
Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 689

nature machine intelligence

https://doi.org/10.1038/s42256-025-01029-3Article

Compositional pretraining improves
computational efficiency and matches
animal behaviour on complex tasks

David Hocker1, Christine M. Constantinople1,3 & Cristina Savin    1,2,3 

Recurrent neural networks (RNNs) are ubiquitously used in neuroscience to
capture both neural dynamics and behaviours of living systems. However,
when it comes to complex cognitive tasks, training RNNs with traditional
methods can prove difficult and fall short of capturing crucial aspects of
animal behaviour. Here we propose a principled approach for identifying
and incorporating compositional tasks as part of RNN training. Taking as
the target a temporal wagering task previously studied in rats, we design
a pretraining curriculum of simpler cognitive tasks that reflect relevant
subcomputations, which we term ‘kindergarten curriculum learning’. We
show that this pretraining substantially improves learning efficacy and is
critical for RNNs to adopt similar strategies as rats, including long-timescale
inference of latent states, which conventional pretraining approaches fail
to capture. Mechanistically, our pretraining supports the development of
slow dynamical systems features needed for implementing both inference
and value-based decision making. Overall, our approach helps endow RNNs
with relevant inductive biases, which is important when modelling complex
behaviours that rely on multiple cognitive functions.

Recurrent neural networks (RNNs) are frequently used in neurosci-
ence to study the role of coordinated network activity in supporting
trained behaviours, with the hope of generating hypotheses about
neural mechanisms that can be tested in animal models1. As cognitive
tasks increase in complexity, training RNNs to mimic animals becomes
increasingly difficult. First, RNNs may fail to learn the task, especially
in reinforcement learning settings with salient suboptimal solutions,
sparse rewards or long temporal dependencies2. Second, the solu-
tions found by RNNs trained on complex tasks can fail to reflect the
computational strategies in animals, limiting their utility as models
for neuroscience.

Pretraining can boost learning by slowly increasing task complex-
ity along a particular dimension (for example, gradually increasing
the delay in a task requiring working memory) as a form of curriculum
learning3,4 or by using families of related tasks and harnessing shared
structure, as in meta-learning5–7. In the animal domain, pretraining

takes the form of behavioural shaping8, which gradually exposes the
animal to the functional subelements of a task, such as interacting with
effectors such as levers. As with artificial agent pretraining, complexity
is gradually increased by incorporating additional elements and the
animal learns how to combine them in an appropriate way (for exam-
ple, the lever needs to be pressed only when light is on). This approach
can dramatically increase learning efficiency in animals but is rarely
used in RNN training9. Another largely ignored form of pretraining is
the experience that the animals bring with them to the experiment in
the form of inductive biases. The subjects learn many cognitive tasks
throughout their lifetime, and previously learned tasks can impact their
behaviour in new ones10–12. Many factors including training history13,
early experiences14–17 or inductive biases established by evolution18 can
influence learning outcomes and corresponding behavioural strategies.

We hypothesize that adopting pretraining procedures that better
reflect the animal’s experience will allow RNNs to learn more robustly

Received: 28 February 2024

Accepted: 28 March 2025

Published online: 19 May 2025

 Check for updates

1Center for Neural Science, New York University, New York, NY, USA. 2Center for Data Science, New York University, New York, NY, USA. 3These authors
jointly supervised this work: Christine M. Constantinople and Cristina Savin.  e-mail: cs5360@nyu.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-025-01029-3
http://orcid.org/0000-0002-3414-8244
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-025-01029-3&domain=pdf
mailto:cs5360@nyu.edu

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 690

Article https://doi.org/10.1038/s42256-025-01029-3

reward (p = 0.8) arrives with a time delay drawn independently from
an exponential distribution p(t) = λ−1 exp(−t/λ), where mean λ is 2.5 s.
If the rat chooses the other port before reward delivery, the trial is
terminated (an ‘opt-out’ trial), and a new trial can begin. The reward is
withheld on a subset of trials (p = 0.2), termed ‘catch trials’, as a readout
of how long rats are willing to wait before exercising the opt-out choice.
There are five reward offers as well as a hidden block structure that is
not cued to the rats (Fig. 2b). Each session starts with a mixed block (all
offers), randomly followed by either a high (top three offers) or low
block (bottom three offers) and then deterministically alternating
between mixed and high/low blocks over the session. Importantly,
20 μl offers are present in all blocks, allowing a direct measure of con-
text dependence.

Rat wait times during catch trials are sensitive to both the size of
the reward offer and the latent block structure (Fig. 2c). Animals wait
longer for larger offers and modulate their behaviour on the basis of
the block. In addition, the difference in wait time for 20 μl offers when
comparing low versus high blocks with mixed blocks is asymmetric
(larger shifts for low blocks). To quantify behavioural sensitivity to
the blocks, we calculated the ratio of wait times for 20 μl offers in high
versus low blocks. Across a large population (N = 291 animals), rats
modulate their wait times based on the block context (Fig. 2d). This
state-dependent behaviour relies on an inferential strategy, in which
rats infer the most likely state based on the current offer value and their
prior beliefs about the current reward block19,20, which has distinct
behavioural signatures in particular after block transitions (Fig. 2e).
Indeed, regressing wait times against previous reward and block over
training shows that the block regressor increases with the same time
course as the behavioural sensitivity to blocks, suggesting that contex-
tual sensitivity reflects learned knowledge of block structure (Fig. 2f).
Modeling of this inferential strategy predicts the probability of being
in each block on a trial-by-trial basis (Fig. 2g).

Optimal task behaviour
Many rats exhibit linear sensitivity to log-reward offers and block-
dependent responses, which we seek to understand from an opti-
mal decision making perspective. While several formalizations are
possible, we chose to describe the task as an MDP, in which agents
must either wait for a reward or opt out of the trial (Fig. 2h), similar to
ref. 21. In this formulation, the agents decide between ‘wait’ and
‘opt-out’ actions. Waiting either preserves the state or transitions to a
terminal ‘hit’ state where reward is delivered, with probability given by
the exponential delay distribution, p(t), and overall reward probability,
pr. Opting out deterministically ends the trial with a reward penalty
Roo, while the wait action has a time penalty k. This MDP formulation
treats the offered reward and time within trial as the state, which allows
for a simple closed-form solution describing optimal behaviour for an
agent with perfect knowledge of the task statistics, where the optimal
wait time t* is log linear in the reward offer R,

t∗ = λ (log[Rpr] − log[kλ]) . (1)

In foraging theory, where agents aim to maximize their reward rates,
time penalties are often related to the opportunity cost or the average
reward rate of the environment; thus, the wait-time decisions should
incorporate the value of potential rewards missed out on by continuing
to wait22,23. In our MDP formulation, this implies

k = ρΔt = 𝔼𝔼 [̃R(B)] , (2)

where ρ is the reward rate, Δt the time step size, ̃R(B) the reward for a
given block B and the expectation is taken over the reward probability
for an offer in a specific environment, B. This approach identifies
qualitative features of optimal behaviours in this task: linear

and better match animal behaviour. To test this, we created a pre-
training paradigm that explicitly trains a set of useful, basic compu-
tational skills (working memory, sensory evidence integration and so
on) outside of the target task context (using simple tasks with separate
loss functions). These skills are then combined via animal-matched
behavioural shaping towards a target end goal (Fig. 1). We term this
form of pretraining as ‘kindergarten curriculum learning’ (kCL). Our
approach is similar to traditional curriculum learning in that the dif-
ficulty of the task increases over time and to meta-learning in that the
curriculum tasks are assumed to share underlying computational
structure with the target. It is unique in its decomposition of complex
tasks into elements that need to be computed in parallel, pretrainable
with simpler means.

We test our approach using a complex cognitive task previously
performed in rats19. A simplified formalization of the task as a Markov
decision process (MDP) allows us to identify key qualitative features
of optimal behaviour in the task and the subtasks to include in the
kindergarten curriculum. kCL substantially improves learning speed
and performance compared with brute-force in-task training with
or without behavioural shaping. Importantly, its computational
strategies closely match animal behaviour, while other curricula’s do
not. While increasing the number of relevant kindergarten subtasks
increases both performance and the strength of this match, good
performance and adopting animal-like strategies are dissociable,
further demonstrating the importance of good inductive biases in
mimicking rats behaviour. Mechanistically, we find a diversity in
the types of dynamical system features present in well-trained net-
works (that is, point attractors, saddles and line attractors), though
typically well-performing networks possess attractor dynamics for
latent states with strong beliefs and saddles for uncertain states
with semistable beliefs. This solution is qualitatively distinct from
high-performing networks not trained with kCL. Moreover, kCL yields
networks with richer dynamics, which can be exploited for learning
the target task.

Results
Behaving animals use inference in a temporal wagering task
To study the effects of curriculum learning on behaviour and neural
activity, we sought a task that is difficult for RNNs to learn from expe-
rience alone. Specifically, we investigated a temporal wagering task
performed by rats19, where a simple, suboptimal strategy leads to rea-
sonable rewards, but optimal strategies require inference of latent
states over long timescales (Fig. 2a). Rats initiate trials by poking into
a centre port, then they hear an auditory tone, the frequency of which
denotes the volume of a water reward. A side port is randomly chosen
as the rewarded side on each trial, indicated by light. The probabilistic

Kindergarten:
primitive subtasks

Behavioural shaping:
identify and link relevant subtasks

Separate tasks: Task variants: Training/target task: /

Fig. 1 | Modelling the animal’s learning experience. Right: the target behaviour
or task (open circle) can be thought of as composed of several computational
subelements, some of which may need to be computed in parallel. Left: these
subcomputations involve primitive skills that in the animals have probably
been learned through past experience. Behavioural shaping guides learning by
incrementally combining basic skills into more complex functions (linked puzzle
pieces). For RNN training, we operationalize this idea by first training a set of
fundamental subcomputations in a ‘kindergarten’ training phase, followed by
behavioural shaping that mimics animal training.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 691

Article https://doi.org/10.1038/s42256-025-01029-3

sensitivity to log-offer, with a bias to wait longer in reward-sparse envi-
ronments (Fig. 2i), an asymmetry in the sensitivity of wait times to high
versus low blocks, as well as faster wait times with lower reward prob-
abilities (see Supplementary Information for derivations and further
details). Importantly, rats display all of these hallmarks (Fig. 2c,d).

Deep meta-reinforcement learning agents mimic rat
behaviour
To study the impact of training on behavioural performance, we used
deep RNNs trained with meta-reinforcement learning (Fig. 3a, long
short-term memory (LSTM) architecture, all-to-all connected within
each module), which allows for dynamic behavioural adaptation and
has provided useful neural signatures in other tasks24. Our version
includes a modular architecture, with one module implementing latent
state inference (‘inference’), analogous to regions such as the orbito-
frontal cortex25–27, and a second module responsible for action selection
(‘policy’), loosely analogous to the striatum28.

We trained RNN agents on a simplified variant of the temporal
wagering task (Fig. 3b). At every timepoint (Δt = 50 ms), the agent
decides on the basis of its stochastic decision policy to either ‘wait’ or
‘opt out’ (abstracting away the trial by trial alternation in left versus

right reward ports), with stochastic intertrial intervals out of the
control of the agent. These changes preserve the core decision mak-
ing process and cleanly map to the MDP, while simplifying the RNN
architecture.

We used the MDP-derived expression for the Q value for waiting
during the trial, to identify candidates for the kindergarten curriculum:

Q∗ (wait, t) = prRe−t/λ − kλ (1 + log (prR
kλ

) − t
λ)

− Roo. (3)

In particular, optimal behaviour requires knowledge of three key quanti-
ties (R, t, k), each of which point to a form of basic skill training. First, a
persistent representation of R throughout the trial can be encouraged
by working memory training (report a transient input seen many time
steps earlier). Second, knowledge of elapsed time within a trial, t, can be
developed using a temporal counting task (output a ramp with slope 1).
Finally, knowledge of the opportunity cost can come via either past
reward averaging, trained as an integrator of stimulus input or through
state inference trained via a classification task that reports latent states
based solely on stimulus information. We trained each of these through
separate learning objectives (Supplementary Fig. 1).

1

2

3

k

 5 10 20 40 80
0

2

4

6

8

W
ai

t t
im

e
(s

)

4

O�ered reward

12

10

8
6

4
2

0
4020 8060 0

S (t,R)

(Wait)

pt = 1 – ρ(t)pr

rt = –k
pt = ρ(t)pr

rt = R – k

pt = 1
rt = –Roo

Hit

Opt
Out

(Wait)

(Opt out)

Rt

Pr
ob

ab
ili

ty

Delay (s)
100

Wait

Opt-out

Pr
ob

ab
ili

ty

Delay (s)
100

Opt-outReward

Cue conveys
reward o�er

Reward/opt-out
sides assigned

a

c d f

b

0

1.0

pmix

phigh

plow

20 µl high/
20 µl low

e

40 80 120 160 200
Trial

5
10
20
40
80

O
�e

r (
µl

) Mix Mix MixLow High

0

5 10 20
5 10 20 40 80

20 40 80

Low
Mix

High

h i

O�ered reward

Mix
High

Low

Trial
40 80 120 1600 200–20 –10 0 10 20

Trials from
incongruent trial

–0.2

–0.1

0

0.1

0.2

0.3

∆
 z

-s
co

re
d

w
ai

t t
im

e

g

Low-to-mix

High-to-mix

0.8 0.9 1 1.1
0

10

20

30

40

50
N

 (r
at

s)

0.85
0.90
0.95
1.00

–0.3

–0.2

–0.1

0 10 20 20 10 0
First sessions Last sessions

Wait-time ratio

Block regression coe�icient

8

9

10

11

12

O�ered reward (µl)
5 10 20 40 80

M
ea

n
w

ai
t t

im
e

(s
)

Mix
High

Low

Rat S028

Fig. 2 | Rodent behaviour in temporal wagering task. a, The temporal wagering
task. The rats wait for known reward offers conveyed by an auditory tone but with
an uncertain reward delay. The rats may choose to wait for reward at illuminated
side port until water arrives or poke into the other port to terminate the trial.
b, The latent block structure of task that is uncued to rats. After every 40
successful trials, a transition between mixed blocks (purple) containing all
potential reward offers and blocks with a subset of the highest (red) or lowest
(low) offers. c, The example mean wait time behaviour on catch trials, where the
reward is withheld for a single rat. The error bars denote the standard error of the
mean (s.e.m.) over trials. d, The distribution of wait time ratios of high versus low
for 20 μl offers on catch trials. ***P = 8.26 × 10−49, two-sided Wilcoxon signed-rank
test. The histogram includes rats with significantly different wait-time ratios
(shaded, P < 0.05, rank-sum test) and insignificant wait-time ratios (unshaded,
P > 0.05, rank-sum test). e, The trial-by-trial changes in wait times across a block
transition, averaged over rats; the error bars mark the s.e.m., and the colours
reflect transitions from either a high (red) or low (block) block into a mix block,

aligned to first incongruent trial that violates possible offers in the current
block (for example, a 40-μl offer after being in a low block). f, The time course
of the mean wait-time ratio (top) and mean regression coefficient for block in a
linear regression of wait time (bottom) for catch trials. Left: the first 20 sessions
after the block structure is introduced in the task. Right: the last 20 sessions of
training. g, The predicted block probabilities of a Bayes-optimal model of the
task. The background colours denote the true block. h, The MDP formalization
of the task, showing states (boxes), state-transfer probabilities p and rewards
r for each state–action pair. The rewards arrive within each trial on the basis of the
delay distribution ρ(t), incur a time penalty k at each time step, as well as penalty
Roo for opting out. i, Left: the MDP-defined optimal wait times for three different
wait time penalties. Right: the wait times for all wait time penalties. The coloured
boxes denote k for optimal wait times in the left plot. The grey region denotes the
negative wait time. In d–f, the mean is over rats (N = 291), and the error bars in e–f
mark the s.e.m.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 692

Article https://doi.org/10.1038/s42256-025-01029-3

After kindergarten (modelling pre-existing cognitive capaci-
ties that the animals bring with them to the experiment), we used the
behavioural shaping protocol employed in rats: (1) an easy version of
the wait-time task with deterministic rewards and no block structure
first, followed by (2) introduction of stochastic rewards and finally (3)
introduction of the blocks in the target wait-time task. This ‘shaping’
phase uses an adapted version of the meta-reinforcement learning loss
from24, with auxiliary losses corresponding to the kindergarten tasks
(Fig. 3c, top, and Methods).

RNNs undergoing the complete training (‘kindergarten+shaping’
or ‘full kindergarten’) successfully learned to perform the temporal
wagering task, exhibiting behavioural wait times on catch trials that
resembled rat behaviour: the agents waited longer for larger offers,
with wait times sensitive to the hidden block structure (Fig. 3d), with
accurate block inference (Figs. 2g and 3h). These RNNs had strong block
sensitivity across the population, as quantified by the wait-time ratio,
whereas RNNs without full training generally failed to become sensi-
tive to the blocks or did so in a manner inconsistent with rat behaviour
(Fig. 3e). Finally, when comparing the time course of the wait time
ratio and block sensitivity over training, we found that RNNs displayed
similar learning dynamics to rats (Fig. 3g). The RNNs start with no block
sensitivity, but over training wait times for 20 μl, offers become dif-
ferent across blocks, suggesting that knowledge of block structure is
driving the difference in wait times, as in the rats (Fig. 2f). In summary,
deep meta-reinforcement learning agents trained with kindergarten
tasks and animal-like behavioural shaping display qualitative behaviour
similar to rats, have similar inferential strategies and learn to become

sensitive to latent structure that varies on long timescales in the same
manner as animals.

kCL supports near optimal task performance
To determine the extent to which a structured curriculum was necessary
for effective learning in the task, we investigated a family of curriculum
learning sequences, varying the tasks in the kindergarten curriculum
and their hyperparameters, with or without behavioural shaping. We
first compared the performance of networks trained with both kinder-
garten and shaping to agents that experience the shaping procedure
alone (Fig. 4a, orange) and directly training on the target task without
any pretraining (Fig. 4a, red). In both cases, we allowed each procedure
to undergo at least the same amount and often much longer total train-
ing (number of epochs) as kCL. We found that including kindergarten
training outperformed both these alternatives (Fig. 4b–c) and lead to
systematic differences in network behaviour (Fig. 4d). When training on
the target task alone, networks adopted a simple, suboptimal strategy,
where agents simply wait until a timeout penalty occurs, leading to a low
sensitivity to both reward offer and context and opt-out rates below the
true catch probability of the task (Supplementary Fig. 2a). Introducing
shaping can lead to some mild sensitivity to the reward offer, though
not nearly as strong as when also including kindergarten tasks. In addi-
tion, these agents did not learn to opt out as frequently. Importantly,
the wait-time ratio in the shaping-only networks was reversed when
compared with rats and kindergarten + shaping curriculum learning,
meaning that these networks wait longer for 20 μl in high blocks, which
is suboptimal according to the MDP. Overall, including kCL with shaping

a

πt

ot: memory, counting

Vt

ot: stimulus integration

L1
(inference)

pblock

st

at–1

rt–1 L2
(policy)

c
ShapingkCL Target task

pr = 0.8pr = 1.0 prew = 0.8

Timesteps

lo
g(

V)

Memory

Timesteps

Ti
m

e

Count

Timesteps

R/
T

Integrate

Trials

p bl
oc

k

Inference

d e f h

0 50 100 150 200

0

1

Trials
5 10 20 40 80

2

4

6

8

10

M
ea

n
w

ai
t t

im
e

(s
)

Mix
High

Low

O�ered reward

RNN 3

0

N
 (R

N
N

s)

b

st at–1rt–1st

‘Wait’

‘Wait’‘Wait’

‘W
ait’

‘Opt out’

Pr
ob

ab
ili

ty

Delay (s)
100

Delay

–20 –10 0 10 20

Trials from incongruent trial

–0.4

–0.2
0

0.2
0.4
0.6
0.8

1

 ∆
 z

-s
co

re
d

w
ai

t t
im

e

Low-to-mix

High-to-mix

g

0

10

20

30

20 high/20 low
0.2 0.6 1 1.4 1.8 2.4

0.8

1.0

1.2

–0.7

–0.6

–0.5

0 50
10

0
10

0 50 0

First sessions Last sessions

Wait-time ratio

Block regression coe�icient
pmix

phigh

plow

Fig. 3 | Deep meta-RL agents can learn the temporal wagering task.
 a, A schematic of deep meta-RL architecture. An LSTM-based RNN contains
two modules, an inference layer that predicts latent task states and a policy
layer that outputs decisions to wait or opt out of trials. The inputs include trial
stimulus information and previous reward and action history (used in meta-RL
to permit trial-by-trial learning). The policy module outputs the decision policy,
πt, and value function, Vt. The additional outputs ot for kindergarten tasks are
used for pretraining and in-task regularization. Moreover, pblock outputs from
the inference module to the policy module are trained to infer the current block.
b, The simplified temporal wagering tasks for RNN agents. c, The RNN training
protocol, referred to as kindergarten + shaping curriculum learning (CL). Top:
kindergarten supervised learning tasks outside the context of the temporal
wagering task are performed first, followed by progressively harder variants of
the target wait-time task that mimics the shaping procedure performed in rats.
Bottom: the normative set of kindergarten tasks suggested from MDP solution
to the temporal wagering task (equation (3)): working memory, maintaining an

internal estimate of time, integrating input stimuli and inferring the latent state.
d, The example mean wait time performance of an RNN agent. The error bars
denote the standard error of the mean (s.e.m.) over trials (N = 10,000 trials).
e, Wait-time ratio of population of N = 113 RNNs. The dark bars denote N = 46
RNNs trained with kindergarten + shaping CL, and the light bars denote other
networks with simpler CL strategies (that is, shaping-only CL and target-task CL
(see 'kCL supports near optimal task performance'). The dark grey arrow is the
mean of kindergarten + shaping CL population, and the light grey arrow is the
mean of entire population. ***P < 0.001. Kindergarten + shaping: P = 1 × 10−9; all
RNNs: P = 3 × 10−20, two-sided Wilcoxon signed-rank test. f, The RNN wait-time
dynamics, as in Fig. 2e. g, The wait-time ratio (top) and regression coefficient
for a block in a regression of wait time (bottom) over training (Methods).
In f–g, the results are the average over RNNs trained with kindergarten + shaping
CL (N = 46), and the error bars are the s.e.m over networks. h, pblock during the
temporal wagering task for network in d. The same colour convention as Fig. 2g.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 693

Article https://doi.org/10.1038/s42256-025-01029-3

is important to replicate qualitative patterns of behaviour that are
consistent with the optimal strategy and rats.

The structure of the kindergarten curriculum matters
Having confirmed that the MDP-derived kindergarten curriculum is
effective, we can now ask whether pretraining on all of the tasks was
actually required or if training on simpler curricula would have worked
just as well. As the space of options is combinatorially large, we chose to
focus on the nature and number of tasks included in the kindergarten
curriculum, with considerations such as task ordering and hyperparam-
eter choices briefly explored in Supplementary Fig. 2. In all cases, we
trained the networks for at least as much as the full set of four kinder-
garten tasks, to balance the total amount of parameter updating that
could be performed. First, we asked if individual kindergarten tasks can
achieve high-quality solutions on their own when paired with shaping.
We found that single task kindergarten generally underperformed in
terms of final reward rates compared to ‘full kindergarten’ (Fig. 5a, top)
and also failed to capture its qualitative behaviour (Fig. 5a, bottom). A
noteworthy exception was the memory task, which achieved equivalent
reward rates. Behaviourally, the working-memory-only solution had
comparable reward sensitivity and opt-out rates but showed signifi-
cantly weaker context sensitivity, pointing to potential differences in
the computational strategy adopted to solve the task, even among
high-performing solutions. By contrast, the inference task allowed for
good context sensitivity and weaker offer sensitivity.

We reasoned that adding more kindergarten tasks might have addi-
tive effects for behavioural matching and so we studied the effect of
having two or three tasks as part of kCL (Fig. 5b). In particular, since the

memory-only curriculum yielded offer sensitivity, and inference-only
curriculum yielded good context sensitivity, we hypothesized that
using them together might result in the desired task behaviour and high
reward rates. We used these two tasks as the base pair, then optionally
added a third task. All combinations retained high reward rates, but
behaviourally, the solutions mapped to distinct strategies, with weaker
reward sensitivity and a broad range of context sensitivity (including
the suboptimal reverse context sensitivity, Fig. 2d). Adding in a third
task got closer but could not fully recapitulate the behaviour of full kCL.
Collectively, these results demonstrate that the content of the curricu-
lum can measurably affect behavioural strategy, despite comparable
task performance, and that the richer the (relevant) subcomputations,
the closer the trained solution is to animal behaviour.

Would pretraining on tasks not part of the MDP solution also work
by virtue of introducing task variability in training? To test this, we
used a delay-to-non-match task29,30 (Fig. 5c), which requires an agent
to report if two presented stimuli that are lagged in time are the same
(a match) or different (a non-match). We chose this task because it
feasibly replaces the classification and working memory components
learned in kCL while the essential inference component is missing. We
studied two versions of such pretraining: using delay-to-non-match
alone or additionally including the counting and stimulus integration
tasks. Both underperformed compared with the original kCL and also
displayed quite different behaviour.

Since kindergarten tasks play dual roles in training, we asked
whether the benefits of kCL came from pretraining or in-task regu-
larization (Fig. 5d). Specifically, we used the full set of kindergarten
tasks but only as regularizers during in-task training (no pretraining

b ca

Kindergarten
+ shaping

Shaping

Target task

Easy, hard,
inference

No catch,
catch

Block

Probability of no reward: 1 – pr

0

0.2

0.4

Opt­out rate
0.6

Trials (100,000)
0.4
0.6

0.8
1.0

1.2
Wait­time ratio

<1: optimal strategy

>1: suboptimal strategy

=1: suboptimal strategy

Trials (100,000)

d Reward sensitivity coe�icient
Kindergarten + shaping

Shaping
Target task

0

1.0

2.0

Trials (100,000)

0

2

4

6

8

10

Re
w

ar
d

ra
te

Reward rate over training

No catc
h

Catc
h

Block

No catc
h

Catc
h

Block

No catc
h

Catc
h

Block

No catc
h

Catc
h

Block

Kindergarten + shaping
Shaping

Target task

Re
w

ar
d

ra
te

Reward rate at end of training

Kinderg
art

en

+ s
hap

ing
Shap

ing

Ta
rg

et t
as

k Trials (100,000)

Kindergarten Shaping Target

0

2

4

6

Fig. 4 | Performance of pretraining methods on the temporal wagering
task. a, A schematic of pretraining methods, separated by kindergarten and
shaping phases. The ‘kindergarten + shaping’ curriculum first trains on out-
of-context supervised learning tasks (that is, kindergarten tasks), followed
by the final stages of behavioural shaping that occur in rat training: first
training on deterministic rewards in mixed blocks only (‘no-catch’ training),
then mixed-block trials with stochastic rewards (‘catch’ training). Finally, the
blocks are introduced (‘block’ training) (Supplementary Fig. 1). The ‘shaping’
curriculum omits kindergarten tasks and ‘target task’ only trains on the target
task with the block structure. b, The average reward rate over training for each
method. c, The reward at the end of the training stage, corresponding to the
coloured arrows in b. The coloured dots denote the reward rate from each RNN
(***kindergarten + shaping versus shaping: P = 1 × 10−7; kindergarten + shaping
versus no shaping: P = 5 × 10−9, two-sided rank-sum test). d, The evolution

of different behavioural features over training. Left: the reward sensitivity
coefficient is the slope of a linear fit to the wait time versus the log of the reward
offer. Middle: the wait-time ratio compares the average wait times for a 20 μl
offer in high versus low blocks, optimally <1 under the MDP formulation.
Right: the opt-out rates reflect the proportion of trials that an agent choses
the opt-out option, compared with the catch probability (black line). For each
inset in d, the t-tests at the end of training comparing kindergarten + shaping to
other curriculum learning sequences were significantly different (P << 0.001).
Shaping: reward sensitivity: P = 3 × 10−25; wait-time ratio: P = 3 × 10−16; opt-out rate:
P = 9 × 10−4. Target task: reward sensitivity: P = 1 × 10−15; wait-time ratio: P = 1 × 10−5;
opt-out rate: P = 5 × 10−27). b–d show the mean responses, with the shading
denoting the standard error of the mean over networks (kindergarten + shaping:
N = 45; shaping: N = 45; target task: N = 18).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 694

Article https://doi.org/10.1038/s42256-025-01029-3

or shaping). Such regularization proved insufficient, and it could not
achieve high-quality solutions nor could it recreate the behaviours
seen in the animals, resembling solutions obtained from behavioural
shaping alone (Supplementary Fig. 3). We briefly studied a few addi-
tional dimensions of the curriculum structure. Manipulations of the
timescale of the inference task affected behaviour, with short inference
timescales during pretraining failing to generate strong context sen-
sitivity (Supplementary Fig. 3b–e). This suggests that its value to the
curriculum may (at least partly) stem from introducing slow modes in
the RNN dynamics. The location of the harder-to-train inference task

in the sequence of subtasks also influenced the quality of the solution,
consistent with the common prescription of learning simple tasks first.
Finally, we tried decreasing the hyperparameters’ similarity between
kindergarten tasks and target, while preserving the nature of the com-
putation (different offers for memory, a larger number of latent states
for inference) (Supplementary Fig. 2f). This discrepancy in the task
details also meant incorporating a separate output for inference, rather
than tying it to the inference-to-policy module output. This kCL variant
still leads to good context and wait-time sensitivity, although its solu-
tions had less linear offer sensitivity (Supplementary Fig. 2f–j). Overall,

(100,000 trials)
No catch Catch Block

X

0
2
4
6
8

10

Full kindergarten
Shaping only

Regularization only

*** ***
Re

w
ar

d
ra

te

+

+

(100,000 trials)
No catch Catch Block

0
2
4
6
8

10

Re
w

ar
d

ra
te

X

+

Full kindergarten
d2m + counting + inference

d2m

Re
w

ar
d

ra
te

0
2
4
6
8

10

(100,000 trials)
No catch Catch Block

Not useful ‘sham’ tasks (d2m) c

Multiple kindergarten tasksb

Regularizers only, no pretrainingd

−0.5 0 0.5 1.0 1.5 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

−0.5 0 0.5 1.0 1.5 2.0
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

W
ai

t-
tim

e
ra

tio

O�er sensitivity

O
pt

-o
ut

 ra
te

O�er sensitivity
−0.5 0 0.5 1.0 1.5 2.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

−0.5 0 0.5 1.0 1.5 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

W
ai

t-
tim

e
ra

tio

O�er sensitivity

O
pt

-o
ut

 ra
te

O�er sensitivity

−0.5 0 0.5 1.0 1.5 2.0
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

−0.5 0 0.5 1.0 1.5 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

W
ai

t-
tim

e
ra

tio

O�er sensitivity

O
pt

-o
ut

 ra
te

O�er sensitivity
−0.5 0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−0.5 0 0.5 1.0 1.5 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

O�er sensitivity

W
ai

t-
tim

e
ra

tio

O�er sensitivity

O
pt

-o
ut

 ra
te

0
1
2
3
4
5
6

Re
w

ar
d

ra
te

7 ***

n.s.

Full kindergarten

a Single kindergarten tasks

X
++

Re
w

ar
d

ra
te

(100,000 trials)
No catch Catch Block

0
2
4
6
8

10

Full kindergarten

Memory
Counting
Integration
Inference

n.s.

Memory + interference + integration
Memory + interference + count
Memory + interference

Fig. 5 | Variations of kCL. a, Single kindergarten tasks. Memory (N = 18, green;
reward rate: P = 0.33; reward sensitivity: P = 0.53; wait-time ratio: P = 1 × 10−4;
opt-out rate: P = 0.44). Counting (N = 9, blue; reward rate: P = 5 × 10−5; reward
sensitivity: P = 4 × 10−10; wait-time ratio: P = 3 × 10−4; opt-out rate: P = 3 × 10−5).
Stimulus integration (N = 9, pink; reward rate: P = 0.002; reward sensitivity:
P = 6 × 10−10; wait-time ratio: P = 2 × 10−4; opt-out rate: P = 0.002). Inference
(N = 9, purple; reward rate: P = 5 × 10−5; reward sensitivity: P = 2 × 10−7; wait-
time ratio: P = 0.55; opt-out rate: P = 7 × 10−5). n.s., not significant. b, Multiple
kindergarten tasks. Memory + inference (N = 18, purple; reward rate: P = 0.15;
reward sensitivity: P = 0.006; wait-time ratio: P = 1 × 10−4; opt-out rate:
P = 0.19). Memory + inference + counting (N = 18, blue; reward rate: P = 0.09;
reward sensitivity: P = 3 × 10−4; wait-time ratio: P = 0.08; opt-out rate: P = 0.17).
Memory + inference + integration (N = 18, red; reward rate: P = 0.64; reward
sensitivity: P = 4 × 10−4; wait-time ratio: P = 0.08; opt-out rate: P = 0.57).
 c, A computationally irrelevant delay-to-non-match task (d2m). d2m (N = 9,

yellow; reward rate: P = 2 × 10−4; reward sensitivity: P = 1 × 10−10; wait-time
ratio: P = 7 × 10−5; opt-out rate: P = 4 × 10−18). d2m + counting + inference
(N = 9, turquoise; reward rate: P = 0.009; reward sensitivity: P = 6 × 10−6;
wait-time ratio: P = 9 × 10−5; opt-out rate: P = 7 × 10−18). d, Regularization-only
training performs multitask learning with kindergarten tasks, without any
curriculum learning (CL) pretraining or shaping (N = 9, red; reward rate:
P = 0.001; reward sensitivity: P = 3 × 10−8; wait-time ratio: P = 7 × 10−5; opt-out
rate: P = 0.02). a–d shows the set of results when altering the curriculum in
some form. Top: schematic of the manipulation. Large puzzle pieces denote a
kindergarten task, superscript version used for regularization. Middle: reward
rate over training (mean and standard error of the mean over networks). Bottom:
the distribution of behavioural metrics for each trained RNN. The stars mark
the population mean and the ellipses are two standard deviations. All statistics
compare full kindergarten, aka kindergarten + shaping (N = 45), versus other CL
type (two-sided rank-sum test for reward rates, two-sided t-tests for the rest).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 695

Article https://doi.org/10.1038/s42256-025-01029-3

these results suggest that the best learning is achieved by pretraining on
kindergarten tasks that match the computational subelements of the
target task and that a precise statistical match between kindergarten
and target tasks is not strictly needed to see benefits from kCL.

kCL leads to distinct neural dynamics
What is the mechanism by which kCL helps target task training? Using
the overall magnitude of weight changes as a coarse measure of network
learning (Fig. 6a), we found network reorganization at the beginning of
each training phase but most substantially when learning to perform
inference of latent states. To determine how the network dynamics
change in more functional terms across the training stages, we focused
on the dynamical systems structure of the solution, determined by
‘slow points’. Such slow dynamical systems features (for example, point
attractors, saddles and line attractors) provide a natural mechanism
for maintenance and integration of information at long timescales31,
which is critical for our task (reward offer within trials and opportunity
cost across trials). Thus, identifying the computational strategy used
by an RNN to solve our task translates to determining the number, type
and geometry of its slow points32.

First, we investigated maintenance and updating of latent beliefs
in the inference layer of kCL-trained networks (Methods) and found
that RNNs trained by kCL generally displayed a common motif involv-
ing three slow features (Fig. 6b): two stable features (fixed point or line
attractor) and a semistable feature (saddle) separating them. Among
networks that learned the task in a rat-like way, a large proportion (20
of 29 RNNs) displayed this common motif. Conversely, the networks
that did not learn a rat-like strategy did not display the same motif (14
of 16). Partitioning the state space by most likely block according to the
RNN’s beliefs (the inference layer’s main output), we find three contigu-
ous subregions, with a slow feature in each (other rare motifs that still
provide good wait-time behaviour are documented in Supplementary
Fig. 4). The beliefs are updated by inputs from offers and rewards by

pushing the network state along the direction orthogonal to the block
boundaries (Supplementary Fig. 5). Importantly, stable features lie in
areas of state space corresponding to low and high blocks, whereas the
semistable feature is consistently located in the mixed-block region.
The line or point attractors were equally likely in high blocks, but we
invariably found a point attractor in the low-block region. This overall
dynamical systems structure was specific to networks trained by kCL
and almost never seen with shaping alone (2 of 47) or other curricula
(Supplementary Fig. 6a,b). Importantly, the three-feature motif was
not observed in RNNs with memory-only pretraining, (Supplementary
Fig. 6c,d), despite the match in performance. This confirms the notion
that different training procedures bias learned solutions towards differ-
ent computational strategies for performing the task. It also generates
testable predictions about the neural activity of brain regions thought
to subserve inference (for example, orbitofrontal cortex).

The policy layer dynamics were also variable across RNNs but to a
lesser degree than the inference layer. We often found one to two slow
points, one of which was almost always a point attractor (41 of 45) and
the sole to be functionally relevant. When visualizing the location of
the fixed-point attractor along the first principal component (PC) of
policy layer activity (Fig. 6c), we found that the location of the attractor
was block specific, yielding varying wait-time probabilities, and that
their relative location supported asymmetric wait time behaviour over
blocks (Fig. 3d). Anecdotally, attractors did not change position across
blocks in other curricula, which makes another testable prediction
about a block-dependent shift of attractors within the manifold of
population activity in the striatum.

Since the structure of slow points reflects key aspects of task
computation, such as beliefs about blocks and associated wait times,
we wondered how these features may be constructed over the course
of training, in particular during kindergarten (Fig. 6d). We found that
kCL-trained networks started building slow dynamical features in early
stages and in particular during the inference kindergarten task. Once

Inference layer dynamicsb c

0.975 0.980 0.985 0.990
–1.0

–0.5

0

0.5

1.0

1.5

Probability of waiting, πt

D
yn

am
ic

s
st

re
ng

th
(lo

g
sc

al
e)

High Mix Low

Policy layer attractors (PC1)

Learning of inference layer dynamics Learning of policy layer dynamics d Inference layer CDF Policy layer CDFe
6
5
4
3
2
1

0

7 Full kindergarten
Shaping
Memory

Full kindergarten
Shaping
Memory

N
o.

 o
f f

ea
tu

re
s

No. of features

***6
5
4
3
2
1

0

7

N
o.

 o
f f

ea
tu

re
s

No. of features

C
D

F

0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5 6 7 1 2 3 4 5 6 7
0

0.2
0.4
0.6
0.8
1.0

C
D

F

No catc
h

Eas
y

Hard

Inference
Catc

h
Block

No catc
h

Eas
y

Hard

Inference
Catc

h
Block

No catc
h

Eas
y

Hard

Inference
Catc

h
Block

PC1

PC
2

plow>0.5

phigh >0.5
pmix >0.5

a Change in recurrent weights over training

||
∆

W
 ||

2
Policy layer
Inference layer

0

5

10

15

20

Fig. 6 | Dynamical systems features of kCL-trained networks. a, Change in the
LSTM recurrent hidden-layer weights over training for kindergarten + shaping
curriculum learning (CL) (Methods). b, Dynamical gradient flow field for the
inference layer of a sample network. The background colour denotes region in
which pblock was >50% for that respective block (same colour convention as in
Figs. 2 and 3). The coloured curves denote the evolution of single-trial 20 μl offers
from different blocks in which the agent ultimately opted out. The dynamical
features are denoted in black (the line attractor in the high block, the saddle in
the mix block and the point attractor in the low block). c, The dynamics of the
policy layer along PC1 but isolated to the timepoint just before opting out for

single trials from each block. The PC activity was labelled with πt on the x axis, and
the dynamics kinetic energy is plotted on a log scale on the y axis. d, The average
number of dynamical systems features over training. The shaded area shows
the standard error of the mean over networks. e, The cumulative distribution
function (CDF) of the number of dynamical systems features at the end of
training. A two-sided discrete Kolmogorov–Smirnov (KS) test compared the kCL
distribution at end of training to other CL distributions49. ***P < 0.001. Shaping
inference layer: P = 1 × 10−4, shaping policy layer: P = 0.56. Memory CL inference
layer: P = 3 × 10−4, memory CL policy layer: P = 0.57. For kindergarten + shaping,
N = 45, for shaping, N = 45 and for memory, N = 18.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 696

Article https://doi.org/10.1038/s42256-025-01029-3

the temporal wagering task was introduced, some of these features
were pruned from the network’s dynamic repertoire, stabilizing into
the final motif described above. This expansion and then pruning
of dynamical features over training has been previously reported in
other tasks that rely on attractor-based dynamics32 and might reflect a
biologically relevant learning trait. Interestingly, while the policy layer
had similar numbers of dynamical features across learning procedures,
the total number of slow features in the inference layer was curriculum
specific, with kCL showing richer dynamics than suboptimal networks
trained just using shaping (Fig. 6e). In addition, the dynamics of kCL
were also higher dimensional compared with other protocols (Supple-
mentary Fig. 7). Overall, these results suggest that the benefits of kCL
may stem from its ability to endow the network with richer dynamics
that can then be exploited when learning the target task.

Discussion
It has been long recognized that the ‘key to shaping is identifying the
essential subcomponents in a task’2. Here, we argue that the same
insight can be used to build inductive biases that steer RNNs towards
learned solutions that are both computationally more efficient and a
closer match to animal behaviour.

While we found a common dynamical systems motif in many of
the well-performing networks, the exact geometry of the solution was
variable across networks and curricula, unlike the ‘universal’ dynamical
systems solutions found for simpler tasks, where all networks that do
well are dynamically isomorphic32,33. Thus, the task complexity may
open interesting avenues for exploring how across-animal behavioural
variability can be traced back to variability in neural dynamics in related
brain regions. This is particularly important in our task, as we see is a
high degree of variability in wait-time behaviour among rats19.

Our approach traces its roots to not only behavioural shaping34
but also classic curriculum learning and meta-learning. If the idea of
pretraining for RNNs is not new; previous work has focused on using
incremental training to expand the trainable temporal horizon of RNNs2
or as an assay to uncover learning principles on tasks where behaviour
is difficult to analyse, but that could be optimally performed even
without curriculum learning35. It is also qualitatively different from
approaches that pretrain on human or animal behaviour directly in
a supervised manner36,37, which we see as complementary. By con-
trast, a precise design of the curriculum was critical for our task. Our
approach also relates to forms of meta-learning used to account for
structure learning38, where invariant relationships in a task are stored
and reused for more efficient learning. While sharing its emphasis on
common computation that generalizes across tasks, kCL is distinct in its
emphasis on task compositionality and, in particular, in decomposing
the task into non-sequential subcomputations.

How well would our approach generalize to other tasks? The core
idea is to break the target task into computational subelements, which
is also reminescent of the decomposition of Q values into subtasks seen
in previously in a mouse navigation task39. An important note is that,
in our case, some of the computational elements need to be executed
in parallel. This contrasts to traditional views of compositionality
(inherited from hierarchical RL) where the goal is learning to stitch
together a sequence of operations40. The choice of subtask here is
not ad hoc but relies on the availability of a simplified ideal observer
solution. Admittedly, a mathematically tractable approximation of
the task may not always be available or relevant, as animals can display
distinctly suboptimal behaviour in other tasks, such as sequential
biases and lapses41. Nonetheless, it may be possible to intuit at least
some of the computational elements involved, in the kindergarten
sense. In particular, kCL pretraining targeted to improve the ability
to process information over long timescales is likely to benefit other
tasks with long temporal dependencies and sparse reward structure,
echoing the idea that certain basic cognitive abilities might generally
support the learning of complex behaviour42,43. More broadly, our

work argues that modelling complex cognitive tasks in RNNs requires
careful thinking about pre-existing knowledge that animals bring with
them to an experiment.

Methods
Animal subjects and behaviour
Behavioural procedures have been published in detail elsewhere19.
Briefly, a total of 291 Long-evans rats (184 male, 107 female) between
the ages of 6 and 24 months were used for this study (Rattus norvegi-
cus). The Long-evans cohort also included ADORA2A-Cre (N = 10),
ChAT-Cre (N = 2), DRD1-Cre (N = 3) and TH-Cre (N = 12). The animal use
procedures were approved by the New York University Animal Welfare
Committee (no. 2021-1120) and carried out in accordance with National
Institutes of Health standards. The animals were water restricted to
motivate them to perform behavioural trials. From Monday to Friday,
they obtained water during behavioural training sessions, which were
typically 90 min per day, and a subsequent ad libitum period of 20 min.
Following training on Friday until mid-day Sunday, they received ad
libitum water. The rats were weighed daily. The rats were trained in a
high-throughput behavioural facility in the Constantinople lab using
a computerized training protocol. The rats were trained in operant
boxes with three nose poke ports. The left and right ports contained
speakers to generate audio tones and contained lick tubes to delivery
water reward. All ports contained an internal light-emitting diode (LED)
light inside the port.

An LED illumination from the centre port indicated that the ani-
mal could initiate a trial by poking its nose in that port—upon trial
initiation, the centre LED turned off. While in the centre port, the rats
needed to maintain centre fixation for a duration drawn uniformly
from 0.8 to 1.2 s. During the fixation period, a tone played from both
speakers, the frequency of which indicated the volume of the offered
water reward for that trial (1, 2, 4, 8 and 16 kHz, indicating 5, 10, 20, 40,
80 μl rewards). Following the fixation period, one of the two side LEDs
was illuminated, indicating that the reward might be delivered at that
port; the side was randomly chosen on each trial. This event (side LED
ON) also initiated a variable and unpredictable delay period, which
was randomly drawn from an exponential distribution with mean of
2.5 s. The reward port LED remained illuminated for the duration of
the delay period, and the rats were not required to maintain fixation
during this period, although they tended to fixate in the reward port.
When a reward was available, the reward port LED turned off, and the
rats could collect the offered reward by nose poking in that port. The
rat could also choose to terminate the trial (opt out) at any time by nose
poking in the opposite, unilluminated side port, after which a tone
was played, and new trial would immediately begin. On a proportion
of trials (15–25%), the delay period would only end if the rat opted out
(catch trials). If rats did not opt out within 100 s on catch trials, the
trial would terminate.

The trials were self-paced: after receiving their reward or opting
out, the rats were free to initiate another trial immediately. However,
if rats terminated centre fixation prematurely, they were penalized
with a white noise sound and a timeout penalty (typically 2 s, although
adjusted to individual animals). Following premature fixation breaks,
the rats received the same offered reward, to disincentivize premature
terminations for small volume offers. We introduced semiobserv-
able, hidden states in the task by including uncued blocks of trials
with varying reward statistics: high and low blocks, which offered the
highest three or lowest three rewards, respectively, and were inter-
spersed with mixed blocks, which offered all volumes. There was a
hierarchical structure to the blocks, such that high and low blocks
alternated after mixed blocks (for example, mixed-high-mixed-low
or mixed-low-mixed-high). The first block of each session was a mixed
block. The blocks transitioned after 40 successfully completed trials.
Because the rats prematurely broke fixation on a subset of trials, in
practice, the block durations were variable.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 697

Article https://doi.org/10.1038/s42256-025-01029-3

Behavioural shaping. The shaping procedure was divided into eight
stages. For stage 1, the rats learned to maintain a nose poke in the centre
port, after which a 20 μl reward volume was delivered from a random
illuminated side port with no delay. Initially, the rats needed to main-
tain a 5 ms centre poke. The centre poke time was incremented by 1 ms
following each successful trial until the centre poke time reached 1 s,
after which the rat moved to stage 2.

Stages 2–5 progressively introduced the full set of reward vol-
umes and corresponding auditory cues. The rats continued to receive
deterministic rewards with no delay after maintaining a 1 s centre poke.
Each stage added one additional reward that could be selected on
each trial—stage 2 added 40 μl, stage 3 added 5 μl, stage 4 added 80 μl
and stage 5 added 10 μl. Each stage progressed after 400 successfully
completed trials. All subsequent stages used all five reward volumes.

Stage 6 introduced variable centre poke times, uniformly drawn
from 0.8 to 1.2 s. Moreover, stage 6 introduced deterministic reward
delays. Initially, the rewards were delivered after a 0.1 s delay, which was
incremented by 2 ms after each successful trial. After the rat reached
delays between 0.5 and 0.8 s, the reward delay was incremented by
5 ms following successful trials. Delays between 0.8 and 1 s were incre-
mented by 10 ms, and delays between 1 and 1.5 s were incremented by
25 ms. The rats progressed to stage 7 after reaching a reward delay
of 1.5 s.

In stage 7, the rats experienced variable delays, drawn from an
exponential distribution with mean of 2.5 s. Moreover, we introduced
catch trials (see ‘Animal subjects and behaviour’ section), with a
catch probability of 15%. Stage 7 terminated after 250 successfully
completed trials. Finally, stage 8 introduced the block structure. We
additionally increased the catch probably for the first 1,000 trials to
35%, to encourage the rats to learn that they could opt out of the trial.
After 1,000 completed trials, the catch probability was reduced to
15–20%. All the animal data in Fig. 2 were from training stage 8. The
conceptual changes that occur in stages 7 and 8 were used in shaping
of the RNNs.

Behavioural analyses
The behavioural sessions from the rats required at least five catch trials
to be included. In addition, the sessions were excluded if a linear regres-
sion of wait time did not have positive slope in a 2-day moving-window
average or if it lacked a statistically significant positive slope coefficient
for linear sensitivity on that day (F test, P < 0.05). Lastly, trials were
excluded if the wait time was greater than two standard deviations from
the mean wait time. These criteria were included primarily to exclude
trials in which a rat was disengaged during the task.

For analysis of wait time ratio and regression of wait time over
training, the data were aggregated over groups of two sessions either
at the beginning of block training or the end of training (‘first sessions’
and ‘last sessions’, respectively, in Figs. 2f and 3g). The wait-time ratio
was calculated on these aggregated sessions, and a regression of wait
time with regressors for the current trial, one trial back and current
block were used to regress the wait time on that trial. For this, the wait
times for opt-out trials were z-scored, and an ordinal block was used
(Blow = 1, Bmixed = 2 and Bhigh = 3).

The analysis of block transition dynamics followed from ref. 19.
The wait times on catch trials of each rat and RNN were first z-scored
separately for each volume, then the difference in these z-scored wait
times were calculated for each volume, relative to the average z-scored
wait time for that volume. This was calculated for each trial relative to
an incongruent trial following a block transition. The change in wait
time in Figs. 2e and 3f was an average of volume of these values. This
approach was used to control for reward volume effects.

Approximate Bayesian inference of block. The Bayesian observer
in Fig. 2g was calculated on the basis of methods from ref. 19. Briefly,
the posterior belief of block was calculated according to Bayes rule

P(Bt|Rt) =
P(Rt|Bt)P(Bt)

P(Rt)
, (4)

where Bt is the block on trial t and Rt is the reward on trial t. The likeli-
hood P(Rt∣Bt) is the probability of the reward for each block (1/5 for all
offers in mixed blocks and 1/3 or 0 for low and high blocks). The prior
P(Bt) is approximated using a posterior from the last trial as

P(Bt) ≈ P(Bt|Rt−1) = ∑
Bt−1

P(Bt|Bt−1)P(Bt−1|Rt−1), (5)

where P(Bt∣Bt−1) is referred to as the hazard rate, which incorporates
knowledge of the task structure, including the block length and block
transition probabilities. For example, for blocks of length H, the hazard
rate for low blocks would be

P(low |Bt−1) =
⎧⎪
⎨⎪
⎩

1 − H, Bt−1 = low

H, Bt−1 = mix

0, Bt−1 = high

, (6)

where H = 1/40, to reflect the block length in this work. An extensive
explanation motivating the assumption of a flat hazard rate is provided
in ref. 19.

Details of MDP and RL formulation of task
The decision process (Fig. 2h) and RL task environment (Fig. 3b) were
modelled as a simplified form of the animal task, without any left/
right side choice information, requirement to persevere in the centre
port or required action to initiate new trials. Formally, this was mod-
elled as an episodic MDP with two potential actions (Wait, OptOut).
The state at each point in a trial is minimally defined as a reward offer
R and time within a trial, t: S(R, t). The rewards are delivered proba-
bilistically on each trial with probability pr = 0.8. Within a trial, the
reward is delivered at a time that is drawn from an exponential delay
distribution p(t) = λ−1 exp(−t/λ) (where the mean wait time λ = 2.5 s).
At every time step before reward is delivered, the agent received a
small reward penalty k = −0.05, and when the opt-out penalty action
is chosen, a reward penalty Roo = −2.0 is provided. The opt-out penalty
was used to discourage the suboptimal strategy of instantaneously
opting out. Rather than instantaneously award the reward offer or
opt-out penalty, the reward was instead evenly divided out across the
time bins of the intertrial interval (ITI). ITIs were drawn from a uniform
distribution from 50 ms to 1 s. This form of ITI better mimicked the
experience in the rat task, in which animals were drinking water
throughout most the ITI. It also creates longer timescale dependen-
cies across trials, and receiving positive reward (rather than no
reward) during the ITI improves value function estimates across trials.
To avoid contaminating learning of the policies for Wait and OptOut,
we enforced a required waiting during the ITI (waitITI) action that
was given unit probability of occurring during the ITI and zero during
the waiting epoch. We do not model violations in the RL formulation
of the task nor do we model the decision to begin new trials. These
reflect separate computational processes that are separate from the
core decision to wait or opt out.

Reward offers followed an alternating block structure, as in the rat
task, with random transitions. The same alternating block structure
was used, with sessions always beginning with a mixed block, and
then transitioning into a low block. Note, in the rat task, there is equal
probability of high or low blocks being the second block, though this
difference is probably negligible to RNN behaviour. The blocks were
a minimum of 40 trials long, and after 40 trials, the block transitions
occurred probabilistically, drawn from a binomial distribution with
transition probability p = 0.5.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 698

Article https://doi.org/10.1038/s42256-025-01029-3

Model architecture
The RL agent is composed of a two-layer network, each with 256 LSTM
units (Fig. 3a), with relevant gates, states and inputs denoted by (j) for
layer j. The computational LSTM unit of the network uses the following
gates to update the hidden states ht and cell states ct:

it = σ (Wiixt + bii +Whiht−1 + bhi) (7)

ft = σ (Wifxt + bif +Whfht−1 + bhf) (8)

ot = σ (Wioxt + bio +Whoht−1 + bho) (9)

gt = tanh (Wigxt + big +Whght−1 + bhg) (10)

ct = ft ⊙ ct−1 + it ⊙ gt (11)

ht = ot ⊙ tanh(ct), (12)

where ⊙ is the elementwise Hadamard product and σ is a sigmoid
nonlinearity. S(j)

t ≡ [h(j)
t , c(j)

t] is a compact description of the activity
of each layer, and successive states of the network are written here with
a shorthand St+1 = RNN(St) or St+1 = RNN(⋅)[(St)]. The network inputs xt
are multidimensional and will generally consist of external task stimuli
sstart and sR, past time step reward rt−1, past time step action at−1, outputs
from the network ot and states St from earlier LSTM layers. sstart = 1 and
sR = log(R) only at the start of the trial and are otherwise zero. By con-
trast, the remaining inputs can in general be non-zero and time-varying
over the course of an entire trial.

Specifically, the first layer (‘inference’ layer) receives inputs about
the task stimuli of trial start and reward offer, as well as the previous
reward and previous action: x(inference) = [sstart,t, sR,t, rt−1,at−1]. The infer-
ence layer projects onto a three-unit linear projection head that outputs
the log-probability of each block o(block)t = log[pblock,t], as well as a linear
projection head for an auxiliary task that aims to output the average
reward within a trial o(int)t . The second layer (‘policy’ layer) receives log-
block probabilities from the inference layer as inputs, as well as the task
stimuli for trial start and reward offer: x(policy) = [sstart,t, sR,t,o(block)t]. The
policy layer outputs onto linear projection heads for the (1) policy πt,
(2) value of current state Vt, (3) prediction of reward offer for a super-
vised memory task o(mem)

t and (4) prediction of time within a task for a
supervised memory task o(count)t . The policy π is a three-unit RNN with
a softmax nonlinearity, corresponding to probabilities for waiting
within a trial (waitTrial), opting out of a trial (OptOut) or waitITI. During
the trial, the only allowed options are waitTrial and Optout, with waitITI
artificially set to low probability. During the the ITI period in which
reward is delivered, the only option is waitITI. The remaining projection
heads output scalar values.

Hidden and cell states of the LSTMs were initialized with random
values drawn from a normal distribution (𝒩𝒩(0, 1)). The weight param-
eters of the model were initialized to small values, drawn from a uni-
form distribution (𝒰𝒰(−1/N, 1/N), where N is the number of hidden-layer
units). The states were reset at the end of each training epoch, where
a training epoch was over all data for kindergarten costs. The states
were reset every 160 trials during the temporal wagering task. This
reset corresponds to roughly the same timescale as progressing
through all three block types, though it is not exactly aligned with
block transitions.

Training
All RNN model training was conducted in PyTorch (v1.8.0, python
v3.9.5). For all costs, the weights were updated using backpropagation
through time with an Adam minimizer. The hyperparameters for train-
ing are provided in the Supplementary Information.

Kindergarten training. Kindergarten tasks were composed of super-
vised learning tasks: memory, counting, integration and inference
tasks. The memory, counting and integration tasks were trained using
supervised learning of a mean-squared error loss, where RNN outputs
ot were trained to match a target output zt. The memory task trained
the network to output the initial reward offer throughout the duration
of a trial (ot,targ = sR,0). The counting task trained networks to count time
elapsed within a trial (ot,targ = t). The integration task trained networks
to calculate a running average of the ‘previous reward’ stimulus input
(ot,targ = 1/t∑t

0 rt−1). The inference task trained networks on a classifica-
tion task using cross-entropy loss to categorize the latent block on the
basis of reward offer.

These tasks used similar input and trial time statistics as the tar-
get temporal wagering task. Trial durations were on the same order
of magnitude as the target task, and the inputs to the RNN used the
same five target values as the log-reward offer stimulus input in the RL
task. The target in the integration task was based off of typical rewards
received from trials in the wait-time task. Importantly, while the input
statistics were similar to the target task, these kindergarten tasks are
supervised learning objectives in which the actions of the RL agent
have no bearing. They are fundamentally a different class of learning
than the final RL-based task.

We devised a cumulative curriculum for pretraining on the four
tasks by introducing tasks into training, one at a time and adding onto
previous tasks (Supplementary Fig. 1). We first introduced simple,
single-trial variants in order of memory, counting and integration
tasks (simple kindergarten). We then increased the complexity of these
tasks by extending to multiple trials in a training batch but continuing
to train on the three tasks simultaneously (hard kindergarten). Finally,
we added in the inference task (inference kindergarten). We chose this
ordering such that the successive tasks took more training time than
previous ones.

The losses for each stage of kindergarten are described as

ℒsimple =
T
∑
t
βmem(o(mem)

t − z(mem)
t)

2

+βcount(o(count)t − z(count)t)
2
+ βint(o(int)t − z(int)t)

2
,

(13)

ℒhard =
M
∑
m=1

ℒ(m)
simple, (14)

where o(⋅)t is the output signals from the RNN and z(⋅)t is the target out-
puts. o(int)t comes from the inference layer, and o(mem)

t and o(count)t come
from the policy layer. t denotes time within a single trial, and m denotes
the trial number. Training data for simple kindergarten was performed
in a single batch, with 20 time steps of data per sample, (T = 1 s,
Δt = 0.05), and a batch size of 1,000 samples. A weight update occurred
after every epoch over the data and stopped when performance did
not improve over 30 epochs. The second stage of kindergarten training
(hard) simply expanded the time horizon of simple kindergarten,
which optimized with target values from a single trial, m, to include
multiple trials. We used M = 10 trials per sample, with variable trial
times drawn from a uniform distribution between 1 and 5 s. The train-
ing data were again a single batch, with a batch size of 1,000. To main-
tain a single batch of data with the same amount of data per sample,
each sample used ten trials of the same durations but in random order
for each sample. A weight update was performed after each epoch
over the data and completed after a threshold of ℒhard < 0.001 was
reached or until 10,000 epochs were performed. Rather than process-
ing each contribution to the loss cumulatively as in simple kinder
garten, all three costs were simultaneously optimized in hard
kindergarten.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 699

Article https://doi.org/10.1038/s42256-025-01029-3

Following training on simple and hard kindergarten, which were
tasks with squared error losses, the final stage of kindergarten (infer-
ence) was performed. Formally, this required the outputs of the infer-
ence layer head, pblock to minimize a cross-entropy categorization loss
at every timepoint,

ℒinf = −∑
m,t

I(m) log [p(m)block,t] , (15)

where I(m) is an indicator function for the true block on each trial, m,
taking the value I(m) = 1 for the true block type and 0 for the remaining
block types. This final stage of kindergarten cumulatively optimized
inference and the earlier kindergarten tasks

ℒkind = βhard ℒhard + βinfℒinf, (16)

where βhard = 1.0 and βinf = 0.5 during kindergarten pretraining.
The sham delay-to-non-match task used an augmented RNN with

two additional inputs to the inference layer, as well as an additional
output from the policy layer. The two inputs were chosen from the the
potential offers provided during the task ([5, 10, 20, 40, 80]), and there
was a temporal delay between the two offers drawn from a uniform
distribution 𝒰𝒰(0.05 s, 5 s). There was equal probability of both inputs
being the same or different on each trial. As with the other supervised
learning tasks, the trials were batched. The goal of the the agent was to
output ‘match’ (1) if the two inputs matched, ‘non-match’ (2) if they
were different and ‘no cue’ (0) otherwise. The task was optimized using
a cross-entropy loss as in equation (15).

For the variations of the curriculum studied in Fig. 5, the order-
ing of tasks also proceeded as performing kindergarten tasks first,
followed by shaping and then the target task. Any task used in the
pretraining stages was also used as a regularizer in during target task
training, and all others were omitted as regularizers. The only exception
was the ‘regularization-only’ curriculum in Fig. 5d. The ordering of kin-
dergarten tasks proceeded as performing mean-squared-error-based
kindergarten tasks (memory, counting and integration) before the
inference task. One exception was the ‘inference first’ curriculum in
Supplementary Fig. 2b–e.

Deep meta-RL loss. Following previous work24, the temporal wager-
ing task described above was optimized with a deep meta-learning
framework that optimized an actor-critic loss that was regularized
with an entropy loss to encourage exploration, as well as the full kin-
dergarten loss,

ℒ = ∑
t
−βactor log(πt) [Gt − V(St)] + βcritic[Gt − V(St)]

2

−βHπt log(πt) + ℒkind,
(17)

where Gt is the empirical, total discounted future reward

Gt = rt + γGt+1. (18)

This Actor Critic approach trains networks to generate optimal deci-
sion policies πt and value function estimates Vt but does so in a way that
allows trial-by-trial learning to occur through persistent dynamical
activity, as opposed to continual parameter updating of the connection
weights between units. The key architectural ingredient of teaching
this network to generate an internal RL procedure via its dynamics (the
‘meta’ component) is to provide the network with explicit feedback
about the past action taken and last reward received24. In our two-layer
architecture, this feedback is provided only to the inference layer.

Network analyses
To determine which phases of training created large structural changes
in the network, we calculated the change in weights ΔW over training.
Specifically, we investigated the squared L2 norm of the difference of

a concatenated recurrent weight matrix W ≡ [Whf, Whg, Who, Whi] over
training. Different phases of training had different learning rates, so
to meaningfully compare the magnitude of changes over training, we
sampled the network at different rates across training, proportional
to their learning rates. Intuitively, this means we sampled training
phases less frequently when only small parameter updates were pos-
sible (smaller learning rate) and conversely sampled more frequently
in training epochs where large parameter updates were possible (larger
learning rate). Specifically, the change ∥ΔW∥2 in each stage is given by

∥ ΔWs∥
2
L =∥ Ws+NL −Ws∥

2
L , (19)

NL =
0.1
α(e)

. (20)

NL is the number of gradient steps between samples of network weights
and was empirically chosen on the basis of the relative learning rates
α(e) in each stage. For simple kindergarten, hard kindergarten and the
temporal wagering task, α(e) = 1 × 10−4 (N = 1,000 steps). For the infer-
ence stage of kindergarten, α(e) = 0.005 (N = 2 steps). The wait-time
task has variable numbers of gradient steps across trials, but empiri-
cally, we observed that 1,000 gradient steps spanned approximately
10,000 trials. Thus, we sampled the network every 10,000 trials for the
temporal wagering task.

Reduced dynamics flow fields
A low-dimensional manifold of activity was found by performing a
principle component analysis (PCA) on S(i) from a session of 1,000 trials
from the temporal wagering task. A PCA was performed separately
for each layer of the network to give a reduced set of activity
P(i)t = [S(i)t − ̂S(i)]M(i), where M(i) are the principal components, and ̂S(i) is
the mean activity of network in layer i, respectively. Networks trained
with full kCL had ~90% variance explained in the first two to three
principal components. Thus, we visualized the dynamics in a
two-dimensional space; however, an analysis of the low-dimensional
dynamics was always performed in the N-dimensional space that cap-
tured at least 90% variance.

Dynamical flow fields reflect the instantaneous change of the
network state over time, due to network activity. We approximate this
temporal gradient with an empirical difference Ft across successive
states as

̇St ≡
∂St
∂t

≈ St+1 − St
Δt ≡ Ft, (21)

Ft =
(RNN(⋅) − 𝕀𝕀) [St]

Δt . (22)

The operator RNN(⋅) denotes propagating the state St by one time step,
and is the identity operator.

The flow field for behaviourally relevant low-dimensional dynam-
ics in a PC space is equivalently calculated by first projecting back into
neural activity space with an inverse PCA transform, calculating Ft, then
projecting this gradient back into PC space. Assuming ̂S(i) = 0 for sim-
plicity, this dynamical gradient FPC,t is given by

̇Pt ≡
∂Pt
∂t

≈ Pt+1 − Pt
Δt ≡ FPC,t, (23)

FPC,t =
(RNN(⋅) − 𝕀𝕀) [PtMT]M

Δt . (24)

In practice, single-trial trajectories in these two dimensions tended
to follow the flow fields of then two-dimensional dynamics quite well
and served as a sufficient space to analyse aspects of the dynamics that
directly contribute to behaviour.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 700

Article https://doi.org/10.1038/s42256-025-01029-3

Dynamics are only well defined for static inputs. For each layer,
the inputs used the wait-time epoch used in Fig. 6 are x(inference) =
[sstart,t = 0, sR,t = 0, rt−1 = −k, at−1 = 0] and x(policy) =[sstart,t = 0, sR,t = 0,
oblock]. To calculate the reduced dynamics for the policy layer with a
static input, we chose oblock values the corresponded to the block prob-
ability estimates output from the RNN during characteristic opt-out
trials from each block, just before the RNN opted out.

Linearized dynamics
The dynamics of an RNN are in general nonlinear and can be approxi-
mated by a Taylor series expansion around the fixed-point S0 as

̇St ≈ ∇[̇St]
T|||S0

(St − S0) +
1
2 (St − S0)

T ∇2[̇St]||S0
(St − S0) + h.o.t. , (25)

where h.o.t. means higher order terms. Analysis of the linearized
dynamics matrix J ≡ ∇[̇St]

T
i, j = ∂ ̇Si/∂S j (that is, Jacobian of the temporal

gradient) provides a compact description of the underlying dynamical
system driving behaviour. The Jacobian for an LSTM only requires
derivatives with respect to the cell state and hidden state. We again
approximate the temporal gradient with an empirical difference and
calculate the Jacobian J as

∇[̇St]
T
≈ ∇[Ft]

T ≡ J = (∂Ft

∂ht
, ∂Ft

∂ct
) (26)

= 1
Δt

⎛
⎜⎜
⎝

∂ht+1

∂ht
− 𝕀𝕀 ∂ht+1

∂ct

∂ct+1

∂ht

∂ct+1

∂ct
− 𝕀𝕀

⎞
⎟⎟
⎠
, (27)

where we have used the fact that St+1 = RNN(⋅)[(St)]. The Jacobian can
be written more compactly as

J = 1
Δt (

hT
h − 𝕀𝕀 hT

c

cTh cTc − 𝕀𝕀
) . (28)

We found that the Jacobian was typically non-normal (that is, when
JJT ≠ JTJ), so we characterized the linearized dynamics by their spectral
properties by using the Schur decomposition J = WT (ref. 44). The Schur
decomposition is analogous to a standard eigenvalue decomposition
but returns orthogonal modes, even for non-normal matrices. We char-
acterized fixed points of the dynamics by the eigenvalues of J (diag(T))
and the Schur modes W. Additional details for the linearization can be
found in the Supplementary Information.

Locating and classifying dynamical fixed points
Analysis of the dynamics for each network numerically located fixed
points (Ft or F(PC)t  = 0), as well as ‘slow points’, where the dynamics con-
tained local minima, but F(PC)t > 0. These points were located through
a minimization of the kinetic energy of the system, where kinetic energy
is defined by

KE = 1
2 F

2
PC,t. (29)

To locate the fixed points in the behaviourally relevant subspace of
RNN activity, we constrained the minimization of kinetic energy F(PC)
in the top dimensions that explained at least 90% of variance. Thus,
we searched for kinetic energy minima on the N-dimensional PCA
manifold. While a fully unconstrained minimization would identify
all of the fixed points of the RNN dynamics, constraining to PC space
restricts our analysis to the network dynamics driving behaviour.
To choose initial conditions to the minimization, we used a uniform
sampling for 50 points per dimension when N = 1 or N = 2. For higher

dimensionality, to avoid exponential scaling issues we used a biased
grid search proportional to total variance explained by each dimension.
The same data and network inputs for calculating flow fields were used
to calculate kinetic energy.

Once minima were located, a clustering procedure (DBSCAN,
scipy.clustering.DBSCAN) was performed to determine the effective
number of fixed and slow points, as well as remove any outliers. The
hyperparameters were min_samples = 10 and epsilon. Epsilon was
chosen individually for each network, as 1% of the range of support of
PC1 activity. The fixed points were defined as identified minima where
KE <1 × 10−4. All other minima were termed ‘slow points’. The network
dynamics were then linearized at the identified fixed and slow points,
then a Schur decomposition was performed on the Jacobian to retrieve
the eigenvalues and Schur modes of the system. The dynamical systems
features were categorized in the top two dimensions of PC space. Based
on their eigenvalues λ1 and λ2 found by the Schur decompositions, we
used the following scheme:

•	 λ1 < 0.999, λ2 < 0.999 : point attractor
•	 λ1 ∈ [0.999, 1.001] and λ2 < 1.001: stable line/plane attractor
•	 λ1 ∈ [0.999, 1.001] and λ2 > 1.001: unstable line
•	 λ1 < 0.999 and λ2 > 1.001: saddle point

To characterize the dynamics across RNNs, we identified a ‘com-
mon motif’ in the dynamics of the inference layer if the following fea-
tures were observed: the dynamics contain a stabilizing feature (point
or line attractor) in high and low-block regions of state space, as well
as an unstable feature (typically a saddle) in the mixed-block region of
state space. In addition, a two-dimensional PC space needed to contain
three discrete and continuous regions of block confidence, assessed
using oblock. The networks were considered to have ‘rat-like’ strategies
if they possessed linear sensitivity to reward offers, as well sensitivity
to block context for all blocks in the same ordering as rats (longer
wait times in low blocks). The flow field visualization was performed
in Matlab (R2023b).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rat behavioural data and the statistical model of behaviour
are detailed in ref. 19 and are available via Zenodo at https://doi.
org/10.5281/zenodo.10031483 (ref. 45). The data used to generate
figures in this manuscript, as well as a repository of pretrained RNN
model files for different curriculum learning strategies, are available
via Zenodo at https://doi.org/10.5281/zenodo.14907819 (ref. 46).

Code availability
The data were analysed with code written in Python (Python v3.9.5,
Pytorch v1.8.0), as well as Matlab (v2023b). The code used to train
RNNs, analyse data and generate figures is available at GitHub via
https://github.com/Savin-Lab-Code/kind_cl (ref. 47) and as CodeOcean
capsule48.

References
1.	 Yang, G. R. & Wang, X.-J. Artificial neural networks for

neuroscientists: a primer. Neuron 107, 1048–1070 (2020).
2.	 Krueger, K. A. & Dayan, P. Flexible shaping: How learning in small

steps helps. Cognition 110, 380–394 (2009).
3.	 Narvekar, S. et al. Curriculum learning for reinforcement learning

domains: a framework and survey. J. Mach. Learn. Res. 21, 181
(2020).

4.	 Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum
learning. In Proc. 26th Annual Int. Conference on Machine Learning
41–48 (Association for Computing Machinery, 2009).

http://www.nature.com/natmachintell
https://doi.org/10.5281/zenodo.10031483
https://doi.org/10.5281/zenodo.10031483
https://doi.org/10.5281/zenodo.14907819
https://github.com/Savin-Lab-Code/kind_cl

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 701

Article https://doi.org/10.1038/s42256-025-01029-3

5.	 Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for
fast adaptation of deep networks. In Int. Conference on Machine
Learning, 1126–1135 (PMLR, 2017).

6.	 Thrun, S. & Pratt, L. in Learning to Learn (eds Thrun, S. & Pratt, L.)
3–17 (Springer, 1998).

7.	 Harlow, H. F. The formation of learning sets. Psychol. Rev. 56,
51–65 (1949).

8.	 Skinner, B. F. How to teach animals. Sci. Am. 185, 26–29 (1951).
9.	 Savin, C. & Triesch, J. Emergence of task-dependent

representations in working memory circuits. Front. Comput.
Neurosci. 8, 57 (2014).

10.	 McAndrew, R. & Helms Tillery, S. I. Laboratory primates: their lives
in and after research. Temperature https://doi.org/10.1080/23328
940.2016.1229161 (2016).

11.	 Chowdhury, S. A. & DeAngelis, G. C. Fine discrimination training
alters the causal contribution of macaque area mt to depth
perception. Neuron 60, 367–377 (2008).

12.	 Arlt, C. et al. Cognitive experience alters cortical involvement in
goal-directed navigation. eLife 11, e76051 (2022).

13.	 Wang, J. X. Meta-learning in natural and artificial intelligence.
Curr. Opin. Behav. Sci. 38, 90–95 (2021).

14.	 Vanderschuren, L. J., Achterberg, E. M. & Trezza, V. The
neurobiology of social play and its rewarding value in rats.
Neurosci. Biobehav. Rev. 70, 86–105 (2016).

15.	 Vanderschuren, L. J. & Trezza, V. What the laboratory rat has taught
us about social play behavior: role in behavioral development
and neural mechanisms. In The Neurobiology of Childhood
(eds Andersen, S. L. & Pine, D. S.) 189–212 (Springer, 2014).

16.	 Baarendse, P. J., Limpens, J. H. & Vanderschuren, L. J. Disrupted
social development enhances the motivation for cocaine in rats.
Psychopharmacology 231, 1695–1704 (2014).

17.	 Einon, D. F. & Morgan, M. A critical period for social isolation in the
rat. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 10, 123–132 (1977).

18.	 Zador, A. M. A critique of pure learning and what artificial neural
networks can learn from animal brains. Nat. Commun. 10, 3770
(2019).

19.	 Mah, A., Schiereck, S. S., Bossio, V. & Constantinople, C. M.
Distinct value computations support rapid sequential decisions.
Nat. Commun. 14, 7573 (2023).

20.	 Schiereck, S. S. et al. Neural dynamics in the orbitofrontal cortex
reveal cognitive strategies. Preprint at bioRxiv https://doi.org/
10.1101/2024.10.29.620879 (2024).

21.	 Constantino, S. M. & Daw, N. D. Learning the opportunity cost of
time in a patch-foraging task. Cog. Affect. Behav. Neurosci. 15,
837–853 (2015).

22.	 Charnov, E. L. Optimal foraging, the marginal value theorem.
Theor. Popul. Biol. 9, 129–136 (1976).

23.	 McNamara, J. M. & Houston, A. I. Optimal foraging and learning.
J. Theor. Biol. 117, 231–249 (1985).

24.	 Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement
learning system. Nat. Neurosci. 21, 860–868 (2018).

25.	 Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y.
Orbitofrontal cortex as a cognitive map of task space. Neuron 81,
267–279 (2014).

26.	 Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human
orbitofrontal cortex represents a cognitive map of state space.
Neuron 91, 1402–1412 (2016).

27.	 Bartolo, R. & Averbeck, B. B. Inference as a fundamental process
in behavior. Curr. Opin. Behav. Sci. 38, 8–13 (2021).

28.	 Averbeck, B. & O’Doherty, J. P. Reinforcement-learning in
fronto-striatal circuits. Neuropsychopharmacology 47, 147–162
(2022).

29.	 Miyashita, Y. & Chang, H. S. Neuronal correlate of pictorial
short-term memory in the primate temporal cortexyasushi
miyashita. Nature 331, 68–70 (1988).

30.	 Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. &
Ostojic, S. The role of population structure in computations
through neural dynamics. Nat. Neurosci. 25, 783–794 (2022).

31.	 Khona, M. & Fiete, I. R. Attractor and integrator networks in the
brain. Nat. Rev. Neurosci. 23, 744–766 (2022).

32.	 Marschall, O. & Savin, C. Probing learning through the lens of
changes in circuit dynamics. Preprint at bioRxiv https://doi.org/
10.1101/2023.09.13.557585 (2023).

33.	 Sussillo, D. & Barak, O. Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural
Comput. 25, 626–649 (2013).

34.	 Elman, J. L. Learning and development in neural networks: the
importance of starting small. Cognition 48, 71–99 (1993).

35.	 Kepple, D., Engelken, R. & Rajan, K. Curriculum learning as a tool
to uncover learning principles in the brain. In Int. Conference on
Learning Representations (2022).

36.	 Silver, D. et al. Mastering the game of go with deep neural
networks and tree search. Nature 529, 484–489 (2016).

37.	 Jensen, K. T., Hennequin, G. & Mattar, M. G. A recurrent network
model of planning explains hippocampal replay and human
behavior. Nat. Neurosci. 27, 1340–1348 (2024).

38.	 Braun, D. A., Mehring, C. & Wolpert, D. M. Structure learning in
action. Behav. Brain Res. 206, 157–165 (2010).

39.	 Makino, H. Arithmetic value representation for hierarchical
behavior composition. Nat. Neurosci. 26, 140–149 (2023).

40.	 Driscoll, L. N., Shenoy, K. & Sussillo, D. Flexible multitask
computation in recurrent networks utilizes shared dynamical
motifs. Nat. Neurosci. 27, 1349–1363 (2024).

41.	 Gupta, D., DePasquale, B., Kopec, C. D. & Brody, C. D. Trial-history
biases in evidence accumulation can give rise to apparent lapses
in decision-making. Nat. Commun. 15, 662 (2024).

42.	 Richards, B. A. et al. A deep learning framework for neuroscience.
Nat. Neurosci. 22, 1761–1770 (2019).

43.	 Ma, W. J. & Peters, B. A neural network walks into a lab: towards
using deep nets as models for human behavior. Preprint at
https://arxiv.org/abs/2005.02181 (2020).

44.	 Goldman, M. S. Memory without feedback in a neural network.
Neuron 61, 621–634 (2009).

45.	 Mah, A., Schiereck, S., Bossio, V. & Constantinople, C. Distinct
value computations support rapid sequential decisions
(version v1). Zenodo https://doi.org/10.5281/zenodo.10031483
(2023).

46.	 Hocker, D., Constantinople, C. M. & Savin, C. Composition of
simple computational tasks captures the inductive biases of
animals in network models (version v1). Zenodo https://doi.org/
10.5281/zenodo.14907819 (2025).

47.	 Hocker, D., Constantinople, C. M. & Savin, C. Savin-Lab-Code/
kind_cl: Nature Machine Intelligence code (v1.0.0). Zenodo
https://doi.org/10.5281/zenodo.14907734 (2025).

48.	 Hocker, D., Constantinople, C. M. & Savin, C. Compositional
pretraining improves computational efficiency and matches
animal behavior on complex tasks. Code Ocean Capsule
https://doi.org/10.24433/CO.3440797.v1 (2025).

49.	 Arnold, T. B. & Emerson, J. W. Nonparametric goodness-of-fit tests
for discrete null distributions. R J. 3, 34–39 (2011).

Acknowledgements
We thank L. Driscoll, P. Glimcher, V. Goudar, O. Marschall, K. Miller and
J. Wang for helpful discussions and comments on the manuscript.
We also thank M. Chittireddy for fixed-point characterization of
shaping-trained RNNs. This work was supported by the NIMH (grant
nos. 1K01MH132043-01A1 to D.H. and 1R01MH125571-01 to C.M.C.
and C.S.). This work was supported in part through the NYU IT High
Performance Computing resources, services and staff expertise. We
gratefully acknowledge use of the research computing resources of

http://www.nature.com/natmachintell
https://doi.org/10.1080/23328940.2016.1229161
https://doi.org/10.1080/23328940.2016.1229161
https://doi.org/10.1101/2024.10.29.620879
https://doi.org/10.1101/2024.10.29.620879
https://doi.org/10.1101/2023.09.13.557585
https://doi.org/10.1101/2023.09.13.557585
https://arxiv.org/abs/2005.02181
https://doi.org/10.5281/zenodo.10031483
https://doi.org/10.5281/zenodo.14907819
https://doi.org/10.5281/zenodo.14907819
https://doi.org/10.5281/zenodo.14907734
https://doi.org/10.24433/CO.3440797.v1

Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 702

Article https://doi.org/10.1038/s42256-025-01029-3

the Empire AI Consortium, Inc., with support from the State of
New York, the Simons Foundation and the Secunda Family Foundation.

Author contributions
C.M.C. designed the behavioural task. D.H., C.M.C. and C.S. designed
the curriculum training protocol. D.H. created the RNN model. D.H.,
C.M.C. and C.S analysed the data. D.H. prepared the figures. D.H.,
C.M.C. and C.S. wrote the manuscript. C.M.C. and C.S. supervised
the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s42256-025-01029-3.

Correspondence and requests for materials should be addressed to
Cristina Savin.

Peer review information Nature Machine Intelligence thanks Maria
Eckstein, and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2025

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-025-01029-3
http://www.nature.com/reprints

Data was analyzed with code written in Python (Python v 3.9.5, Pytorch v 1.11.0), as well as Matlab (v2023b). This code is publicly available at
https:// github.com/Savin-Lab-Code/kind_cl. This information has been included in the Data and Code Availability section of the paper.

Rat behavioral data published in Mah et al Nature Communications 2023 is publicly available on Zenodo at https://zenodo.org/records/10031483. The data used to generate figures in this manuscript,
as well as a repository of pretrained RNN model files for different curriculum learning strategies, is available at a separate Zenodo database: https://zenodo.org/records/14907819 . This information
has been included in the Data Availability section of the paper.

N/A

All rats received the same training protocol. Where applicable, plotted data from individual rats that were representative of the
population. Sets of RNNs received the same curriculum learning of tasks, with the same hyperparameters in all cases.
The structure of the tasks were the same for each RNN, but random seeds that set the initial RNN weights, and ordering of
trials within each training stage were different for each RNN. These seeds are included as explicit input parameters to the
simulation, to allow for replication of results. Replication of RNN results from a given seed was used only for internal purposes,
to check code integrity. All of these internal replication checks were sucessful.

The number of random RNN seeds varied for each curriculum studied, ranging from 10-50 random seeds. The number of random seeds is reported in each
relevant figure caption (Figs 3-6)

	Compositional pretraining improves computational efficiency and matches animal behaviour on complex tasks

	Results

	Behaving animals use inference in a temporal wagering task

	Optimal task behaviour

	Deep meta-reinforcement learning agents mimic rat behaviour

	kCL supports near optimal task performance

	The structure of the kindergarten curriculum matters

	kCL leads to distinct neural dynamics

	Discussion

	Methods

	Animal subjects and behaviour

	Behavioural shaping

	Behavioural analyses

	Approximate Bayesian inference of block

	Details of MDP and RL formulation of task

	Model architecture

	Training

	Kindergarten training
	Deep meta-RL loss

	Network analyses

	Reduced dynamics flow fields

	Linearized dynamics

	Locating and classifying dynamical fixed points

	Reporting summary

	Acknowledgements

	Fig. 1 Modelling the animal’s learning experience.
	Fig. 2 Rodent behaviour in temporal wagering task.
	Fig. 3 Deep meta-RL agents can learn the temporal wagering task.
	Fig. 4 Performance of pretraining methods on the temporal wagering task.
	Fig. 5 Variations of kCL.
	Fig. 6 Dynamical systems features of kCL-trained networks.

