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Compositional pretraining improves 
computational efficiency and matches 
animal behaviour on complex tasks
 

David Hocker1, Christine M. Constantinople1,3 & Cristina Savin    1,2,3 

Recurrent neural networks (RNNs) are ubiquitously used in neuroscience to 
capture both neural dynamics and behaviours of living systems. However, 
when it comes to complex cognitive tasks, training RNNs with traditional 
methods can prove difficult and fall short of capturing crucial aspects of 
animal behaviour. Here we propose a principled approach for identifying 
and incorporating compositional tasks as part of RNN training. Taking as 
the target a temporal wagering task previously studied in rats, we design 
a pretraining curriculum of simpler cognitive tasks that reflect relevant 
subcomputations, which we term ‘kindergarten curriculum learning’. We 
show that this pretraining substantially improves learning efficacy and is 
critical for RNNs to adopt similar strategies as rats, including long-timescale 
inference of latent states, which conventional pretraining approaches fail 
to capture. Mechanistically, our pretraining supports the development of 
slow dynamical systems features needed for implementing both inference 
and value-based decision making. Overall, our approach helps endow RNNs 
with relevant inductive biases, which is important when modelling complex 
behaviours that rely on multiple cognitive functions.

Recurrent neural networks (RNNs) are frequently used in neurosci-
ence to study the role of coordinated network activity in supporting 
trained behaviours, with the hope of generating hypotheses about 
neural mechanisms that can be tested in animal models1. As cognitive 
tasks increase in complexity, training RNNs to mimic animals becomes 
increasingly difficult. First, RNNs may fail to learn the task, especially 
in reinforcement learning settings with salient suboptimal solutions, 
sparse rewards or long temporal dependencies2. Second, the solu-
tions found by RNNs trained on complex tasks can fail to reflect the 
computational strategies in animals, limiting their utility as models 
for neuroscience.

Pretraining can boost learning by slowly increasing task complex-
ity along a particular dimension (for example, gradually increasing 
the delay in a task requiring working memory) as a form of curriculum 
learning3,4 or by using families of related tasks and harnessing shared 
structure, as in meta-learning5–7. In the animal domain, pretraining 

takes the form of behavioural shaping8, which gradually exposes the 
animal to the functional subelements of a task, such as interacting with 
effectors such as levers. As with artificial agent pretraining, complexity 
is gradually increased by incorporating additional elements and the 
animal learns how to combine them in an appropriate way (for exam-
ple, the lever needs to be pressed only when light is on). This approach 
can dramatically increase learning efficiency in animals but is rarely 
used in RNN training9. Another largely ignored form of pretraining is 
the experience that the animals bring with them to the experiment in 
the form of inductive biases. The subjects learn many cognitive tasks 
throughout their lifetime, and previously learned tasks can impact their 
behaviour in new ones10–12. Many factors including training history13, 
early experiences14–17 or inductive biases established by evolution18 can 
influence learning outcomes and corresponding behavioural strategies.

We hypothesize that adopting pretraining procedures that better 
reflect the animal’s experience will allow RNNs to learn more robustly 
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reward (p = 0.8) arrives with a time delay drawn independently from 
an exponential distribution p(t) = λ−1 exp(−t/λ), where mean λ is 2.5 s. 
If the rat chooses the other port before reward delivery, the trial is 
terminated (an ‘opt-out’ trial), and a new trial can begin. The reward is 
withheld on a subset of trials (p = 0.2), termed ‘catch trials’, as a readout 
of how long rats are willing to wait before exercising the opt-out choice. 
There are five reward offers as well as a hidden block structure that is 
not cued to the rats (Fig. 2b). Each session starts with a mixed block (all 
offers), randomly followed by either a high (top three offers) or low 
block (bottom three offers) and then deterministically alternating 
between mixed and high/low blocks over the session. Importantly, 
20 μl offers are present in all blocks, allowing a direct measure of con-
text dependence.

Rat wait times during catch trials are sensitive to both the size of 
the reward offer and the latent block structure (Fig. 2c). Animals wait 
longer for larger offers and modulate their behaviour on the basis of 
the block. In addition, the difference in wait time for 20 μl offers when 
comparing low versus high blocks with mixed blocks is asymmetric 
(larger shifts for low blocks). To quantify behavioural sensitivity to 
the blocks, we calculated the ratio of wait times for 20 μl offers in high 
versus low blocks. Across a large population (N = 291 animals), rats 
modulate their wait times based on the block context (Fig. 2d). This 
state-dependent behaviour relies on an inferential strategy, in which 
rats infer the most likely state based on the current offer value and their 
prior beliefs about the current reward block19,20, which has distinct 
behavioural signatures in particular after block transitions (Fig. 2e). 
Indeed, regressing wait times against previous reward and block over 
training shows that the block regressor increases with the same time 
course as the behavioural sensitivity to blocks, suggesting that contex-
tual sensitivity reflects learned knowledge of block structure (Fig. 2f). 
Modeling of this inferential strategy predicts the probability of being 
in each block on a trial-by-trial basis (Fig. 2g).

Optimal task behaviour
Many rats exhibit linear sensitivity to log-reward offers and block- 
dependent responses, which we seek to understand from an opti-
mal decision making perspective. While several formalizations are 
possible, we chose to describe the task as an MDP, in which agents 
must either wait for a reward or opt out of the trial (Fig. 2h), similar to  
ref. 21. In this formulation, the agents decide between ‘wait’ and 
‘opt-out’ actions. Waiting either preserves the state or transitions to a 
terminal ‘hit’ state where reward is delivered, with probability given by 
the exponential delay distribution, p(t), and overall reward probability, 
pr. Opting out deterministically ends the trial with a reward penalty  
Roo, while the wait action has a time penalty k. This MDP formulation 
treats the offered reward and time within trial as the state, which allows 
for a simple closed-form solution describing optimal behaviour for an 
agent with perfect knowledge of the task statistics, where the optimal 
wait time t* is log linear in the reward offer R,

t∗ = λ (log[Rpr] − log[kλ]) . (1)

In foraging theory, where agents aim to maximize their reward rates, 
time penalties are often related to the opportunity cost or the average 
reward rate of the environment; thus, the wait-time decisions should 
incorporate the value of potential rewards missed out on by continuing 
to wait22,23. In our MDP formulation, this implies

k = ρΔt = 𝔼𝔼 [ ̃R(B)] , (2)

where ρ is the reward rate, Δt the time step size, ̃R(B) the reward for a 
given block B and the expectation is taken over the reward probability 
for an offer in a specific environment, B. This approach identifies 
qualitative features of optimal behaviours in this task: linear 

and better match animal behaviour. To test this, we created a pre-
training paradigm that explicitly trains a set of useful, basic compu-
tational skills (working memory, sensory evidence integration and so 
on) outside of the target task context (using simple tasks with separate 
loss functions). These skills are then combined via animal-matched 
behavioural shaping towards a target end goal (Fig. 1). We term this 
form of pretraining as ‘kindergarten curriculum learning’ (kCL). Our 
approach is similar to traditional curriculum learning in that the dif-
ficulty of the task increases over time and to meta-learning in that the 
curriculum tasks are assumed to share underlying computational 
structure with the target. It is unique in its decomposition of complex 
tasks into elements that need to be computed in parallel, pretrainable 
with simpler means.

We test our approach using a complex cognitive task previously 
performed in rats19. A simplified formalization of the task as a Markov 
decision process (MDP) allows us to identify key qualitative features 
of optimal behaviour in the task and the subtasks to include in the 
kindergarten curriculum. kCL substantially improves learning speed 
and performance compared with brute-force in-task training with 
or without behavioural shaping. Importantly, its computational 
strategies closely match animal behaviour, while other curricula’s do 
not. While increasing the number of relevant kindergarten subtasks 
increases both performance and the strength of this match, good 
performance and adopting animal-like strategies are dissociable, 
further demonstrating the importance of good inductive biases in 
mimicking rats behaviour. Mechanistically, we find a diversity in 
the types of dynamical system features present in well-trained net-
works (that is, point attractors, saddles and line attractors), though 
typically well-performing networks possess attractor dynamics for 
latent states with strong beliefs and saddles for uncertain states 
with semistable beliefs. This solution is qualitatively distinct from 
high-performing networks not trained with kCL. Moreover, kCL yields 
networks with richer dynamics, which can be exploited for learning 
the target task.

Results
Behaving animals use inference in a temporal wagering task
To study the effects of curriculum learning on behaviour and neural 
activity, we sought a task that is difficult for RNNs to learn from expe-
rience alone. Specifically, we investigated a temporal wagering task 
performed by rats19, where a simple, suboptimal strategy leads to rea-
sonable rewards, but optimal strategies require inference of latent 
states over long timescales (Fig. 2a). Rats initiate trials by poking into 
a centre port, then they hear an auditory tone, the frequency of which 
denotes the volume of a water reward. A side port is randomly chosen 
as the rewarded side on each trial, indicated by light. The probabilistic 

Kindergarten: 
primitive subtasks

Behavioural shaping: 
identify and link relevant subtasks

Separate tasks: Task variants: Training/target task: /

Fig. 1 | Modelling the animal’s learning experience. Right: the target behaviour 
or task (open circle) can be thought of as composed of several computational 
subelements, some of which may need to be computed in parallel. Left: these 
subcomputations involve primitive skills that in the animals have probably 
been learned through past experience. Behavioural shaping guides learning by 
incrementally combining basic skills into more complex functions (linked puzzle 
pieces). For RNN training, we operationalize this idea by first training a set of 
fundamental subcomputations in a ‘kindergarten’ training phase, followed by 
behavioural shaping that mimics animal training.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 691

Article https://doi.org/10.1038/s42256-025-01029-3

sensitivity to log-offer, with a bias to wait longer in reward-sparse envi-
ronments (Fig. 2i), an asymmetry in the sensitivity of wait times to high 
versus low blocks, as well as faster wait times with lower reward prob-
abilities (see Supplementary Information for derivations and further 
details). Importantly, rats display all of these hallmarks (Fig. 2c,d).

Deep meta-reinforcement learning agents mimic rat 
behaviour
To study the impact of training on behavioural performance, we used 
deep RNNs trained with meta-reinforcement learning (Fig. 3a, long 
short-term memory (LSTM) architecture, all-to-all connected within 
each module), which allows for dynamic behavioural adaptation and 
has provided useful neural signatures in other tasks24. Our version 
includes a modular architecture, with one module implementing latent 
state inference (‘inference’), analogous to regions such as the orbito-
frontal cortex25–27, and a second module responsible for action selection 
(‘policy’), loosely analogous to the striatum28.

We trained RNN agents on a simplified variant of the temporal 
wagering task (Fig. 3b). At every timepoint (Δt = 50 ms), the agent 
decides on the basis of its stochastic decision policy to either ‘wait’ or 
‘opt out’ (abstracting away the trial by trial alternation in left versus 

right reward ports), with stochastic intertrial intervals out of the 
control of the agent. These changes preserve the core decision mak-
ing process and cleanly map to the MDP, while simplifying the RNN 
architecture.

We used the MDP-derived expression for the Q value for waiting 
during the trial, to identify candidates for the kindergarten curriculum:

Q∗ (wait, t) = prRe−t/λ − kλ (1 + log (prR
kλ

) − t
λ )

− Roo. (3)

In particular, optimal behaviour requires knowledge of three key quanti-
ties (R, t, k), each of which point to a form of basic skill training. First, a 
persistent representation of R throughout the trial can be encouraged 
by working memory training (report a transient input seen many time 
steps earlier). Second, knowledge of elapsed time within a trial, t, can be 
developed using a temporal counting task (output a ramp with slope 1).  
Finally, knowledge of the opportunity cost can come via either past 
reward averaging, trained as an integrator of stimulus input or through 
state inference trained via a classification task that reports latent states 
based solely on stimulus information. We trained each of these through 
separate learning objectives (Supplementary Fig. 1).
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Fig. 2 | Rodent behaviour in temporal wagering task. a, The temporal wagering 
task. The rats wait for known reward offers conveyed by an auditory tone but with 
an uncertain reward delay. The rats may choose to wait for reward at illuminated 
side port until water arrives or poke into the other port to terminate the trial.  
b, The latent block structure of task that is uncued to rats. After every 40 
successful trials, a transition between mixed blocks (purple) containing all 
potential reward offers and blocks with a subset of the highest (red) or lowest 
(low) offers. c, The example mean wait time behaviour on catch trials, where the 
reward is withheld for a single rat. The error bars denote the standard error of the 
mean (s.e.m.) over trials. d, The distribution of wait time ratios of high versus low 
for 20 μl offers on catch trials. ***P = 8.26 × 10−49, two-sided Wilcoxon signed-rank 
test. The histogram includes rats with significantly different wait-time ratios 
(shaded, P < 0.05, rank-sum test) and insignificant wait-time ratios (unshaded, 
P > 0.05, rank-sum test). e, The trial-by-trial changes in wait times across a block 
transition, averaged over rats; the error bars mark the s.e.m., and the colours 
reflect transitions from either a high (red) or low (block) block into a mix block, 

aligned to first incongruent trial that violates possible offers in the current 
block (for example, a 40-μl offer after being in a low block). f, The time course 
of the mean wait-time ratio (top) and mean regression coefficient for block in a 
linear regression of wait time (bottom) for catch trials. Left: the first 20 sessions 
after the block structure is introduced in the task. Right: the last 20 sessions of 
training. g, The predicted block probabilities of a Bayes-optimal model of the 
task. The background colours denote the true block. h, The MDP formalization  
of the task, showing states (boxes), state-transfer probabilities p and rewards  
r for each state–action pair. The rewards arrive within each trial on the basis of the 
delay distribution ρ(t), incur a time penalty k at each time step, as well as penalty 
Roo for opting out. i, Left: the MDP-defined optimal wait times for three different 
wait time penalties. Right: the wait times for all wait time penalties. The coloured 
boxes denote k for optimal wait times in the left plot. The grey region denotes the 
negative wait time. In d–f, the mean is over rats (N = 291), and the error bars in e–f 
mark the s.e.m.
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After kindergarten (modelling pre-existing cognitive capaci-
ties that the animals bring with them to the experiment), we used the 
behavioural shaping protocol employed in rats: (1) an easy version of 
the wait-time task with deterministic rewards and no block structure 
first, followed by (2) introduction of stochastic rewards and finally (3) 
introduction of the blocks in the target wait-time task. This ‘shaping’ 
phase uses an adapted version of the meta-reinforcement learning loss 
from24, with auxiliary losses corresponding to the kindergarten tasks 
(Fig. 3c, top, and Methods).

RNNs undergoing the complete training (‘kindergarten+shaping’ 
or ‘full kindergarten’) successfully learned to perform the temporal 
wagering task, exhibiting behavioural wait times on catch trials that 
resembled rat behaviour: the agents waited longer for larger offers, 
with wait times sensitive to the hidden block structure (Fig. 3d), with 
accurate block inference (Figs. 2g and 3h). These RNNs had strong block 
sensitivity across the population, as quantified by the wait-time ratio, 
whereas RNNs without full training generally failed to become sensi-
tive to the blocks or did so in a manner inconsistent with rat behaviour 
(Fig. 3e). Finally, when comparing the time course of the wait time 
ratio and block sensitivity over training, we found that RNNs displayed 
similar learning dynamics to rats (Fig. 3g). The RNNs start with no block 
sensitivity, but over training wait times for 20 μl, offers become dif-
ferent across blocks, suggesting that knowledge of block structure is 
driving the difference in wait times, as in the rats (Fig. 2f). In summary, 
deep meta-reinforcement learning agents trained with kindergarten 
tasks and animal-like behavioural shaping display qualitative behaviour 
similar to rats, have similar inferential strategies and learn to become 

sensitive to latent structure that varies on long timescales in the same 
manner as animals.

kCL supports near optimal task performance
To determine the extent to which a structured curriculum was necessary 
for effective learning in the task, we investigated a family of curriculum 
learning sequences, varying the tasks in the kindergarten curriculum 
and their hyperparameters, with or without behavioural shaping. We 
first compared the performance of networks trained with both kinder-
garten and shaping to agents that experience the shaping procedure 
alone (Fig. 4a, orange) and directly training on the target task without 
any pretraining (Fig. 4a, red). In both cases, we allowed each procedure 
to undergo at least the same amount and often much longer total train-
ing (number of epochs) as kCL. We found that including kindergarten 
training outperformed both these alternatives (Fig. 4b–c) and lead to 
systematic differences in network behaviour (Fig. 4d). When training on 
the target task alone, networks adopted a simple, suboptimal strategy, 
where agents simply wait until a timeout penalty occurs, leading to a low 
sensitivity to both reward offer and context and opt-out rates below the 
true catch probability of the task (Supplementary Fig. 2a). Introducing 
shaping can lead to some mild sensitivity to the reward offer, though 
not nearly as strong as when also including kindergarten tasks. In addi-
tion, these agents did not learn to opt out as frequently. Importantly, 
the wait-time ratio in the shaping-only networks was reversed when 
compared with rats and kindergarten + shaping curriculum learning, 
meaning that these networks wait longer for 20 μl in high blocks, which 
is suboptimal according to the MDP. Overall, including kCL with shaping 
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stimulus information and previous reward and action history (used in meta-RL 
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used for pretraining and in-task regularization. Moreover, pblock outputs from 
the inference module to the policy module are trained to infer the current block. 
b, The simplified temporal wagering tasks for RNN agents. c, The RNN training 
protocol, referred to as kindergarten + shaping curriculum learning (CL). Top: 
kindergarten supervised learning tasks outside the context of the temporal 
wagering task are performed first, followed by progressively harder variants of 
the target wait-time task that mimics the shaping procedure performed in rats. 
Bottom: the normative set of kindergarten tasks suggested from MDP solution 
to the temporal wagering task (equation (3)): working memory, maintaining an 

internal estimate of time, integrating input stimuli and inferring the latent state. 
d, The example mean wait time performance of an RNN agent. The error bars 
denote the standard error of the mean (s.e.m.) over trials (N = 10,000 trials).  
e, Wait-time ratio of population of N = 113 RNNs. The dark bars denote N = 46 
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In f–g, the results are the average over RNNs trained with kindergarten + shaping 
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temporal wagering task for network in d. The same colour convention as Fig. 2g.
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is important to replicate qualitative patterns of behaviour that are 
consistent with the optimal strategy and rats.

The structure of the kindergarten curriculum matters
Having confirmed that the MDP-derived kindergarten curriculum is 
effective, we can now ask whether pretraining on all of the tasks was 
actually required or if training on simpler curricula would have worked 
just as well. As the space of options is combinatorially large, we chose to 
focus on the nature and number of tasks included in the kindergarten 
curriculum, with considerations such as task ordering and hyperparam-
eter choices briefly explored in Supplementary Fig. 2. In all cases, we 
trained the networks for at least as much as the full set of four kinder-
garten tasks, to balance the total amount of parameter updating that 
could be performed. First, we asked if individual kindergarten tasks can 
achieve high-quality solutions on their own when paired with shaping. 
We found that single task kindergarten generally underperformed in 
terms of final reward rates compared to ‘full kindergarten’ (Fig. 5a, top) 
and also failed to capture its qualitative behaviour (Fig. 5a, bottom). A 
noteworthy exception was the memory task, which achieved equivalent 
reward rates. Behaviourally, the working-memory-only solution had 
comparable reward sensitivity and opt-out rates but showed signifi-
cantly weaker context sensitivity, pointing to potential differences in 
the computational strategy adopted to solve the task, even among 
high-performing solutions. By contrast, the inference task allowed for 
good context sensitivity and weaker offer sensitivity.

We reasoned that adding more kindergarten tasks might have addi-
tive effects for behavioural matching and so we studied the effect of 
having two or three tasks as part of kCL (Fig. 5b). In particular, since the 

memory-only curriculum yielded offer sensitivity, and inference-only 
curriculum yielded good context sensitivity, we hypothesized that 
using them together might result in the desired task behaviour and high 
reward rates. We used these two tasks as the base pair, then optionally 
added a third task. All combinations retained high reward rates, but 
behaviourally, the solutions mapped to distinct strategies, with weaker 
reward sensitivity and a broad range of context sensitivity (including 
the suboptimal reverse context sensitivity, Fig. 2d). Adding in a third 
task got closer but could not fully recapitulate the behaviour of full kCL. 
Collectively, these results demonstrate that the content of the curricu-
lum can measurably affect behavioural strategy, despite comparable 
task performance, and that the richer the (relevant) subcomputations, 
the closer the trained solution is to animal behaviour.

Would pretraining on tasks not part of the MDP solution also work 
by virtue of introducing task variability in training? To test this, we 
used a delay-to-non-match task29,30 (Fig. 5c), which requires an agent 
to report if two presented stimuli that are lagged in time are the same 
(a match) or different (a non-match). We chose this task because it 
feasibly replaces the classification and working memory components 
learned in kCL while the essential inference component is missing. We 
studied two versions of such pretraining: using delay-to-non-match 
alone or additionally including the counting and stimulus integration 
tasks. Both underperformed compared with the original kCL and also 
displayed quite different behaviour.

Since kindergarten tasks play dual roles in training, we asked 
whether the benefits of kCL came from pretraining or in-task regu-
larization (Fig. 5d). Specifically, we used the full set of kindergarten 
tasks but only as regularizers during in-task training (no pretraining 
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or shaping). Such regularization proved insufficient, and it could not 
achieve high-quality solutions nor could it recreate the behaviours 
seen in the animals, resembling solutions obtained from behavioural 
shaping alone (Supplementary Fig. 3). We briefly studied a few addi-
tional dimensions of the curriculum structure. Manipulations of the 
timescale of the inference task affected behaviour, with short inference 
timescales during pretraining failing to generate strong context sen-
sitivity (Supplementary Fig. 3b–e). This suggests that its value to the 
curriculum may (at least partly) stem from introducing slow modes in 
the RNN dynamics. The location of the harder-to-train inference task 

in the sequence of subtasks also influenced the quality of the solution, 
consistent with the common prescription of learning simple tasks first. 
Finally, we tried decreasing the hyperparameters’ similarity between 
kindergarten tasks and target, while preserving the nature of the com-
putation (different offers for memory, a larger number of latent states 
for inference) (Supplementary Fig. 2f). This discrepancy in the task 
details also meant incorporating a separate output for inference, rather 
than tying it to the inference-to-policy module output. This kCL variant 
still leads to good context and wait-time sensitivity, although its solu-
tions had less linear offer sensitivity (Supplementary Fig. 2f–j). Overall, 
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 c, A computationally irrelevant delay-to-non-match task (d2m). d2m (N = 9, 

yellow; reward rate: P = 2 × 10−4; reward sensitivity: P = 1 × 10−10; wait-time  
ratio: P = 7 × 10−5; opt-out rate: P = 4 × 10−18). d2m + counting + inference  
(N = 9, turquoise; reward rate: P = 0.009; reward sensitivity: P = 6 × 10−6;  
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curriculum learning (CL) pretraining or shaping (N = 9, red; reward rate: 
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rate over training (mean and standard error of the mean over networks). Bottom: 
the distribution of behavioural metrics for each trained RNN. The stars mark 
the population mean and the ellipses are two standard deviations. All statistics 
compare full kindergarten, aka kindergarten + shaping (N = 45), versus other CL 
type (two-sided rank-sum test for reward rates, two-sided t-tests for the rest).
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these results suggest that the best learning is achieved by pretraining on 
kindergarten tasks that match the computational subelements of the 
target task and that a precise statistical match between kindergarten 
and target tasks is not strictly needed to see benefits from kCL.

kCL leads to distinct neural dynamics
What is the mechanism by which kCL helps target task training? Using 
the overall magnitude of weight changes as a coarse measure of network 
learning (Fig. 6a), we found network reorganization at the beginning of 
each training phase but most substantially when learning to perform 
inference of latent states. To determine how the network dynamics 
change in more functional terms across the training stages, we focused 
on the dynamical systems structure of the solution, determined by 
‘slow points’. Such slow dynamical systems features (for example, point 
attractors, saddles and line attractors) provide a natural mechanism 
for maintenance and integration of information at long timescales31, 
which is critical for our task (reward offer within trials and opportunity 
cost across trials). Thus, identifying the computational strategy used 
by an RNN to solve our task translates to determining the number, type 
and geometry of its slow points32.

First, we investigated maintenance and updating of latent beliefs 
in the inference layer of kCL-trained networks (Methods) and found 
that RNNs trained by kCL generally displayed a common motif involv-
ing three slow features (Fig. 6b): two stable features (fixed point or line 
attractor) and a semistable feature (saddle) separating them. Among 
networks that learned the task in a rat-like way, a large proportion (20 
of 29 RNNs) displayed this common motif. Conversely, the networks 
that did not learn a rat-like strategy did not display the same motif (14 
of 16). Partitioning the state space by most likely block according to the 
RNN’s beliefs (the inference layer’s main output), we find three contigu-
ous subregions, with a slow feature in each (other rare motifs that still 
provide good wait-time behaviour are documented in Supplementary 
Fig. 4). The beliefs are updated by inputs from offers and rewards by 

pushing the network state along the direction orthogonal to the block 
boundaries (Supplementary Fig. 5). Importantly, stable features lie in 
areas of state space corresponding to low and high blocks, whereas the 
semistable feature is consistently located in the mixed-block region. 
The line or point attractors were equally likely in high blocks, but we 
invariably found a point attractor in the low-block region. This overall 
dynamical systems structure was specific to networks trained by kCL 
and almost never seen with shaping alone (2 of 47) or other curricula 
(Supplementary Fig. 6a,b). Importantly, the three-feature motif was 
not observed in RNNs with memory-only pretraining, (Supplementary 
Fig. 6c,d), despite the match in performance. This confirms the notion 
that different training procedures bias learned solutions towards differ-
ent computational strategies for performing the task. It also generates 
testable predictions about the neural activity of brain regions thought 
to subserve inference (for example, orbitofrontal cortex).

The policy layer dynamics were also variable across RNNs but to a 
lesser degree than the inference layer. We often found one to two slow 
points, one of which was almost always a point attractor (41 of 45) and 
the sole to be functionally relevant. When visualizing the location of 
the fixed-point attractor along the first principal component (PC) of 
policy layer activity (Fig. 6c), we found that the location of the attractor 
was block specific, yielding varying wait-time probabilities, and that 
their relative location supported asymmetric wait time behaviour over 
blocks (Fig. 3d). Anecdotally, attractors did not change position across 
blocks in other curricula, which makes another testable prediction 
about a block-dependent shift of attractors within the manifold of 
population activity in the striatum.

Since the structure of slow points reflects key aspects of task 
computation, such as beliefs about blocks and associated wait times, 
we wondered how these features may be constructed over the course 
of training, in particular during kindergarten (Fig. 6d). We found that 
kCL-trained networks started building slow dynamical features in early 
stages and in particular during the inference kindergarten task. Once 
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the temporal wagering task was introduced, some of these features 
were pruned from the network’s dynamic repertoire, stabilizing into 
the final motif described above. This expansion and then pruning 
of dynamical features over training has been previously reported in 
other tasks that rely on attractor-based dynamics32 and might reflect a 
biologically relevant learning trait. Interestingly, while the policy layer 
had similar numbers of dynamical features across learning procedures, 
the total number of slow features in the inference layer was curriculum 
specific, with kCL showing richer dynamics than suboptimal networks 
trained just using shaping (Fig. 6e). In addition, the dynamics of kCL 
were also higher dimensional compared with other protocols (Supple-
mentary Fig. 7). Overall, these results suggest that the benefits of kCL 
may stem from its ability to endow the network with richer dynamics 
that can then be exploited when learning the target task.

Discussion
It has been long recognized that the ‘key to shaping is identifying the 
essential subcomponents in a task’2. Here, we argue that the same 
insight can be used to build inductive biases that steer RNNs towards 
learned solutions that are both computationally more efficient and a 
closer match to animal behaviour.

While we found a common dynamical systems motif in many of 
the well-performing networks, the exact geometry of the solution was 
variable across networks and curricula, unlike the ‘universal’ dynamical 
systems solutions found for simpler tasks, where all networks that do 
well are dynamically isomorphic32,33. Thus, the task complexity may 
open interesting avenues for exploring how across-animal behavioural 
variability can be traced back to variability in neural dynamics in related 
brain regions. This is particularly important in our task, as we see is a 
high degree of variability in wait-time behaviour among rats19.

Our approach traces its roots to not only behavioural shaping34 
but also classic curriculum learning and meta-learning. If the idea of 
pretraining for RNNs is not new; previous work has focused on using 
incremental training to expand the trainable temporal horizon of RNNs2 
or as an assay to uncover learning principles on tasks where behaviour 
is difficult to analyse, but that could be optimally performed even 
without curriculum learning35. It is also qualitatively different from 
approaches that pretrain on human or animal behaviour directly in 
a supervised manner36,37, which we see as complementary. By con-
trast, a precise design of the curriculum was critical for our task. Our 
approach also relates to forms of meta-learning used to account for 
structure learning38, where invariant relationships in a task are stored 
and reused for more efficient learning. While sharing its emphasis on 
common computation that generalizes across tasks, kCL is distinct in its 
emphasis on task compositionality and, in particular, in decomposing 
the task into non-sequential subcomputations.

How well would our approach generalize to other tasks? The core 
idea is to break the target task into computational subelements, which 
is also reminescent of the decomposition of Q values into subtasks seen 
in previously in a mouse navigation task39. An important note is that, 
in our case, some of the computational elements need to be executed 
in parallel. This contrasts to traditional views of compositionality 
(inherited from hierarchical RL) where the goal is learning to stitch 
together a sequence of operations40. The choice of subtask here is 
not ad hoc but relies on the availability of a simplified ideal observer 
solution. Admittedly, a mathematically tractable approximation of 
the task may not always be available or relevant, as animals can display 
distinctly suboptimal behaviour in other tasks, such as sequential 
biases and lapses41. Nonetheless, it may be possible to intuit at least 
some of the computational elements involved, in the kindergarten 
sense. In particular, kCL pretraining targeted to improve the ability 
to process information over long timescales is likely to benefit other 
tasks with long temporal dependencies and sparse reward structure, 
echoing the idea that certain basic cognitive abilities might generally 
support the learning of complex behaviour42,43. More broadly, our 

work argues that modelling complex cognitive tasks in RNNs requires 
careful thinking about pre-existing knowledge that animals bring with 
them to an experiment.

Methods
Animal subjects and behaviour
Behavioural procedures have been published in detail elsewhere19. 
Briefly, a total of 291 Long-evans rats (184 male, 107 female) between 
the ages of 6 and 24 months were used for this study (Rattus norvegi-
cus). The Long-evans cohort also included ADORA2A-Cre (N = 10), 
ChAT-Cre (N = 2), DRD1-Cre (N = 3) and TH-Cre (N = 12). The animal use 
procedures were approved by the New York University Animal Welfare 
Committee (no. 2021-1120) and carried out in accordance with National 
Institutes of Health standards. The animals were water restricted to 
motivate them to perform behavioural trials. From Monday to Friday, 
they obtained water during behavioural training sessions, which were 
typically 90 min per day, and a subsequent ad libitum period of 20 min. 
Following training on Friday until mid-day Sunday, they received ad 
libitum water. The rats were weighed daily. The rats were trained in a 
high-throughput behavioural facility in the Constantinople lab using 
a computerized training protocol. The rats were trained in operant 
boxes with three nose poke ports. The left and right ports contained 
speakers to generate audio tones and contained lick tubes to delivery 
water reward. All ports contained an internal light-emitting diode (LED) 
light inside the port.

An LED illumination from the centre port indicated that the ani-
mal could initiate a trial by poking its nose in that port—upon trial 
initiation, the centre LED turned off. While in the centre port, the rats 
needed to maintain centre fixation for a duration drawn uniformly 
from 0.8 to 1.2 s. During the fixation period, a tone played from both 
speakers, the frequency of which indicated the volume of the offered 
water reward for that trial (1, 2, 4, 8 and 16 kHz, indicating 5, 10, 20, 40, 
80 μl rewards). Following the fixation period, one of the two side LEDs 
was illuminated, indicating that the reward might be delivered at that 
port; the side was randomly chosen on each trial. This event (side LED 
ON) also initiated a variable and unpredictable delay period, which 
was randomly drawn from an exponential distribution with mean of 
2.5 s. The reward port LED remained illuminated for the duration of 
the delay period, and the rats were not required to maintain fixation 
during this period, although they tended to fixate in the reward port. 
When a reward was available, the reward port LED turned off, and the 
rats could collect the offered reward by nose poking in that port. The 
rat could also choose to terminate the trial (opt out) at any time by nose 
poking in the opposite, unilluminated side port, after which a tone 
was played, and new trial would immediately begin. On a proportion 
of trials (15–25%), the delay period would only end if the rat opted out 
(catch trials). If rats did not opt out within 100 s on catch trials, the 
trial would terminate.

The trials were self-paced: after receiving their reward or opting 
out, the rats were free to initiate another trial immediately. However, 
if rats terminated centre fixation prematurely, they were penalized 
with a white noise sound and a timeout penalty (typically 2 s, although 
adjusted to individual animals). Following premature fixation breaks, 
the rats received the same offered reward, to disincentivize premature 
terminations for small volume offers. We introduced semiobserv-
able, hidden states in the task by including uncued blocks of trials 
with varying reward statistics: high and low blocks, which offered the 
highest three or lowest three rewards, respectively, and were inter-
spersed with mixed blocks, which offered all volumes. There was a 
hierarchical structure to the blocks, such that high and low blocks 
alternated after mixed blocks (for example, mixed-high-mixed-low 
or mixed-low-mixed-high). The first block of each session was a mixed 
block. The blocks transitioned after 40 successfully completed trials. 
Because the rats prematurely broke fixation on a subset of trials, in 
practice, the block durations were variable.
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Behavioural shaping. The shaping procedure was divided into eight 
stages. For stage 1, the rats learned to maintain a nose poke in the centre 
port, after which a 20 μl reward volume was delivered from a random 
illuminated side port with no delay. Initially, the rats needed to main-
tain a 5 ms centre poke. The centre poke time was incremented by 1 ms 
following each successful trial until the centre poke time reached 1 s, 
after which the rat moved to stage 2.

Stages 2–5 progressively introduced the full set of reward vol-
umes and corresponding auditory cues. The rats continued to receive 
deterministic rewards with no delay after maintaining a 1 s centre poke. 
Each stage added one additional reward that could be selected on 
each trial—stage 2 added 40 μl, stage 3 added 5 μl, stage 4 added 80 μl 
and stage 5 added 10 μl. Each stage progressed after 400 successfully 
completed trials. All subsequent stages used all five reward volumes.

Stage 6 introduced variable centre poke times, uniformly drawn 
from 0.8 to 1.2 s. Moreover, stage 6 introduced deterministic reward 
delays. Initially, the rewards were delivered after a 0.1 s delay, which was 
incremented by 2 ms after each successful trial. After the rat reached 
delays between 0.5 and 0.8 s, the reward delay was incremented by 
5 ms following successful trials. Delays between 0.8 and 1 s were incre-
mented by 10 ms, and delays between 1 and 1.5 s were incremented by 
25 ms. The rats progressed to stage 7 after reaching a reward delay  
of 1.5 s.

In stage 7, the rats experienced variable delays, drawn from an 
exponential distribution with mean of 2.5 s. Moreover, we introduced 
catch trials (see ‘Animal subjects and behaviour’ section), with a 
catch probability of 15%. Stage 7 terminated after 250 successfully 
completed trials. Finally, stage 8 introduced the block structure. We 
additionally increased the catch probably for the first 1,000 trials to 
35%, to encourage the rats to learn that they could opt out of the trial. 
After 1,000 completed trials, the catch probability was reduced to 
15–20%. All the animal data in Fig. 2 were from training stage 8. The 
conceptual changes that occur in stages 7 and 8 were used in shaping 
of the RNNs.

Behavioural analyses
The behavioural sessions from the rats required at least five catch trials 
to be included. In addition, the sessions were excluded if a linear regres-
sion of wait time did not have positive slope in a 2-day moving-window 
average or if it lacked a statistically significant positive slope coefficient 
for linear sensitivity on that day (F test, P < 0.05). Lastly, trials were 
excluded if the wait time was greater than two standard deviations from 
the mean wait time. These criteria were included primarily to exclude 
trials in which a rat was disengaged during the task.

For analysis of wait time ratio and regression of wait time over 
training, the data were aggregated over groups of two sessions either 
at the beginning of block training or the end of training (‘first sessions’ 
and ‘last sessions’, respectively, in Figs. 2f and 3g). The wait-time ratio 
was calculated on these aggregated sessions, and a regression of wait 
time with regressors for the current trial, one trial back and current 
block were used to regress the wait time on that trial. For this, the wait 
times for opt-out trials were z-scored, and an ordinal block was used 
(Blow = 1, Bmixed = 2 and Bhigh = 3).

The analysis of block transition dynamics followed from ref. 19. 
The wait times on catch trials of each rat and RNN were first z-scored 
separately for each volume, then the difference in these z-scored wait 
times were calculated for each volume, relative to the average z-scored 
wait time for that volume. This was calculated for each trial relative to 
an incongruent trial following a block transition. The change in wait 
time in Figs. 2e and 3f was an average of volume of these values. This 
approach was used to control for reward volume effects.

Approximate Bayesian inference of block. The Bayesian observer 
in Fig. 2g was calculated on the basis of methods from ref. 19. Briefly, 
the posterior belief of block was calculated according to Bayes rule

P(Bt|Rt) =
P(Rt|Bt)P(Bt)

P(Rt)
, (4)

where Bt is the block on trial t and Rt is the reward on trial t. The likeli-
hood P(Rt∣Bt) is the probability of the reward for each block (1/5 for all 
offers in mixed blocks and 1/3 or 0 for low and high blocks). The prior 
P(Bt) is approximated using a posterior from the last trial as

P(Bt) ≈ P(Bt|Rt−1) = ∑
Bt−1

P(Bt|Bt−1)P(Bt−1|Rt−1), (5)

where P(Bt∣Bt−1) is referred to as the hazard rate, which incorporates 
knowledge of the task structure, including the block length and block 
transition probabilities. For example, for blocks of length H, the hazard 
rate for low blocks would be

P(low |Bt−1) =
⎧⎪
⎨⎪
⎩

1 − H, Bt−1 = low

H, Bt−1 = mix

0, Bt−1 = high

, (6)

where H = 1/40, to reflect the block length in this work. An extensive 
explanation motivating the assumption of a flat hazard rate is provided 
in ref. 19.

Details of MDP and RL formulation of task
The decision process (Fig. 2h) and RL task environment (Fig. 3b) were 
modelled as a simplified form of the animal task, without any left/
right side choice information, requirement to persevere in the centre 
port or required action to initiate new trials. Formally, this was mod-
elled as an episodic MDP with two potential actions (Wait, OptOut). 
The state at each point in a trial is minimally defined as a reward offer 
R and time within a trial, t: S(R, t). The rewards are delivered proba-
bilistically on each trial with probability pr = 0.8. Within a trial, the 
reward is delivered at a time that is drawn from an exponential delay 
distribution p(t) = λ−1 exp(−t/λ) (where the mean wait time λ = 2.5 s). 
At every time step before reward is delivered, the agent received a 
small reward penalty k = −0.05, and when the opt-out penalty action 
is chosen, a reward penalty Roo = −2.0 is provided. The opt-out penalty 
was used to discourage the suboptimal strategy of instantaneously 
opting out. Rather than instantaneously award the reward offer or 
opt-out penalty, the reward was instead evenly divided out across the 
time bins of the intertrial interval (ITI). ITIs were drawn from a uniform 
distribution from 50 ms to 1 s. This form of ITI better mimicked the 
experience in the rat task, in which animals were drinking water 
throughout most the ITI. It also creates longer timescale dependen-
cies across trials, and receiving positive reward (rather than no 
reward) during the ITI improves value function estimates across trials. 
To avoid contaminating learning of the policies for Wait and OptOut, 
we enforced a required waiting during the ITI (waitITI) action that 
was given unit probability of occurring during the ITI and zero during 
the waiting epoch. We do not model violations in the RL formulation 
of the task nor do we model the decision to begin new trials. These 
reflect separate computational processes that are separate from the 
core decision to wait or opt out.

Reward offers followed an alternating block structure, as in the rat 
task, with random transitions. The same alternating block structure 
was used, with sessions always beginning with a mixed block, and 
then transitioning into a low block. Note, in the rat task, there is equal 
probability of high or low blocks being the second block, though this 
difference is probably negligible to RNN behaviour. The blocks were 
a minimum of 40 trials long, and after 40 trials, the block transitions 
occurred probabilistically, drawn from a binomial distribution with 
transition probability p = 0.5.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | May 2025 | 689–702 698

Article https://doi.org/10.1038/s42256-025-01029-3

Model architecture
The RL agent is composed of a two-layer network, each with 256 LSTM 
units (Fig. 3a), with relevant gates, states and inputs denoted by (j) for 
layer j. The computational LSTM unit of the network uses the following 
gates to update the hidden states ht and cell states ct:

it = σ (Wiixt + bii +Whiht−1 + bhi) (7)

ft = σ (Wifxt + bif +Whfht−1 + bhf) (8)

ot = σ (Wioxt + bio +Whoht−1 + bho) (9)

gt = tanh (Wigxt + big +Whght−1 + bhg) (10)

ct = ft ⊙ ct−1 + it ⊙ gt (11)

ht = ot ⊙ tanh(ct), (12)

where ⊙ is the elementwise Hadamard product and σ is a sigmoid 
nonlinearity. S( j)

t ≡ [h( j)
t , c( j)

t ] is a compact description of the activity  
of each layer, and successive states of the network are written here with 
a shorthand St+1 = RNN(St) or St+1 = RNN(⋅)[(St)]. The network inputs xt 
are multidimensional and will generally consist of external task stimuli 
sstart and sR, past time step reward rt−1, past time step action at−1, outputs 
from the network ot and states St from earlier LSTM layers. sstart = 1 and 
sR = log(R) only at the start of the trial and are otherwise zero. By con-
trast, the remaining inputs can in general be non-zero and time-varying 
over the course of an entire trial.

Specifically, the first layer (‘inference’ layer) receives inputs about 
the task stimuli of trial start and reward offer, as well as the previous 
reward and previous action: x(inference) = [sstart,t, sR,t, rt−1,at−1]. The infer-
ence layer projects onto a three-unit linear projection head that outputs 
the log-probability of each block o(block)t = log[pblock,t], as well as a linear 
projection head for an auxiliary task that aims to output the average 
reward within a trial o(int)t . The second layer (‘policy’ layer) receives log- 
block probabilities from the inference layer as inputs, as well as the task 
stimuli for trial start and reward offer: x(policy) = [sstart,t, sR,t,o(block)t ]. The 
policy layer outputs onto linear projection heads for the (1) policy πt, 
(2) value of current state Vt, (3) prediction of reward offer for a super-
vised memory task o(mem)

t  and (4) prediction of time within a task for a 
supervised memory task o(count)t . The policy π is a three-unit RNN with 
a softmax nonlinearity, corresponding to probabilities for waiting 
within a trial (waitTrial), opting out of a trial (OptOut) or waitITI. During 
the trial, the only allowed options are waitTrial and Optout, with waitITI 
artificially set to low probability. During the the ITI period in which 
reward is delivered, the only option is waitITI. The remaining projection 
heads output scalar values.

Hidden and cell states of the LSTMs were initialized with random 
values drawn from a normal distribution (𝒩𝒩(0, 1)). The weight param-
eters of the model were initialized to small values, drawn from a uni-
form distribution (𝒰𝒰(−1/N, 1/N), where N is the number of hidden-layer 
units). The states were reset at the end of each training epoch, where 
a training epoch was over all data for kindergarten costs. The states 
were reset every 160 trials during the temporal wagering task. This 
reset corresponds to roughly the same timescale as progressing 
through all three block types, though it is not exactly aligned with 
block transitions.

Training
All RNN model training was conducted in PyTorch (v1.8.0, python 
v3.9.5). For all costs, the weights were updated using backpropagation 
through time with an Adam minimizer. The hyperparameters for train-
ing are provided in the Supplementary Information.

Kindergarten training. Kindergarten tasks were composed of super-
vised learning tasks: memory, counting, integration and inference 
tasks. The memory, counting and integration tasks were trained using 
supervised learning of a mean-squared error loss, where RNN outputs 
ot were trained to match a target output zt. The memory task trained 
the network to output the initial reward offer throughout the duration 
of a trial (ot,targ = sR,0). The counting task trained networks to count time 
elapsed within a trial (ot,targ = t). The integration task trained networks 
to calculate a running average of the ‘previous reward’ stimulus input 
(ot,targ = 1/t∑t

0 rt−1). The inference task trained networks on a classifica-
tion task using cross-entropy loss to categorize the latent block on the 
basis of reward offer.

These tasks used similar input and trial time statistics as the tar-
get temporal wagering task. Trial durations were on the same order 
of magnitude as the target task, and the inputs to the RNN used the 
same five target values as the log-reward offer stimulus input in the RL 
task. The target in the integration task was based off of typical rewards 
received from trials in the wait-time task. Importantly, while the input 
statistics were similar to the target task, these kindergarten tasks are 
supervised learning objectives in which the actions of the RL agent 
have no bearing. They are fundamentally a different class of learning 
than the final RL-based task.

We devised a cumulative curriculum for pretraining on the four 
tasks by introducing tasks into training, one at a time and adding onto 
previous tasks (Supplementary Fig. 1). We first introduced simple, 
single-trial variants in order of memory, counting and integration 
tasks (simple kindergarten). We then increased the complexity of these 
tasks by extending to multiple trials in a training batch but continuing 
to train on the three tasks simultaneously (hard kindergarten). Finally, 
we added in the inference task (inference kindergarten). We chose this 
ordering such that the successive tasks took more training time than 
previous ones.

The losses for each stage of kindergarten are described as

ℒsimple =
T
∑
t
βmem(o(mem)

t − z(mem)
t )

2

+βcount(o(count)t − z(count)t )
2
+ βint(o(int)t − z(int)t )

2
,

(13)

ℒhard =
M
∑
m=1

ℒ(m)
simple, (14)

where o(⋅)t  is the output signals from the RNN and z(⋅)t  is the target out-
puts. o(int)t  comes from the inference layer, and o(mem)

t  and o(count)t  come 
from the policy layer. t denotes time within a single trial, and m denotes 
the trial number. Training data for simple kindergarten was performed 
in a single batch, with 20 time steps of data per sample, (T = 1 s, 
Δt = 0.05), and a batch size of 1,000 samples. A weight update occurred 
after every epoch over the data and stopped when performance did 
not improve over 30 epochs. The second stage of kindergarten training 
(hard) simply expanded the time horizon of simple kindergarten, 
which optimized with target values from a single trial, m, to include 
multiple trials. We used M = 10 trials per sample, with variable trial 
times drawn from a uniform distribution between 1 and 5 s. The train-
ing data were again a single batch, with a batch size of 1,000. To main-
tain a single batch of data with the same amount of data per sample, 
each sample used ten trials of the same durations but in random order 
for each sample. A weight update was performed after each epoch 
over the data and completed after a threshold of ℒhard < 0.001  was 
reached or until 10,000 epochs were performed. Rather than process-
ing each contribution to the loss cumulatively as in simple kinder-
garten, all three costs were simultaneously optimized in hard 
kindergarten.
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Following training on simple and hard kindergarten, which were 
tasks with squared error losses, the final stage of kindergarten (infer-
ence) was performed. Formally, this required the outputs of the infer-
ence layer head, pblock to minimize a cross-entropy categorization loss 
at every timepoint,

ℒinf = −∑
m,t

I(m) log [p(m)block,t] , (15)

where I(m) is an indicator function for the true block on each trial, m, 
taking the value I(m) = 1 for the true block type and 0 for the remaining 
block types. This final stage of kindergarten cumulatively optimized 
inference and the earlier kindergarten tasks

ℒkind = βhard ℒhard + βinfℒinf, (16)

where βhard = 1.0 and βinf = 0.5 during kindergarten pretraining.
The sham delay-to-non-match task used an augmented RNN with 

two additional inputs to the inference layer, as well as an additional 
output from the policy layer. The two inputs were chosen from the the 
potential offers provided during the task ([5, 10, 20, 40, 80]), and there 
was a temporal delay between the two offers drawn from a uniform 
distribution 𝒰𝒰(0.05 s, 5 s). There was equal probability of both inputs 
being the same or different on each trial. As with the other supervised 
learning tasks, the trials were batched. The goal of the the agent was to 
output ‘match’ (1) if the two inputs matched, ‘non-match’ (2) if they 
were different and ‘no cue’ (0) otherwise. The task was optimized using 
a cross-entropy loss as in equation (15).

For the variations of the curriculum studied in Fig. 5, the order-
ing of tasks also proceeded as performing kindergarten tasks first, 
followed by shaping and then the target task. Any task used in the 
pretraining stages was also used as a regularizer in during target task 
training, and all others were omitted as regularizers. The only exception 
was the ‘regularization-only’ curriculum in Fig. 5d. The ordering of kin-
dergarten tasks proceeded as performing mean-squared-error-based 
kindergarten tasks (memory, counting and integration) before the 
inference task. One exception was the ‘inference first’ curriculum in 
Supplementary Fig. 2b–e.

Deep meta-RL loss. Following previous work24, the temporal wager-
ing task described above was optimized with a deep meta-learning 
framework that optimized an actor-critic loss that was regularized 
with an entropy loss to encourage exploration, as well as the full kin-
dergarten loss,

ℒ = ∑
t
−βactor log(πt) [Gt − V(St)] + βcritic[Gt − V(St)]

2

−βHπt log(πt) + ℒkind,
(17)

where Gt is the empirical, total discounted future reward

Gt = rt + γGt+1. (18)

This Actor Critic approach trains networks to generate optimal deci-
sion policies πt and value function estimates Vt but does so in a way that 
allows trial-by-trial learning to occur through persistent dynamical 
activity, as opposed to continual parameter updating of the connection 
weights between units. The key architectural ingredient of teaching 
this network to generate an internal RL procedure via its dynamics (the 
‘meta’ component) is to provide the network with explicit feedback 
about the past action taken and last reward received24. In our two-layer 
architecture, this feedback is provided only to the inference layer.

Network analyses
To determine which phases of training created large structural changes 
in the network, we calculated the change in weights ΔW over training. 
Specifically, we investigated the squared L2 norm of the difference of 

a concatenated recurrent weight matrix W ≡ [Whf, Whg, Who, Whi] over 
training. Different phases of training had different learning rates, so 
to meaningfully compare the magnitude of changes over training, we 
sampled the network at different rates across training, proportional 
to their learning rates. Intuitively, this means we sampled training 
phases less frequently when only small parameter updates were pos-
sible (smaller learning rate) and conversely sampled more frequently 
in training epochs where large parameter updates were possible (larger 
learning rate). Specifically, the change ∥ΔW∥2 in each stage is given by

∥ ΔWs∥
2
L =∥ Ws+NL −Ws∥

2
L , (19)

NL =
0.1
α(e)

. (20)

NL is the number of gradient steps between samples of network weights 
and was empirically chosen on the basis of the relative learning rates 
α(e) in each stage. For simple kindergarten, hard kindergarten and the 
temporal wagering task, α(e) = 1 × 10−4 (N = 1,000 steps). For the infer-
ence stage of kindergarten, α(e) = 0.005 (N = 2 steps). The wait-time 
task has variable numbers of gradient steps across trials, but empiri-
cally, we observed that 1,000 gradient steps spanned approximately 
10,000 trials. Thus, we sampled the network every 10,000 trials for the 
temporal wagering task.

Reduced dynamics flow fields
A low-dimensional manifold of activity was found by performing a 
principle component analysis (PCA) on S(i) from a session of 1,000 trials 
from the temporal wagering task. A PCA was performed separately  
for each layer of the network to give a reduced set of activity 
P(i)t = [S(i)t − ̂S(i)]M(i), where M(i) are the principal components, and ̂S(i) is 
the mean activity of network in layer i, respectively. Networks trained 
with full kCL had ~90% variance explained in the first two to three 
principal components. Thus, we visualized the dynamics in a 
two-dimensional space; however, an analysis of the low-dimensional 
dynamics was always performed in the N-dimensional space that cap-
tured at least 90% variance.

Dynamical flow fields reflect the instantaneous change of the 
network state over time, due to network activity. We approximate this 
temporal gradient with an empirical difference Ft across successive 
states as

̇St ≡
∂St
∂t

≈ St+1 − St
Δt ≡ Ft, (21)

Ft =
(RNN(⋅) − 𝕀𝕀) [St]

Δt . (22)

The operator RNN(⋅) denotes propagating the state St by one time step, 
and  is the identity operator.

The flow field for behaviourally relevant low-dimensional dynam-
ics in a PC space is equivalently calculated by first projecting back into 
neural activity space with an inverse PCA transform, calculating Ft, then 
projecting this gradient back into PC space. Assuming ̂S(i) = 0 for sim-
plicity, this dynamical gradient FPC,t is given by

̇Pt ≡
∂Pt
∂t

≈ Pt+1 − Pt
Δt ≡ FPC,t, (23)

FPC,t =
(RNN(⋅) − 𝕀𝕀) [PtMT]M

Δt . (24)

In practice, single-trial trajectories in these two dimensions tended 
to follow the flow fields of then two-dimensional dynamics quite well 
and served as a sufficient space to analyse aspects of the dynamics that 
directly contribute to behaviour.
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Dynamics are only well defined for static inputs. For each layer, 
the inputs used the wait-time epoch used in Fig. 6 are x(inference) =
[sstart,t = 0, sR,t = 0, rt−1 = −k, at−1 = 0]  and x(policy) =[sstart,t = 0,  sR,t = 0,  
oblock]. To calculate the reduced dynamics for the policy layer with a 
static input, we chose oblock values the corresponded to the block prob-
ability estimates output from the RNN during characteristic opt-out 
trials from each block, just before the RNN opted out.

Linearized dynamics
The dynamics of an RNN are in general nonlinear and can be approxi-
mated by a Taylor series expansion around the fixed-point S0 as

̇St ≈ ∇[ ̇St]
T|||S0

(St − S0) +
1
2 (St − S0)

T ∇2[ ̇St]||S0
(St − S0) + h.o.t. , (25)

where h.o.t. means higher order terms. Analysis of the linearized 
dynamics matrix J ≡ ∇[ ̇St]

T
i, j = ∂ ̇Si/∂S j (that is, Jacobian of the temporal 

gradient) provides a compact description of the underlying dynamical 
system driving behaviour. The Jacobian for an LSTM only requires 
derivatives with respect to the cell state and hidden state. We again 
approximate the temporal gradient with an empirical difference and 
calculate the Jacobian J as

∇[ ̇St]
T
≈ ∇[Ft]

T ≡ J = ( ∂Ft

∂ht
, ∂Ft

∂ct
) (26)

= 1
Δt

⎛
⎜⎜
⎝

∂ht+1

∂ht
− 𝕀𝕀 ∂ht+1

∂ct

∂ct+1

∂ht

∂ct+1

∂ct
− 𝕀𝕀

⎞
⎟⎟
⎠
, (27)

where we have used the fact that St+1 = RNN(⋅)[(St)]. The Jacobian can  
be written more compactly as

J = 1
Δt (

hT
h − 𝕀𝕀 hT

c

cTh cTc − 𝕀𝕀
) . (28)

We found that the Jacobian was typically non-normal (that is, when 
JJT ≠ JTJ), so we characterized the linearized dynamics by their spectral 
properties by using the Schur decomposition J = WT (ref. 44). The Schur 
decomposition is analogous to a standard eigenvalue decomposition 
but returns orthogonal modes, even for non-normal matrices. We char-
acterized fixed points of the dynamics by the eigenvalues of J (diag(T)) 
and the Schur modes W. Additional details for the linearization can be 
found in the Supplementary Information.

Locating and classifying dynamical fixed points
Analysis of the dynamics for each network numerically located fixed 
points (Ft or F(PC)t  = 0), as well as ‘slow points’, where the dynamics con-
tained local minima, but F(PC)t > 0. These points were located through 
a minimization of the kinetic energy of the system, where kinetic energy 
is defined by

KE = 1
2 F

2
PC,t. (29)

To locate the fixed points in the behaviourally relevant subspace of 
RNN activity, we constrained the minimization of kinetic energy F(PC) 
in the top dimensions that explained at least 90% of variance. Thus, 
we searched for kinetic energy minima on the N-dimensional PCA 
manifold. While a fully unconstrained minimization would identify 
all of the fixed points of the RNN dynamics, constraining to PC space 
restricts our analysis to the network dynamics driving behaviour. 
To choose initial conditions to the minimization, we used a uniform 
sampling for 50 points per dimension when N = 1 or N = 2. For higher 

dimensionality, to avoid exponential scaling issues we used a biased 
grid search proportional to total variance explained by each dimension. 
The same data and network inputs for calculating flow fields were used 
to calculate kinetic energy.

Once minima were located, a clustering procedure (DBSCAN, 
scipy.clustering.DBSCAN) was performed to determine the effective 
number of fixed and slow points, as well as remove any outliers. The 
hyperparameters were min_samples = 10 and epsilon. Epsilon was 
chosen individually for each network, as 1% of the range of support of 
PC1 activity. The fixed points were defined as identified minima where 
KE <1 × 10−4. All other minima were termed ‘slow points’. The network 
dynamics were then linearized at the identified fixed and slow points, 
then a Schur decomposition was performed on the Jacobian to retrieve 
the eigenvalues and Schur modes of the system. The dynamical systems 
features were categorized in the top two dimensions of PC space. Based 
on their eigenvalues λ1 and λ2 found by the Schur decompositions, we 
used the following scheme:

• λ1 < 0.999, λ2 < 0.999 : point attractor
• λ1 ∈ [0.999, 1.001] and λ2 < 1.001: stable line/plane attractor
• λ1 ∈ [0.999, 1.001] and λ2 > 1.001: unstable line
• λ1 < 0.999 and λ2 > 1.001: saddle point

To characterize the dynamics across RNNs, we identified a ‘com-
mon motif’ in the dynamics of the inference layer if the following fea-
tures were observed: the dynamics contain a stabilizing feature (point 
or line attractor) in high and low-block regions of state space, as well 
as an unstable feature (typically a saddle) in the mixed-block region of 
state space. In addition, a two-dimensional PC space needed to contain 
three discrete and continuous regions of block confidence, assessed 
using oblock. The networks were considered to have ‘rat-like’ strategies 
if they possessed linear sensitivity to reward offers, as well sensitivity 
to block context for all blocks in the same ordering as rats (longer 
wait times in low blocks). The flow field visualization was performed 
in Matlab (R2023b).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The rat behavioural data and the statistical model of behaviour 
are detailed in ref. 19 and are available via Zenodo at https://doi.
org/10.5281/zenodo.10031483 (ref. 45). The data used to generate 
figures in this manuscript, as well as a repository of pretrained RNN 
model files for different curriculum learning strategies, are available 
via Zenodo at https://doi.org/10.5281/zenodo.14907819 (ref. 46).

Code availability
The data were analysed with code written in Python (Python v3.9.5, 
Pytorch v1.8.0), as well as Matlab (v2023b). The code used to train 
RNNs, analyse data and generate figures is available at GitHub via 
https://github.com/Savin-Lab-Code/kind_cl (ref. 47) and as CodeOcean 
capsule48.
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All rats received the same training protocol. Where applicable, plotted data from individual rats that were representative of the 
population. Sets of RNNs received the same curriculum learning of tasks, with the same hyperparameters in all cases. 
The structure of the tasks were the same for each RNN, but random seeds that set the initial RNN weights, and ordering of 
trials within each training stage were different for each RNN. These seeds are included as explicit input parameters to the 
simulation, to allow for replication of results. Replication of RNN results from a given seed was used only for internal purposes, 
to check code integrity. All of these internal  replication checks were sucessful.   

The number of random RNN seeds varied for each curriculum studied, ranging from 10-50 random seeds. The number of random seeds is reported in each 
relevant figure caption (Figs 3-6)
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