can solve the problem
of short sentences and informal expressions to some extent. Deleting the probability
attentionmatrix constructed by the self-attentionmechanismof the SynPG-GCNmodule
also leads to a decrease in accuracy, indicating that constructing a probability matrix
about syntactic information through attention mechanisms can alleviate the influence of
dependencyparsing errors.Compared to comments fromRestaurant andLaptopdatasets,
comments from Twitter are largely informal and insensitive to grammar information.
Finally, the dependency tree and probability graph convolutional network that are based
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Table 4. Experimental results of ablation experiments

Models Restaurant Laptop Twitter MAMS

Acc F1 Acc F1 Acc F1 Acc F1

w/o location distance
w/o dependent type

83.41
82.53

76.25
73.14

78.63
76.48

75.21
73.21

75.95
74.63

76.31
73.69

81.06
80.22

80.26
80.32

w/o dependent tree 82.22 74.29 76.30 72.99 73.11 71.52 80.84 79.87

w/o SemPG-GCN 81.59 73.75 75.79 72.77 74.35 74.28 80.26 80.73

w/o SynPG-GCN 83.57 73.46 76.30 72.68 75.22 75.12 81.34 80.64

on aspect words and weighted dependencies are better suited for the MAMS dataset
with multiple aspect words, as the relationship modeling between aspect words and
corresponding opinion words becomes increasingly reliant on syntactic information as
sentence complexity rises.

Fig. 7. The impact of the number of interactive attention layers on the model

Interactive attention is a critical module for the exchange of semantic information
and syntactic dependency information. To explore the impact of the number of interac-
tive attention layers on model performance, we investigated the number of interactive
attention layers by setting the number of layers num-k = {0, 1, 2, 3, 4, 5}, respectively,
and obtained the accuracy (ACC) of the four datasets, as shown in Fig. 7.

As shown in Fig. 7, the impact of the number of interactive attention layers on the
model is nonlinear, and too few or too many layers can affect the performance of the
model. In this experiment, when the number of interactive attention layers was 2, the
highest accuracy was achieved in all four datasets. This may be because the interactive
attention introduces different levels of interaction information while maintaining the
consistency of the input feature space,which has a positive effect on improving themodel
performance. However, too many layers of interaction may introduce too much noise,
leading to a decrease in model performance. Therefore, to obtain better performance in
practical applications, it is necessary to adjust the number of interactive attention layers
according to the specific dataset and task.
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6 Conclusion

In this paper, we aimed to address the issue of redundant information in the current syn-
tactic dependency trees for ABSA tasks. We proposed a tree structure based on aspect
words corresponding syntactic dependency weights to systematically process ABSA
tasks. We also proposed a dual probability graph convolutional network (DP-GCN) that
combines multiscale information, which constructs two probability attention matrices to
accommodate unclear or insignificant syntax and context semantic information.We used
the interactive attention mechanism to guide the mutual learning of semantic and syn-
tactic dependency information, thereby enhancing model expressiveness. Experimen-
tal results on datasets indicate that our DP-GCN model outperforms baseline models.
However, our model still has limitations when processing datasets with many informal
and biased expressions, such as the Twitter dataset. In future work, we will consider
extracting other useful information related to semantic and syntactic information and
optimizing the fusion of these two types of information. Additionally, we will improve
the graph convolutional network model to enhance its generalization performance for
ABSA tasks.
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Abstract. Image retrieval is a crucial function in several emerging com-
puter vision applications, including online medical diagnosis and image
recognition systems. With an increasing number of images being gener-
ated and outsourced to public clouds, there is a growing concern about
privacy leaks of image contents. To address this issue, we propose an effi-
cient privacy-preserving image classification and retrieval scheme (PICR)
that employs low-dimensional vectors to represent image categories and
feature vectors, thereby improving retrieval efficiency and reducing index
storage costs. First, we design a feature extraction model based on con-
volutional neural network (CNN) to generate segmented hash codes that
represent both image categories and features. Next, the cryptographic
hierarchical index structure based on the category hash code is designed
to improve retrieval accuracy and efficiency. Then, we employ random
vectors and the Learning With Errors (LWE)-based secure k-Nearest
Neighbour (kNN) algorithm to preserve the privacy of segmented hash
codes and file-access patterns. Finally, we provide the security analy-
sis that verifies our PICR scheme can protect image privacy as well as
indexing and query privacy. Experimental evaluation demonstrates that
our proposed scheme outperforms the existing state-of-the-art schemes
in terms of retrieval accuracy, search efficiency and storage costs.

Keywords: Image privacy · encrypted image retrieval · convolutional
neural network · learning with errors

The popularity of mobile devices and various applications makes the multi-
media data such as personal pictures and videos grow exponentially. Individuals
and business users are more inclined to outsource these multimedia data to the
cloud to reduce the pressure on local storage and improve data reliability. How-
ever, storing plaintext images on an untrusted third party may cause privacy
leakage and make them vulnerable to various attacks [1]. The recent released
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IBM Cost of a Data Breach Report shows that the average global cost of data
breach reached USD 4.35 million in 2022, which is a 12.7% increase from the last
year, and the highest ever noted across the history of IBM reports [2]. Encryption
helps ensure the confidentiality of outsourced data but makes subsequent pro-
cessing difficult. To solve this problem, some privacy-preserving content-based
image retrieval(CBIR) schemes have been proposed, which can protect the image
content and meanwhile support the searching of similar images. The existing
privacy-preserving CBIR schemes mainly aim to solve the retrieval precision,
efficiency or security issues. For example, visual word frequencies are used as
the image features and then be encrypted to enable retrieval over encrypted
images [3]. Local sensitive hash is employed to improve the retrieval accuracy
of encrypted images [4]. Homomorphic encryption is applied to encrypt image
features to support similarity calculation [5,6]. With the rapid development of
deep learning, Convolutional Neural Network (CNN) models have emerged as a
prevalent tool for image feature extraction [7] [8]. The pre-trained CNN mod-
els facilitates more precise depiction of image content, consequently enhancing
search accuracy [9] [10]. Although these schemes can perform similarity searches
on encrypted images, the search accuracy and efficiency are not satisfactory
due to the computational complexity and the adopted high-dimensional fea-
ture vectors. In this paper, we propose an encrypted image retrieval scheme
with segmented hash features, which allows users to retrieve images quickly and
accurately, while having less index construction time and low storage costs. Our
contributions are set out as follows:

– A CNN-based feature extraction and image classification model is designed to
generate a low-dimensional two-level segmented hash code which can present
the image category and feature simultaneously. The fine-designed segmented
hash code can provide a more accurate representation of image with less
feature vectors, thereby guaranteeing the accuracy of image searching and
reducing feature vectors storage overhead.

– A hierarchical index structure is build based on the segmented hash codes.
The top level of the index is generated by category hash code clustering, which
avoid traversing the entire image database when searching. The underlying
low-dimensional image features speed up the retrieval process and improve
search efficiency.

– Different encryption algorithms are applied to protect the privacy of images,
index and features, while enabling accurate search and similarity ranking. In
addition, we proposed a secure trapdoor generation algorithm that can not
only protect the security of queries but also helps breaking linkability between
queries and search results.

The rest of this paper is organized as follows. In Sect. 1, we briefly discuss
related work. Section 2 describes the system and security assumptions. In Sect. 3,
we describe the main idea of our proposed image classification model and the
detailed search and retrieval procedure of PICR. Section 4 provides the security
analysis and proof of PICR. We report our experimental and comparison results
in Sect. 5. Finally, we conclude this paper in Sect. 6.
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1 Related Work

The main contributions of existing privacy-preserving CBIR technology are to
improve retrieval accuracy, efficiency and guarantee information security.

Improve Retrieval Accuracy. In 2009, Lu et al. proposed the first CBIR-based
encrypted image search scheme which used visual word frequencies as image fea-
tures [3]. There are many features that can also be used for image retrieval such as
text description, semantic matrix, image related GPS and multi-feature fusion
of contextual information [11,12]. CNN are applied to extract more accurate
image features to improve retrieval accuracy [13]. Learning with errors (LWE)-
based secure kNN encryption methods have been proposed to improve ranking
accuracy in ciphertext domain [8].

Improve Retrieval Efficiency . Zhu et al. proposed a clustering algorithm CAK
(Combination of AP and K-means clustering) to solve the problem of K-means
clustering and achieved more accurate classification [14]. Li et al. adopted Zhu’s
CAK-means algorithm to construct a tree-based index, and applied LWE encryp-
tion method to achieve higher retrieval accuracy and efficiency [10]. Other solu-
tions like secure kNN and secret sharing [15] have been used to accomplish
search and retrieval tasks in encrypted image domain. Guo et al. [16] proposed
a scheme to find the exact nearest neighbor over encrypted medical images to
remove candidates with low similarity.

Protect Image and Feature Privacy. To support security computation of ciph-
tertext, homomorphic encryption is commonly used in secure image retrieval
schemes. Hsu et al. adopted homomorphic encryption to encrypt images, which
allowed cloud servers to extract the Scale Invariant Feature Transform(SIFT)
features for retrieval [17]. Xia et al. proposed a scheme based on the Bag-of-
Encrypted-Words(BOEW) model that used the frequency of visual word occur-
rences as image features [18,19]. Li et al. proposed a CBIR scheme that combines
the homomorphic encryption and scalar-product-preserving encryption (ASPE)
to keep the key confidentiality [20]. There are some other schemes that employ
secure Local Binary Pattern(LBP) to calculate Euclidean or Manhattan distance
on encrypted images to improve searching security and accuracy [19].

Although many encrypted CBIR schemes have been proposed, they still have
some limitations in ensuring accuracy, efficiency, and security simultaneously.
Aiming to break all these limitations, we propose a privacy-preserving image
classification and retrieval(PICR) scheme that can satisfy all these goals.

2 The System Model and Security Assumption

2.1 System Model

In the proposed PICR system, there are three principals: image owner, user, and
cloud server.
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Image owner generates secret keys, extracts image features, constructs
index and encrypts both images and index. Then it submits the encrypted index
and images to the cloud server and distributes secret keys to authorized users.

User builds up query trapdoor and submits it to cloud server. After receiving
the search results, search user decrypted results with the authorized keys.

Cloud Server stores encrypted index and images. When receiving queries,
it runs search algorithm and returns top-k most similar images to search user.

2.2 Security Assumption

We assume that the cloud server is “honest but curios”, the cloud server honestly
executes the protocol, but it will analyze the data and search the index for more
information related to the plaintext image. Based on the available information
to the cloud server, the following threat model is defined for our scheme.

Known Ciphertext Model. In this model, the cloud server only knows
encrypted information, such as encrypted images, encrypted index, and query
trapdoor.

3 Image Classification and Privacy Protection

In order to improve both retrieval efficiency and accuracy, we propose the seg-
mented hash codes to represent image category and feature simultaneously.
Meanwhile, PICR can also protect the privacy of images and indexes.

3.1 System Structure of PICR

The system infrastructure of PICR is a tuple of several algorithms, namely:
GenKey, ExtractFea, EncImage, GenIndex, GenQuery, Search, Dec-
Image, which are depicted in Fig. 1. In step 1© image owner generates keys
and assigns them to the authorized search users. 2©- 4©, image owner generates
the segmented hash codes with the proposed training model. Then, it encrypts
images and builds the encrypted hierarchical index, finally it sends encrypted
images and index to the cloud server. In the step 5©, search user generates trap-
door from the query images and submits them to the cloud server. Step 6©
shows the cloud server implements searching algorithm and return top-k similar
ciphertext images to the querying user. In the step 7©, the search user decrypts
returned results to obtain images similar to the query images.

3.2 Image Feature Extraction Model of PICR

In this paper, we design a feature extraction model to get segmented hash codes
as image features. The segmented hash code consists of two parts, the first part is
category hash code representing the image classification information. The second
part is feature vectors representing image features. To obtain the category hash
codes, we use a hash code generation algorithm to assign the generated hash
codes as target hash codes to each image category.
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Fig. 1. System infrastructure of proposed PICR

Category Hash Code Generation. The design of category hash code needs to
satisfy certain criteria. First, the Hamming distance between any two categories
needs to be large enough to reduce the query error. Second, the dimensionality
of the category hash code should be as low as possible to improve the retrieval
efficiency and reduce index storage costs. H(1) is the image category hash code.
The number of image categories is K, the length of category hash code is d1.
The minimum Hamming distance between any two category hash codes should
be larger than a threshold t. We design a random hash code generation algorithm
to find the hash code that can satisfy Eq. 1.

d(H(1)
i ,H

(1)
j ) > t, i �= j (1)

where d() is the Hamming distance between category hash codes, H
(1)
i ,H

(1)
j

are the hash codes representing two different image categories. The hash code
generation process repeats until there are K hash codes have been obtained.

Image Feature Extraction. In order to reduce the dimensionality of the
feature vector, we proposed a CNN-based feature extraction model to generate
the low-dimensional segmented hash codes as the representation vector of each
image. We add two layers after the basic CNN model. Hash Layer 1 is the
classification layer used to train the category hash codes, the output is H

(1)
i =

{h
(1)
i,1 , h

(1)
i,2 , . . . , h

(1)
i,d1

}. Hash Layer 2 is used to train the image features, the

output is a d2-dimensional vector H
(2)
i = {h

(2)
i,1 , h

(2)
i,2 , . . . , h

(2)
i,d2

} containing the
feature of image i. The proposed segmented hash codes training model is shown
in Fig. 2.

PICR scheme uses DenseNet-169 as the basic CNN model. The final repre-
sentation vector of each image is described as:

fi = (H(1)
i ||H(2)

i ) = {h
(1)
i,1 , h

(1)
i,2 , . . . , h

(1)
i,d1

, h
(2)
i,1 , h

(2)
i,2 , . . . , h

(2)
i,d2

} (2)

Where “‖′′ is the concatenation character. Based on our experimental observa-
tion, we use a 12-dimensional category hash code to represent the set of 50-
category 4000 images in Caltech-256, and the 32-dimensional hash code to rep-
resent image features.
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Fig. 2. Segmented hash codes training model of PICR

3.3 Privacy Protection Algorithms

PICR uses different encryption methods to ensure the security of images, cate-
gory hash codes and image features. The main functions for privacy protection
are GenKey, EncImage and GenIndex.

GenKey(SK). The image owner generates different encryption keys and dis-
tributes them to the cloud servers and users for later usage.

– First, image owner generates two d1-dimensional vectors V = {v1, v2, . . . ,
vd1}, R = {r1, r2, . . . , rd1}, and a permutation π, where vj ∈ [−p1, p1], rj ∈
[−p2, p2], p1 >> p2 are randomly selected, sk1 = {V,R, π}.

– Second, image owner randomly choses γ ∈ Zp1 , and generates matrix M and
its inverse form M−1. MIO,M ′

IO ∈ Z
2d2×2d2 are randomly divided from M .

MU ,M ′
U ∈ Z

2d2×2d2 are randomly divided from M−1, sk2 = MIO.
– Then, image owner generates AES key sk3. Finally, it issues the SKU =

(sk1,MU , γ, sk3) to users, M ′
IO,M ′

U to cloud server via secure channel.

EncImage({mi}Ni=1, sk3) → {m′
i}Ni=1. Image owner encrypts each image in

{mi}Ni=1 with key sk3, then sends the ciphertext {m′
i}Ni=1 to the cloud server.

GenIndex({mi}Ni=1, SK,MIO,M ′
IO) → Ĩ. After obtaining fi of each image,

image owner needs to cluster the images with their category hash codes H
(1)
i

and build up the secure hierarchical index.

– Hierarchical index building. K-means algorithm is applied to cluster the
images using H

(1)
i as input, the output is K class centers {Cl}Kl=1. The index

is constructed with Cl = {cl,1, cl,2, . . . , cl,d1} as the top category level. In each
category, there are several images organized with their feature vectors H

(2)
i .

– Index encryption. Image owner first replaces all 0 in Cl with -1 to get Ĉl, and
then encrypts it with Eq. 3.

C̃l = π(V · Ĉl · R) = π{(vj · ĉl,j · rj)}d1
j=1 (3)
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When encrypts feature vectors H
(2)
i , image owner first extends H

(2)
i to Ĥ

(2)
i .

Ĥ
(2)
i = {h

(2)
i,1 , h

(2)
i,2 , . . . , h

(2)
i,d2

,−1
2

d2∑

j=1

h
(2)
i,j , α1, α2, . . . , αd2−1} (4)

where α1, α2, . . . , αd2 ∈ Ap2 are random numbers chosen by the image owner.
Then, image owner encrypts Ĥ

(2)
i and gets the ciphertext H̃

(2)
i .

H̃
(2)
i = (γ · Ĥ

(2)
i + ζi) · MIO (5)

γ ∈ Zp1 , p1 � p2, γ � 2|max(ζi)|. ζi ∈ Z
2d
p2

is an integer error vector randomly
chosen from probability distributions.

The final encrypted index is represented as Ĩ = {C̃l, H̃
(2)
i }, l ∈ [1,K], i ∈ [1, N ].

Image owner uploads the encrypted images and index to the cloud server.

3.4 Privacy-Preserving Image Retrieval

Search users extract feature vectors with the same pre-trained PICR model.
Then, they generate retrieval trapdoors using GenQuery and send them to
the cloud server. Finally, the cloud server implements the Search function and
returns the top-k ranked results to search users.

GenQuery(mq, SK) → Q = {f̃q,Wq}. Search user extracts features fq =
(H(1)

q ||H(2)
q ) from the query image mq, and then generates the trapdoor Q =

{f̃q,Wq} with the key SKU . The process is described with the followed steps.

– First, search user replaces all 0 in H
(1)
q with -1 and get Ĥ

(1)
q .

– Second, search user generates a d1-dimensional random vector Uq and
encrypts Ĥ

(1)
q with the permutation π and random vector R =

{r1, r2, . . . , rd1}.

H̃(1)
q = π(Uq · Ĥ(1)

q · R) = π{(uq,j · ĥ
(1)
q,j · rj)}d1

j=1 (6)

In different queries, search user generates different Uq.
– Third, search user extends and encrypts the feature vector H

(2)
q .

Ĥ(2)
q = {ρqh

(2)
q,1, . . . , ρqh

(2)
q,d2

, ρq, β1, . . . , βd2−1} (7)

H̃(2)
q = MU · (γ · Ĥ(2)�

q + ζ�
j ) (8)

where ρq, β1, β2, . . . , βd2−1 ∈ Zp2 , ρq > 0, are random numbers selected by
search user for each query. The query feature f̃q is described in Eq. 9.

f̃q = H̃(1)
q ||H̃(2)

q (9)
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– Finally, search user uses SKU to generate Wq = π · {(vj +uq,j)}d1
j=1 and sends

Q = {f̃q,Wq} to cloud server for image search and retrieval.

Search(Ĩ , Q) → R′. Cloud server runs the followed steps and returns top-k most
similar results.

– First, the secure Hamming distance between H̃
(1)
q and C̃l is calculated.

EnD(H̃(1)
q , C̃l) ==

d1∑

j=1

{[(uq,j ĥ
(1)
q,jrj + vj ĉl,jrj) mod] (uq,j + vj)] ⊕ 0} (10)

EnD() is the secure Hamming distance calculation algorithm. The cloud
server stops the calculation when EnD(H̃(1)

q , C̃l) < t, then it sets the current
Cl as the category which the query image belongs to, and proceeds to retrieve
the specific images in the Cl category using H̃

(2)
q .

– Second, within the category Cl, cloud server calculates the similarity between
H̃

(2)
q and H̃

(2)
i with the followed formula.

EnS(H̃(2)
i , H̃(2)

q ) =
(

H̃
(2)
i ·M ′

IO · M ′
U · H̃

(2)
q

γ2

)
mod p1

= −ρq
2

(
||H(2)

i − H(2)
q ||2 − ||H(2)

i ||2
)

+
d2−1∑

j=1

αjβj

(11)

Ens() is the secure Euclidean distances. The inner product of the encrypted
feature vectors between the query and stored index approximates to the
Euclidean distance of their plaintexts. This allows the cloud server to rank the
results. The cloud server sends the top-k most similar images back to search
user.

DecImage(m′
i, sk3) → mi. User uses the pre-assigned decryption key to get the

original plaintext image.

4 Security Analysis of PICR

In this section, we prove that our PICR scheme meets the privacy preserving
requirements of index and query privacy. The image privacy is guaranteed by
the security of traditional symmetric encryption.

4.1 Security of Category Hash Code Encyption

Theorem 1. PICR can guarantee the privacy of category hash code in both
index and queries.

Proof. Security of category hash code in the index. The category hash code C
is first transformed to Ĉ and then encrypted with sk1 = {V,R, π}. Since V,R
and π are randomly selected by the image owner. C is protected by the random
number and the difficulty of factoring very large numbers.
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Security of category hash label in queries. The category hash code in queries are
encrypted in the same way as Ĉ. However, search user choses a different random
vector Uq for each query encryption. Therefore, the same feature vector H

(1)
q

have different values in each query and it not feasible to obtain the plaintext.

4.2 Privacy Guarantee on Feature Vectors

The feature vectors of images are encrypted with LWE-based encryption.

Theorem 2. PICR can guarantee the security of feature vectors in index and
queries under the known ciphertext attack model.

Proof. In PICR, the feature vectors are first extended to 2d2 dimensions and
then encrypted to H̃(2).

H̃
(2)
i = (γ · Ĥ

(2)
i + ζi) · MIO = γ · Ĥ

(2)
i · MIO + ζi · MIO (12)

Since feature vectors of images are encrypted with LWE-based encryption, recov-
ering Ĥ

(2)
i from H̃

(2)
i is the LWE problem [10], so it is considered a hard prob-

lem and computational infeasible. In summary, the privacy of feature vectors in
index and queries can be protected under the known ciphertext attack model. 2
is prooved.

5 Experimental Evaluation

We evaluate the performance of PICR and compare it with the most relevant
schemes CASHEIRS [7], SEI [21], SVMIS [10]. The experiment is carried out on
a PC with Windows 10 OS with 3.6GHz Intel Core i7 CPU and 8GB memory.
We choose 50 categories in Caltech256, there are 80 images in each category. The
performance of PICR is evaluated in terms of the search accuracy, efficiency and
storage cost.

5.1 Accuracy Comparison

We use Precision at top-k(P@k) to measure the retrieval accuracy. P@k =
correct num/k, where correct num represents the number of correct images
in the top-k returned ones. The retrieval accuracy comparison among schemes
PICR, CASHEIRS [7], SEI [10] and SVIMS [21] with different k is shown in
Table 1, [10,21] both use the LWE-based kNN to encrypt the 128-dimensional
feature vectors.

As k increases, the retrieval accuracy of other schemes decreases. However,
the retrieval accuracy maintains stable in PICR. The reason is that the design
of category hash code and pre-trained model of PICR enables the cloud server
to pin the categories of queried images with high probability and stability.
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Table 1. Accuracy Comparison with 50 Categories

Scheme k=5 k=10 k=20 k=30 k=40

CASHEIRS [7] 0.545 0.561 0.558 0.563 0.546

SEI [10] 0.618 0.619 0.618 0.611 0.608

SVIMS [21] 0.814 0.806 0.783 0.763 0.741

PICR 0.879 0.879 0.879 0.879 0.879

5.2 Performance Evaluation and Comparison

The performance comparison among PIRC, CASHEIRS [7], SEI [10] and SVIMS
[21] includes index building time, storage costs and search time. The number of
category chosen from Caltech256 are 10, 20, 30, 40 and 50, the number of images
various from 800 to 4000. There are 80 images per category, the returned image
number k = 40.

The index generation time for different schemes is shown in Fig. 3 a). The
index building time is directly proportional to the dimension of the feature vec-
tor and the size of the data set, and is related to the complexity of the retrieval
structure. CASHEIRS [7] only uses K-means to build its index tree. SEI [10]
applies CAK algorithm to construct the deeper index tree. SVIMS [21] estab-
lishes the linear index, its index building time mainly depends on the feature
vector dimensions and the total number of images. These three schemes use
128-dimensional features to construct the index, but in PICR we use the short
segmented hash code (12-dimensional category hash code + 32-dimensional fea-
tures) as the image feature, and the index construction time mainly relies on
K-means clustering time.

The storage overhead is mainly composed of the index structure and
encrypted features, which increases with the dimensionality of the feature vector
and the total number of images. Compared with PICR scheme, the other three
schemes use a 128-dimensional vector as the image features, SVIMS and SEI
extend the feature vector to 256 dimensions after using the LWE-based encryp-
tion. In contrast, our PICR scheme only needs to extend the 32-dimensional
feature vector to 64 dimensions, and the dimensionality of the category hash
labels remains the same, so the overall number of encrypted features in the
PICR scheme is 12 + 64 dimensions. As shown in Fig. 3 b), our PICR scheme
requires less storage space on the cloud server.

As shown in Fig. 3 c), the tree-based index structure in CASHEIRS and
SEI are more efficient in searching, but has low retrieval accuracy. The linear
index structure in SVIMS is less efficient, but has more accuracy. In PICR,
we balance the retrieval efficiency and accuracy by introducing the hierarchical
index structure. The category-feature index structure can first find the image
category, and then find similar images. This avoids the cloud server traversing
the entire database, thereby improving query efficiency while ensuring accuracy.
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Fig. 3. Performance evaluation and comparison

6 Conclusion

In this paper, we propose a privacy-preserving image retrieval scheme PICR
that can provide accurate and efficient search and retrieval of encrypted images.
Specifically, we propose a CNN-based training model to get the segmented hash
codes as the representation of image features. The proposed training model can
provide a precise image classification and feature extraction, and also reduce the
dimensionality of the feature vectors, thus improving both the retrieval accuracy
and reduce the index storage costs. In addition, by constructing a hierarchical
retrieval structure, we improve the retrieval efficiency while guaranteeing accu-
racy. The employment of random vectors and the LWE-based secure kNN algo-
rithm can preserve the privacy of segmented hash codes and file-access patterns.
We also give a rigorous security analysis and conduct experiments on the real-
world dataset. The results show that compared to other similar schemes, PICR
can guarantee image retrieval privacy, accuracy and efficiency simultaneously. In
the future, we intend to extend this work in two directions. One is to make our
scheme applicable to computation constrained IoT devices by introducing edge
servers to perform feature extraction. The other is the application of access con-
trol and watermarking techniques for retrieval control and copyright protection
of images.
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Abstract. As a branch of time series forecasting, stock movement fore-
casting is one of the challenging problems for investors and researchers.
Since Transformer was introduced to analyze financial data, many
researchers have dedicated themselves to forecasting stock movement
using Transformer or attention mechanisms. However, existing research
mostly focuses on individual stock information but ignores stock mar-
ket information and high noise in stock data. In this paper, we propose a
novel method using the attention mechanism in which both stock market
information and individual stock information are considered. Meanwhile,
we propose a novel EMD-based algorithm for reducing short-term noise
in stock data. Two randomly selected exchange-traded funds (ETFs)
spanning over ten years from US stock markets are used to demonstrate
the superior performance of the proposed attention-based method. The
experimental analysis demonstrates that the proposed attention-based
method significantly outperforms other state-of-the-art baselines. Code
is available at https://github.com/DurandalLee/ACEFormer.

Keywords: Financial Time Series · Empirical Mode Decomposition ·
Attention · Stock Forecast

1 Introduction

Stock trend prediction is an important research hotspot in the field of finan-
cial quantification. Currently, many denoising algorithms and deep learning are
applied to predict stock trends [1]. The Fractal Market Hypothesis [2] points out
that stock prices are nonlinear, highly volatile, and noisy, and the dissemination
of market information is not uniform. What’s more, if future stock trends can be
accurately predicted, investors can buy (or sell) before the price rises (or falls) to
maximize profits. Therefore, accurate prediction of stock trends is a challenging
and profitable task [3,4].

As early as the end of the last century, Ref. [5] exploited time delay, recurrent,
and probabilistic neural networks (TDNN, RNN, and PNN, respectively) to
forecast stock trends, and showed that all the networks are feasible. With the
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rapid development of deep learning, many deep learning methods, especially
RNN and Long Short-Term Memory (LSTM) [6], have been widely used in the
field of financial quantification. Nabipour et al. [7] proved that RNN and LSTM
outperform nine machine learning models in predicting the trends of stock data.
With the proposal of the attention mechanism [8], such as Transformer [9] which
is based on the attention mechanism and has achieved unprecedented results in
the field of natural language processing, the focus of time series research has also
shifted to the attention mechanism. Zhang et al. [10] proved that, in the field
of stock forecast, LSTM combined with Attention and Transformer only had
subtle differences, but both better than LSTM. Wang et al. [11] combine graph
attention network with LSTM in forecasting stock and get a better result. Ji
et al. [12] build a stock price prediction model based on attention-based LSTM
(ALSTM) network. But, unlike time series data such as traffic, due to the trading
rules of the stock market, the time interval of stock data is not regular. The self-
attention mechanism has the ability to focus on the overall relevance of the data,
but it is not only weak to capture short-term and long-term features in multi-
dimensional time series data [13] but also weak to extract and retain positional
information [14]. However, positional information is very important for time
series.

Quantitative trading seeks to find long-term trends in stock volatility. How-
ever, short-term high-frequency trading can conceal the actual trend of the stock.
This means that short-term high-frequency trading is a kind of noise that pre-
vents the right judgment of long-term trends. Highly volatile stock data greatly
affects the effectiveness of deep learning models. In the current stock market,
there are many indicators used to smooth stock data and eliminate noise, such as
moving averages. However, these indicators are usually based on a large amount
of historical stock data. They are lagging indicators [15] and cannot timely reflect
the actual fluctuations of the long-term trend. In the field of signal analysis, algo-
rithms such as Fourier Transform (FT), Wavelet Transform (WT), and Empiri-
cal Mode Decomposition (EMD) can effectively eliminate signal noise and avoid
lag. Compared with FT [16] and WT [17], EMD has been proven to be more
suitable for time series analysis [16,17]. It is a completely data-driven adaptive
method that can better handle non-linear high-noise data and eliminate data
noise. However, EMD also has disadvantages [18] such as endpoint effects and
modal aliasing.

Since short-term high-frequency trading has great impact on the long-term
trend of stocks, removing short-term trading noise can effectively increase the
likelihood of the model finding the correct rules for long-term trends. To solve
this problem, we introduced a denoising algorithm called Alias Complete Ensem-
ble Empirical Mode Decomposition with Adaptive Noise (ACEEMD). The noise
is eliminated by removing the first intrinsic mode function (IMF) [19]. ACEEMD
not only solves the endpoint effect problem but also avoids over-denoising and
effectively keeps key turning points in stock trends. In this paper, we propose
a stock trend prediction solution, ACEEMD Attention Former (ACEFormer).
It mainly consists of ACEEMD, time-aware mechanism, and attention mecha-
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nism. The time-aware mechanism can overcome the weak ability of the attention
mechanism to extract positional information and the irregularity of stock data
intervals. The main contributions of this paper are summarized as follows:

– We propose a stock trend prediction solution called ACEFormer. It consists
of a pretreatment module, a distillation module, an attention module, and a
fully connected module.

– We propose a noise reduction algorithm called ACEEMD. It is an improve-
ment on EMD which can not only address the endpoint effect but also preserve
the critical turning points in the stock data.

– We propose a time-aware mechanism that can extract temporal features and
enhance the temporal information of input data.

– We conduct extensive experiments on two public benchmarks, NASDAQ and
SPY. The proposed solution significantly outperforms several state-of-the-
art baselines such as Informer [20], TimesNet [21], DLinear [22], and Non-
stationary Transformer [23].

2 Methodology

In this section, we first present the proposed ACEFormer. Next, we introduce
the noise reduction algorithm ACEEMD. Finally, the time-aware mechanism is
designed.

2.1 ACEFormer

The architecture of our proposed model is shown in Fig. 1 which includes pre-
treatment module, distillation module, attention module and fully connected
module.

Fig. 1. The architecture of ACEFormer.

The pretreatment module preprocesses the input data, which is conducive to
the model for better extracting the trend rules of stock data. Among them, our
proposed ACEEMD algorithm is also added to the pretreatment module which
is shown in Fig. 2.

Let S = {s1, s2, ..., sn} represent the stock data input for model training,
where si includes the price and trading volume of the stock itself and two overall
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stock market indices on the i-th day. Since the data to be predicted is unknown,
it is replaced with all zeros. Let [0 : p] represent a sequence of p consecutive zeros,
where p is the number of days to be predicted. The input data for the model is
D = S||[0 : p]. Let f and g denote functions, ∗ denotes the convolution operation,
and PE(·) denotes position encoding. We define the output of pretreatment
module denoted by D which is given by:

Xpre = ACEEMD((f ∗ g)(D)) + PE(D) (1)

The distillation module extracts the main features using the probability self-
attention mechanism, and reduces the dimension of the feature data using con-
volution and pooling. In addition, the time-aware mechanism in it is used to
extract position features to increase the global position weight.

Fig. 2. The pretreatment module of ACEFormer.

The distillation module, as shown in Fig. 3, includes the probability atten-
tion [20], the convolution, the max pooling, and the time-aware mechanism which
is described in detail in the Sect. 3.3. The output features of probability attention
contain features of different levels of importance, so the convolution and pooling
allow the main features to be retained and the dimensionality of the data to be
reduced. It can reduce the number of parameters afterward.

Fig. 3. The distillation module of ACEFormer.

The attention module is used to further extract the main features. It can
focus on the feature data from the distillation module and extract more critical



530 C. Li and J. Chen

features. The fully connected module is a linear regression which produces the
final predicted values.

Because dimension expansion can generate redundant features, the use of
probability attention can increase the weight of effective features based on dis-
persion. Meanwhile, the convolution and the pooling can eliminate redundant
features. In addition, the position mechanism can retain valid features which may
be unintentionally eliminated. Because the whole process progressively extracts
important features and reduces dimensions of stock data, the self-attention only
gets features from the distillation. In the case, it can focus on the compressed
data and extract more critical features. Meanwhile, it can effectively eliminate
out irrelevant features.

2.2 ACEEMD

The ACEEMD can improve the fitting of the original curve by mitigating the
endpoint effect and preserving outliers in stock data, which can have significant
impacts on trading.

Fig. 4. The flowchart of the ACEEMD algorithm architecture.

Figure 4 shows the ACEEMD algorithm. x(t) refers to the input data, i.e.
the stock data. n[i] represents the i-th Gaussian noise, where the total number
of noises m is an adjustable parameter and the default value is 5. E(·) denotes
the first-order IMF component of the signal in parentheses. pei and pmi both
represent the result of the input data and a Gaussian noise, but the difference
between them is that the Gaussian noise they add is opposite in sign to each
other. The generating function AM(pei, pmi) is used to denoise the data and
is also the core of ACEEMD. IMF1 represents the first-order IMF component
of ACEEMD, which is the eliminable noise component in the input data. ri1(t)
represents the denoised data of the input data with the i-th group of added
Gaussian noise, and r1(t) represents the denoised data obtained by processing
the input data with ACEEMD.

ACEEMD algorithm has two improvements. First, to avoid the endpoint
effect, the input data points for cubic interpolation sampling are constructed
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Fig. 5. The flowchart of the core function AM(pei, pmi) of ACEEMD.

using the endpoints and extreme points of the input data. Second, the middle
point of a sequence is defined as the data corresponding to the midpoint of the
abscissa between the peaks and troughs. The paired data sets with opposite
Gaussian noise are pei and pmi shown in Fig. 4. To further preserve the short-
term stock trend, the input data points for cubic interpolation sampling of pmi

include not only the extreme points and the endpoints, but also the middle
points.

The core of ACCEMD is ri1(t) shown in the Fig. 5, which is referred to as
the aliased complete algorithm. It applies cubic interpolation sampling to pei
and pmi, and the termination condition of the loop in it is that the intermediate
signal of pei is IMF. The i-th first-order IMF component is obtained by taking
a weighted average of the intermediate signals of pei and pmi, with a default
weight α = 0.5.

2.3 Time-Aware Mechanism

The time-aware mechanism is constructed by linear regression. It is the bias
of the distillation module and generates a matrix of the same size as the max
pooling result. As part of the distillation module output, it can increase the
feature content and minimize information loss of the output features.

Let Wt denote the weight, which is used to multiply the input matrix, bt
denotes the bias matrix, T denotes the matrix of the time-aware mechanism,
and Xpre is defined as (1). So T = Xpre ×Wt + bt. Because the input data of the
time-aware mechanism is the same as the data received by probability attention,
it can effectively extract features from input data with complete features.
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We can express the i-th row and j-th column of the output D from the
distillation module, represented by (2),

Dij = max
0≤m<k,0≤n<k

(f ∗ g)(Ā(Xpre))i×k+m,j×k+n + Tij (2)

where, Ā denotes the probability attention operator, and k denotes the window
length of the max pooling. The feature dimension of the distillation module
output is halved, so that k = 2.

3 Experiments

3.1 Datasets

We evaluate the proposed method on two real-world datasets, which are NAS-
DAQ100 and SPY500 [24], from US stock markets spanning over ten years. The
NASDAQ100 is a stock market index made up of 102 equity stocks of non-
financial companies from the NASDAQ. The SPY500 is Standard and Poor’s
500, which is a stock market index tracking the stock performance of 500 large
companies listed on stock exchanges in the United States.

We selected historical data1 ranging from Jan-03-2012 to Jan-28-2022 for our
experiments. First, we aligned the trading days in the history by removing the
lack of data during weekends and public holidays. Then, we split the historical
data into training set (Jan-03-2012 to Jun-25-2021), validation set (Jun-28-2021
to Sept-07-2021), and testing set (Sept-07-2021 to Jan-28-2022). In our experi-
ments, we also include mainstream indices (DJIA and NASDAQ) as secondary
data when using the two datasets.

3.2 Model Setting

In order to avoid the impact of randomly initialized parameters on the prediction
results during the training process and obtain stable experimental results we
train the model with multiple times. In the experiment of each model, we first
train five model results independently using the training set, then we select the
model result with the best experimental index performance in the validation set,
and finally we use the selected model result to predict the test set.

3.3 Evaluation Metrics

Trend. We evaluate the performance of forecast trends with two metrics, Accu-
racy (Acc) and Matthews Correlation Coefficient (MCC) [6] of which the ranges
are in [0, 100] and [−1, 1]. Note that better performance can be get by higher
value of the metrics.
Return. Sawhney [24] points out that classification task evaluation metrics can
not prove the actual performance of the solution in terms of profit. Therefore,
1 https://www.investing.com/.

https://www.investing.com/
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as Sawhney did, we also introduced investment return ratio (IRR) [24] and
the Sharpe Ratio (SR) as metric for solution return. The IRR is defined as
IRR =

∑n
i=1 Ri +1 where Ri denotes the ratio of profit on day i with the range

[−100%, 100%]. The SR is a measure of the return of a portfolio compared to
per unit of risk. It is defined as SR = E[Ra−Rf ]

std[Ra−Rf ]
where Ra is the earned return

and Rf is risk-free of US2.

3.4 Competing Methods

We will select the top three models on the authoritative time series prediction
leaderboard3, TimesNet [21], Non-stationary Transformer [23], and DLinear [22],
as well as the Informer [20] which using the probability self-attention mechanism
as comparison models.

4 Result

4.1 Trend Evaluation

We use five models to conduct trend prediction experiments on two datasets.
The prediction curve of the test set is shown in the Fig. 6.

Fig. 6. The result of stock trends forecasting by five different models.

In order to quantitatively evaluate the prediction effect of each model, this
article uses four indicators for evaluation, and the results are shown in the
Table 1. The best results are shown in bold.

According to the experimental results in Table 1, it can be clearly seen that
among all experimental models, ACEFormer performs the best. In terms of trend
evaluation metrics, the ACC and MCC results of ACEFormer on the SPY500
(NASDAQ100) dataset are 69.23% and 0.379 (69.23% and 0.382), respectively.
In contrast, only the ACC of the Non-stationary Transformer is slightly larger

2 https://home.treasury.gov/.
3 https://github.com/thuml/Time-Series-Library.

https://home.treasury.gov/
https://github.com/thuml/Time-Series-Library
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Table 1. Standard

Model SPY500 NASDAQ100

ACC MCC IRR SR ACC MCC IRR SR

Benchmark −0.97% −0.27 −5.68% −0.80

Informer [20] 43.96% −0.145 −8.38% −2.05 45.05% −0.110 −10.67% −1.93

DLinear [22] 48.35% −0.041 −2.65% −0.90 49.45% −0.021 −5.76% −1.22

TimesNet [21] 48.35% −0.028 −6.86% −1.97 45.05% −0.105 −8.52% −1.59

Non-stationary Transformer [23] 56.04% 0.116 2.13% 0.48 60.44% 0.195 −0.86% −0.23

ACEFormer (Ours) 69.23% 0.379 16.62% 5.71 69.23% 0.382 22.31% 6.43

than 60%, and only the MCC of the Non-stationary Transformer is larger than 0.
The ACC intuitively indicates that the fitting degree of the ACEFormer predic-
tion curve is better than other models. At the same time, the MCC proves that
ACEFormer can better predict the rise and fall. Based on the ACEFormer pre-
diction results, IRR and SR on the SPY500 (NASDAQ100) dataset are 16.62%
and 5.71 (22.31% and 6.43), respectively. In contrast, only the performance of
Non-stationary Transformer is better than Benchmark. The IRR shows that
ACEFormer can achieve a return of 16.62% (22.31%) on SPY500 (NASDAQ100)
within one hundred trading days, and at the same time it can achieve an excess
return of 5.71 (6.43) when undertaking a unit of risk. This means that ACE-
Former can predict the rise and fall more timely, provide better buying and sell-
ing opportunities for trading, obtain greater benefits, and avoid greater losses.

The above statement indicates that in the field of stock prediction, the ACE-
Former model performs better than other state-of-the-art models. There are
three reasons. First, the ACEEMD algorithm can eliminate as much noise as
possible in stock data and reduce the difficulty of predicting long-term trends.
Second, the cross-use of multiple attention mechanisms further optimizes feature
extraction capabilities. Third, the time-aware mechanism can retain more stock
position features and strengthen the temporal coherence of overall features.

4.2 ACEEMD Effect

To elaborate on the impact of ACEEMD, we have presented evidence of its
effectiveness on stock data of various lengths. Since the unit length of stock
data in our solution is 30, we use a 30-day segment of the NASDAQ100 closing
price as an example to illustrate the effect of ACEEMD, as shown in Fig. 7. To
facilitate the description of ablation experiments, we name ACEEMD without
middle points as ECEEMD.

From the endpoints of Fig. 7(a), it is evident that the denoised data obtained
by EMD has a significant deviation from the original curve, which is the endpoint
effect. On the other hand, the other two denoising algorithms can effectively
avoid this issue. Moreover, the curve from day 4 to day 19 is shown in Fig. 7(b).
It is observed that the denoised data obtained by ACEEMD can retain the
trend of the stock data. In contrast, the other denoised data appear excessively
smooth and fail to capture some of the fluctuations presenting in the stock
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Fig. 7. Results of processing stock data using multiple noise reduction algorithms. (a)
The effect of the endpoint effect of the EMD algorithm on the noise reduction results.
(b) The core function of ACEEMD retaining more stock trends. (c) The noise removed
by ECEEMD and ACEEMD respectively.

data. Figure 7(c) displays the noise, which is the first-order IMF component,
extracted by two different algorithms. It can be observed that the fluctuation
trend of the two noises is completely consistent, and at some positions, the
fluctuation degree of the noise extracted by ACEEMD is relatively small. This
indicates that the positions of noise identified by the two methods are the same.
However, ACEEMD is capable of retaining more useful features, and resulting
in the preservation of more trends in the stock data.

Thus, we can demonstrate that ACEEMD can not only avoid endpoint effects
but also further preserve short-term stock trends.

5 Conclusion

In this paper, we address the challenge of predicting nonlinear and highly volatile
stock movements and propose a stock trend prediction solution, ACEFormer,
that achieves more accurate predictions. In the structure, a denoising algorithm,
ACEEMD, is proposed which outperforms existing methods in removing noise
from stock data. By using the distillation module and the time-aware mecha-
nism, ACEFormer extracts the key features of denoised stock data and generates
more precise predictions. In experimental evaluations, ACEFormer demonstrates
improved performance in forecasting stock trends.
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Abstract. Most of the existing crowd counting methods are based on convolu-
tional neural networks (CNN) to solve the crowd scale and background noise
problems. These methods can effectively extract local features, but their convolu-
tional kernel sizes are limited so that it is hard to obtain global information which
is also crucial for scale awareness and noise discrimination. In this paper, we
propose a Multiscale Network with Equivalent Large Kernel Attention for Crowd
Counting (MELANet), which can extract both global and local information based
on CNN. MELANet is composed of three parts: feature extraction module (FEM)
for original feature extraction, multiscale equivalent attention module (MEAM)
for global and local information combination, and fusion module (FM) for mul-
tiscale feature fusion. In MEAM, by decomposing large convolution kernels into
equivalent combinations of small convolution kernels, the model obtains recep-
tive fields equivalent to the large convolutional kernels with lower complexity and
less parameters. It enables local and global correlation in the attention mechanism
based on CNN, which makes the model focus more on the crowd head region to
resist the background noise. Besides, we use a multiscale structure and different
convolution kernel sizes to encode contextual information at different scales into
the feature maps to deal with head scale transformations. Furthermore, we add
gate channel attention units in MEAM to enhance the channel adaptivity of the
model. Extensive experiments demonstrate that MELANet can achieve excellent
counting performance on three popular crowd counting datasets.

Keywords: Crowd counting · Multiscale · Equivalent kernel · Attention

1 Introduction

As one of the research topics in computer vision, crowd counting has developed rapidly
in the last few years. It aims to analyze crowd scene in a given image or video, and then
quickly count the number of people in the scene, which has a wide range of applications
in areas such as behavior analysis, crowd control, and smart city planning. Although
a variety of crowd counting networks have been designed to improve the accuracy of
crowd counting tasks, scale variation and background noise remain challenging issues
that hinder the improvement of crowd counting accuracy. Therefore, crowd counting is
still a computer vision topic worthy of further study.
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With the proposal of multi-column convolutional neural network (MCNN) [1], the
methods combining CNNwith densitymap estimation are gradually becoming themain-
stream crowd counting methods. For the crowd counting methods based on density map
estimation, they aim to estimate the crowd density maps corresponding to the input
images by using CNN and then obtain the total counts by integration. These methods
not only effectively improve the accuracy of crowd counting, but alsomake full use of the
spatial distribution information of the crowd with the ground truth. To solve the problem
of scale variation in crowd images, some researchers have used convolutional kernels of
different sizes in the feature extraction stage so that the models acquire different sizes
of receptive fields to deal with head scale variations [1–6]. For the background noise,
many methods use visual attention mechanism to generate attention maps with weights,
which are combined with feature maps to highlight the targets to be counted [7–11].
The models constructed by these methods are a great improvement on the CNN and
can effectively obtain local feature correlation. However, they use limited convolutional
kernel sizes, which make the models lack of global information.

To capture the global information of images, some recent approaches [12–14] build
crowd counting models based on Transformer, which fully utilize the self-attention and
global information modeling capability of Transformer. However, Transformer-based
counting models usually need to stack multiple encoder blocks to obtain multiscale
feature map information. This makes the model structure complex and the parameters
are much higher than the general CNN-based crowd counting models. It leads to higher
requirements for training equipment as well.

To overcome the above issues, we propose a Multiscale Network with Equivalent
Large Kernel Attention for Crowd Counting (MELANet) to extract global attention and
local attention simultaneously. It uses a simple structure with parallel multiscale large
kernel attention units to effectively adapt to crowd image head scale transformations
and reduce background noise. Excellent counting performance is achieved with a small
number of parameters and costs.

In summary, the main contributions of our work are as follows:

– We propose a crowd counting network MELANet. It combines global and local
correlation in the attentionmechanism throughmultiscale and different convolutional
kernel sizes to deal with crowd head scale transformations and reduce background
noise.

– To reduce the parameters and the costs of the network, we design a multiscale equiv-
alent attention module by decomposing large convolutional kernels into equivalent
combinations of small convolutional kernels.

– We design gate channel attention units to further enhance the channel adaptability of
the network.

– The experimental results show that the proposed MELANet achieves excellent
counting performance on the three existing crowd counting benchmark datasets.
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2 Related Works

2.1 Multiscale Crowd Counting Methods

Due to the different distances of the crowd from the camera, there are usually differences
in head sizes in different regions of the scene, resulting in the inability to accommodate
all head size variations using a single size convolution kernel. With regards to this, many
methods use amulti-columnconvolutional structure to capture different sizes of receptive
fields to accommodate variations in head scales. Zhang et al. [1] designed amulti-column
convolutional neural network (MCNN) for crowd counting. They first introduced the
concept ofmapping images to their crowddensitymaps, laying the foundation for density
map counting. Sam et al. [2] proposed Switching-CNN, it divided the image into image
patches and dynamically selected the appropriate network branches to extract multiscale
features based on the size of the crowd heads within the image patches. Following
the above work, Sindagi et al. [3] proposed a novel contextual pyramid convolutional
neural network (CP-CNN). It employed two additional branches to incorporate local
and global contextual information into the estimated density map to generate a high-
quality estimated density map. Cao et al. [4] designed a simple and effective end-to-end
crowd counting network (SANet). In order to reduce the effect of scale differences on
the counts, they performed multiple iterations of the input images by using four different
sizes of convolution kernels.

Recent approaches have attempted to utilize new strategies to learn crowd head scale
variations. Liu et al. [5] took advantage of right contextual information at each image
location, thus incorporating multiscale contextual information into the estimated density
map to deal with changes in crowd size. Song et al. [6] proposed a novel multilevel-based
scale adaptive selection network (SASNet). It adaptively selected a learning strategy
based on the heads of people of different sizes in the image, so that the network adapted
to image scale changes.

2.2 Attention-Based Methods

Attention mechanisms are widely used in the field of computer vision [15, 16] with the
aim of enabling models to assign higher attention to task-specific targets like the human
visual system. Attention mechanisms have also been used with great success when
applied to the field of crowd counting. Liu et al. [7] designed a framework decision net-
work (DecideNet). Through an attention mechanism, it adaptively assigned weights to
detection network branches and regression network branches to achieve optimal count-
ing. To obtain long-range contextual information, Gao et al. [8] came up with SCAR
for crowd counting, which combined Spatial-wise Attention Model and Channel-wise
Attention Model. Zhang et al. [9] proposed a new network structure MRA-CNN. It
guided the network to focus on the crowd head region by generating the attention map
corresponding to the feature map separately. Guo et al. [10] proposed DADNet and they
used a scale-aware attention fusion module to capture the visual representation of mul-
tiscale features, which not only effectively resisted scale variations but also reduced the
interference of background noise. Sindagi et al. [11] designed a hierarchical attention-
based crowd counting network (HA-CNN). It adopted spatial attention module and
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global attention module to generate attention maps of multi-level features separately,
and fused them to generate higher quality density maps.

In fact, some researchers usually adopt a combination of multiscale and attention for
network design when using attention mechanism for crowd counting [17–20]. Hossain
et al. [17] proposed an end-to-end network SAAN, which contained multiscale features
and scale attention information.Wang et al. [20] came upwith a hybrid attention network
(HANet), and it used a progressive learning strategy to embed multiscale contextual
information into the estimated density map. Chen et al. [21] first applied the variational
attention to the field of crowd counting, extracting information about the differences
within and between crowd images through attention to improve counting performance.

3 Proposed Approach

In this section, we first introduce the architecture of the proposed Multiscale Network
with Equivalent Large Kernel Attention for Crowd Counting (MELANet), and then
describe the specific modules in MELANet.

Fig. 1. The architecture of MELANet.

As shown in Fig. 1, MELANet contains three modules: feature extraction mod-
ule (FEM), multiscale equivalent attention module (MEAM), and fusion module (FM).
VGG [22] is widely used as a feature extraction module in computer vision because of
its simple network structure and excellent feature extraction ability. Hence, similar to
[11, 20, 23], we use the pretrained VGG16-BN as FEM, which is commonly used in
crowd counting. In FEM, the input images are output with richer original feature maps
as inputs of the MEAM. The MEAM consists of three branches of large kernel atten-
tion units (LKAUs) with different convolution kernel sizes and gate channel attention
units (GCAUs) with the same structure. LKAU can obtain receptive fields equivalent to
large convolutional kernels, while capturing local attention through small convolutional
kernels. The combination of both global and local information helps the network to pay
more attention to the head regions for distinguishing background noise. The purpose
of using three scale branches is to obtain the feature maps of contextual information at
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different scales to deal with the crowd head scale transformations. Since LKAUpays less
attention to channel features, we add adaptive GCAU after each LKAU to enhance the
adaptability of network in the channels. In FM, the enhanced feature maps output from
MEAMwhich contain rich contextual informationwith different scales are concatenated
in the channel dimension. Then they pass through a series of convolutional layers in FM
to generate the final crowd estimated density map, as illustrated in Fig. 1. 256-Conv,
128-Conv, and 64-Conv represent 3 × 3 convolutional layers with output channels of
256, 128, and 64, respectively. We use Euclidean Loss (LMSE) and Optimal Transport
Loss (LOT ) proposed in [24] as loss function for training. The final loss function is shown
in Eq. 1.

L = λ1LMSE + λ2LOT (1)

where λ1, λ2 represent the weight factors of LMSE and LOT , respectively. λ2 uses the
same value 0.1 as in [24], and λ1 is set to 1.

Specific implementations of the proposed LKAU and GCAU are introduced in the
following sections.

3.1 Large Kernel Attention Unit (LKAU)

The attention mechanism adaptively assigns weight to different regions by generating
attention maps. This concept can effectively resist the interference of background noise
in the vision field. Both the commonly used CNN attention and self-attention have
some limitations. The former is good at acquiring local receptive fields in the image
and ignores the long-range dependency between regions. The latter is able to extract the
long-range dependency between image regions but ignores the local correlation between
pixels. In order to combine the advantages of both, VAN [25] equivalently decomposes
the large convolution kernel for attention acquisition, where a large kernel is divided
into a convolutional block of three components in series: a depth-wise convolution, a
depth-wise dilation convolution, and a 1 × 1 channel convolution. Inspired by it, we
first apply the idea of large kernel attention to crowd counting study, that is, large kernel
attention unit (LKAU) in each branch of MEAM. LKAU can focus more on head areas
to distinguish background noise. The structure of LKAU is shown in Fig. 2. This process
can be expressed in Eq. 2.

FLKAU = σ [G1(fDWD(fDW (X )))] ⊗ X (2)

where X is the input feature map and X ∈ RC×H×W . After X goes through a depth-wise
convolution fDW , a depth-wise dilation convolution fDWD and a 1×1 channel convolution
G1, Sigmoid activation function σ is applied to generate the attention map. Finally, the
attention map and the input feature map X are multiplied at the pixel level to obtain the
enhanced feature map FLKAU .

In VAN, it simply uses a single scale of large kernel attention, ignoring the continuity
of scale information as well as smoothing, making the global and local information
obtained by the network limited. To this end, our approach improves it by using large
kernel attention units with multiple scales and different kernel sizes to incorporate rich
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global and local information into the attention map. It makes the network adapt to the
smooth transformation of crowd head scale while distinguishing background noise. In
addition, comparedwith using large convolutionkernel directly, this combinationmethod
can greatly reduce the number of parameters in the network. Specifically, the parameters
of our designed multiscale LKAU are shown in Table 1.

Fig. 2. The specific architecture of LKAU. The convolution kernel size of DW-Conv is (2d-1)
and the convolution kernel size of DW-D-Conv is (K/d), where d denotes the dilation rate of
DW-D-Conv and K is the equivalent large convolution kernel.

Table 1. The parameters of multiscale LKAU in MEAM.

Unit DW-Conv DW-D-Conv EQ-Conv

LKAU1 7 9 35

LKAU2 5 7 21

LKAU3 3 5 9

In Table 1, the equivalent decomposition of the large kernel convolution is referred
to the rules in VAN. DW-Conv represents a depth-wise convolution with a convolution
kernel of 2d-1 and DW-D-Conv represents a depth-wise dilation convolution with a
convolution kernel of K/d, where d denotes the dilation rate of DW-D-Conv and K is
the equivalent large convolution kernel (EQ-Conv). The reason for MEAM to use three
scale branches will be explained in detail later in the ablation study.

3.2 Gate Channel Attention Unit (GCAU)

The LKAU achieves spatial adaptivity of the network well by depth-wise convolution
and dilation convolution, but it simply uses 1 × 1 convolution to obtain the channel
information of the features. This is not enough. To further enhance the channel adap-
tivity of the network, a gate channel attention unit (GCAU) is connected behind each
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LKAU in the multiscale equivalent attention module. In addition, due to the use of
dilated convolution in the equivalent representation of the large convolution kernel, the
enhanced feature maps will have features that do not exist in the original images. This
phenomenon is called gridding artifact. The addition of GCAU mitigates this gridding
artifact phenomenon. As shown in Fig. 1, GCAU consists of a norm layer, two 1 × 1
channel convolution layers, and a 3 × 3 convolution layer. The specific process is as
follows.

ZNC = G1(fN (FLKAU )) (3)

FGCAU = α[ZNC ⊗ G1(G3(ZNC))] (4)

where FLKAU represents the enhanced feature map output by LKAU. FLKAU is sequen-
tially processed by the norm layer fN and 1 × 1 channel convolution G1 to obtain the
normalized enhanced feature map representation in the channel dimension, denoted as
ZNC . Then, ZNC is passed through 3 × 3 convolution layers G3 and 1 × 1 channel con-
volution G1 in turn to obtain the attention map. Finally, the attention map and ZNC
are multiplied at the pixel level to generate the feature map FGCAU with rich channel
information. α is the learnable parameter during training.

4 Implementation Details

4.1 Ground Truth Generation

Our proposedmethod is based on density maps for crowd counting estimation. However,
the ground truth provided by existing crowd counting datasets are discrete crowd head
coordinates. Therefore, we need to convert the discrete crowd head coordinates into a
continuous crowd density map, namely the ground truth density map. Assuming that xi
is the head coordinate of the crowd in the ground truth, we use the Gaussian function G
to convolve it and obtain the ground truth density map DGT as shown in Eq. 5.

DGT =
N∑

i=1

δ(x − xi) × Gσ (5)

where N is the total number of people in an original label dot map, δ is a delta function
and σ is the gaussian kernel of G.

4.2 Datasets

UCF_CC_50 [26]: This is a dataset consisting of 50 crowd images containing vari-
ous scenes, each crowd image contains between 94 and 4543 head center annotations.
Although the number of images in this dataset is small, the images in it are all dense crowd
images. Therefore, it has certain reference value to the evaluation of crowd counting
models.
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ShanghaiTech [1]: ShanghaiTech dataset consists of two parts, ShanghaiTech Part A
and ShanghaiTech Part B. It contains a total of 1198 crowd images. There are 300
training images and 182 testing images in ShanghaiTech Part A, while ShanghaiTech
Part B has 400 training images and 316 testing images. This dataset is recognized as the
authoritative dataset in crowd counting.

UCF-QNRF [27]: UCF-QNRF is a large dataset that includes a total of 1535 crowd
images. In the dataset, all images are divided into 1201 training images and 334 testing
images. Due to the drastic scale and size transformation between different crowd images
in this dataset, it is considered to be a dataset that more closely to the real crowd scene
than UCF_CC_50 and ShanghaiTech. It is also a challenging dataset in crowd counting.

4.3 Training Details

The feature extraction network of the proposed MELANet employs the first ten layers
of the pre-trained VGG16-BN. The other convolutional layers in the network structure
are randomly initialized by a Gaussian distribution with a mean of 0 and a standard
deviation of 0.01. We adopt AdamW optimizer with a learning rate of 1e−4 to train the
model, and set the weight decay parameter to 1e−4. As for batch size and epoch, they
are 16 and 2000 respectively.

In order to enhance the training data with limited images in the dataset, we improve
the diversity of input images in various ways in the training phase. In each epoch, we
set different crop sizes to crop the images randomly according to the characteristics
of different crowd datasets. In addition, we also randomly flip the images with 0.5
probability after cropping to make the model more generalizable and robust.

5 Experiments

5.1 Evaluation Metrics

To evaluate the performance of the proposed model, we adopt the mean absolute error
(MAE) which represents the accuracy of the model to calculate the error between the
estimated and the ground truth number. Further, the deviation degree between the esti-
mated number and the ground truth number is indicated by the root mean square error
(RMSE). The MAE and RMSE are expressed as shown in Eqs. 6 and 7, respectively.

MAE = 1

N

N∑

i=1

∣∣∣yESi − yGTi

∣∣∣ (6)

RMSE =
√√√√ 1

N

N∑

i=1

(yESi − yGTi )
2

(7)

where N is the number of images in the dataset, yESi represents the estimated crowd
counts and yGTi is the corresponding ground truth number.
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Table 2. The results of MAE and RMSE on ShanghaiTech dataset.

Method Part A Part B

MAE RMSE MAE RMSE

MCNN [1] 110.2 173.2 26.4 41.3

Switch-CNN [2] 90.4 135.0 21.6 33.4

CSRNet [23] 68.2 115.0 10.6 16.0

SANet [4] 67.0 104.5 8.4 13.6

SCAR [8] 66.3 114.1 9.5 15.2

TEDNet [28] 64.2 109.1 8.2 12.8

KDMG [29] 63.8 99.2 7.8 12.7

ADCrowdNet [30] 63.2 98.9 7.7 12.9

HA-CNN [11] 62.9 94.9 8.1 13.4

RANet [31] 59.4 102.0 7.9 12.9

DMCNet [32] 58.5 84.6 8.6 13.7

CRNet [33] 56.4 90.4 7.4 11.9

MELANet (Ours) 55.5 89.0 6.8 11.3

5.2 Comparisons with State-of-the-Art

To demonstrate the efficiency of the proposed MELANet, comparative experiments are
conducted on three popular crowd counting datasets.

For ShanghaiTech dataset, our proposedMELANet achieves the lowestMAE in both
ShanghaiTech Part A and ShanghaiTech Part B datasets compared to 12 crowd counting
methods, as shown in Table 2. In ShanghaiTech Part A, the MAE of MELANet is 55.5
and the RMSE is 89.0. The MAE of MELANet is reduced by 0.9 compared to CRNet.
In ShanghaiTech Part B, MELANet achieves the best counting results, where MAE is
6.8 and RMSE is 11.3.

As shown in Table 3, the proposed MELANet reaches the lowest MAE (84.7), but
the RMSE (147.8) is slightly higher than that of SASNet in the UCF-QNRF dataset.
Although MELANet does not have the lowest RMSE on UCF-QNRF, it has a lower
MAE of 0.5 compared to SASNet. Because the UCF_CC_50 dataset is small and the
crowd images inside are badly occluded, it leads to a higher MAE for all methods.
Nevertheless, our proposed method is able to achieve a lowest MAE with a value of
201.9, as shown in Table 4.
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Table 3. The results of MAE and RMSE on UCF-QNRF dataset.

Method UCF-QNRF

MAE RMSE

MCNN [1] 227.0 426.0

Switch-CNN [2] 228.0 445.0

TEDNet [28] 113.0 188.0

DMCNet [32] 96.5 164.0

DM-Count [24] 85.6 148.3

SASNet [6] 85.2 147.3

MELANet (Ours) 84.7 147.8

Table 4. The results of MAE and RMSE on UCF_CC_50 dataset.

Method UCF_CC_50

MAE RMSE

MCNN [1] 377.6 509.1

Switch-CNN [2] 318.1 439.2

TEDNet [28] 249.4 354.5

RANet [31] 239.8 319.4

DM-Count [24] 211.0 291.5

CRNet [33] 203.3 263.4

MELANet (Ours) 201.9 266.0

Above all, our proposed MELANet achieves lower mean absolute errors on all three
of the popular crowd counting benchmark datasets. This indicates that our proposed
method can reach more accurate counting results. Whether in dense or sparse crowd
scenes, the accuracy of MELANet is improved compared to some existing crowd count-
ing methods. This shows that MELANet can effectively adapt to scale transformations
and background occlusion by multiscale large kernel attention units. In addition, we
select some samples from the testing data of ShanghaiTech Part A for the visualization
of MELANet, as shown in Fig. 3.

5.3 Ablation Study

To verify the effectiveness of the proposed MELANet and confirm the optimal scale
branch number in MEAM, we perform ablation experiments on the ShanghaiTech Part
A dataset, as shown in Table 5. The Baseline uses FEC and FM in MELANet directly
connected, without adding MEAM. Based on Baseline, we add MEAM with two scale
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Fig. 3. Visualization of MELANet on ShanghaiTech Part A. The three rows from top to bottom
represent the input images, the ground truth density maps, and the estimated density maps.

Table 5. Different combinations of our proposed method on ShanghaiTech Part A.

Index Module MAE RMSE

A Baseline (without MEAM) 65.4 102.2

B Baseline + two scale branches in MEAM 60.4 92.3

C Baseline + three scale branches in MEAM 55.5 89.0

D Baseline + four scale branches in MEAM 56.0 92.3

branches,MEAMwith three scale branches, andMEAMwith four scale branches respec-
tively for comparison experiments. According to row A and other rows, we find that the
counting accuracy is significantly improved after adding MEAM on the basis of Base-
line. This indicates that our proposed MEAM can effectively improve the performance
of crowd counting. According to the comparison of rows B, C and D in Table 5, it can
be seen that MAE and RMSE are the lowest when three scale branches are adopted in
MEAM. At this point, our method is able to achieve MAE of 55.5 and RMSE of 89.0 on
the ShanghaiTech Part A dataset. Therefore, we use MEAM with three scale branches
in the proposed MELANet.

6 Conclusion

In this paper, a multiscale network based on equivalent large kernel attention is proposed
for crowd counting. It combines the advantages of global attention and local attention by
fusing long-range dependence and local relevance, which enables the network to adapt
to crowd head scale transformations and resist background noise. On three popular
crowd counting datasets, our method achieves better counting performance with smaller
number of parameters and costs compared to existing crowd counting methods.
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Abstract. Researchers are solving the challenges of spatial-temporal
prediction by combining Federated Learning (FL) and graph models with
respect to the constrain of privacy and security. In order to make bet-
ter use of the power of graph model, some researchs also combine split
learning (SL). However, there are still several issues left unattended: 1)
Clients might not be able to access the server during inference phase;
2) The graph of clients designed manually in the server model may not
reveal the proper relationship between clients. This paper proposes a new
GNN-oriented split federated learning method, named node Masking
and Multi-granularity Message passing-based Federated Graph Model
(M3FGM) for the above issues. For the first issue, the server model of
M3FGM employs a MaskNode layer to simulate the case of clients being
offline. We also redesign the decoder of the client model using a dual-
sub-decoders structure so that each client model can use its local data
to predict independently when offline. As for the second issue, a new
GNN layer named Multi-Granularity Message Passing (MGMP) layer
enables each client node to perceive global and local information. We
conducted extensive experiments in two different scenarios on two real
traffic datasets. Results show that M3FGM outperforms the baselines
and variant models, achieves the best results in both datasets and sce-
narios.

Keywords: Federated learning · split learning · spatial-temporal data
prediction · graph neural network · data privacy

1 Introduction

Utilizing graph structure to model spatial-temporal data in the prediction task
has been popular in recent years [6,8,13,23,25,29]. It is critical for various appli-
cations including traffic flow prediction, forecasting, and user activity detection.
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Most of these works train models under the assumption that a massive amount
of real-world spatial-temporal data can be centralized. However, with increas-
ing concerns about data privacy and access restrictions due to existing licensing
agreements and commercial competition, there are numerous real-world cases in
which spatial-temporal data is decentralized. For instance, in traffic flow pre-
diction, different organizations or companies collect traffic data by their private
deployed road sensors and these data cannot exchange it due to privacy preser-
vation or commercial reasons.

As an effective solution to data privacy protection, Federated Learning (FL)
[18] has attracted significant research efforts recently. FL is a learning paradigm
for model training that collaborates with clients (i.e., local data owners) without
exposing their original data. By integrating all client model weights or gradients,
the FL-trained model demonstrates superior generalization capabilities.

Recent research has introduced a series of FL-based models for spatial-
temporal data prediction while preserving privacy [16,32]. However, these models
do not consider the inherent spatial dependencies of the data. Current works
focus on integrating FL with graph neural networks (GNNs), which can be
divided into two categories: 1) Client-side GNN model training for local model
updates: A common characteristic of these approaches [2,15] is their emphasis on
training with well-established graph-structured data. In practice, not all clients
possess built-in graph structure datasets, which raises the question of how to pro-
cess node-level data using GNNs in such contexts. 2) Server-based GNN model
training for enhanced FL aggregation: Techniques such as PFL [4] employ GCN
to perform model parameters aggregation according to the clients’ relational
graph structure, introducing a supervised loss function with graph smoothness
regularization for training both local and server models. BiG-Fed [30] devises bi-
level optimization schemes for training local models and GNN models with dual
objective functions and proposes an unsupervised contrastive learning loss func-
tion. Despite these methods consider the structural relationships among clients
and offer GNN-based model parameter aggregation techniques, they do not fully
exploit the true capabilities of GNNs as they are unable to directly model the
dependency relationships within spatial-temporal data. Consequently, their per-
formance is significantly distant from that of centralized GNN approaches.

In recent years, there has been an architectural approach called Split Fed-
erated Learning (SFL) that divides a complete model into several parts, plac-
ing them on the client and server sides respectively, such as [26] and [7]. This
approach is primarily adopted due to the limited computational resources of
the devices participating in federated learning. However, recently, Meng et al.
have successfully employed this framework to enable GNNs to directly partici-
pate in spatial-temporal data processing, proposed CNFGNN [19]. Specifically,
CNFGNN partitions the complete model into two components: employing identi-
cal encoder-decoder models on all clients, with the encoder used to extract local
temporal embeddings, and the decoder utilized to generate predictions. Graph
Network (GN) [1] is employed on the server side to obtain spatial embeddings by
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aggregating the local temporal embeddings uploaded from the clients. CNFGNN
can be regarded as a GNN-oriented SFL method.

Nonetheless, two significant issues remain. (1) For CNFGNN, when employ-
ing trained model for inference, some clients might be unable to connect to
the server due to network disconnection. While it is feasible to replace missing
embeddings with all-zero data, this approach significantly diminishes predictive
performance. Moreover, these offline clients cannot generate predictions without
the server model. (2) The performance of GNN training relies heavily on the
accuracy of the graph structure. However, the graph structure of clients in exist-
ing methods [19,31,33] is constructed manually in a heuristic way, which might
not represent client relations properly, leading to deteriorated performance.

In this paper, we propose a new GNN-oriented split federated learning
method for spatial-temporal data prediction, named node Masking and Multi-
granularity Message passing-based Federated Graph Model (M3FGM) to over-
come the above issues. To address the concern of offline clients, we propose a
MaskNode layer to the server model to simulate that clients are offline during
the training phase. Additionally, we devise a dual-sub-decoders structure for the
client model’s decoder, permitting offline clients to make predictions during the
inference phase. For the issue of graph structures, a new GNN layer, named
Multi-Granularity Message Passing (MGMP) layer, is proposed. We construct a
comprehensive coarse-grained graph, referred to as the cluster graph, by apply-
ing spectral clustering on the client graph. The MGMP layer empowers each
client node to aggregate fine-grained local information from neighbors in the
client graph and global coarse-grained information from the cluster graph.

The contribution of this paper is summarized as follows:

(1) As far as we know, this paper is the first to consider the non-ideal sce-
nario when designing a GNN-oriented SFL method. We propose MaskNode
to enhance the model robustness and design a dual-sub-decoders structure,
enabling offline clients to make independent predictions.

(2) We propose a novel GNN Layer, MGMP Layer, which enables client nodes
to perceive local and global information through multi-granularity message
passing.

(3) We propose M3FGM for spatial-temporal data prediction under privacy pro-
tection. The extensive experiments demonstrate the effectiveness of our model
on two real-world traffic datasets.

2 Related Work

Our method combines elements from graph neural networks, split federated
learning. We now review related works in these areas and discuss their relevance
to our work.

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) have demonstrated outstanding efficacy across
a diverse range of learning tasks involving graph-structured data, such as node
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classification [12,27,28], link prediction [3,17], spatial-temporal data modeling
[20,22]. Although GNNs exploit a powerful inductive bias to extract meaningful
information from graph-structured data, there are challenges that need to be
addressed to fully exploit their potential. One critical aspect of GNN perfor-
mance is the accurate representation of graph structure. In real-world scenarios,
graph structures can be highly complex, making it difficult to manually con-
struct them using only prior knowledge. Another challenge faced by GNNs is
the difficulty in capturing long-range dependencies within a limited number of
message passing steps. This limitation can hinder the learning capabilities of
GNNs, especially in scenarios where long-range interactions play a significant
role. Therefore, in this paper, we propose a novel GNN Layer to address above
issues through multi-granularity message passing.

Furthermore, most studies necessitate centralized data during training and
inference processes. This reliance on centralized data leads to privacy concerns,
especially when dealing with sensitive information in domains like healthcare,
finance, or social networks. Consequently, there is a burgeoning interest in devel-
oping privacy-preserving GNNs that facilitate distributed learning across multi-
ple entities, ensuring data confidentiality and compliance with data protection
regulations.

2.2 Split Federated Learning

Federated learning (FL) [18] is a machine learning paradigm that enables multi-
ple entities, such as mobile devices, edge nodes, or data centers, to collaboratively
train a model while maintaining the privacy and decentralization of their local
data. In a typical federated learning setting, multiple clients and a central server
participate in training a global model. The global model is copied in multiple
copies and deployed on each client. Each participating client trains the model
locally using its data and sends only the updated model parameters to the central
server for aggregation.

Split learning (SL) [9] is a technique that divides a complete model into sev-
eral components to enable efficient utilization of computational resources across
a network of devices, leveraging their individual strengths while minimizing the
overall computational burden. SL can also achieve increased scalability in large-
scale distributed systems.

Recent research has integrated SL with FL to address high training latency
for clients with limited resources [7,26]. This combination, referred to as Split
Federated Learning (SFL), typically divides the global model into two com-
ponents: client-side and server-side components. Clients access only the client-
side component, while the server exclusively accesses the server-side component.
In SFL, clients send their processed data (outputs from the client-side model)
to the server, where the server-side model continues training. After calculating
the loss and updating the gradient, the server adjusts the server-side model,
and the gradients of the processed data are sent back to the clients. Clients
then update the client-side model based on the gradient. By training part of
the model on the server, SFL significantly reduces the computational burden
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for resource-constrained devices. Collaborative training between clients and the
server ensures that the original data remains stored locally on the client, pre-
venting sensitive information disclosure. However, most studies primarily focus
on standard deep learning models such as CNN and RNN, with GNN-oriented
SFL being rarely studied. CNFGNN [19] can be regarded as an example of a
GNN-oriented SFL method. The GNN-oriented SFL method can truly unleash
the potential of graph models in modeling graph-structured data, as the input for
the GNN portion of the model is processed data rather than model parameters.

3 Problem Formulation

We introduce notions and definitions in this section, followed by a brief intro-
duction to the GNN-oriented split federated learning. Let us denote the client
graph constructed by the server as G = {V,E}, where V is the set of client
nodes, and E represents the edge set. vi ∈ V denotes the i-th client node in the
G. N = |V | is the number of client nodes (the number of clients). ci represents
the client corresponding to the client node vi. Let xt1:t2

i denotes the local graph
signals recorded between the timestamp t1 and t2 at client i . Xt1:t2 denotes the
graph signals observed at all clients between the timestamp t1 and t2.

The GNN-oriented split federated learning method aims to learn a client
model fi for each client ci, and a GNN modelfser for the server. At each time step
t, each client model ci uses an encoder fenc

i to extract local temporal embedding
ht
i according to x

(t−S:t)
i . Server model fser computes the spatial embeddings

{sti}Ni=1 according to G and the local temporal embeddings {ht
i}Ni=1 collected

from all clients. Each client model ci then uses a decoder fdec
i to output predic-

tion according to ht
i and sti. Thus, the mapping from S historical graph signals

X(t−S):t to future T graph signals X(t+1):(t+T ) can be achieved.

[X(t−S):t, G]
{fi={fenc

i ,fdec
i }}N

i=1,fser−−−−−−−−−−−−−−−−→ X(t+1):(t+T ) (1)

4 Methodology

Figure 1 shows the overall architecture of M3FGM, and we will cover the details
of the model in terms of the server model, the client model, and the training and
inference process, respectively.

4.1 Server Model

The MaskNode Layer: The MaskNode (MN) layer is employed exclusively
during the training phase. Prior to model training, we select a mask rate mr.
Upon feeding data into the MN layer, a certain number of client nodes, mr ×N ,
are randomly sampled. When mr × N is a noninteger, we round it down. The
uploaded local temporal embeddings of these sampled client nodes are replaced
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Fig. 1. The overall architecture of M3FGM

with a shared trainable tensor hs. The set of sampled nodes is denoted as Voff ,
while the set of remaining nodes is denoted as Von. The operation of the Mas-
kNode layer can be expressed by Eq. (2).

|{zin,0i = ht
i, if vi ∈ Von

zin,0i = hs, if vi ∈ Voff
| (2)

Zin,0 = {zin,0i }Ni=1 is the output of the MN layer and will be fed into the
first MGMP layer. When the model training is completed and deployed, if client
ci is offline, the server model will utilize the trained tensor hs as ht

i to con-
duct inference. Next, we briefly describe the differences between the MaskNode
operation and two related techniques. Unlike the DropEdge operation [21], the
MaskNode operation does not perturb the graph structure. In contrast to the
masked self-supervised task [11], we only replace the masked node embeddings
with shared trainable tensors. We do not attempt to reconstruct or forecast the
node embeddings.

Fig. 2. The structure of MGMP Layer
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The MGMP Layer: The MGMP layer employs the following three graph
structures for message passing: 1) client graph G = {V,E}, 2) cluster graph
GClu = {V Clu, EClu}, and 3) cross-level graph G→Clu = {V →Clu, E→Clu}.

The client graph G is constructed manually in a heuristic way. To obtain the
cluster graph GClu, we apply spectral clustering on the Laplacian matrix of the
client graph G and get M clusters. Each cluster is regarded as a coarse node
of the cluster graph GClu. Denote the set of client nodes in the m-th cluster as
V Clu
m ⊂ V . The edge of the cluster graph GClu is constructed based on the client

graph G, for example, if Vi ∈ V Clu
m and Vj ∈ V Clu

n , and the Vi connects to Vj in
client graph G, then the V Clu

m connects to V Clu
n in cluster graph GClu.

G→Clu is a bipartite graph for accelerating the message transfers. V →Clu =
V ∪ V Clu, E→Clu is the edge set contains directed edges which are from client
nodes in V to the cluster nodes in V Clu corresponding to the cluster of starting
node. The diagram of these three graphs is given on the left side of Fig. 1.

Figure 2 shows the internal structure of the l-th MGMP layer, which contains
three sub-layers with same backbone. The backbone can be any graph model. Let
us assume that the inputs of the l-th layer, which include the input embeddings
Zin,l = {zin,li }Ni=1 of client nodes and the input embeddings Zin,l

Clu = {zin,lm,c}Mm=1

of cluster nodes are known. In particular, Zin,0
Clu are calculated by Eq. (3):

zin,0m,c =
∑

vi∈V Clu
m

zin,0i /|V Clu
m |, m = 1, ...,M (3)

We will describe how client nodes can perceive the local and global infor-
mation with the help of MGMP. First, information is propagated on G→Clu

(sublayerl→Clu) so that the cluster nodes can perceive cluster-level information
from the client graph. Then, information is propagated on GClu(sublayerlClu)
to obtain Zl

Clu = {zlm,c}Mm=1 which represents the embeddings of cluster nodes.
Afterwards, the information on the cluster graph is passed back to the client
graph according to Eq. (4), where Zl∗ = {zl∗i }Ni=1 represents the embeddings
of the client nodes after perceiving the coarse-grained global information, W l

is a trainable matrix. Finally, fine-grained local information is propagated on
G(sublayerlCli) to obtain the Zl = {zli}Ni=1, which represents the embeddings of
client nodes.

zl∗i = zin,li ||W lzlm,c, vi ∈ V Clu
m (4)

Computational Flow of Server Model: The computational flow first passes
the MaskNode layer and subsequently passes two MGMP layers with residual
connection [10]. Note that we only add the residual connection to the input Zl.
The outputs of the last MGMP layer are sent back to clients.

4.2 Client Model

We employ the encoder-decoder architecture on each client for the modeling of
local temporal embeddings. Given an input sequence x

(t−S):t
i ∈ RS×D on the
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i-th client, the encoder sequentially reads the whole sequence and outputs the
hidden state ht

i as the temporal embedding of the input sequence.

ht
i = fenc

i (x(t−S):t
i ) (5)

The Dual-Sub-decoders Structure. Unlike the usual Encoder-Decoder archi-
tecture, to enable offline clients to make independent predictions, we propose the
dual-sub-decoders structure. As shown in Fig. 1, the dual-sub-decoders struc-
ture includes an online-sub-decoder and an offline-sub-decoder. The online-sub-
decoder fdec

i,on employs local temporal embedding ht
i and spatial embedding sti to

generate the predictions x̂
(t+1):(t+T )
i,on . The offline-sub-decoder fdec

i,off only employs

local temporal embedding to output predictions x̂
((t+1):(t+T )
i,off .

x̂
(t+1):(t+T )
i,on = fdec

i,on(ht
i, s

t
i) (6)

x̂
((t+1):(t+T )
i,off = fdec

i,off (ht
i) (7)

The backbone of Encoder and dual-subdecoders can be any model. In exper-
iments, for fair, we use GRU as the backbone.
Loss Function. To train the two sub-decoders alternately, we designed
two loss functions: Lo

in and Loff
i , By taking a single training sample

(x(t−S):t
i ,x(t+1):(t+T )

i ) owned by client ci as an example, the two loss functions
are as follows:

Lon
i =

∑T
k=1(x

t+k
i − x̂t+k

i,off )2/T (8)

Loff
i =

∑T
k=1(x̂

t+k
i,off − x̂t+k

i,off )2/T (9)

It can be observed that Loff
i is MSE function between the outputs of the two

sub-decoders. This design aims to bring the prediction of offline-sub-decoder as
close as feasible to online-sub-decoder.

4.3 Training and Inference Process

Training Step. We use the alternating training method proposed in [19] to train
our model to reduce communication consumption. The training and inference
process of M3FGM is slightly different from [19] because of the dual-subdecoders
architecture. Here we briefly describe the training process:

Step 1: Initially, the clients’ models are trained for Rc round with the server
model and spatial embeddings fixed. Taking client i for example, in each round,
the offline-sub-decoderfdec

i,off is fixed, and the encoder fenc
i and online-sub-

decoder fdec
i,on are trained by minimizing Lon

i . Then the fenc
i and fdec

i,off are fixed
and the fdec

i,off is trained by minimizing Loff
i .

Step 2: After completing Rc round, all clients’ model parameters {θc,i}Ni=1 and
local temporal embeddings {ht

i}Ni=1 are uploaded to the server, and then the
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Algorithm 1. Training pipeline for M3FGM with one training sample

Require: Client graph G and data
(X(t−S):t, X(t+1):(t+T )). Initial each
client model weights as θc =
{θenc, θdec

on , θdec
off}, initial server model

weights θserver. Initial spatial embed-
dings {sti}N

i=1 = s0, s0 is a zero-valued
vector. Masknode rate mr.

Ensure: Trained client model weights θc,
trained server model weights θserver

1: for global training round rg =
1, 2, ...Rg do

2: Step 1:
3: for client i(i = 1, ..., N) in parallel

do
4: for local training round rc =

1, 2, ...Rc do
5: fenc

i (x
(t−S):t
i ) → ht

i

6: fdec
i,on(ht

i, s
t
i) → x̂

(t+1):(t+T )
i,on

7: fdec
i,off (ht

i) → x̂
(t+1):(t+T )
i,off

8: Calculate Lon
i and Loff

i

according to Equations (8) and
(9)

9: update {θenc
i , θdec

i,on} according
to Lon

i

10: update θdec
i,off according to

Loff
i

11: end for
12: end for

13: Step 2:
14: Send latest embedding {ht

i}N
i=1 and

the client model weights {θc,i}N
i=1 to

the server
15: Fix all client models’ weights.
16: for server training round rs =

1, 2, ...Rs do
17: construct cluster graph Gclu and

cross-level graph G→Clu accord-
ing to client graph G

18: fserver({ht
i}N

i=1, G, Gclu, G→Clu,
mr) → {sti}N

i=1

19: send {sti}N
i=1 to corresponding

clients
20: fdec

i,on(ht
i, s

t
i) → x̂

(t+1):(t+T )
i,on , i =

1, ..., N
21: Calculate

∑N
i=1 Lon

i and update
θserver

22: end for
23: Step 3:
24: Update latest graph embedding

{sti}N
i=1

25: Use FedAvg to aggregate
{θc,i}N

i=1 → θc
26: {sti}N

i=1 is send to corresponding
clients respectively and θc is send to
all clients as the new model weights
for next global training round.

27: end for

training of the server model begins for Rs rounds with clients’ model fixed.∑N
i=1 Lon

i is used to update the server model.

Step 3: Once the server model is trained, the FedAvg algorithm [18] is employed
by the server to aggregate {θc,i}Ni=1 to obtain θc. The server subsequently sends
θc back to all clients and spatial embeddings {sti}Ni=1 are returned to their cor-
responding clients.

The above process is repeated Rg times.

Inference Step. If a client can connect to the server, the client feeds its local
data to the encoder to obtain local temporal embedding, then upload embedding
to the server to compute spatial embedding. After that, the client receives the
spatial embedding transmitted back by the server and makes predictions using
the online-sub-decoder. Conversely, when a client is unable to establish a connec-
tion to the server, it utilizes the encoder and offline-sub-decoder independently
to make predictions.
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5 Experiments

5.1 Datasets

Traffic data are commonly in the format of spatial-temporal graphs. We verify
M3FGM on two real-world traffic datasets: METR-LA and PEMS-BAY, which
are released by Li et al. [14]. (1) METR-LA: which records traffic speed informa-
tion collected from 207 loop detectors in the highway of Los Angeles County over
4 months. (2) PEMS-BAY: which contains 6 months of traffic speed information
ranging on 325 sensors in the Bay Area.

For both two datasets, the readings of sensors are aggregated into 5 min
windows. We standardize the data by removing the mean and scaling to unit
variance. And then we split 70% into training set, 20% into testing set and
10% into validation set, in chronological order. And We adopt the same data
pre-processing method as [19].

5.2 Compared Models and Settings

Since our primary focus is on the architecture of the federated graph, rather
than the specific models, we have not made comparisons with some SOTA cen-
tralized spatial-temporal graph methods. We follow the setup of [19], compar-
ing M3FGM with four baselines. We compare M3FGM with 4 baselines: GRU,
GRU+ FedAvg, GRU+FMTL [24] and CNFGNN. These baselines all use the
GRU-based encoder-decoder model [5] as the client-side model. For each base-
line, there are 2 variants of the GRU model to show the effect of on-device model
complexity: one with 63K parameters and the other with 727K parameters. For
CNFGNN, the encoder-decoder model on each client has 64K parameters and
the GN model has 1M parameters. The experimental results of the baseline
models, as reported in [19], are utilized in the subsequent analysis. Addition-
ally, to facilitate an objective ablative analysis, two variant models have been
constructed: CNFGNN+MN : Add the MaskNode layer to the server model of
CNFGNN. M 3FGM w/o MN: M3FGM without MaskNode layer.

We conduct experiments under two scenarios to verify the effectiveness of our
model: an ideal scenario in which all nodes are online during the inference phase
and a non-ideal scenario in which some nodes are offline during the inference
phase. To ensure fair evaluation and comparison, GRU is used as the backbone
of the encoder and sub-decoder in the client model when implementing M3FGM
and M3FGM w/o MN. To optimize the model, the Adam optimizer is employed
with a learning rate set at 1e−3. The root mean squared error (RMSE) metric
is utilized to evaluate the predictive performance.

5.3 Performance Comparison Under the Ideal Scenario

Table 1 reveals that M3FGM achieves the lowest prediction error on both
datasets. Specifically, M3FGM and CNFGNN demonstrate superior performance
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Table 1. Comparison of performance with the Rooted Mean Squared Error (RMSE)
as the evaluation metrics.

Method PEMS-BAY METR-LA

GRU (central,63k) 4.124 11.730

GRU (central,727k) 4.128 11.787

GRU+GN (central,64k+1M) 3.816 11.471

GRU (local,63k) 4.010 11.801

GRU (local,727k) 4.152 12.224

GRU (63k)+FedAvg 4.512 12.132

GRU (727k)+FedAvg 4.432 12.058

GRU (63k)+FedMTL 3.9561 11.548

GRU (727k)+FedMTL 3.955 11.570

CNFGNN (64k+1M) 3.822 11.487

CNFGNN (64k+1M) +MN 3.831 11.504

M3FGM w/o MN 3.697 11.371

M3FGM (mr = 25%) 3.684 11.352

compared to GRU+FedAvg and GRU+ FedMTL by taking into account the spa-
tial correlation of client nodes.
Ablation Analysis: In Table 1: 1) M3FGM outperforms M3FGM w/o MN,
indicating that the MaskNode layer contributes to enhanced prediction perfor-
mance under the ideal scenario. 2) M3FGM w/o MN surpasses CNFGNN. Given
that the client models of the two methods share the same structure under the
ideal scenario, this result suggests that the MGMP Layer is instrumental in
improving prediction performance. 3) CNFGNN+MN exhibits slightly inferior
performance compared to CNFGNN on both datasets. We hypothesize that this
is because the server model of CNFGNN+MN struggles to aggregate valuable
information within a few message-passing steps when certain node embeddings
are masked. In contrast, M3FGM with the MGMP layer addresses this issue by
passing neighbor and global information.

5.4 Performance Comparison Under the Non-Ideal Scenario

To simulate non-ideal situations, we set two different client offline rates: 25%
and 35%. We calculate the RMSE of the models separately for online and offline
nodes. Given that each client of GRU (local) makes predictions independently
during the inference phase, we also compare M3FGM with GRU (local). We find
that the prediction performance of M3FGM on offline clients surpasses that of
GRU (local) on all clients. The results show that the training method adopted
by M3FGM enables the offline-sub-decoder, which is used for local indepen-
dent prediction, to outperform GRU (local). Moreover, M3FGM exhibits better
robustness than CNFGNN as the offline rate increases. Comparing the predic-
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Table 2. Performance comparison under the non-ideal scenario

online|offline 75%|25% 65%|35%

270PEMS-BAY GRU (local) 4.010 4.010

CNFGNN 3.972|∗ 4.232|∗
CNFGNN+MN (mr = 10%) 3.904|∗ 4.163|∗
M3FGM w/o MN 3.837|3.967 4.021|3.969

M3FGM (mr = 25%) 3.741|3.934 3.836|3.938

270METR-LA GRU (local) 11.801 11.801

CNFGNN 11.637|∗ 11.809|∗
CNFGNN+MN (mr = 10%) 11.563|∗ 11.704|∗
M3FGM w/o MN 11.516|11.787 11.633|11.788

M3FGM (mr = 25%) 11.423|11.782 11.513|11.782

tion error of M3FGM with CNFGNN on online nodes, the increase rate of RMSE
is 2.5% vs. 6.5% on PEMS-BAY and 0.8% vs. 1.5% on METR-LA.
Ablation Analysis: Upon analyzing the results in Table 2, we observe that 1)
CNFGNN+MN outperforms CNFGNN on online clients, and M3FGM surpasses
M3FGM w/o MN on both online and offline clients. These results demonstrate
that the MaskNode layer improves the model’s robustness. 2) Comparing the
experimental results of M3FGM and CNFGNN+MN on online clients, we deduce
that employing the MGMP layer enhances the prediction performance on online
clients under the non-ideal scenario. This finding highlights the importance of
incorporating the MGMP layer in non-ideal scenarios to achieve improved pre-
diction accuracy and model robustness.

5.5 Effect of Mask Node Rate and Discussion

In order to investigate the effect of mask rate on model prediction performance,
we selected five mask rates to train M3FGM: 10%, 20%, 25%, 30%, and 40%,
and conducted inference on two datasets under different offline rates:0%, 25%,
35%. Figure 4 displays the performance of the model on online nodes. From these
results, it can be observed that: (1) On the two datasets, it is not the case that the
lower or higher the mask rate, the better. When the offline rate is fixed, compared
to other mask rates, selecting a mask rate closer to the offline rate leads to better
performance of the model. When the offline rate is 0%, which is the ideal scenario,
choosing a mask rate within the range of 10% to 25% would be better. (2) When
the mask rate is fixed, as the offline rate increases, the performance of model
decreases. (3) The prediction error of the model on the PEMS-BAY dataset is
significantly lower than that on the METR-LA dataset. However, the model’s
performance on the PEMS-BA dataset exhibits greater fluctuations with mask
rate variation compared to its performance on the METR-LA dataset.

To understand the underlying principles of these trends, we analyzed the data
used in the experiments. We selected six nodes from the first 100 nodes ranked by
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Fig. 3. Data distribution of training set data and test set data

Fig. 4. Comparison of performance under different mask rate and offline rate with
RMSE.
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their IDs in METR-LA and PEMS-BAY and illustrated the statistical histogram
of traffic speed of training data and test data of different nodes of METR-LA
and PEMS-BAY in Fig. 3(a) and (b), respectively. The analysis revealed the
following key insights: (1) On the METR-LA dataset, the histograms show that
the data distribution varies with nodes, and most importantly, their training and
test data distributions exhibit considerable discrepancies. (2) On the PEMS-BAY
dataset, however, the differences between the training and test data distributions
are much smaller. Additionally, the data distributions among different nodes are
more similar to each other.

Based on this analysis, we can conclude that on the METR-LA dataset, exist-
ing a strong shift in data distribution. The occurrence of data distribution shift
can result in a significant decline in the predictive performance of a model. For
instance, when employing traffic forecasting model trained on the data collected
in sunny days for rainy or foggy environments, inevitable performance drop can
often be observed in such scenarios. Because the trained models tend to overfit
the training data and show vulnerability to the statistic changes at testing time,
substantially limiting the generalization ability of the learned representations.
Thus, selecting an appropriate mask rate can effectively prevent model over-
fitting and reduce prediction errors. In contrast, The data distribution among
various nodes in the PEMS-BAY dataset is relatively similar, and the differences
between the training data distribution and the testing data distribution within
each node are not substantial. This suggests that the correlation among nodes
in the PEMS-BAY dataset is stronger, resulting in a more significant impact of
the offline rate and mask rate on the model’s performance. These observations
above emphasize the importance of selecting an appropriate mask rate based on
the specific characteristics of the dataset to achieve optimal model performance.

6 Conclusion

In this paper, we propose a new GNN-oriented split federated learning method,
named node Masking and Multi-granularity Message passing-based Federated
Graph Model (M3FGM) specifically developed for spatial-temporal data pre-
diction in scenarios where data decentralization is imperative due to privacy
concerns. We improve robustness of model by introducing the MaskNode layer
and the proposed dual-sub-decoders structure enables independent offline pre-
diction. In addition, a new GNN layer named Multi-Granularity Message Passing
(MGMP) layer enables each client node to perceive global and local information
in a short message passing steps. We conducted evaluations under both ideal
and non-ideal scenarios, the comprehensive experimental results demonstrate
the superiority of the proposed M3FGM model in comparison to existing meth-
ods in terms of prediction accuracy and robustness under various conditions.
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Abstract. Source code summarization aims at generating brief descrip-
tion of a source code. Existing approaches have made great break-
throughs through encoder-decoder models. They focus on learning com-
mon features contained in translation from source code to natural lan-
guage summaries. As a result, they tend to generate generic summaries
independent of the context and lack of details. However, specific sum-
maries which characterize specific features of code snippets are widely
present in real-world scenarios. Such summaries are rarely studied as cap-
turing specific features of source code would be difficult. What’s more,
only the common features learned would result in only the generic short
summaries generated. In this paper, we present LenANet to generate
specific summaries by considering the desired length information and
extracting the specific code sentence. Firstly, we introduce length offset
vector to force the generation of summaries which could contain specific
amount of information, laying the groundwork for generating specific
summaries. Further, forcing the model to generate summaries with a
certain length would bring in invalid or generic descriptions, a context-
aware code sentence extractor is proposed to extract specific features
corresponding to specific information. Besides, we present a innovative
sentence-level code tree to capture the structural semantics and learn
the representation of code sentence by graph attention network, which is
crucial for specific features extraction. The experiments on CodeXGLUE
datasets with six programming language demonstrate that LenANet sig-
nificantly outperforms the baselines and has the potential to generate
specific summaries. In particular, the overall BLEU-4 is improved by
0.53 on the basis of CodeT5 with length control.

Keywords: code summarization · length control · code splitting ·
graph attention network

1 Introduction

Source Code Summarization aims at automatically generating summaries in nat-
ural language for the function and purpose of identifiers from structured code
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 567–578, 2024.
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Fig. 1. The motivation of our approach. (a) An example comes from the CodeXGLUE
dataset for code summarization. (b) BLEU-4 of CodeT5 for reference summaries with
different length intervals

snippets [10,15,20], which is crucial for maintaining software development effi-
ciency and reducing developers’ tedious workload.

Recently, code summarization is treated as a task of Machine Translation,
which usually adopts encoder-decoder framework and Seq2seq models [1,3,8,22].
These endeavors depend on sequential models, facing challenges in capturing the
structural semantics of source code. Thus some recent works [18,22] attempted
to encode code structure (e.g. abstract syntax tree) to incorporate structural
semantics, but it is still difficult to capture the sentence-level semantics. In addi-
tion, models pre-trained on programming language [5,24] have achieved impres-
sive improvements on code summarization and many other code-related tasks.
Even so, these models for code summarization focus on learning common and
united translation from source code to natural language summaries, but ignore
discrepancies of source codes and corresponding summaries (e.g. only the file-
related code needs to determine whether the certain file exists). As a result, they
tend to generate generic summaries independent of the context, yet do not
perform well generating specific summaries which match the unique corre-
sponding code snippet.

As illustrated in Fig. 1(a), the generated summaries of Codet5 with and with-
out length offset is different. They are same at “Remove the sandbox directory”,
which is the function of source code and applies to any code snippets that include
sandbox directory, regardless of the condition. But “if they exist under the par-
ent dir” is the specific description only matching the above source code. After
introducing length offset, we note that “Remove a directory from the sandbox
directory if it exists” is almost as long as the reference summary, but it also
results in generating some invalid information as noise, which means existing
methods still have difficult in extracting accurate and specific features in codes
to fill in the summaries, even if given the desired length.
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In addition, we have compared BLEU-4 scores of generated summary for
three different length intervals (of reference summaries): [0, 10), [10, 20), [20, -)
on six programming language of CodeXGLUE dataset. As shown in Fig. 1(b),
the performance of the SOTA significantly experiences a notable decline as the
length of reference summary is longer. Specifically, overall results are 26.23 and
4.30 for length intervals [0, 10) and [20, -), which differ by 21.93. It’s obvious
that the result of [0,10) is overall 6.68 higher than the entirety result. But for
summaries whose length exceeding 20, the result is overall 15.25 lower than
entirety. This situation suggests that existing models have the ability to generate
shorter summaries, but they fail to generate summaries whose length exceeding
20. As a result, the desired length of code summaries plays a key role to specific
summaries, which tend to be longer than generic summaries.

Based on the above findings, we present LenANet, a length-controllable
attention network that adaptively generates specific summaries via introduc-
ing length offset. As shown in Fig. 2, we first introduce the length offset to
force the model to generate summaries with specific length corresponding to
different amounts of information, laying the groundwork for generating specific
summaries. Then, a novel sentence-level code tree is constructed to capture the
structural semantics. Lastly, a graph attention network is employed to reason
the relationship among code sentences and further select key code sentences rep-
resenting specific features of source codes. In addition, experiments conducted
on the CodeXGLUE dataset have shown that our model is significantly superior
to the baselines in all six programming language subdataset. In particular, the
overall BLEU-4 is improved by 0.53 on the basis of CodeT5 with length control.
Further, it is verified that the performance of our model is improved to a certain
extent in all three length intervals.

In a nutshell, the contributions of our work are listed as follows:

– We propose a framework called LenANet to generate code summaries through
adaptively length control, which introduces a length offset for generating spe-
cific summaries.

– We create an innovative sentence-level code tree, which is applied to capture
the sentence-level structural semantics of code snippets.

– We propose a context-aware code sentence extractor that employs a GAT to
reason the relationship among code sentences and extract key sentences to
obtain the specific features.

2 Method

In this section, we present a comprehensive overview of our methodology. It
mainly contains four components: Encoder-Decoder Framework, Length Offset
Vector, Sentence-level Code Tree Construction and Attention-based Code Sen-
tence Extractor.



570 P. Chen et al.

Fig. 2. The overall of LenANet.

2.1 Encoder with Length Offset Vector

Given a code snippet C containing a set of tokens C = {token1, token2, ...,
tokenn}, code summarization aims at generating a summary S in natural lan-
guage to describe C. S is consisted of a sequence of tokens S = {s1, s2, ..., sL},
where L denotes the length of S. Following prior works [1,5], our approach adopt
encoder-decoder framework and encode code tokens using Transformer-based
models that leverage the multi-head self-attention module. Fusing the length
information makes it possible for the encoder to decide the importance of the
tokens based on the specific desired length of the summary and encode better.
In this paper, we directly add the length offset vector to the input sequence to
modify the desired summary length of encoded sequence. Ambiguous length off-
set vector denotes the desired length interval (short for 0∼10 tokens, median for
10∼20 tokens and long for 20+ tokens), while specific length offset vector denotes
the specific length, which is suitable for more accurate length control. We have
tried both two types of length offset vectors and chose ambiguous length offset
vector which is more flexible.

2.2 Sentence-Level Code Tree

In this section, we devise an innovative sentence-level code tree to capture the
sentence-level structural information of code snippets.

A Sentence-level Code Tree (SCT), denoted as T = (V,E), is a undirected
graph in which each node V corresponds to a statement along with its respective
feature and each edge E signifies the hierarchical relationship between state-
ments. As shown in Algorithm 1, initially, we split source code into n code
sentences as tree nodes, V = {v1, v2, ..., vn}. Then, the source code is traversed



LenANet 571

Algorithm 1: Sentence-Level Code Tree Construction.
Input: Source code snippets: C; Code sentences: Si.
Output: The sentence-level code tree: T .

1 Initialize v0 := the first node in V ; c0 := the first code line in C; T := an
empty tree;

2 for vi in V and ci in C, i ∈ {1, 2, ..., n} do
3 Ii := the indentation of ci;
4 Ii−1 := the indentation of ci−1;
5 if Ii > Ii−1 then
6 The parent node of vi is vi−1;
7 AddNode(vi, T);

8 else if Ii = Ii−1 then
9 The parent node of vi is the parent node of vi−1;

10 AddNode(vi, T);

11 else
12 j := i;
13 repeat
14 Ij := the indentation of ci−1;
15 if Ij = Ii then
16 The parent node of vi is the parent node of vj ;
17 AddNode(vi, T);
18 Break

19 until j = 0;

20 return T

to delineate the relationship between nodes. The indentation of adjacent code
sentences (i.e. nodes) is applied to establish the presence of edges between nodes.
Specifically, if the indentation of current code sentences is shorter than the pre-
vious code sentences, then the current code sentences is the child of previous.
The two code sentences are sibling nodes on condition that the same indentation.
And while the indentation of current code sentences is longer, preceding nodes
are traversed to find the code sentences with the same indentation as sibling
node. The SCT T will be applied in graph reasoning to extract key statements.

2.3 Context-Aware Code Sentence Extractor

As mentioned earlier, specific summaries not only describes the function of the
code snippet, but also focus on the specific information (e.g. scope of a variable),
which is corresponding to the specific sentences in source code. As a result, we
present a Context-aware Code Sentence Extractor (CCSE), which is applied to
reason the relationship among code sentences and extract key sentences as key
feature.

Specifically, a graph attention networks (GAT [23]) is applied to reason the
relationship among code sentences. The input comprises a collection of node
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features from the Sentence-level Code Tree. The node features are sentence-level
features aggregated from encoded code tokens H = {h1,h2, . . . ,hn} ,hi ∈ R

F ,
where N represents the number of code tokens and F represents the dimension
of features of each token. The output is H′ = {h′

1,h
′
2, . . . ,h

′
n} ,h′

i ∈ R
F ′

, where
F ′ is potentially different cardinality. Then, CCSE takes in the graph-encoded
presentation and employ a full connected layer to score the centrality of each
statement. Next, key statement with the highest score will be fused into the
hidden states H, which is fed into decoder and generate code summaries. When
training time, we fuse H, the output of GAT H′ and the embedding of the
Ground-truth sentences as follows:

efuse = [H,H′, EGround−truth] (1)

when test time, we fuse H, H′ and the embbedding of the predicted sentences
as follows:

efuse = [H,H′, Epredicted] (2)
To make CCSE more effective, Ground-truth labels of sentences are produced
heuristically to train the extractor. Denoting the labels of sentences as L =
[l1, l2, ...., lm] where li ∈ [0, 1], we set the label of the most prominent statement
to 1 and others to 0. To obtain the heuristic labels, we measure the importance
and informativity of sentences by computing the co-occurrence frequency of the
sentences and the reference summaries.

3 Experiments

3.1 Experimental Setup

Datasets. Our experiments are conducted on CodeXGLUE dataset [14], includ-
ing 14 sub-datasets that span 10 diversified code intelligence tasks. For our
experimentation, we focus on the code-text dataset, specifically targeting code
summarization. It encompasses six programming languages (i.e., Python, Java,
JavaScript, PHP, Ruby and Go). Following CodeT5 [24], we adopt smoothed
BLEU-4 as automatic metrics.

Hyper-parameter. During the training phase, we configure the learning rate
to 5e−5, the batch size to 8, and limit the maximum epochs to 5. Our method
are based on codet51 with AdamW optimizer and dropout of 0.2. Moreover, we
establish the maximum source length at 256 and the maximum target length at
128. Patience is used to early stop training which is set to 2 in our approach.

Pre-processing. The dataset we used is originally from CodeSearchNet [13].
Based on CodeSearchNet, CodeXGLUE refine it by four methods. (e.g. Removed
the examples which can be parsed into Abstract Syntax Tree.) What’s more, we
split the source code by line for constructing a sentence-level code tree. Two
extra tokens, <extra id 0> and <extra id 1>, are inserted into the start and
end of each code sentence.
1 https://github.com/salesforce/CodeT5.

https://github.com/salesforce/CodeT5
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Table 1. The BLEU-4 of our approach compared with other baselines

Models Go Java JavaScript PHP Python Ruby Overall

Seq2Seq 13.98 15.09 10.21 21.08 15.93 9.64 14.32

Transformer 16.38 16.26 11.59 22.12 15.81 11.18 15.56

RoBERTa 17.72 16.47 11.90 24.02 18.14 11.17 16.57

CodeBERT 18.07 17.65 14.90 25.16 19.06 12.16 17.83

DOBF - 19.05 - - 18.24 - -

PLBART 18.91 18.45 15.56 23.58 19.30 14.11 18.32

CodeT5 19.56 20.31 16.16 26.03 20.01 15.24 19.55

CodeT5(+length) 21.94 23.14 18.71 28.15 21.29 17.56 21.71

LenANet (ours) 22.41 24.08 18.91 28.50 21.14 18.37 22.24

3.2 Baselines

We consider two categories of state-of-the-art models as our baselines for compar-
ison. In addition to basic methods in the field of text generation such as Seq2Seq
[21], Transformer and RoBERTa [13], We compare with the SOTA models pre-
trained on code and natural languages, including CodeBERT [6], DOBF [17],
PLBART [2] and CodeT5 [24].

CodeT5 [24] is a novel pre-trained encoder-decoder model for programming
languages, which is pre-trained using a corpus of 8.35M functions in 8 program-
ming languages. It achieves state-of-the-art performance on multiple code-related
downstream tasks including code-text generation tasks.

3.3 Main Results

As shown in Table 1, the overall BLEU-4 of our approach is 22.24, which achieves
the best performance. We can observe a significant improvement from 20.31
to 24.08 in Java. In addition, the improvement on the Ruby dataset is more
pronounced than the others, which means that our approach is also adaptive for
smaller datasets. On the basis of only training with length offset, the model with
SCT and CCSE is more effective. By acquiring an understanding of the structural
semantics within source code, it is capable of generating specific summaries with
extracting specific features.

4 Discussion

4.1 Specific Feature Selection Without Length Offset

To demonstrate the efficiency of Sentence-level Code Tree and Context-aware
Code Sentence Extractor, we conduct further experiment without introducing
length offset.
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Table 2. The BLEU-4 of CodeT5 and our approach for reference summaries of different
length ranges. ‘↑’ denotes the result is better than the entirety and ‘↓’ denotes the result
is worse than the entirety.

model Length Go Java JavaScript PHP Python Ruby Overall

CodeT5 Entirety 19.56 20.31 16.16 26.03 20.01 15.24 19.55

[0, 10) 28.02(↑ 8.46) 28.61(↑ 8.30) 22.13(↑ 5.97) 32.34(↑ 6.31) 25.21(↑ 5.20) 21.05(↑ 5.81) 26.23(↑ 6.68)

[10, 20) 20.16(↑ 0.60) 16.48(↓ 3.83) 13.14(↓ 3.02) 15.30(↓ 10.73) 15.81(↓ 4.20) 13.78(↓ 1.46) 15.78(↓ 3.77)

[20, – ) 6.59(↓ 12.97) 4.64(↓ 15.67) 3.86(↓ 12.30) 4.51(↓ 21.52) 3.44(↓ 16.57) 3.27(↓ 11.97) 4.30(↓ 15.25)

LenANet Entirety 22.41 24.08 18.91 28.50 21.14 18.37 22.24

[0, 10) 29.94(↑ 7.53) 31.86(↑ 7.78) 24.11(↑ 5.20) 33.50(↑ 5.00) 26.17(↑ 5.03) 23.86(↑ 5.49) 28.24(↑ 6.00)

[10, 20) 21.41(↓ 1.00) 18.17(↓ 5.91) 15.69(↓ 3.22) 19.19(↓ 9.31) 17.10(↓ 4.04) 15.20(↓ 3.17) 17.79(↓ 4.45)

[20, – ) 11.95(↓ 10.46) 10.66(↓ 13.42) 9.15(↓ 9.76) 12.03(↓ 16.47) 9.61(↓ 11.53) 9.00(↓ 9.37) 10.40(↓ 11.84)

Table 3. The BLEU-4 scores of LenANet without length offset

Go Java Javascript PHP Python Ruby Overall

Codet5 19.56 20.31 16.16 26.03 20.01 15.24 19.55

Ours 19.44 20.61 16.06 26.26 20.59 15.50 19.74

As shown in Table 3, our overall results achieve better BLEU-4 than CodeT5.
Comparable outcomes are evident in previous experiment (Table 1). Experimen-
tal results indicate that our approach is more effective on the basis of length
offset. Without length offset, our approach improve by only 0.19, while applying
our framework can improve by 0.53 with length offset. What’s more, specific fea-
ture selection is important whatever the desired length of the summary. But it’s
easy to see that CCSE plays a more critical role in generating long summaries
from Table 2.

4.2 Visualization Analysis

Fig. 3. Test result for different length offsets in the test set of Ruby.
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Experimental Result for Each Length Offset. In this subsection, we visu-
alize the experimental result of Ruby dataset for each length offset. As shown
in Fig. 3, adding length offset performs significantly better compared with the
baseline, especially for longer summaries, which demonstrates that length infor-
mation is important for planning the content of the summaries. What’s more,
our method further promote the quality of the summaries.

Sentence-Level Graph Encoding. To visualize the sentence-level graph
encoding, we draw the attention scores among code sentences by heat map.
As shown in Fig. 4, Sentence-level Code Tree with Context-aware Code Sentence
Extractor encodes the sentence-level structural semantics well. For example, the
high attention scores among sentences 4˜6 demonstrate the structural informa-
tion of the loop statements. And the high attention scores between sentences 0
and 7 demonstrate that return function represents exit of the whole program.

Fig. 4. An example of sentence-level graph encoding.

5 Related Work

5.1 Code Summarization

As a pivotal research topic in software engineering, code summarization has
garnered substantial attention in recent years. Most methods on code summa-
rization can be primarily categorized as rule based approaches [19] and deep
learning based approaches [1,3,8]. For example, Moreno et al. [16] select key
information for the code heuristically and combine the information based on
rules. However, rule-based approaches are constrained by the quality and diver-
sity of the rules and have difficult in generating high-quality summaries. Recently,
most works concentrate on deep-learning-based approaches. To generate better
summaries, there exists numerous models include RNN [8,26] and Transformers
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[1,22]. What’s more, Pre-trained models for programming language [5,24] have
achieved impressive improvements on code summarization.

Recent works mainly focus on the structural features of the code. For exam-
ple, Abstract Syntax Tree (AST), Data Flow Graph (DFG) and other parsed
forms are encoded to obtain the structure information to help with summariza-
tion [18,22]. In addition, since code duplication is common in “big code”, some
studies search for similar codes and summaries based on information retrieval for
code summarization [12,25]. Our approach pays attention to the length of the
summaries for the first time to help with information selection and generated
content planning. More importantly, noticed that some summaries may focus on
key statements, our work encode the relation of the statements instead of the
relations of the tokens.

5.2 Controllable Text Generation

Controllable text generation seeks to enhance the manageability of the generated
text, ensuring alignment with intended expectations. Various strategies exist for
enabling controlled content generation within an unconditioned language model,
including decoding strategies, smart prompt design and fine-tune. To mitigate
the recurrent issue of producing duplicate substrings, CTRL [9] introduced a
sampling method that penalizes repetitions by reducing the scores attributed
to previously generated tokens. Nucleus sampling [7] elects a compact set of
top candidates whose cumulative probability surpasses a threshold (e.g., 0.95),
subsequently recalibrating the distribution among these chosen options. Prompt
Tuning [11] simplifies the concept of prefix tuning by permitting the addition of
only a certain number of tunable tokens per downstream task to the input text,
a tactic conducive to controllable text generation. Recently, many researchers
adopt fine-tuning to control text generation, commonly by training on supervised
datasets or by reinforcement learning. PPLM [4] updates the gradient according
to the target text through the small differentiable attribute model, then the
gradient is transmitted back to the language model to control the gradient to
control over the pre-trained language model.

6 Conclusions

In this paper, we present LenANet to generate specific summaries by considering
the desired length information and extracting the specific feature contained in
specific code sentences. Firstly, We introduce length offset vector to determine
the amount of specific information as well as the length of summary. Further, to
extract corresponding specific feature, a context-aware code sentence extractor
is proposed to extract specific information of the source code. Additionally, we
present a novel sentence-level code tree to capture the structural information
and acquire the representation of code sentence by GAT. Experimental results
demonstrate the superiority of LenANet on CodeXGLUE datasets with six pro-
gramming language. What’s more, further experiments and discussions verified
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that our approach has the potential of length control and specific summaries
generation.

References

1. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.: A transformer-based approach
for source code summarization. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5–10, 2020, pp.
4998–5007. Association for Computational Linguistics (2020)

2. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.: Unified pre-training for pro-
gram understanding and generation. CoRR abs/2103.06333

3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme
summarization of source code. In: Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19–24, 2016.
JMLR Workshop and Conference Proceedings, vol. 48, pp. 2091–2100. JMLR.org

4. Dathathri, S., et al.: Plug and play language models: a simple approach to con-
trolled text generation. In: 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020. OpenReview.net

5. Feng, Z., et al.: Codebert: a pre-trained model for programming and natural lan-
guages. In: Findings of the Association for Computational Linguistics: EMNLP
2020, Online Event, 16–20 November 2020. Findings of ACL, vol. EMNLP 2020,
pp. 1536–1547. Association for Computational Linguistics (2020)

6. Feng, Z., et al.: Codebert: a pre-trained model for programming and natural lan-
guages. CoRR abs/2002.08155

7. Holtzman, A., Buys, J., Forbes, M., Choi, Y.: The curious case of neural text
degeneration. CoRR abs/1904.09751

8. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using
a neural attention model. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, August 7–12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for Computer Linguistics (2016)

9. Keskar, N.S., McCann, B., Varshney, L.R., Xiong, C., Socher, R.: CTRL:
a conditional transformer language model for controllable generation. CoRR
abs/1909.05858

10. LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via
a graph neural network. In: ICPC ’20: 28th International Conference on Program
Comprehension, Seoul, Republic of Korea, July 13–15, 2020, pp. 184–195. ACM
(2020)

11. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. CoRR abs/2104.08691

12. Liu, S., Chen, Y., Xie, X., Siow, J.K., Liu, Y.: Retrieval-augmented generation for
code summarization via hybrid GNN. In: 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021. OpenRe-
view.net

13. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR
abs/1907.11692

14. Lu, S., et al.: Codexglue: a machine learning benchmark dataset for code under-
standing and generation. CoRR abs/2102.04664

15. McBurney, P.W., McMillan, C.: Automatic source code summarization of context
for Java methods. IEEE Trans. Softw. Eng. 42(2), 103–119 (2016)



578 P. Chen et al.

16. Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L.L., Vijay-Shanker, K.:
Automatic generation of natural language summaries for java classes. In: IEEE 21st
International Conference on Program Comprehension, ICPC 2013, San Francisco,
CA, USA, 20–21 May, 2013, pp. 23–32. IEEE Computer Society (2013)

17. Rozière, B., Lachaux, M.A., Szafraniec, M., Lample, G.: Dobf: A deobfuscation
pre-training objective for programming languages. In: NeurIPS

18. Shido, Y., Kobayashi, Y., Yamamoto, A., Miyamoto, A., Matsumura, T.: Auto-
matic source code summarization with extended tree-lstm. In: International Joint
Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14–19,
2019, pp. 1–8. IEEE (2019)

19. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards
automatically generating summary comments for java methods. In: ASE 2010,
25th IEEE/ACM International Conference on Automated Software Engineering,
Antwerp, Belgium, September 20–24, 2010, pp. 43–52. ACM (2010)

20. Sun, W., et al.: An extractive-and-abstractive framework for source code summa-
rization. CoRR abs/2206.07245 (2022)

21. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. CoRR abs/1409.3215

22. Tang, Z., Li, C., Ge, J., Shen, X., Zhu, Z., Luo, B.: Ast-transformer: encoding
abstract syntax trees efficiently for code summarization. In: 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2021, Melbourne,
Australia, November 15–19, 2021, pp. 1193–1195. IEEE (2021)
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Abstract. Solving object similarity remains a persistent challenge in the field
of data science. In the context of e-commerce retail, the identification of substi-
tutable and similar products involves similarity measures. Leveraging the multi-
modal learning derived from real-world experiences, humans can recognize sim-
ilar products based solely on their titles, even in cases where significant literal
differences exist. Motivated by this intuition, we propose a self-supervised mech-
anism that extracts strong prior knowledge from product image-title pairs. This
mechanism serves to enhance the encoder’s capacity for learning product repre-
sentations in a multimodal framework. The similarity between products can be
reflected by the distance between their respective representations. Additionally,
we introduce a novel attention regularization to effectively direct attention toward
product category-related signals. The proposed model exhibits wide applicability
as it can be effectively employed in unimodal tasks where only free-text inputs
are available. To validate our approach, we evaluate our model on two key tasks:
product similarity matching and retrieval. These evaluations are conducted on
a real-world dataset consisting of thousands of diverse products. Experimental
results demonstrate that multimodal learning significantly enhances the language
understanding capabilities within the e-commerce domain. Moreover, our app-
roach outperforms strong unimodal baselines and recently proposed multimodal
methods, further validating its superiority.

Keywords: Multimodal Learning · Self-Supervised Learning · Product
Similarity

1 Introduction

In recent years, the proliferation of products on e-commerce platforms has led to the
emergence of applications for product similarity. The identification of similar products
involves diverse use cases that yield substantial benefits. For instance, it enables retailers
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to monitor how competitors adjust prices for competing products over time, facilitating
timely optimization of their product pricing strategies. Additionally, a high-quality sim-
ilarity system must address the ranking problem. By quantifying the similarity between
different products, the e-commerce platform can effectively classify and aggregate prod-
ucts based on varying granularities, forming cohesive product categories. Therefore,
identifying substitutable products and measuring the similarity between products play
pivotal roles in driving important applications in the e-commerce ecosystem.

Product similarity matching poses a formidable challenge, primarily attributed to the
pronounced degree of product heterogeneity, scarcity of labeled data, and variable data
quality. Prior studies [1–3] have often approached product matching as a binary classifi-
cation problem, yielding promising outcomes in fine-grained matching tasks. However,
these approaches commonly necessitate a substantial number of labeled structured data,
resulting in significant resource allocation for data annotation. It is noteworthy that
while certain sellers furnish comprehensive and structured descriptions, the majority
solely provide images and titles. In this study, our primary focus lies in extracting low-
dimensional representations for products from such unstructured data in an unsupervised
learning paradigm. Leveraging these discriminative representations, we can apply sim-
ilarity measures to establish product similarities, facilitating streamlined and scalable
solutions for product matching and retrieval.

Fig. 1. Examples of images and titles of e-commerce products1,2

Aproduct title serves as a sequence of free text, comprisedof tokens that convey infor-
mation about the product’s type, brand, color, and other attributes (refer to Fig. 1). These
tokens exhibit varying degrees of influence when measuring product similarity. While
tokens indicating the product type often facilitate product identification, certain product
titles may lack such specific tokens. For instance, consider the product title “BAPE STA
LowWhite”, which poses challenges to identify the product literally. Moreover, diverse
sellers within the e-commerce domain employ varying terminology. For instance, both
“sneakers” and “running shoes” refer to the same products. In the absence of additional

1 UV Protection Pocketable Parka. [online]. Available from: https://image.uniqlo.com/UQ/ST3/
WesternCommon/imagesgoods/419912/item/goods_03_419912.jpg.

2 BAPE STA Low White Leather. [online]. Available from: https://cdn.modesens.com/product/
24628313_69.

https://image.uniqlo.com/UQ/ST3/WesternCommon/imagesgoods/419912/item/goods_03_419912.jpg.
https://cdn.modesens.com/product/24628313_69.
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supervision signals, models face challenges in quantifying product similarity. However,
images depicting products within the same category frequently exhibit noticeable visual
similarities, enabling them to serve as valuable cues for assessing the similarity between
products. Consequently, incorporating images as a source of supervision holds the poten-
tial to enhance the model’s understanding of specialized terminology prevalent in the
e-commerce domain.

Fig. 2. Working flow of our approach. Our model is learned from image-title pairs, while only
titles are required during inference.

With the recent advancements in multimodal models, researchers [4, 5, 13] have
explored the utilization of images and texts to learn representations formeasuring product
similarity. However, most existingmethods focus on building joint multimodal represen-
tations, rendering them unsuitable for text-only unimodal scenarios. In cross-platform
application scenarios, productmatching and retrieval predominantly rely on textual infor-
mation. To address this, our study proposes a novel multimodal approach for learning
product representations, allowing the same model to handle scenarios with solely tex-
tual data, thus expanding its applicability to a wider range of tasks. The working flow is
depicted in Fig. 2. The similarity between two products is quantified using the cosine dis-
tance between their respective representations.Our experimental results demonstrate that
incorporating image signals enhances the model’s language understanding capabilities,
thereby leading to improved performance on unimodal tasks.

The main contributions of this paper can be summarized as follows:

1. We propose a self-supervised model that learns a discriminative representation for
product similarity from image-title pairs. Importantly, the same model can be applied
to unimodal downstream tasks where only free-text inputs are available.

2. We introduce a self-supervision module that leverages hierarchical clustering algo-
rithms to extract prior knowledge related to item categories from multimodal data.
During encoder training, the acquired prior knowledge is utilized to enhance the
model’s ability to embed key information about product categories.

3. We propose a novel attention regularization term that utilizes the prior knowledge
generatedby the self-supervisionmodule to further reinforce the attentionmechanism,
leading to a significant improvement in the model’s performance.
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2 Related Work

This section presents previous related work on product similarity and multimodal
representation learning.

2.1 Product Similarity

A substantial portion of the literature in product similarity research has focused on
text-based data, particularly in the context of online platforms where product descrip-
tions are commonly presented as free text. This has prompted investigations into the
extraction of attribute-value pairs for product matching. Although methods based on the
conditional random field algorithm (CRF) [8, 9] have shown promise, their effectiveness
relies on the availability of well-annotated and diverse datasets. Other approaches have
explored the direct extraction of features from textual sequences. For instance, previous
works [2, 3] have utilized bidirectional long short-term memory networks (Bi-LSTM)
[35] to extract features from product titles for matching purposes. However, many of
these methodologies require additional classifiers to determine the matching status of
two products. Moreover, the generation of numerous candidate matching pairs poses
significant computational challenges when dealing with large datasets.

In recent years, pre-trained language models [10, 11] have made significant strides
across a wide array of tasks. For entity matching, [1, 12] utilize pre-trained Transformer-
based language models to enhance language understanding capabilities. Moreover, [1]
developed an advanced blocking technique to reduce the number of candidate matching
pairs. While these approaches have shown success, they often rely on large amounts of
labeled training data. More recently, several studies have sought to overcome this chal-
lenge through the utilization ofmultimodal architectures andweakly supervised learning.
[13] exploited images and attributes as inputs for their model, leveraging attribute-aware
embedding spaces and attention mechanisms capable of localizing relevant regions of
interest to derive fine-grained fashion similarities. Building upon this foundation, [5]
extended the scope of their work to incorporate other product catalog data, employing
raw catalog data for weakly supervised product representation learning.

Our proposed model distinguishes itself from previous approaches in the following
ways: (1) Product representations are learned from multimodal data in an unsupervised
setting, (2) product representations can be integrated with vector similarity search for
efficient retrieval of similar products, and (3) the model can be applied to unimodal tasks
with only unstructured text data as input, thereby enabling its extension to a broader range
of application scenarios.

2.2 Multimodal Representation

Multimodal data is considered to be more informative as compared to modality-specific
data. Multimodal representation learning has become a popular research problem in
the field of natural language processing (NLP). In the context of product similarity,
our research objective is to enhance language understanding on downstream tasks by
utilizing image-text pairs as a source of supervision for product representation learning.
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Studies [14] have demonstrated that incorporating information from linguistic, visual,
and auditory modalities can enhance the performance of NLP models.

Fusion-based multimodal approaches incorporate linguistic and visual features
through concatenation, weighting, and cross-modal attention to capture complementary
information about word semantics. Recurrent fusion networks for multi-view sequential
learning, such as audio, video, and language, have been proposed to tackle a range of
NLP problems [15, 16]. Another class of methods focuses on integrating multimodal
information indirectly using modified loss functions that consider different modalities.
[17, 18] utilize the multimodal extended Skip-gram [36] objective function to enhance
word representations, achieving better results than unimodal baselines.

In recent years, multimodal transformers have emerged as a general model for learn-
ing representations. Inspired by unimodal pre-training schemes such as masked lan-
guage modeling and masked image modeling, self-supervised multimodal pre-training
has become an effective way to train these models [19, 20]. These pre-training objec-
tives typically include unimodal masking prediction, cross-modal masking prediction,
and multimodal alignment. Similar to previous fusion-based studies, fusion encoders
use a single transformer for multimodal signal fusion [20, 21] or a joint attention trans-
former layer for cross-attention and cross-modal encoding [19]. In contrast, the indirect
fusion method encodes different modalities separately and connects different modali-
ties through the shallow interaction layer of downstream tasks [22, 23]. Although more
suitable for unimodal retrieval tasks, such methods lack deeper modality fusion com-
pared to fusion encoders. Recently, more general models have emerged that combine
these two types of approaches into an overall model. VATT [24] jointly trains shared
models on video, audio, and text data, benefiting a variety of downstream tasks. FLAVA
[25] is pre-trained with unpaired unimodal data and image-text pairs, exhibiting strong
performance on both unimodal and cross-modal retrieval tasks.

3 Methodology

This study focuses on enhancing the language understanding capabilities of text encoders
through self-supervisedmultimodal learning, with the objective of obtaining discrimina-
tive product representations.We present an indirect fusion method employing multi-task
learning to integrate multimodal signals. Our framework, depicted in Fig. 3, comprises a
text encoder and a self-supervision module. The text encoder consists of a Gated Recur-
rent Unit (GRU) [37] layer and a self-attention layer, which generate the title embedding,
the target multimodal product representationwe aim to learn. The title embedding is then
passed through two parallel fully connected layer (FC) branches, connected to image
feature prediction (LImage) and token ranking prediction (LToken), respectively. The self-
supervised module extracts prior knowledge from image-title pairs, which subsequently
supervises the training of the text encoder via the proposed attention regularization term
(LRegul.) and LToken.

We adopt a two-stage training strategy: First, the self-supervision module clusters
titles based on image features and subsequently assigns weights to tokens to acquire
prior knowledge. Second, this prior knowledge, along with image features, is utilized as
supervision signals for self-supervised learning of the text encoder through the aforemen-
tioned three losses: LRegul., LImage, and LToken. For the image features required during the
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Fig. 3. Overview of our model. The self-supervision module learns prior knowledge from image-
title pairs, which in turn supervises the training process of the text encoder. The text encoder
transforms product titles into title embeddings, which serve as product representations.

training phase, we utilize the ResNet-50 [26] pre-trained on ImageNet [27], extracting
the hidden representation from its last layer (i.e., the layer preceding the Softmax layer)
as the image feature vector. During the inference stage, this lightweight text encoder
can be applied independently to a wide range of unimodal scenarios. In this section,
we will delve into three main aspects of our method: 1) self-attention mechanism, 2)
self-supervision module, and 3) multimodal training objectives.

3.1 Self-attention Mechanism

Given that the product title needs to be transformed into a single representation, where
each word contributes to varying degrees in identifying the product (e.g., the product’s
type being a more critical attribute compared to color or size), self-attention [28] can be
employed to guide the model’s attention towards the token associated with the product
category.

The embedding module comprises a GRU layer and a self-attention layer. The tok-
enized input title is processed using a bidirectional GRU, resulting in the hidden state ht .
This hidden state ht is obtained by concatenating the hidden states of the GRU in both
forward and backward directions. Subsequently, the title can be represented as a matrix
H .

(1)

H = (h1, h2, · · · , hn) (2)

The attention mechanism takes the entire matrix of hidden states H from the GRU
as input and performs a nonlinear transformation to produce the weight vector, denoted
as the attention vector a, as shown in Eq. 3. This transformation involves the weight
matrixWs1 and the parameter vector ws2.

a = softmax
(
ws2tanh

(
Ws1H

T
))

(3)
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the GRU hidden statesH are summed up based on the weights provided by the attention
vector a, resulting in a vector representation m of the input title.

m = aTH (4)

3.2 Self-supervision Module

The objective of solving the product metric problem is to ensure that representations
of similar products are in close proximity, while representations of dissimilar items are
farther apart. In the absence of labeled training data, capturing the association between
products solely through learningmultimodal features fromeach image-title pair becomes
challenging. Although the image features generated by the pre-trained ResNet can offer
strong supervision, our dataset encompasses a substantial portion of the product catalogs
on the e-commerce platform, leading to noise and variability in the image features that
can disrupt the encoder training process.

Nonetheless, products within the same category often exhibit similar images. Lever-
aging this characteristic, we propose a self-supervision module to capture the associa-
tions between products. This module initially clusters the image-title pairs based on the
image features generated by the pre-trained ResNet. Subsequently, the tokens within the
titles are assigned weights based on their distribution across the clusters. These weights,
referred to as prior knowledge, serve as a stronger supervision signal during the training
phase of the text encoder. Consequently, the model is empowered to achieve enhanced
performance in product recognition and retrieval tasks.

The self-supervisionmodule comprises two steps: image feature clustering and token
weight assignment. In the first step, agglomerative clustering is performed on image
features to roughly categorize titles according to product category. In the second step,
the following two assumptions were made:

Hypothesis 1: Tokens frequently observed within the same cluster are more likely to
describe product types and hold greater significance for similarity measures.

Hypothesis 2: Tokens frequently observed in different clusters are more likely to
describe common attributes of products and hold less significance for similarity
measures.

To assign higher weights to tokens describing product types, as stated in Hypothesis
1, each token is assigned a weight using an equation similar to the concept of TF-IDF.
Specifically, for a token ti observed in cluster cj, the left term of Eq. 5 calculates the
frequency of ti in cj, where ni,j denotes the number of times ti occurs in cj. The right
term corresponds to the logarithmically scaled inverse fraction of clusters that contain
ti. This is computed by dividing the total number of clusters (referred to as |C|) by the
number of clusters that contain ti, and then taking the logarithm of this quotient.

si,j = ni,j∑
knk,j

× lg
|C|∣∣{j : ti ∈ cj

}∣∣ (5)

In this manner, the self-supervision module assigns weights to tokens within each
cluster based on these hypotheses. The weights of tokens within the same cluster remain
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unaffected by the diversity of titles to which they belong. As illustrated in Fig. 4, a
selection of clusters is randomly chosen, and the top ten tokens with the highest weights
in descending order are listed. It is evident that these three clusters correspond to the
product categories of jeans,mouse, and facial cleansers, respectively. The tokenswith the
highest weights in these clusters typically reflect the product category, while subsequent
tokenswith higherweights, such as “Lee” and “Logitech,” often denote the brand or other
important attributes specific to the product category. The prior knowledge conveyed by
these token weights serves as an additional source of supervision.

Fig. 4. The top 10 tokens with the highest weight in three clusters.

3.3 Multimodal Training Objectives

During the training phase of the text encoder, the image features and prior knowledge
serve as sources of supervision to enhance the encoder’s language understanding capa-
bility. Drawing from these supervision signals, we employ multimodal signal fusion on
text encoders through multitask learning. In particular, we introduce a novel attention
regularization term that encourages the model to attend to product category-related sig-
nals within titles, exploiting the prior knowledge. The training process of the text encoder
encompasses the following multimodal training objectives.

Image Feature Prediction. Previous work [29] has demonstrated the efficacy of learn-
ing language-to-vision mappings as a straightforward approach to constructing multi-
modal representations. In our approach, we facilitate this process by mapping the title
embedding, generated by the text encoder, onto the same space as the image feature
using a fully connected layer. Subsequently, we compute the loss between the predicted
image feature y

∧

and the target image feature y via the mean squared error (MSE).

LImage
(
y, y

∧) = MSE
(
y, y

∧)
(6)

AttentionRegularization. Asmentioned inSect. 3.1, theweights in the attention vector
reflect the significance of respective tokens in constructing product representations. It
is desirable for the ranking of attention weights to align with the ranking of token
weights in the prior knowledge. To accomplish this, we employ a listwise loss function,
derived from the learning to rank [30], as a means to regularize attention based on prior
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knowledge. Specifically, for a given input title t, the attention vector, the attention vector
a is obtained from the self-attention mechanism (Eq. 7). The top one probability Pai ,
which indicates the likelihood of the attentionweight ai being ranked first in the attention
vector a, is computed using Eq. 8. Similarly, for the corresponding token ti in the prior
knowledge, the top one probability Psi of its prior weight si in the prior weight vector si
can be calculated (Eq. 9).

a = (a1, a2, · · · , an) (7)

Pai = exp(ai)∑n
k=1exp(ak)

(8)

Psi = exp(si)∑n
k=1exp(sk)

(9)

The attention regularization term is formulated as the cross-entropy between the top
one probability distribution of the attention vector and the top one probability distribution
of the prior weights.

LRegul.(s, a) = −
∑n

k=1
Psk log

(
Pak

)
(10)

TokenRankingPrediction. Previous studies [31] have demonstrated that autoencoders
are effective in capturing intra-sentence information by reconstructing input sentences. In
the token ranking prediction task, our goal is not only to capture intra-sentence informa-
tion but also to capture the association information between products under the guidance
of prior knowledge. In this task’s downstream branch, the title embedding is transformed
into a vector of token scores via a fully connected layer, with the size of this vector deter-
mined by the vocabulary size. Similarly, the vector of corresponding token weights in
prior knowledge is padded with zeros to match the dimensions of the vocabulary space.
As depicted in Eq. 11, the loss term, utilizing the padded vector of prior weights as the
target, employs the listwise loss function to quantify the listwise loss between this target
c and the output token score vector u.

LToken(c,u) = −
∑|V |

k=1
Pck log

(
Puk

)
(11)

The final multimodal training objective of the text encoder consists of the three
aforementioned loss functions:

L = λ1LImage + λ2LRegul. + λ3LToken, (12)

where we assign weights λ1, λ2, and λ3 to the respective loss functions as 0.5, 1, and
0.5.

4 Experiments

4.1 Datasets

The dataset employed for model training comprises 0.55M products sourced from the
five most prominent online retail platforms in Taiwan. These products exhibit an exten-
sive spectrum of categories, encompassing the prevalent product catalogs found across
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diverse e-commerce platforms. Each product item within the dataset is accompanied by
a corresponding image and a title in the Traditional Chinese language. Additionally, we
apply a filtering process to eliminate items with duplicate titles, thereby ensuring that
all titles within the dataset are unique.

4.2 Evaluation Data and Metrics

We evaluate the representation of products in two distinct applications: 1) Identical
product classification and 2) Similar product retrieval.

Identical Product Classification (Scenario 1). We collaborated with experienced per-
sonnel from e-commerce platforms to collect product pairs and manually assign labels
to them. Our evaluation dataset encompasses 10k labeled product pairs, with an equal
distribution of positive and negative labels. A positive label indicates that the product
pair is identical, while a negative label suggests otherwise. To ascertain the degree of
similarity, we leverage cosine similarity measurements between the two product rep-
resentations and utilize a predefined threshold to determine whether the products are
identical. The evaluation of this task incorporates four fundamental metrics: accuracy,
precision, recall, and F1.

Similar Product Retrieval (Scenario 2). For product retrieval evaluation, the dataset
comprises 163 product groups, each consisting of identical products.We establish a hier-
archical, tree-like category structure where higher-level nodes represent coarse-grained
categories, and the leaves correspond to product groups. Manual labeling is performed
for each group, based on the defined category structure. To assess the quality of retrieval,
we employ the Normalized Discounted Cumulative Gain (nDCG) as an evaluation met-
ric. The Discounted Cumulative Gain (DCG) quantifies the ranking quality of a list
by accumulating the relevance of the top K search items while considering penalties
according to their respective ranks.

DCGK =
∑K

i=1

reli
log2(i + 1)

(13)

nDCGK = DCGK

IDCGK
(14)

Here, reli represents the graded relevance of the item ranked at position i. The graded
relevance between any two products within the dataset is determined by evaluating the
distance between the nodes to which the products belong within the category structure.
The nDCG metric is calculated as the normalization of DCG by the ideal DCG value
(IDCG). The calculation method for IDCG is similar to that of DCG, as it represents the
DCG under ideal conditions. Therefore, for each item in the testing set, we can employ
the k-nearest neighbors algorithm to search for its top K nearest neighbors and calculate
the nDCG.

4.3 Evaluation Results

We evaluate our model and the following representation learning models on two
scenarios: identical product classification and similar product retrieval.
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Unimodal Baselines. Regarding image representations, we adopt a pre-trained Resnet
to extract image features from the evaluation dataset, following the same image feature
extraction process utilized during the training phase. These extracted image features
serve as the product representations. On the linguistic side, we employ two simple yet
effective language models, namely TF-IDF and FastText [32]. Furthermore, we compare
the performance of our model against the widely-utilized pre-trained language model
BERT [11]. The 12-layer BERT weights are initialized by a Chinese pre-trained model
and subsequently fine-tuned on our product title corpus using the Masked Language
Modeling. The vector corresponding to the [CLS] token in the model’s sequence output
is employed as the product representation.

Multimodal Baselines. We conduct a comparison with two recently proposed models:
Chinese CLIP [33] and FLAVA [25]. Chinese CLIP is an implementation of CLIP [22]
trained on a large-scale dataset comprising approximately 200 million Chinese image-
text pairs. Both Chinese CLIP and FLAVA encode images and text separately, making
them suitable for unimodal scenarios involving only text. In our experimental setup, we
fine-tune the pre-trained models of Chinese CLIP and FLAVA using product image-title
pairs. The fine-tuning objectives align with the pre-training objectives described in their
respective original papers. Since the pre-trained FLAVA model is trained on an English
corpus, we replace its text encoder with a pre-trained Chinese RoBERTa model [34].
During the evaluation, we extract the hidden state vector corresponding to the [CLS]
token in the language sequences from the text encoders of both models, utilizing them
as product representations.

Table 1. The performance of baseline models and our model (Ours) on the identical product
classification (Scenario 1) and similar product retrieval (Scenario 2).

Model Scenario 1 Scenario 2

Accuracy Precision Recall F1 nDCG

ResNet 0.675 0.697 0.62 0.657 -

TF-IDF 0.727 0.739 0.702 0.72 0.739

FastText 0.7 0.679 0.757 0.716 0.673

BERT 0.825 0.839 0.805 0.822 0.752

ChineseCLIP 0.762 0.806 0.691 0.744 0.797

FLAVA 0.816 0.809 0.828 0.818 0.789

Ours 0.85 0.855 0.843 0.849 0.835

Table 1 presents the evaluation results of the aforementioned comparison methods,
alongside the performance of our model, across two distinct scenarios about product
similarity problems. The first four rows of the table correspond to unimodal models,
whereas the remaining rows represent multimodal approaches. The results for ResNet
in Scenario 2 are currently unavailable due to the absence of image data in the testing
data.
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Overall, our model outperforms the aforementioned methods in both scenarios. It
is worth noting that in Scenario 2, the multimodal methods exhibit significantly better
performance than the unimodal models. This disparity suggests that incorporating image
signals during training can enhance the performance of multimodal models for the task
of product title retrieval.

4.4 Ablation Studies

Table 2. Results of ablation studyon two scenarios.LImage: Image feature prediction loss,LRegul.:
Attention regularization, Self-super: Self-supervision module, Hypo. 1: Hypothesis 1, Hypo. 2:
Hypothesis 2, w/o: without.

Model Scenario 1 Scenario 2

Accuracy Precision Recall F1 nDCG

w/o LImage 0.817 0.824 0.805 0.815 0.696

w/o LRegul. 0.825 0.824 0.828 0.826 0.807

w/o Self-super. 0.763 0.767 0.755 0.761 0.798

w/o Hypo. 1 0.812 0.858 0.748 0.799 0.719

w/o Hypo. 2 0.829 0.849 0.8 0.824 0.812

Ours 0.85 0.855 0.843 0.849 0.835

Weconducted ablation experiments to assess the importance of different components
within our proposed framework. The experimental outcomes are presented in Table 2.
To validate the necessity of a self-supervision module, we performed the third exper-
iment where prior knowledge was not utilized as a supervision signal during encoder
training. Specifically, we removed the attention regularization loss term and replaced
the downstream task of token ranking prediction with token probability prediction. This
task can be seen as a multi-label classification problem, with the loss computed using
binary cross-entropy. By comparing the results of the first three experiments with the
complete model (row 6), it is evident that the removal or modification of the loss term
leads to a significant decrease in performance.

Moreover, ablation experiments were performed to examine two hypotheses in
the self-supervision module, namely Hypothesis 1 and Hypothesis 2. As indicated in
Sect. 3.2, these hypotheses govern the computation of token prior weights, representing
the within-cluster token frequency term and the inverse cluster frequency term, respec-
tively. To verify each hypothesis, the corresponding frequency term in the equation for
prior weight calculation was set to a constant value of 1. The results of these experiments
are presented in the fourth and fifth rows of Table 2. Notably, the models that exclude
Hypothesis 1 demonstrate a more pronounced decrease in performance across both sce-
narios. This observation highlights the substantial impact of Hypothesis 1 compared to
Hypothesis 2.
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Fig. 5. The top 10 tokens with the highest prior weights in the three clusters under various
hypotheses.

To further investigate the validity of these two hypotheses, we randomly selected
three clusters from the output of the self-supervision module and visualized the token
rankings based on their weights within each cluster. Figure 5 presents the top 10 tokens
with the highest prior weights in each cluster for the complete model (TF + ICF), as
well as the models utilizing only Hypothesis 1 (TF) or Hypothesis 2 (ICF). Notably, the
complete model demonstrated token rankings that aligned with our expectations. This
alignment can be inferred from the highest weighted tokens, which corresponded to
running shoes, eyeglasses, and laundry detergent, indicating that a significant portion of
the products within these clusters belonged to these respective categories. Additionally,
other highly ranked tokens often represented brand names or other significant attributes
associated with specific product categories.
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Regarding tokens ranked solely based on Hypothesis 1, we noticed that while tokens
implying product types received high weights, certain less significant product attributes
such as color and volume also obtained relatively higher weights. For tokens ranked
solely based on Hypothesis 2, we observed that the weight values of tokens were gen-
erally small and exhibited limited variation. The top-ranked tokens mainly consisted of
meaningless attribute values like product numbers. It is noteworthy that the tokenweights
produced by Hypothesis 2 serve to modulate the weights generated by Hypothesis 1
thereby weakening the weights of tokens that refer to less significant attributes.

In general, both image signals and prior knowledge can serve as sources of super-
vision during encoder training. Image signals primarily impact downstream applica-
tions about ranking, while prior knowledge influences both recognition and ranking
applications. The token weights within the prior knowledge are primarily influenced by
hypothesis 1, with hypothesis 2 predominantly serving a regulatory role.

5 Conclusion

In this paper, we present a self-supervised approach for learning product representations
from image-title pairs, aiming to address the product similarity problem. Our model
leverages only text as input during inference, enabling more efficient computations in
practical applications and extending its applicability to a broader range of scenarios.
Througha thoroughanalysis of e-commerceproduct data,weobserve the complementary
nature of images and titles in describing products. We demonstrate that self-supervised
learning mechanisms can effectively capture the association information between prod-
ucts from image-title pairs, thereby enhancing the model’s language comprehension
capabilities. The experiments conducted on two real-world datasets demonstrate the
superior performance of our model compared to strong unimodal baselines and recently
proposed multimodal models in both identical product classification and similar product
retrieval tasks.

The training dataset used for our model comprises real online data acquired from
multiple shopping websites, presenting an imbalanced category distribution. This inher-
ent imbalance among product categories can lead to varying performance across cate-
gories. Addressing the challenge of imbalanced product categories represents a realistic
problem for future investigation. Moreover, possible future directions of the current
work include parameterizing the self-supervision module and integrating it with the text
encoder to form a joint optimization framework, which is anticipated to enhance the
overall performance.
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