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Abstract
Exploratory learning before instruction typically benefits conceptual understanding com-
pared to traditional instruction-first methods. The current study examined whether differ-
ent exploration prompts impact students’ exploration approaches and learning outcomes, 
using a quasi-experimental design. Undergraduate students (N = 164) in psychological 
statistics courses were taught the procedure and concepts of standard deviation. Students 
in the instruct-first condition received direct instruction then a practice problem. Students 
in the explore-first conditions attempted the problem before instruction, with exploration 
prompts differing between conditions. Students in the explore-first invent condition were 
asked to invent a formula; students in the explore-first generate condition were asked to 
come up with different ways of measuring consistency. Students in the explore-first gener-
ate condition scored significantly higher on procedural knowledge (problem solving) than 
in the explore-first invent condition, conceptual knowledge than in both other conditions, 
and preparation for future learning (transfer) than in  the instruct-first condition. Students 
in the explore-first invent condition scored no differently on any learning outcomes than 
in the instruct-first condition. Students given the strategy generation prompt more broadly 
explored different strategies during the exploration activity, but used fewer correct solution 
steps than those given the invention prompt. Broader exploration—and not accuracy—was 
associated with higher conceptual knowledge. Conversely, students in the instruct-first con-
dition used fewer, more accurate, strategies on the activity compared to the explore-first 
conditions. They also showed greater misconceptions during the activity and posttest, indi-
cating superficial understanding. Both explore-first conditions induced greater awareness 
of knowledge gaps compared to the instruct-first condition. Generating multiple strategies 
likely helped students discern important problem features, deepening conceptual structures 
that supported learning even beyond the initial lesson.
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Introduction

Traditional forms of teaching largely utilize lecture followed by practice (Stains et  al., 
2018). However, students often fail to develop conceptual understanding compared to more 
student-centered, active learning methods (Felder & Brent, 2009; Freeman et  al., 2014; 
Prince, 2004; Wegner, 1998). One more student-centered method is exploratory learning 
before instruction. Exploratory learning switches the traditional order by asking students to 
explore novel content before instruction on the target concepts.

Exploratory learning before instruction is a general term characterizing this two-phase, 
explore-then-instruct sequence (e.g., Bego et  al., 2022; DeCaro & Rittle-Johnson, 2012; 
Weaver et al., 2018). This sequence is used in studies in several additional research litera-
tures described by different terms (e.g., problem-solve-instruct methods, Loibl et al., 2017; 
Loibl & Rummel, 2014a, 2014b; productive failure, Kapur, 2008, 2010, 2011, 2012, 2016; 
inventing to prepare for future learning, Schwartz & Bransford, 1998; Schwartz & Martin, 
2004). We use the more general term to reflect that not all exploration activities include 
problems to solve (cf. Bego et  al., 2023; Bush et  al., 2023; DeCaro et  al., 2022, 2024; 
Glogger-Frey et al., 2015, Exp. 1; Hieb et al., 2021; Loibl & Leukel, 2023). Studies using 
this two-phase sequence generally find that an exploration phase with subsequent instruc-
tion benefits students’ conceptual understanding and transfer to new, related topics more 
than providing direct instruction first (Darabi et al., 2018; Kapur, 2015, 2016; Loibl et al., 
2017; Sinha & Kapur, 2021).

Exploratory learning benefits tend to be selective to higher-level conceptual knowledge 
(e.g., sense-making, schema formation, transfer; Darabi et  al., 2018; Loibl et  al., 2017), 
although some studies have shown benefits for more basic procedural or fluency skills 
as well (e.g., computing problem-solving steps; DeCaro et al., 2023; Kapur, 2010, 2011; 
Kapur & Bielaczyc, 2012). However, not all studies find learning benefits (e.g., Chase & 
Klahr, 2017; Fyfe et al., 2014; Loibl et al., 2020; Nachtigall et al., 2020). Some research 
suggests that exploratory learning will be less beneficial if mental effort, or cognitive load, 
is too high during the learning activity (Ashman et  al., 2020; Fyfe et  al., 2014; Kapur, 
2016; Newman & DeCaro, 2019). More research is needed to identify the important design 
principles and mechanisms that lead to these benefits, beyond domain-specific topics and 
sub-literatures (Koedinger et al., 2012). Studies that assess factors impacting intermediate 
learning processes (e.g., during or after the exploration phase) can be especially useful to 
diagnose when and how exploration impacts learning (Loibl et al., 2023, 2024).

Although research from the literatures listed above all use the same explore-instruct 
sequence, there are some differences in (a) the ways students are prompted to approach the 
exploratory activity, (b) whether students’ approaches to the learning activity are assessed 
and connected with learning outcomes, and (c) whether “future learning” (i.e., transfer) 
is assessed as an outcome measure. The current study examined whether a simple differ-
ence in the exploration prompt (i.e., invent one strategy versus generate multiple strate-
gies) impacts how students approach exploring and, therefore, learning outcomes. We also 
compared both types of exploratory learning to a traditional instruct-first condition using 
the same materials, in different order. This design provided a baseline comparison to a 
traditional instructional method and allowed causal evaluation of the benefits of exploring 
before instruction overall (cf., Bush et  al., 2023; DeCaro & Rittle-Johnson, 2012; Loibl 
et al., 2020; Weaver et al., 2018).

Although each type of exploration prompt has been used in prior studies, they have 
not been directly compared using the same learning materials, process measures, and 



Comparing effectiveness of exploratory learning activities…

assessments. We expected both prompts to support learning mechanisms thought to be 
important for exploratory learning benefits, except for one key difference. Specifically, 
we expected that a prompt to generate multiple strategies would promote a wider search 
through the problem space. This wider search may enable learners to better discern impor-
tant features of the problem, and enhance the conceptual benefits of exploring. By analyz-
ing the strategies used during problem solving, and surveys of cognitive, metacognitive, 
and motivational factors, we directly assessed how differences in the exploration prompt 
and instructional order impact this and other learning mechanisms. We also assessed stu-
dents’ misconceptions during exploration, and subsequent learning outcomes (procedural 
knowledge, conceptual knowledge, and transfer; Koedinger et  al., 2012). This investiga-
tion thus provides further insight into whether search through the problem space is critical 
to exploration. By determining how learning processes are impacted by the exploration 
phase, we can determine what conditions are most conducive to learning and why (Loibl 
et al., 2023). More generally, such findings can inform instructors about how the choices 
they make in designing instructional prompts impacts students’ learning processes and 
outcomes.

Mechanisms of exploratory learning

Exploratory learning is thought to benefit students’ conceptual understanding through 
three primary cognitive and metacognitive mechanisms occurring during and after the first 
learning phase (Loibl et  al., 2017, 2023, 2024). First, by exploring novel problems, stu-
dents activate relevant prior knowledge. Through this process, students better modify or 
integrate the new knowledge into their existing schemas (Chen & Kalyuga, 2020; Schwartz 
et al., 2009).

Second, through struggling to find a solution using existing schemas, students become 
aware of gaps in their understanding of the targeted concept (e.g., Glogger-Frey et  al., 
2015; Loibl & Rummel, 2014a, 2014b; Schwartz et al., 2007). These knowledge gaps may 
be unobserved in an instruct-first format, which could lead to a false sense of understand-
ing or misconceptions (Kapur, 2016; Schwartz et al., 2007; Tawfik et al., 2015; Wittwer 
& Renkl, 2008). Students process instruction more deeply when they are aware of their 
knowledge gaps (VanLehn et  al., 2003). Students might also become more motivated to 
make sense of the new content, increasing their interest and engagement with subsequent 
instruction (e.g., Belenky & Nokes-Malach, 2012; DeCaro et  al., 2015; Kapur, 2016; 
Lamnina & Chase, 2019; Wise & O’Neill, 2009).

Lastly, by exploring a new problem space, students may begin to explore, identify, and 
organize critical problem features (Kapur & Bielaczyc, 2012; Schwartz et al., 2007, 2011). 
As they test hypotheses about certain features, students may better understand why these 
features are, and are not, important (DeCaro & Rittle-Johnson, 2012; Schwartz & Mar-
tin, 2004). In contrast, traditional instruction typically highlights these features for stu-
dents, and students process them superficially (e.g., Kapur, 2016), potentially leading to 
misconceptions.

These mechanisms likely all contribute, to some extent, to conceptual knowledge 
change when exploring before instruction (Kapur, 2016; Loibl et  al., 2017). Support for 
these learning mechanisms has been found across studies using the explore-then-instruct 
sequence in many different learning domains (cf. Loibl et al., 2017). Despite this variety, 
several studies have been conducted in the domain of statistics, namely teaching students 



 L. Velić, M. S. DeCaro 

the concepts and procedures of calculating consistency in datasets (i.e., variance, standard 
deviation, or mean deviation; e.g., Jarosz et al., 2016; Kapur, 2012, 2014a, 2014b, 2015; 
Loibl & Rummel, 2014b; Loibl et al., 2020; Newman & DeCaro, 2019; Schwartz & Mar-
tin, 2004; Wiedmann et al., 2012). Within studies teaching about consistency, the types of 
exploration activities used vary.

Types of exploration prompts

One difference between studies is the type of prompt used when students are asked to 
explore a dataset. These prompts might impact how students approach the exploration 
phase and, thereby, how they learn from instruction (Loibl et al., 2024). In some explora-
tion activities, students are asked to invent an index or solution (e.g., Jarosz et al., 2016; 
Schwartz & Martin, 2004; Schwartz et  al., 2011). Invention problems typically include 
contrasting cases, which create a perceptual space to help students encounter the impor-
tant features, while keeping less important features constant (e.g., Loibl & Rummel, 2014a, 
2014b; Schwartz et al., 2011). For example, Schwartz and Martin (2004) asked students to 
invent a reliability index for different baseball pitching machines based on graphical repre-
sentations of where the machine’s pitches would land. The invention instruction is intended 
to help students integrate problem features that might otherwise seem incommensurate—
such as using both distance from the mean and sample size to determine the consistency 
of a sample (Schwartz et al., 2007). By working to synthesize important problem features, 
students are thought to create conceptual structures, rather than focusing on surface fea-
tures (Schwartz et al., 2016). This conceptual structure might then improve transfer to other 
domains (e.g., Schwartz et al., 2007).

Strategy generation prompts build upon invention prompts by asking students to come 
up with multiple task solutions and approaches, rather than just one. For example, Kapur 
(2014a) asked students to “design as many measures of consistency as you can” (see also 
Brand et al., 2023; Hartmann et al., 2021; Kapur, 2012, 2014b, 2015; Loibl et al., 2020; 
Loibl & Rummel, 2014b; Sinha & Kapur, 2021; Sinha et al., 2021; Trninic et al., 2022). 
Strategy generation prompts explicitly encourage students to try multiple different repre-
sentations and sense-making processes (Loibl & Rummel, 2014a; Trninic et al., 2022).

Both types of exploration prompts emphasize the constructivist process of generat-
ing solutions for oneself. With both types, students begin by using their prior knowledge 
and reasoning skills. Because students are not likely to successfully derive the canonical 
answer, both prompts will likely lead to awareness of knowledge gaps (Kapur, 2010). How-
ever, the degree to which students differentiate the problem space might differ based on 
prompt. Research on problem solving suggests that individuals represent problems, and 
decide on solution approaches, based on the problem’s semantic structure (Thevenot & 
Oakhill, 2008). Sometimes this initial representation limits solvers’ approaches (e.g., Kno-
blich et al., 1999). Rewording the problem prompt can help learners adjust their approaches 
to fit the task goals (e.g., DeCaro et al., 2017; Knoblich et al., 1999).

The prompt to invent a strategy suggests that one strategy is the end goal. This fram-
ing might lead to more convergent search and refinement processes, whereby students 
test hypotheses and modify them based on feedback from the environment. The prompt 
to generate as many strategies as possible suggests that quantity is the goal. This fram-
ing might lead to more divergent search and retrieval processes, as the goal is to expand 
the search space. Thus, invention instructions might lead to a deeper exploration of fewer 



Comparing effectiveness of exploratory learning activities…

problem features. Strategy generation instructions might lead to broader exploration of 
more problem features, including both important and unimportant elements of the problem 
space (Hartmann et al., 2021; Kapur, 2014a, 2014b, 2015). These learning mechanisms can 
be evaluated by examining different learning processes and outcomes. The assessment of 
learning processes and outcomes in studies using strategy generation or invention prompts 
has some overlap, but also differs to some extent.

Preparation for future learning assessments

Students who understand the deeper underlying concepts should be better able to trans-
fer this knowledge to learn new, related concepts (Kapur, 2010; Marton, 2007; Schwartz 
& Bransford, 1998; Schwartz et al., 2009; Schwartz et al., 2011). Future-learning assess-
ments are one method to assess this transfer ability. These measures include instruction on 
a new topic (e.g., a passage with a worked example), followed by assessment.

Students who engage in prior exploratory learning typically score higher on these 
assessments (Bego et al., 2022; Belenky & Nokes-Malach, 2012; Kapur, 2012; Schwartz & 
Bransford, 1998; Schwartz & Martin, 2004; Schwartz et al., 2011). For example, Schwartz 
and Martin (2004) found that students who invented a formula for consistency learned the 
concept of z-scores better as well. Because students more deeply understood the functional 
relation, they were able to abstract principles that applied to the related domain (Chin et al., 
2016; Schwartz et  al., 2011). Future-learning assessments are often used in exploratory 
learning studies that use invention prompts, but these assessments are not typically used in 
studies using strategy generation prompts.

Productive failure: assessment of activity approaches

Strategy generation prompts tend to be used in research from the productive failure lit-
erature (e.g., Kapur, 2014a, 2014b, 2015; Trninic et al., 2022; see also Brand et al., 2023; 
Hartmann et  al., 2021; Loibl et  al., 2020; Loibl & Rummel, 2014b). Productive failure 
is the process by which difficult learning conditions can invoke learning processes that 
deepen understanding. A period of generation (e.g., exploring a novel problem space), 
enables students to encounter different solution approaches (Kapur, 2008, 2010). During 
subsequent instruction, students are better able to understand the correct solution, as well 
as the reasons the incorrect approaches were not correct. Thus, many studies quantify the 
number of different representation and solution methods students apply during the explo-
ration activity. A greater number of attempted strategies is often associated with higher 
conceptual learning outcomes (e.g., Kapur, 2014a, 2014b; Kapur et  al., 2023; Kapur & 
Bielaczyc, 2012; but see Hartmann et al., 2022; Loibl & Rummel, 2014a).

In addition to the quantity of solution attempts, some studies investigate the quality of 
the best solution attempt (e.g., Loibl & Rummel, 2014b; Trninic et al., 2022; Wiedmann 
et al., 2012). Often, the best solution attempt includes steps toward standard deviation, pro-
viding insight in how well students apply or figure out the correct steps to the canonical 
solution. Quality of solution attempts is associated with learning outcomes in some studies 
(e.g., Wiedmann et al., 2012) but not others (e.g., Kapur & Bielaczyc, 2012).
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Current study

The current study directly compared exploratory learning conditions using invention ver-
sus strategy generation prompts. We also compared these explore-first conditions to a 
more traditional instruct-first condition baseline. We examined process measures (quality 
and quantity of strategies used, misconceptions during the activity, knowledge gaps, inter-
est, cognitive load) and learning outcomes (procedural, conceptual, and future-learning 
assessments).

Undergraduate students were introduced to the concept and procedure to calculate con-
sistency (i.e., standard deviation) in statistics, as part of their regular classroom activities. 
Students in the explore-first invent condition were asked to come up with a formula for 
calculating consistency, before instruction. Students in the explore-first generate condi-
tion were asked to come up with as many ways to measure consistency as they can, before 
receiving instruction. Students in the instruct-first condition received instruction before 
practice with the problem. Students in the three conditions completed the exact same mate-
rials, with only the order of instruction and the activity prompt differing between condi-
tions. This design allowed us test for the causal effects of (a) exploring before instruction, 
and (b) the types of exploration prompts used (see Glogger-Frey et al., 2015; Hsu et al., 
2015; Loibl et al., 2017; Newman & DeCaro, 2019; Schwartz et al., 2011).

Hypotheses

Learning outcomes

Outcomes measures included procedural knowledge, conceptual knowledge, and future-
learning assessments (Fig.  1). Because the benefits of exploring are typically limited to 
conceptual understanding, we did not predict differences between any conditions on proce-
dural knowledge. However, some research has shown that the benefits of exploring extend 
to procedural knowledge (e.g., DeCaro et al., 2023; Kapur, 2010, 2011; Kapur & Bielac-
zyc, 2012).

Based on prior exploratory learning research separately using invention and strategy 
generation prompts (cf. Loibl et al., 2017), we hypothesized that students in both explore-
first conditions would score higher than students in the instruct-first condition on concep-
tual knowledge and future-learning assessments, regardless of prompt type.

Fig. 1  Experiment procedure and measures
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Because prior studies have not directly compared the use of these exploration prompts, 
we anticipated two possibilities. One possibility is that invention and strategy genera-
tion prompts equally improve conceptual knowledge and future learning compared to the 
instruct-first condition. Both prompt types might lead students to activate relevant prior 
knowledge, become aware of knowledge gaps, and sufficiently explore the problem fea-
tures, leading to similar conceptual structures. Another possibility is that strategy genera-
tion leads students to explore the problem space more, observing and differentiating criti-
cal problem features. In this case, we would expect higher conceptual and future-learning 
scores in the explore-first generate condition than in the explore-first invent condition.

Overall, the key distinction between the two exploration conditions may lie in the way 
they prompt students to focus on the problem space and its features. We expected to gain 
insight into some of these mechanisms by examining students’ strategy use on the prob-
lem-solving activity and responses to questionnaire items.

Problem‑solving activity

Quality and quantity of solutions

We coded students’ responses on the problem solving activity (used as exploration or prac-
tice), to examine both the quality and quantity of solutions used. Quality scores indicate the 
number of correct steps of the canonical standard deviation formula used during the activ-
ity (i.e., how successful students were in their attempts to calculate the formula). Because 
students in the instruct-first condition were given the formula for standard deviation prior 
to the activity, we hypothesized that quality scores would be higher than in the explore-
first conditions. If students in the explore-first invention condition are more likely to focus 
narrowly on fewer problem solutions, it is also possible that these students would achieve 
higher quality scores than students in the explore-first generate condition.

Quantity scores indicate how many different representations and solution methods stu-
dents attempted during the activity (i.e., how broadly students explored). Because of the 
prompt to come up with as many strategies as possible, we expected students in the explore-
first generate condition to attempt significantly more strategies on the activity than in the 
other two conditions. Based on prior research, we also expected the number of strategies to 
correlate with conceptual scores on the posttest (Kapur & Bielaczyc, 2012; Kapur, 2012, 
2014a, 2014b; but see Hartmann et al., 2021; Loibl & Rummel, 2014a). Prior research has 
not connected strategy use with future-learning assessment scores. Whether the relation-
ship between strategy use and conceptual understanding would be strong enough to transfer 
to future learning was an empirical question.

Misconceptions

As described previously, students who receive instruction then practice may be more 
likely to process the problem features superficially compared to students who explore 
first. However, research has not directly tested whether students in an instruct-first 
condition show greater misconceptions as a result. We additionally coded activities 
and posttests for evidence of misconceptions in understanding the target concepts. For 
example, a common error in computing the standard deviation formula is to divide by 
the mean (M), rather than the sample size (N). This error indicates that students do not 
understand the rationale (i.e., that dividing by N standardizes the scores across samples 
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varying in size). One concern about exploratory learning is that students will develop 
and retain misconceptions about the topic (Kirschner et al., 2007). However, exploring 
before instruction is expected to help students become aware of ways in which their 
prior knowledge is insufficient (e.g., Kapur, 2010; Loibl et  al., 2024). Therefore, we 
predicted more misconceptions during the activity and posttest in the instruct-first con-
dition than in the explore-first conditions. Because the problem included contrasting 
cases, guiding students to navigate the most challenging misconceptions, we expected 
relatively equal misconceptions between the two explore-first conditions.

Questionnaires

Knowledge gaps

We also surveyed students after both the activity and instruction, to assess their per-
ceived knowledge gaps and interest. We hypothesized that students in the explore-first 
conditions would report higher perceived knowledge gaps than in the instruct-first con-
dition (e.g., Bego et al., 2022; Glogger-Frey et al., 2015; Newman & DeCaro, 2019). We 
predicted equal perception of knowledge gaps between the explore-first conditions.

Interest

Prior research examining interest has shown mixed results (e.g., Glogger-Frey et  al., 
2015; Newman & DeCaro, 2019; Sinha et  al., 2021; Weaver et  al., 2018). Thus, we 
hypothesized that interest would be equal or higher in the explore-first conditions com-
pared to the instruct-first condition. We did not expect differences between the two 
explore-first conditions.

Cognitive load

Cognitive load (i.e., mental effort; Paas, 1992) was assessed at the end of the session 
only, due to an error. Cognitive load is typically examined to gauge whether exploratory 
learning activities are too cognitively demanding for learners. Prior research suggests 
that exploratory learning will be less beneficial if the exploration activity is too cogni-
tively demanding (e.g., Ashman et al., 2020; Fyfe et al., 2014; Kapur, 2016; Newman 
& DeCaro, 2019). This working memory demand depends on a variety of factors, such 
as capacity and prior knowledge of the learner and complexity of the materials (e.g., 
Alloway, 2006; Ashman et  al., 2020). Thus, we used this measure to help inform our 
interpretation of the study findings, rather than making a priori hypotheses about this 
measure. Specifically, this measure was used to ensure that cognitive load was at an 
appropriate level for our participants. Kalyuga and Singh (2016) argue that exploratory 
learning activities impact “the intensity of cognitive activity involved in achieving a 
specific goal of the task” (Kalyuga & Singh, 2016, p. 848). We used a brief “mental 
effort” measure given in prior research to determine whether cognitive load was affected 
by instructional order or activity prompt as part of the learning process (Paas, 1992; see 
also Hsu et al., 2015; Newman & DeCaro, 2019).
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Contribution of the study

This research examines whether slight variations in two frequently used exploration 
prompts may have important impacts on learning processes and outcomes. We expected 
students to engage in sense-making processes to activate and apply their prior knowl-
edge to the novel problem, and realize gaps in this knowledge, in both explore-first 
conditions. However, we expected that the specific exploration prompts used would 
lead students to focus either more narrowly or broadly, impacting the information they 
explore (e.g., problem features) and the resulting conceptual structures. Thus, this 
research sheds further light into how conceptual change can be supported by educa-
tional activities.

Methods

Participants and design

Participants were undergraduate students (N = 164; age M = 20.54, SD = 3.12; 70.1% 
women, 25.6% men, 1.3% nonbinary) enrolled in psychology statistics courses at a met-
ropolitan Midwestern U.S. university, with three different instructors of record. Partici-
pants completed the study during their regular statistics course lab curriculum. They 
were not compensated for participation, other than their typical participation credit 
for attending class. The majority (n = 132) of students completed the study online; the 
rest completed the study in person, based on the modality of their statistics course that 
semester. Participants were randomly assigned to one of three conditions based on the 
session in which they participated, in a between-subjects quasi-experimental design: 
instruct-first (n = 71; 69 online), explore-first invent (n = 52; 37 online), or explore-first 
generate (n = 41; 27 online). Additional participants were excluded from analyses for 
not completing the posttest past the first (procedural) essay question (n = 4), missing 
portions of the session (e.g., arriving late or technical issues, n = 7), having completed 
a prior version of the study before (n = 1), or not speaking English as their primary lan-
guage (n = 9), due to the large amount of reading material in the study.

Materials

Instruction

Instruction was provided in a text passage with a worked example explaining proce-
dural and conceptual components to solving standard deviation (Newman & DeCaro, 
2019; adapted from Wiedmann et al., 2012). The passage described a problem scenario 
in which engineers were attempting to determine which of two trampolines has the most 
consistent levels of bounciness. A table displayed data for inches of rebound for one 
trampoline, followed by a worked example of computing standard deviation. Explana-
tions and rationales were provided for each step. Then, the second trampoline’s data was 
shown, followed by three practice questions. The first two questions asked students to 
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calculate the standard deviation for the second trampoline, and describe what the value 
meant. The last question asked students to state which of the two trampolines has the 
most consistent bounciness.

Problem‑solving activity

The problem-solving activity was adapted from Newman and DeCaro (2019) and Wied-
mann et  al. (2012) (see Fig.  2). Students were given a brief backstory of a tea com-
pany that wanted to purchase from a tea grower that had the most consistent levels of 
antioxidants from year to year. A table was provided of three different tea growers and 
their antioxidants per mg for each year across five years. In the instruct-first condition, 
students were asked to “use what you have just learned about standard deviation” to 
determine the most consistent tea-grower (Fig.  2a). In the explore-first invent condi-
tion, students were asked to “come up with a formula to measure consistency” (Fig. 2b; 
see Newman & DeCaro, 2019; Schwartz et  al., 2011; Wiedmann et  al., 2012). In the 
explore-first generate condition, students were asked to “come up with as many differ-
ent ways to measure consistency as you can” (See Fig. 2c; modified from Kapur, 2014a, 
2014b). All students were asked to show their work mathematically.

Fig. 2  Problem-solving Activity
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Activity coding

Problem-solving activities were coded for two components: the quality of the standard 
deviation formula, and the quantity of attempted solutions in total (e.g., Kapur & Bielac-
zyc, 2012; Kapur, 2014a, 2014b). For the quality score, students received one point for 
each correct step in the standard deviation formula (for a total of six points). Students could 
receive up to 18 points if they correctly calculated standard deviation for each of the three 
tea growers. For the quantity score, students’ math work was coded based on the number of 
different strategies they attempted (See Appendix C). Students received one point for each 
attempted strategy.

Questionnaire

Students were given a questionnaire after each phase of the study (problem solving activ-
ity and instruction). After the first phase (instruction for the instruct-first condition and 
activity for the explore-first conditions), students completed items assessing perceived 
knowledge gaps (3 items; Cronbach’s α = 0.84–0.90; Flynn & Goldsmith, 1999; e.g., “I 
do not feel very knowledgeable about calculating consistency”), and interest (3 items; 
α = 0.87–0.89; Ryan, 1982; e.g., “I found this learning activity interesting”; see Newman & 
DeCaro, 2019). Items for each subscale were intermixed and measured on a 7-point Likert 
scale (1 = strongly disagree; 7 = strongly agree). The same questionnaire was again given 
after the second phase, in addition to a cognitive load item (1 item; Paas, 1992). The cog-
nitive load item was not given after the first phase due to an error. Students were asked to 
“Please indicate how much mental effort you invested when solving/studying the problem” 
on a 9-point scale (1 = very, very low mental effort; 9 = very, very high mental effort). Stu-
dents additionally completed demographic items and two items asking whether they had 
prior knowledge of the materials or concept (e.g., “Have you learned about the concept of 
standard deviation or variance before?”).

Posttest

The posttest was designed to primarily assess conceptual knowledge, with one additional 
procedural knowledge item that included 3.5 possible points (Appendix A). Procedural 
knowledge was evaluated by asking students to execute the correct mathematical sequence 
to complete a standard deviation problem (Rittle-Johnson & Alibali, 1999). The procedural 
knowledge item asked students to solve standard deviation for a list of ten numbers. Scores 
on this item included the number of correct standard deviation steps used out of 6 possible, 
in the correct order (0.5 points each). An additional half point was given for answers given 
within 1 point of the correct answer, to allow for rounding or minor computational errors 
(cf. DeCaro & Rittle-Johnson, 2012).

Because exploratory learning benefits are most commonly found on measures of con-
ceptual understanding, the majority of items assessed this construct (i.e., students’ under-
standing of the underlying principles of standard deviation, or consistency in statistics). 
Conceptual knowledge items included both multiple choice and essay items (α = 0.63; 
34 points possible; Appendix A). The five multiple choice questions were adapted from 
exams given by psychological statistics instructors at our university (2 points each). Essay 
questions were the same as used by Newman and DeCaro (2019; adapted from Wiedmann 
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et al., 2012; Kapur, 2012). The first question asked students to determine temperature con-
sistency and decide which month an ice hockey tournament should be held. A table was 
provided listing daily high temperatures for six days for each of two months. Students were 
instructed to support their decision mathematically. The second item provided the same 
dataset with a backstory of how one of the values is incorrect, so the decision needed to 
be revisited. The value was crossed out and the correct value was provided. Students were 
asked to evaluate whether their previous choice should be changed based on this correction 
and whether this mistake mattered. Although both items include both problem-solving and 
conceptual aspects, these components are not independent within each item, and the items 
primarily require students to provide rationales. Newman and DeCaro (2019) found that 
these items showed the same pattern of results with each other and with conceptual meas-
ures; thus, we included the items on the conceptual subscale. The third item instructed stu-
dents to explain each component of the standard deviation formula (i.e., x—M, ()2, Σ, and 
√) and how it contributes to the concept of standard deviation (see Schwartz & Martin, 
2004). Essay responses were scored using the rubric in Appendix B.

Finally, a preparation for future-learning (transfer) assessment provided a short pas-
sage on standardized scores (z-scores). Students were given brief instruction on calculat-
ing and interpreting the concept of standardized scores using a worked example problem 
about one individual’s scores on two athletic activities (adapted from Schwartz & Martin, 
2004). Then, students completed two items assessing their understanding of z-scores. First, 
students were asked to look at a different problem including another individual’s scores on 
two athletic activities, as well as the means and standard deviations within those activities, 
and determine at which athletic activity the individual performed better. Then, students 
were given a problem (adapted from Kapur, 2012; Newman & DeCaro, 2019; Wiedmann 
et al., 2012) asking them to determine which of two students, the top physics or top chem-
istry student, should receive the best science student award. A table displayed all the scores 
of top physics and chemistry students for five years, with the mean and standard deviation 
provided for each subject. This problem is solved by calculating the standardized score of 
both students and then interpreting and explaining the choice based on the result. Items 
were scored based on the rubric in Appendix B (15 points possible; Cronbach’s α = 0.77). 
A second individual rescored 20% of the posttests; interrater reliability was high, rs = 0.90 
to 0.99.

Misconceptions

Participant responses on the problem-solving activity and the posttest were coded for mis-
conceptions, reflecting fundamental misunderstandings about the equation or concept of 
standard deviation. We added the number of misconceptions given for each participant, 
using the rubric in Appendix D.

Procedure

Students completed the study as part of their regular statistics course lab section. The ses-
sion occurred either online or in person, depending on the typical course format. Students 
were told that the activities would help them learn about concepts relevant to the course 
material and to try their best, but that their performance on the actual materials would not 
affect their grade.
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Students completed the study over two course sessions, separated by approximately one 
week. During the first course session, students worked individually to complete a packet 
including the instruction, problem-solving activity, and questionnaires. Those who com-
pleted the study online participated live via the course Learning Management System 
(Blackboard Collaborate). Each section of the packet (i.e., instruction, questionnaires, and 
activity) was provided through a separate link for that section. The end of each section was 
marked with a “stop” sign, and students were asked to wait until instructed before continu-
ing. Each section of the packet was timed. During the second session, students completed 
the posttest and future learning assessment. For both sessions, students working online 
were asked to work on their own sheet of paper and to upload images of their work. All 
students were allowed to use a calculator during the study.

Students were randomly assigned to condition based on the lab sessions in which they 
were enrolled. Students in the instruct-first condition worked on the instruction packet (15-
min), completed the first questionnaire, worked on the problem-solving activity (18-min), 
and completed the second questionnaire. Students in the explore-first conditions worked 
on the problem-solving activity (18-min), completed the first questionnaire, worked on the 
instruction packet (15-min), then completed the second questionnaire. During the second 
session, students were given 45 min to complete the posttest.

Students participated as part of their regular classroom instruction. Students were 
informed about the research via an email at the end of the semester and given the option 
to withdraw their data. All study procedures were approved by the university Institutional 
Review Board.

Results

Preliminary analyses

Due to the small sample of students taking the class in person, we did not conduct for-
mal analyses of the effect of online or in-person modality. However, in-person and online 
students showed the same pattern of means across conditions (see Appendix E), with no 
significant or trending interactions between condition and modality on the posttest scores 
(procedural, conceptual, future learning), ps = 0.507–0.987. Analyses reported below were 
collapsed on this factor.

Students’ self-reported prior knowledge was low, and no difference in reported prior 
knowledge was found as a function of condition, F < 1, p = 0.675, ηp

2 = 0.005 (instruct-first 
M = 1.61 out of 4, SE = 0.14; explore-first invent M = 1.59, SE = 0.17; explore-first gen-
erate M = 1.79, SE = 0.19). Of the few students (8 total) who reported high prior knowl-
edge, scores remained well below ceiling on the conceptual knowledge scale (range 
23.53–94.12%; only two of these students scored above 90%). Thus, our sample did not 
likely have high prior knowledge of the target concepts.

Learning outcomes

Procedural, conceptual, and future-learning scores are likely correlated (Schneider 
et al., 2011). However, exploratory learning research treats these outcomes as distinct, 
because effects tend to be stronger on conceptual and transfer items than procedural. 
Our hypotheses also differed based on subscale. Thus, separate ANOVAs were used 
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to examine differences as a function of condition (instruct-first, explore-first generate, 
explore-first invent) for each posttest subscale (procedural, conceptual, future learn-
ing; see Fig. 2). Pairwise differences between conditions were examined using Tukey’s 
LSD.

Procedural knowledge

On the procedural knowledge item, no significant overall effect of condition was found, 
F(2,161) = 2.34, p = 0.099, ηp

2 = 0.03 (Fig. 3, Table 1). Planned comparisons revealed 
significantly higher procedural scores in the explore-first generate condition compared 
to the explore-first invent condition, p = 0.033, d = 0.41. Scores in the instruct-first con-
dition did not differ from scores in either other condition, ps > 0.214, ds = 0.21–0.26.

Fig. 3  Mean posttest scores (procedural knowledge, conceptual knowledge) as a function of condition. 
Error bars represent SEMs

Table 1  Means (standard error in parentheses) of posttest scores and strategy coding as a function of condi-
tion

Posttest Condition

Instruct-first Explore-first invent Explore-first generate

Mean (SE) Mean (SE) Mean (SE)

Procedural knowledge (%) 85.92 (2.68) 80.77 (3.13) 90.94 (3.53)
Conceptual knowledge (%) 62.41 (2.83) 59.43 (3.31) 72.08 (3.72)
Transfer (%) 39.09 (3.76) 43.81 (4.39) 53.21 (4.95)
Intervention strategies
Quality of solution attempts (out of 18) 14.41 (.67) 4.37 (.78) 1.76 (.88)
Quantity of solution attempts 1.18 (.12) 1.71 (.14) 2.95 (.16)
Misconceptions Frequency (n) Frequency (n) Frequency (n)
Activity 32 (71) 7 (52) 5 (41)
Posttest 28 (71) 9 (52) 6 (41)
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Conceptual knowledge

On the conceptual knowledge scale, a significant effect of condition was found, 
F(2,161) = 3.46, p = 0.034, ηp

2 = 0.041 (Table 1). As shown in Fig. 3, significant differences 
were found between explore-first generate and instruct-first conditions, p = 0.040, d = 0.44, 
as well as between explore-first generate and explore-first invent conditions, p = 0.012, 
d = 0.52. There were no significant differences between instruct-first and explore-first 
invent conditions, p = 0.495, d = 0.11.

Future learning (transfer)

On the future-learning (transfer) assessment, no overall effect of condition was found, 
F(2,161) = 2.59, p = 0.078, ηp

2 = 0.03 (Fig. 4, Table 1). Planned comparisons showed that 
students in the explore-first generate condition scored significantly higher than students 
in the instruct-first condition, p = 0.024, d = 0.43. There were no significant differences 
between explore-first invent and instruct-first, p = 0.415, d = 0.15, or explore-first generate 
conditions, p = 0.157, d = 0.30.

Problem‑solving activity

Quality of solution attempts

For total quality of solution attempt scores on the problem solving activity, students who 
attempted to calculate standard deviation for the three tea-growers could score up to 18 
points (6 points each). There was an overall significant difference between conditions, 
F(2,161) = 82.08, p < 0.001, ηp

2 = 0.51 (Fig.  5, Table  1). As expected, students in the 
instruct-first condition provided higher quality solutions than in the explore-first invent, 

Fig. 4  Mean future-learning scores (transfer) as a function of condition. Error bars represent SEMs
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p < 0.001, d = 1.65., and explore-first generate conditions, p < 0.001, d = 2.63. Students in 
the explore-first invent condition used higher quality solutions than in the explore-first gen-
erate condition, p = 0.028, d = 0.44.

The quality of students’ standard deviation attempts did not significantly correlate with 
procedural scores, r(164) = 0.14, p = 0.070, conceptual scores, r(164) = 0.08, p = 0.343, or 
future learning, r(164) = -0.03, p = 0.705. Regardless of how well students were able to 
apply or discover the canonical standard deviation formula on the activity, this ability did 
not translate to greater learning outcomes or preparation for future learning.

Quantity of solution attempts

For quantity of solution attempts, problem-solving activities were coded for the num-
ber of different types of solutions attempted by each participant. This coding procedure 
also served as a manipulation check to ensure students were following the instructions 

Fig. 5  Quality of solution 
attempts during the problem-
solving activity (Number of cor-
rect standard deviation steps out 
of 6 for each of three datasets). 
Error bars represent SEMs

Fig. 6  Quantity of solution 
attempts during the problem-
solving activity (number of dif-
ferent representations/strategies 
attempted). Error bars represent 
SEMs
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of using or inventing one solution (i.e., standard deviation method) or generating many 
solutions. An overall difference in mean solution attempts was found among conditions, 
F(2,161) = 39.36, p < 0.001, ηp

2 = 0.33. As shown in Fig.  6 and Table  1, students in the 
instruct-first condition attempted fewer solutions than students in the explore-first invent 
condition, p = 0.005, d = 0.72, and the explore-first generate condition, p < 0.001, d = 1.46. 
Students in the explore-first invent condition attempted fewer solutions than students in the 
explore-first generate condition, p < 0.001, d = 0.94.

The quantity of students’ solution attempts was significantly correlated with students’ 
conceptual scores, r(164) = 0.20, p = 0.011. However, the quantity of attempts did not sig-
nificantly correlate with procedural scores, r(164) = 0.002, p = 0.982, or future learning, 
r(164) = 0.14, p = 0.069. Attempting more solutions was associated with greater conceptual 
understanding.

Misconceptions

We found an overall difference between conditions on the number of misconceptions 
shown during the problem-solving activity, χ2(2,164) = 21.24, p < 0.001. In the instruct-
first condition, 32 out of 71 students demonstrated misconceptions during the activity. 
In the explore-first conditions, misconceptions were found for 7 out of 52 students in the 
invent condition and 5 out of 41 students in the generate condition. This significant pattern 
of misconceptions extended to the posttest, χ2(2,164) = 11.39, p = 0.003 (see Table 1).

Questionnaire

Phase 1

Descriptive statistics for the questionnaires are shown in Table 2. For the first phase, given 
after instruction for the instruct-first condition, and after the activity for explore-first condi-
tions, condition impacted students’ perceived knowledge gaps, F(2,160) = 23.34, p < 0.001, 
ηp

2 = 0.23. As expected, students in the instruct-first condition reported significantly lower 
perceived knowledge gaps compared to both the explore-first invent and explore-first 

Table 2  Means (standard error in parentheses) of questionnaire items as a function of order of instruction

Knowledge gaps and interest out of 5 points. Cognitive load out of 9 points

Condition

Instruct-first Explore-first invent Explore-first generate

Phase 1 Mean (SE) Mean (SE) Mean (SE)
Knowledge gaps 2.66 (.11) 3.76 (.14) 3.63 (.16)
Interest 3.84 (.10) 3.33 (.15) 3.16 (.16)
Phase 2 Mean (SE) Mean (SE) Mean (SE)
Knowledge gaps 2.36 (.10) 2.64 (.14) 2.38 (.14)
Interest 3.96 (.10) 3.82 (.11) 3.74 (.16)
Cognitive load 5.93 (.22) 5.96 (.26) 5.38 (.33)
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generate conditions, ps < 0.001, ds = 1.00–1.14. Students in the two explore-first conditions 
did not report differences in perceived knowledge gaps, p = 0.522, d = 0.13.

An effect of condition was also found for reported interest in the first phase, 
F(2,160) = 7.51, p < 0.001, ηp

2 = 0.09. Students in the instruct-first condition reported 
higher interest compared to both the explore-first invent, p = 0.005, d = 0.52, and explore-
first generate conditions, p < 0.001, d = 0.72. No significant differences were found between 
the explore-first conditions, p = 0.250, d = 0.16.

Phase 2

For the second phase, occurring after the activity for instruct-first condition and after the 
instruction for the explore-first conditions, these differences went away for both perceived 
knowledge gaps, F(2,157) = 1.59, p = 0.207, ηp

2 = 0.02, and interest, F < 1, p = 0.407, 
ηp

2 = 0.01. Thus, any gaps students perceived in their knowledge, or reduced interest, were 
equalized between conditions after the instruction and activity were both completed. Addi-
tionally, there were no significant differences between conditions in cognitive load (mental 
effort), F(2,157) = 1.28, p = 0.281, ηp

2 = 0.02.

Discussion

We predicted that two commonly-used exploratory learning prompts could lead to different 
forms of conceptual engagement prior to instruction. The two prompts originated from the 
inventing to prepare for future learning (e.g., Schwartz & Martin, 2004; Schwartz et al., 
2011) and productive failure (e.g., Kapur, 2014a, 2014b, 2015) literatures. Both litera-
tures posit that exploration activities help students create knowledge structures that deepen 
their understanding of subsequent instruction (e.g., Schwartz & Bransford, 1998; Schwartz 
et al., 2007). However, typical studies from each literature focus on different exploration 
processes. The invention literature highlights that invention prompts help students begin to 
reconcile disparate problem features (e.g., distance from the mean and sample size in sta-
tistics, or mass and velocity in physics; Schwartz et al., 2007, 2011). Research using strat-
egy generation prompts tends to focus on how exploring multiple solution methods and 
representations helps students differentiate their knowledge (Kapur, 2014a, 2014b, 2015).

Drawing from problem solving research (e.g., DeCaro et  al., 2017; Knoblich et  al., 
1999; Thevenot & Oakhill, 2008), we reasoned that students’ conceptual structures might 
take different forms, depending on the search processes prompted during exploration. 
We found evidence that invention prompts constrained and deepened students’ explora-
tion, whereas strategy generation prompts broadened exploration. Broader—rather than 
deeper—exploration was associated with greater conceptual understanding and preparation 
for future learning.

Learning processes

We coded the quality and quantity of strategies students used during the activity, to deter-
mine (a) how successful students were at discovering or applying the canonical standard 
deviation formula, and (b) how broadly they explored the problem space. Unsurprisingly, 
students in the instruct-first condition, who had just learned the formula, were much more 
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successful in using the formula on the problem solving activity (quality scores), with large 
effect sizes.

Students in the explore-first invent condition derived significantly more of the problem-
solving steps than students in the explore-first generate condition (quality scores, small-to-
medium effect size). However, invention resulted in fewer total attempted solutions (quan-
tity scores, medium-to-large effect size). These results suggest that invention instructions 
prompted students to focus and build on a smaller number of solution approaches. Strategy 
generation instructions prompted a wider search of problem features, but limited how many 
canonical solution steps students discovered.

Importantly, accuracy (quality) during the problem solving activity was not associated 
with accuracy on the posttest or future-learning assessment. Instead, the quantity of solu-
tions correlated with conceptual knowledge scores on the posttest. This finding suggests 
that prompting students to try out multiple approaches helps them to differentiate impor-
tant problem features, supporting conceptual understanding. Quantity did not significantly 
correlate with future-learning scores, however, though results trended in that direction. 
There may be other necessary factors predicting future learning beyond simply generating 
multiple solutions that were not measured in this study.

Learning outcomes

Even though exploring before instruction increased errors and solution paths compared to 
an instruct-first approach (cf. Kirschner et al., 2007; Sweller & Chandler, 1994), students’ 
procedural knowledge was unharmed. However, generating solution methods improved 
procedural knowledge compared to invention.

Exploratory learning is designed to target students’ sense-making and development of 
conceptual schemas (Loibl & Rummel, 2015; Schwartz et  al., 2007). We assessed both 
conceptual knowledge and preparation for future learning. Approximately one week after 
completing the standard deviation materials, students were given a passage on a new, 
related topic (standardized z-scores), then asked to complete two problems assessing their 
learning of the new topic. Consistent with prior research (see Loibl et al., 2017), we found 
exploratory learning benefits on these measures—but only when students were given 
strategy generation prompts during the exploration activity. Students in the explore-first 
generate condition scored significantly higher than in both other conditions on conceptual 
knowledge, and significantly higher than the instruct-first condition on future learning, 
with small-to-medium effect sizes. Students in the explore-first invent condition did not 
score differently than students in the instruct-first condition on either measure.

The null result for invention prompts does not replicate prior studies (e.g., Schwartz & 
Martin, 2004; Schwartz et  al., 2011). Our study differs from prior work using invention 
prompts in several ways. For example, studies have been typically done with a younger 
population, do not usually control for the learning materials given between conditions, and 
are conducted over a longer time span than the current study. Our results suggest that the 
benefits of strategy generation are stronger than a simple invention prompt, at least with 
undergraduate students completing a short exploration activity.

These results are consistent with prior studies showing benefits of exploring with strat-
egy generation prompts over an instruct-first condition (e.g., Kapur, 2014a, 2014b, 2015; 
Trninic et al., 2022). We extend this work by demonstrating that use of strategy genera-
tion prompts enhances students’ preparation for future learning—more than with invention 
prompts typically used with future-learning assessments.
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Together with the quality and quantity coding, these results suggest that exploring more 
broadly during exploration better supports students’ conceptual understanding and transfer 
to new learning situations. The strategy generation prompt still requires students to invent, 
but also pushes students to move beyond the first few solutions that come to mind, likely 
helping them to encode important problem features (see Gilhooly et al., 2007). Consistent 
with the productive failure principle, student success at solving the problem appears to be 
less important than the discovery process itself.

Metacognitive and motivational processes

Both inventing and generating strategies resulted in greater awareness of gaps in students’ 
prior knowledge, compared to the instruct-first condition (large effect size). This pattern 
replicates prior findings (e.g., Glogger-Frey et al., 2015; Loibl & Rummel, 2014a; New-
man & DeCaro, 2019). Any gaps in knowledge perceived after the activity were resolved 
after instruction.

Metacognitive awareness of knowledge gaps cannot explain differences in learning out-
comes between conditions. Students in the explore-first invent condition showed similar 
knowledge gaps after exploring as in the generate condition, but lower conceptual knowl-
edge scores. Coupled with the strategy coding results, these findings suggest that better dif-
ferentiating the problem space is required for the conceptual benefits of exploring, likely in 
addition to increasing metacognitive awareness of knowledge gaps (see Loibl & Rummel, 
2014a; Newman & DeCaro, 2019).

Students in the instruct-first condition reported higher interest than students in the 
explore-first conditions after the first phase (medium-to-large effect size). In the explore-
first conditions, reported interest was right at the neutral midpoint of the scale. This result 
is inconsistent with prior suggestions that interest increases when a task is novel, somewhat 
complex, and requires personal direction (Rotgans & Schmidt, 2014; Silvia, 2008). This 
result is also surprising in light of prior exploratory learning studies, which have found 
that interest is equal or higher in explore-first compared to instruct-first conditions (e.g., 
Glogger-Frey et al., 2015; Weaver et al., 2018). However, this finding is not particularly 
surprising considering that students who explored first were more likely to experience fail-
ure during the activity.

Taken together with the mixed findings in the literature, this result suggests that interest 
is not likely driving the learning results. Other affective responses have been measured in 
the literature that might better explain students’ reactions than interest, such as curiosity 
(Lamnina & Chase, 2019; Loibl & Rummel, 2014a) or surprise (Sinha, 2022). Interest did 
equalize by the end of the second phase, suggesting that the experience of failure did not 
dampen interest in the long run (see Hidi & Harackiewicz, 2000).

Cognitive load

Exploratory learning activities are unlikely to benefit learning if they are not matched to 
learners’ abilities (DeCaro et al., 2024; Kapur, 2016). We found no differences in reported 
cognitive load between conditions, measured once when both phases were complete. Rat-
ings were right around the mid-point of the scale, suggesting that learners did not perceive 
the exploration experience as too simple or taxing, regardless of prompt type.
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Misconceptions

During exploratory learning, students could potentially activate and hold onto miscon-
ceptions about the topic (Kirschner et al., 2007). We found the opposite. Students in the 
instruct-first condition showed significantly greater misconceptions about standard devi-
ation than students in the explore-first conditions, on both the problem solving activity 
and the posttest. For example, some students divided by the mean (M) instead of the 
sample size (N), indicating that they did not understand the purpose of dividing by the 
number of scores in a sample. Similarly, some students divided by the same sample size 
for all datasets, even when the datasets did not have equal numbers of scores. Thus, stu-
dents in the instruct-first condition appeared to be rotely applying formula steps, with-
out understanding the meaning behind the process. For example, they knew they needed 
to divide, but they did not always know what or why they should divide. This finding 
directly supports arguments that students given traditional instruction are more likely 
to passively process the content and develop superficial understanding (Glogger-Frey 
et al., 2015; Kapur, 2010; Renkl, 1999; Schwartz et al., 2007; Wittwer & Renkl, 2008).

The strategies students use indicate the prior knowledge that was activated (Kapur, 
2016). Students in both explore-first conditions showed few misconceptions during the 
problem solving activity, suggesting that they did not have many misconceptions prior 
to the learning session. It seems likely that the misconceptions arose due to superficial 
processing during instruction, but only for students who got instruction first. These find-
ings add evidence that exploratory learning helps to lessen the pitfalls of direct instruc-
tion. The number of misconceptions did not differ based on prompt condition, suggest-
ing that both types of exploration helped to reduce misconceptions.

Limitations and future research

By bringing together commonly-used exploratory learning prompts into one study, we 
are able to determine how these methods impact learning processes and outcomes. This 
design allows us to begin to connect principles across these prior studies (see Koedinger 
et al., 2012; Loibl et al., 2024). More work is needed to determine if strategy generation 
versus invention prompts evoke different processes and learning outcomes with other 
types of materials, learners, or settings.

Materials

Because our primary focus was on conceptual understanding, we used only one item 
to assess procedural knowledge. This design choice potentially limited our ability to 
detect differences on this measure, although we did find some. Our measure of con-
ceptual understanding also was somewhat contaminated by procedural elements, given 
that students needed to both compute and reason about standard deviation in two of 
the essay items. Procedural and conceptual understanding develop iteratively, and are 
correlated with each other (Schneider et al., 2011). Thus, the inclusion of some compu-
tational elements was unlikely to limit the conclusions made from this measure. If any-
thing, including both elements should only weaken our ability to find significant results. 
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However, future research should use a purer measure of conceptual understanding, such 
as asking students to interpret an already worked-out problem.

Setting

Most exploratory learning studies have been conducted with students during in-person 
classroom or laboratory settings. Because of the existing course structure at the time 
of our research, the majority of our students completed the study in an online learn-
ing session conducted via live videoconference. A few prior studies have found benefi-
cial effects of exploration in online settings (DeCaro et al., 2023; Hieb et al., 2021; see 
also Song & Kapur, 2017, for a flipped classroom study in which the instruction was 
completed online). We did not have a large enough sample to treat learning setting as 
a between-subjects factor. However, preliminary analyses suggested that the pattern of 
results was the same between these settings. More research is needed to confirm this 
lack of difference, and fully compare online and in-person exploratory learning within 
one study.

Prompts

The primary difference between invention and strategy generation prompts was the goal 
to come up with one versus multiple solutions. However, another difference between 
the prompts was the use of the word “formula” in the invention prompt. Students were 
instructed to “come up with a formula to measure consistency.” In the strategy genera-
tion prompt, students were instructed to “come up with as many different ways to measure 
consistency as you can.” The word “formula” implies that a mathematical calculation is 
required. Mathematics provides a formal method for students to explicitly connect seem-
ingly incommensurate factors, such as distance from the mean and sample size (Schwartz 
et al., 2007). However, by focusing on a mathematical solution, the invention prompt may 
have constricted the search space even more. Students were not only limited in how many 
solutions but also what type of solution they should search for. The prompts used were 
taken verbatim from prior research, providing a genuine test of prompts used in prior work. 
However, more research is needed to know whether it was the restriction to use just one 
method, or to use a mathematical one, that limited scores in the invention condition.

Additional research is also needed to test whether invention instructions might be 
more beneficial than strategy generation prompts in certain contexts. For example, there 
may be circumstances in which the extra search processes of strategy generation might 
unduly increase learners’ cognitive load (Kirschner et al., 2007). Specifically, strategy 
generation could be taxing for younger learners (who have lower working memory 
capacity; Alloway, 2006), learners with too little prior knowledge, or with more com-
plex learning materials (Ashman et al., 2020). In these situations, invention instructions 
could provide exploration benefits while helping to constrain the problem space. Inven-
tion prompts might be more beneficial in some contexts, such as when the cognitive 
load induced by strategy generation might be too high.

Strategy generation prompts might also be less useful with less guidance, such as with-
out contrasting cases in the problem. Without contrasting cases, students may encounter 
more unimportant problem features, adding too much extraneous cognitive load.
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Cognitive load

Cognitive load was assessed in the current study, because prior work suggests that load 
may be a boundary condition to the benefits of exploration (e.g., Ashman et al., 2020; 
Fyfe et al., 2014; Newman & DeCaro, 2019). We found that, at the end of the learning 
session, students reported equal cognitive load between conditions, around the midpoint 
of the scale. This finding suggests that cognitive load was not likely an issue in our 
study. However, due to an error, we did not measure cognitive load after the first learn-
ing phase (i.e., after the instruction in the instruct-first condition, or after the activity in 
the explore-first conditions). It is possible that cognitive load would have been higher 
in the explore-first conditions after struggle with the activity, and that such load would 
have also been higher than after students in the instruct-first condition completed the 
activity. Future research is needed to determine how cognitive load is impacted at the 
intermediate phase of learning.

Misconceptions

Students’ prior misconceptions about consistency were relatively infrequent in this study. 
Instead, misconceptions arose from instruction. However, students do often carry miscon-
ceptions with them into a learning session, in statistics and other domains (e.g., McNeil, 
2014; Schwartz et  al., 2007). More work is needed to determine if the misconception 
results generalize to domains in which students hold strong prior misconceptions.

Conclusion

Exploratory learning before instruction is a promising instructional method if the learning 
goal is to deepen conceptual understanding and transfer. While exploring, students engage 
in sense-making processes. These processes appear to help them avoid developing mis-
conceptions that arise from the more surface-level processing that may otherwise occur in 
traditional instruct-then-practice settings.

However, not all exploratory learning conditions enhance learning, including the 
explore-first invent condition in the current study. One way to help determine whether an 
instructional design will improve learning is to assess the learning processes during or after 
the exploration phase, and how these processes connect with different types of learning 
outcomes (Koedinger et al., 2012; Loibl et al., 2023, 2024). Prompts to generate multiple 
strategies during exploration appear to facilitate sense-making by helping students consider 
more problem features. This process appears to be key to exploratory learning benefits. 
Thus, during exploration, students may benefit more from instructions to widen their dis-
covery processes.

Appendix A

Multiple Choice Items (Conceptual):
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Procedural Essay Item:
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Z-Score Instruction:
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Future-Learning Assessment (z-scores):
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Appendix B
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Appendix C

This coding scheme is adapted from Loibl et al. (2020) and Wiedmann et al. (2012)

Appendix D: scoring rubric for misconceptions

Misconceptions will show evidence a fundamental error in the concept of standard devia-
tion/consistency. Computational errors are not considered misconceptions. Students 
must show evidence of incorrect conceptual knowledge regarding the formula of standard 
deviation.
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Standard deviation steps:

1. Calculated the mean
2. Calculated the differences
3. Squared the differences (or took the absolute value)
4. Summed all the (positive) differences
5. Divided by N
6. Took the square root

Misconception Scoring (for both activity and post-test): 1 point for any written or math-
ematical evidence of each of the following misconceptions:

– Divide by different N (in Step 5; e.g., in tea grower activity, divides by 6 [Thourbo] or 
divides by 4 [Dareen/Ging]

– Divided by Mean (in Step 5)
– Did Not Divide
– Did Not Square Root
– Did Not Square
– Other: Participant presents a unique misconception instead of one that is commonly 

used
– Unclear: Participant displays a potential misconception that does not fit into these cat-

egories, but it is unclear whether it might (i.e., unclear what participant was trying to 
do; add a comment to explain).

Appendix E

See Tables3 and4.

Table 3  Means (standard error in parentheses) of posttest scores as a function of order of instruction for 
participants in-person

Condition

Instruct-first (n = 2) Explore-first invent 
(n = 16)

Explore-first 
generate 
(n = 14)

Posttest Mean (SE) Mean (SE) Mean (SE)
Procedural knowledge (%) 73.81 (15.83) 86.51 (6.05) 87.50 (7.36)
Conceptual knowledge (%) 66.9 (10.99) 66.99 (5.66) 74.22 (5.88)
Transfer (%) 53.33 (10.43) 62.41 (5.65) 67.29 (6.29)
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