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Abstract
We investigate the use of two-layer networks with the rectified power unit, which is
called the ReLUk activation function, for function and derivative approximation. By
extending and calibrating the corresponding Barron space, we show that two-layer
networks with the ReLUk activation function are well-designed to simultaneously
approximate an unknown function and its derivatives.When themeasurement is noisy,
we propose a Tikhonov type regularizationmethod, and provide error boundswhen the
regularization parameter is chosen appropriately. Several numerical examples support
the efficiency of the proposed approach.

Mathematics Subject Classification 41A25 · 42B35 · 42C40 · 65D15 · 65D25

1 Introduction

We investigate a classical problem of approximating a smooth function and its
derivatives defined in a bounded domain � ⊂ R

d when only noisy measurements
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320 Y. Li et al.

f δ ∈ L2(�) with an error bound

‖ f − f δ‖L2(�) ≤ δ (1)

are known. As it is customary in regularization theory we assume that in principle we
do have access to the noisy function f δ as an element of L2(�). This allows us to find
reconstructions given in terms of projection schemes, see e.g. [10, 17]. In this study
the sought for approximating function is given in the form of a two-layer network

fn(x) = 1

n

n∑

i=1

aiσ(bi · x + ci ), ai , ci ∈ R, bi ∈ R
d , (2)

where σ is the activation function, i.e. a continuous function of sigmoidal or tanh
form, the rectified linear unit (ReLU) etc. Here x ∈ � denotes the input data and
(ai , bi , ci ) ∈ R × R

d × R, i = 1, . . . , n, denote the network coefficients. We focus
on the ReLUk activation function σ(z) = [max(0, z)]k for an integer k ≥ 1, and we
also use (z)k+ := [max (0, z)]k for brevity.

When accessing the error ‖ f − fn‖L2(�) of a two-layer network fn we have two
parameters, the (known) noise level δ, and the number n of neurons. As in regulariza-
tion theory we are interested in error bounds under the asymptotics δ → 0, it is natural
to incorporate the knowledge of the noise level into the network design by choosing
the number of neurons n in such a way that the corresponding approximation rate
becomes of the order of the noise level. Because there would be no gain in accuracy
from the use of networks with a larger number of neurons, while the networks with a
smaller number of neurons may not be able to utilize the whole information encoded
in the noisy data. Details will be given in Sect. 3.

To approximate a function by itsmeasurement has been one of the long-lasting tasks
in numerical analysis, approximation theory, and plays an important role in supervised
learning. Classical approaches use kernel based methods [2], spline based methods
[25], piecewise polynomials and wavelets basedmethods [9], neural networks [11, 29]
etc. In view of the approximation by neural networks, the seminal paper [4] develops
a universal approximation theorem on function approximation by feedforward neural
networks with sigmoidal activation functions. Systematic investigation on universality
properties of two-layer networks with the ReLU activation function have been carried
out in [19, 22] under different a priori knowledge of the unknown target function.
Recent work in [30] verifies the universality of deep convolutional neural network
with the ReLU activation function. There are only a few studies where the authors
consider neural networks with ReLUk activation function, and we mention [16] where
the universality is investigated by classical polynomial approximation theory. Also,
the recent study [1] deals with ReLUk networks, called ’rectified power units’ (RePU)
there. It is worth to mention that the above authors do not consider noisy data.

At the same time, the approximation of derivatives of an unknown function is
intrinsically ill-posed [10]. Noise in the measurement, as in (1), may yield unsta-
ble reconstruction unless some regularization schemes are implemented [10, 17].
Tikhonov regularization is viable, and can easily be adopted to our problem [12,
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Two-layer networks with theReLUk activation… 321

18]. Denote Xn be a generic solution set. Tikhonov regularization, with a smoothing
penalty term, seeks for fn ∈ Xn as a minimizer of the following functional,

f −→ ‖ f − f δ‖2L2(�)
+ λ‖ f − f∗‖2Hm (�), (3)

provided that the minimum exists. This is known for weakly sequentially closed
sets Xn . Above, the penalty term is the Sobolev space normwith an integerm ≥ 2, λ is
the regularization parameter and f∗ is an initial guess. Another form of Tikhonov reg-
ularization is used in the case when Xn is not weakly closed. By choosing an arbitrary
constant ε > 0, we seek for fn ∈ Xn which obeys

‖ fn − f δ‖2L2(�)
+ λ‖ fn − f∗‖2Hm (�)

≤ ‖g − f δ‖2L2(�)
+ λ‖g − f∗‖2Hm (�) + ε, (4)

for all g ∈ Xn . The arbitrary constant ε > 0 in the functional is necessary to guarantee
the existence of such fn . For simplicity’s sake, we skip a detailed description on the
regularization scheme but refer to [10, 12, 18, 26] for abundant discussion and the real-
ization on numerical differentiation, respectively. To fit our proposed approximation
problem by two-layer networks, wewill specify the penalty in Tikhonov regularization
as e.g.

min
(ai ,bi ,ci )∈(R×Rd×R)n

∥∥∥∥∥
1

n

n∑

i=1

aiσ(bi · x + ci ) − f δ(x)

∥∥∥∥∥

2

L2(�)

+ λP(ai , bi , ci ), (5)

where P(ai , bi , ci ) is a penalty term associated to two-layer networks. This penalty
shall fit the explicit form of the networks and avoid the calculation of the standard
Sobolev norm, which is hardly accessible. Various forms of the Tikhonov regulariza-
tion associating two-layer networks have been proposed and implemented for different
inverse problems of derivative approximation in [5, 6, 21], or inverse boundary value
problems in [3]. Nevertheless, little is known for its regularizing properties and the-
oretical error bounds. To the best of our knowledge, only the pioneering work in [6]
considers these issues for activation functions in (2) that are smooth enough and when
the unknown solution belongs to certain Sobolev spaces.

Here we are particularly interested in the simultaneous approximation of a function
and its derivatives by two-layer networks with the ReLUk activation function. For the
standard ReLU activation function in (2) with σ = max(0, x) the second-order weak
derivative of fn does not exist as a function while it is a distribution, and we cannot use
the approximating fn in order to mimic high-order derivatives. As we shall see below,
by choosing σ in (2) as ReLUk activation functions, a simultaneous approximation of
a function and its derivative can be achieved.

To this end, Barron spaces and the related Barron norms, induced by the ReLUk

activation function shall be carefully examined in the forthcoming Sect. 2. In Sect. 3
we show that the two-layer networks with the ReLUk activation function are well-
designed to simultaneously approximate an unknown function and its derivatives. The
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major contribution in this study concerns the stable reconstruction by neural networks
under noisy data. We propose a Tikhonov regularization with weight decay as in (5),
where the penalty term P(ai , bi , ci ) will be specified there. Finally, several numerical
examples in Sect. 4 shed light on the efficiency of the proposed approach.

2 Extended Barron spaces byReLUk activation functions

To carry out our theoretical analysis, we need to extend the Barron norm and Barron
space induced by the ReLU activation function in [19] towards ReLUk activation
functions. Some connection between the Barron spaces and Sobolev spaces will
also be explored in this section, which allows us to further consider the derivative
approximation of an unknown function.

Remark 1 In the original paper [4], Barron focused on function approximation by two-
layer networks with sigmoidal activation functions. The function to be approximated
there shares a smoothness assumption in terms of its Fourier representation, c.f. [14].
Accordingly, these so-called spectral Barron spaces have been defined in [22, 28]
based on the Fourier coefficients of an unknown function. Function and derivative
approximation by two-layer networks with the ReLUk activation functions and noise
freemeasurement have been carried out there for theBarron spectral space. TheBarron
space that we have inmindmay be viewed as a space of infinite-width neural networks,
or “one-hidden-layer neural network with infinitely many units”, as in the early study
[15].

2.1 Barron spaces and Barron norms

The Barron spaces and norms that we consider here extend those in [19] which are
designed specifically for the ReLU activation function. It has been observed there that
this Barron space is well suited for two-layer networks and optimal approximation can
be derived for functions in that space. Our focus is on derivative approximation. There-
fore, it is a straightforward step to extend the definition of the Barron spaces and the
Barron norms towardsReLUk activation functions. To this endwe consider functions f
defined in a bounded domain � ⊂ R

d , satisfying the following representation

f (x) =
∫

P
a (b · x + c)k+ ρ(da, db, dc), (6)

where P = R×R
d ×R and ρ is a probability distribution on (P, �P ) with �P being

a Borel σ -algebra on P . The above form (6) can be viewed as the continuous version
of the two-layer network (2).

Every network with finitely many units, as in (2), allows for a representation (6) for
the probability ρn , uniform on the point set (ai , bi , ci )ni=1, a fact which shall be used
below.

We fix the integer value k of a ReLUk activation function. For 1 ≤ p < ∞,
we define a value associated to functions of the above representation (6), with given

123



Two-layer networks with theReLUk activation… 323

probability distribution ρ by

‖ f ‖Bk
p,ρ

:=
(∫

P
|a|p (‖b‖1 + |c|)kp ρ(da, db, dc)

) 1
p

.

Denote α be a multi-index, |α| = ∑d
i=1 |αi |, bα = ∏d

i=1 b
αi
i . Notice that for functions

from (6) we have that

∂α f (x) =
∫

P

k!
(k − |α|)!ab

α (b · x + c)k−|α|
+ ρ(da, db, dc)

=
∫

P
a (b · x + c)k−|α|

+ ρα (da, db, dc) ,

where ρα is a probability distribution on P and

ρα(A) := ρ

({
(a, b, c) :

(
k!

(k − |α|)!ab
α, b, c

)
∈ A

})
. (7)

In principle, we can view ρα as a measure induced by a continuous map (a, b, c) 
→(
k!

(k−|α|)!ab
α, b, c

)
.

For any integer m ∈ {0, 1, 2, . . . , k} and any probability measures ρ with
corresponding probabilities ρα, |α| ≤ m, as in (7), we define

‖ f ‖Bk,m
p,ρ

:=
⎛

⎝
∑

|α|≤m

∥∥∂α f
∥∥p

Bk−|α|
p,ρα

⎞

⎠

1
p

.

The extended Barron norm of the function f in (6) is then formally defined by

‖ f ‖Bk,m
p

:= inf
ρ

‖ f ‖Bk,m
p,ρ

= inf
ρ

⎛

⎝
∑

|α|≤m

∥∥∂α f
∥∥p

Bk−|α|
p,ρα

⎞

⎠

1
p

, (8)

where the infimum is taken over all probability measures ρ which allow for a
representation (6).

For p = ∞ we analogously define

‖ f ‖Bk∞,ρ
:= esssup

(a,b,c)∼ρ

|a| (‖b‖1 + |c|)k ,

‖ f ‖Bk,m∞,ρ
:= max|α|≤m

‖∂α f ‖
Bk−|α|∞,ρα

,

where esssup means essential supremum and the extended Barron norm is

‖ f ‖Bk,m∞ := inf
ρ

‖ f ‖Bk,m∞,ρ
= inf

ρ
max|α|≤m

‖∂α f ‖
Bk−|α|∞,ρα

. (9)
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We thus define

Definition 1 (Extended Barron space, Bk,m
p ) Given any integer k ≥ 0 and 0 ≤ m ≤ k,

and a real value 1 ≤ p ≤ ∞, the set of functions of the form (6) with finite Barron
norm (8) for 1 ≤ p < ∞ or (9) for p = ∞, respectively, is called the extended Barron
space denoted by Bk,m

p .

We shall emphasize that the above notion as the extended Barron norm is not
rigorous; we can only verify it to be a norm for p = 1, as shown below. It is not clear
whether a similar result holds true for ‖ · ‖Bk,m

p
whenever p > 1.

Lemma 1 The set Bk,m
1 equipped with the functional f 
→ ‖ f ‖Bk,m

1
is a normed space.

Proof Clearly, it suffices to check the validity of the triangle inequality

‖ f1 + f2‖Bk,m
1

≤ ‖ f1‖Bk,m
1

+ ‖ f2‖Bk,m
1

.

Thus, we let

fi =
∫

P
a (b · x + c)k+ ρi (da, db, dc) , i = 1, 2.

Consider the related probability distribution ρ̃ given as

ρ̃(A) := 1

2
(ρ1(A) + ρ2(A)) , A ∈ �P .

Then

f1 + f2 =
∫

P
2a (b · x + c)k+ ρ̃(da, db, dc)

=
∫

P
a (b · x + c)k+ ρ3 (da, db, dc) ,

where

ρ3 (A) = ρ̃ ({(a, b, c) : (2a, b, c) ∈ A}) .

We thus obtain

‖ f1 + f2‖Bk
p,ρ3

=
(∫

P
|2a|p (‖b‖1 + |c|)kp ρ̃(da, db, dc)

) 1
p

= 2

(∫

P
|a|p (‖b‖1 + |c|)kp

×
(
1

2
ρ1(da, db, dc) + 1

2
ρ2(da, db, dc)

)) 1
p

.
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In case that p = 1, we have

‖ f1 + f2‖Bk
1,ρ3

= ‖ f1‖Bk
1,ρ1

+ ‖ f2‖Bk
1,ρ2

,

or consequently
‖ f1 + f2‖Bk,0

1
≤ ‖ f1‖Bk,0

1
+ ‖ f2‖Bk,0

1
.

Similarly, we can prove

‖ f1 + f2‖Bk,m
1

≤ ‖ f1‖Bk,m
1

+ ‖ f2‖Bk,m
1

,

and the proof is complete. �


For sake of simplicity, we still call ‖ · ‖Bk,m
p

the extended Barron norm for a

general p. For technical reasons it will be convenient for us to have another rep-
resentation of probabilities ρ in (6), namely restricted to the unit sphere S

d :={
(b, c) ∈ R

d × R : ‖b‖1 + |c| = 1
}
. The following lemma, inspired by [19, Prop. 1],

uses the key property (au)k+ = |a|k (u)k+, u ∈ R, of the ReLUk activation function.

Lemma 2 Suppose that a function f ∈ Bk,0
1 has a representation (6) for given a

probability ρ. Let

ck,ρ( f ) := ‖ f ‖Bk
1,ρ

= Eρ

[
|a| (‖b‖1 + |c|)k

]
.

Then there exists a probability ρ̄ on {−1, 1} × S
d such that

f (x) = ck,ρ( f )
∫

{−1,1}×Sd
ā

(
b̄ · x + c̄

)k
+ ρ̄

(
dā, db̄, dc̄

)
. (10)

Proof The lemma holds true when ck,ρ( f ) = 0. Without loss of generality, we can
thus assume that ck,ρ( f ) > 0, and that neither |a| nor (‖b‖1 + |c|)k are zero. Using
the above feature of ReLUk , we have

f (x) =
∫

P
a (b · x + c)k+ ρ (da, db, dc)

=
∫

P
a (‖b‖1 + |c|)k

(
b

‖b‖1 + |c| · x + c

‖b‖1 + |c|
)k

+
ρ (da, db, dc) .

Define Sd := {
(b, c) ∈ R

d × R : ‖b‖1 + |c| = 1
}
, new parameters

ā := a

|a| ,
(
b̄, c̄

) :=
(

b

‖b‖1 + |c| ,
c

‖b‖1 + |c|
)

,
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and a new probability distribution ρ̄ on {−1, 1} × S
d given as

ρ̄(A) := 1

ck,ρ( f )

∫
{
(a,b,c):(ā,b̄,c̄)∈A

} |a| (‖b‖1 + |c|)k ρ (da, db, dc) ,

for Borel sets A in {−1, 1} × S
d . For this newly defined probability ρ̄ we then have

the representation (10). �


The following consequence is important for our study.

Corollary 3 Let ρ be a representing probability for f as in (6)with a constant ck,ρ( f ).
Then we have for all 1 ≤ p ≤ ∞ that

‖ f ‖Bk,0
p

≤ ck,ρ( f ),

and consequently ‖ f ‖Bk,0
p

≤ ‖ f ‖Bk,0
1

for all 1 ≤ p ≤ ∞.

Proof For a representing probability ρ of f we turn to its representation form (10).
By Lemma 2 we could derive

‖ f ‖Bk,0
p

≤ ck,ρ( f )

(∫

{−1,1}×Sd
|ā|p (‖b̄‖1 + |c̄|)pk ρ̄

(
dā, db̄, dc̄

))1/p

≤ ck,ρ( f ),

which proves the first assertion. Taking the infimum of all representing ρ we see the
second assertion. �


Clearly, by the definition of the norms we immediately observe that for all 0 ≤
m1 < m2 ≤ k and a suitable f there holds ‖ f ‖

B
k,m1
p

≤ ‖ f ‖
B
k,m2
p

, and hence the

space Bk,m2
p ⊂ Bk,m1

p is continuously embedded. Then, having fixed integers m, k

such that m ≤ k, as a consequence of Corollary 3, we see that the spaces Bk,m
p

for 1 ≤ p ≤ ∞ coincide.

Corollary 4 There holds Bk,0
1 ⊂ Bk,m

p for all 0 ≤ m ≤ k given a fixed integer k and a
real number p > 1.

Proof Based on (10), the derivatives of f can be represented by

∂α f (x) = ck,ρ( f )
∫

{−1,1}×Sd

k!
(k − |α|)! āb̄

α
(
b̄ · x + c̄

)k−|α|
+ ρ̄

(
dā, db̄, dc̄

)
,
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where we are allowed to bound

‖ f ‖Bk,m
p

≤
( ∑

|α|≤m

∫

{−1,1}×Sd

( k!
(k − |α|)!ck,ρ( f ) |ā| ∣∣b̄α

∣∣

(‖b̄‖1 + |c|)k−|α| )p
ρ

(
dā, db̄, dc̄

) ) 1
p

≤
⎛

⎝
∑

|α|≤m

(
k!

(k − |α|)!
)p

⎞

⎠

1
p

ck,ρ( f ).

Thus,

‖ f ‖Bk,m
p

≤
⎛

⎝
∑

|α|≤m

(
k!

(k − |α|)!
)p

⎞

⎠

1
p

‖ f ‖Bk,0
1

which ends the proof. �

The following corollary links different extended Barron spaces together.

Corollary 5 There holds ‖ f ‖Bk,0
1

≤ ‖ f ‖Bk,0
p

for all fixed integer k such that Bk,0
p ⊂

Bk,0
1 .

Proof Based on (6),

‖ f ‖Bk,0
1,ρ

=
∫

P
|a| (‖b‖1 + |c|)k ρ (da, db, dc)

≤
(∫

P

(
|a| (‖b‖1 + |c|)k

)p
ρ (da, db, dc)

) 1
p = ‖ f ‖Bk,0

p,ρ
.

Thus, ‖ f ‖Bk,0
1

≤ ‖ f ‖Bk,0
p

holds true by taking infimum from both sides. �

We conclude the above discussion as follows.

Theorem 6 The space Bk
1 := Bk,0

1 is a normed space. For all 0 ≤ m ≤ k and

1 ≤ p ≤ ∞ we have that Bk,m
p = Bk

1 (as sets).

Proof First, by Lemma 1 the space Bk
1 is normed. Furthermore, by combining Corol-

laries 3–5 we can find that Bk,0
1 ⊂ Bk,m

p ⊂ Bk,0
p ⊂ Bk,0

1 , which completes the proof.
�


For k = 1, the extended Barron space is just the Barron space in [19], and it has
been proven in [24] that such a Barron space is equivalent to a convex hulls space
K1(P

d
1) defined in [22]. This equivalence can be extended to the general case of k ≥ 1

since � is a bounded domain. The relation between the Barron spaces (with k = 1)
and other classical spaces is discussed for instance in [7, 27].
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2.2 Approximation properties of extended Barron spaces

As we have highlighted in the introduction, our aim is to simultaneously approximate
an unknown function and its derivatives. For this it is necessary to explore the connec-
tion between the Barron spaces as introduced before, and the standard Sobolev spaces.
The following theorem shows that for any fixed k the Barron space Bk

1 is indeed a
subspace of a related standard Sobolev spaces Hk(�).

Theorem 7 Given any fixed integer k, there holds Bk
1 ⊂ Hk(�). Moreover, there is a

constant C(�, d, k) (depending on �, d and k) such that for all f ∈ Bk
1 there holds

‖ f ‖Hm (�) ≤ C(�, d, k)‖ f ‖Bk
1
, 0 ≤ m ≤ k.

Proof We only need to prove the case when m = k since ‖ f ‖Hm ≤ ‖ f ‖Hk when
m ≤ k. Given any f ∈ Bk

1 , by Lemma 2 there is a probability ρ̄ such that (10) holds.
Then, for all |α| ≤ k, the weak derivative of f can be represented by

∂α f (x) = ck,ρ( f )
∫

{−1,1}×Sd

k!
(k − |α|)! āb̄

α
(
b̄ · x + c̄

)k−|α|
+ ρ̄

(
dā, db̄, dc̄

)
.

We first bound

(∫

�

(∫

{−1,1}×Sd
āb̄α

(
b̄ · x + c̄

)k−|α|
+ dρ̄

)2

dx

)1/2

≤
(∫

�

(∫

{−1,1}×Sd

∣∣∣āb̄α
(
b̄ · x + c̄

)k−|α|
+

∣∣∣ dρ̄

)2

dx

)1/2

≤
∫

{−1,1}×Sd

∣∣b̄α
∣∣
(∫

�

∣∣∣
(
b̄ · x + c̄

)k−|α|
+

∣∣∣
2
dx

)1/2

dρ̄.

Clearly we have that

∣∣b̄ · x + c̄
∣∣ ≤ ‖b̄‖1‖x‖∞ + |c̄|
≤ max {1, ‖x‖∞} (‖b̄‖1 + |c|) = max {1, ‖x‖∞} ,

by construction of b̄ and c̄. Therefore,

(∫

�

∣∣∣
(
b̄ · x + c̄

)k−|α|
+

∣∣∣
2
dx

)1/2

≤
(∫

�

max {1, ‖x‖∞}2(k−|α|) dx

)1/2

≤
(∫

�

max {1, ‖x‖∞}2k dx

)1/2

=: C1(�, d, k).

123



Two-layer networks with theReLUk activation… 329

Also, since each
∣∣b̄i

∣∣ ≤ 1 we find that
∣∣b̄α

∣∣ ≤ 1, which yields that

(∫

�

(∫

{−1,1}×Sd
āb̄α

(
b̄ · x + c̄

)k−|α|
+ dρ̄

)2

dx

)1/2

≤ C1(�, d, k).

This results in

‖∂α f ‖L2(�) ≤ ck,ρ( f )
k!

(k − |α|)!C1(�, d, k),

and finally that there is some constant C(�, d, k) for which

‖ f ‖Hk (�) ≤ C(�, d, k)ck,ρ( f ).

Since this holds true for each representing measure ρ in (6), we can take the infimum
on both sides. Using that ‖ f ‖Bk

1
:= infρ ck,ρ( f ) allows us to complete the proof. �


Remark 2 As the above Theorem 7 shows, any function in the Barron space Bk
1 auto-

matically belongs to the Sobolev space Hk(�). In order to stably approximate a
derivative of an unknown function, we suggest considering an index k ≥ 2 where the
chosen ReLUk activation function can be viewed as the a priori information. Such
smoothness assumption is usually included in the regularization schemes in form of a
Sobolev space norm, for instance [12, 26].

Functions f which allow for a representation (6) are particularly suited for approx-
imation by two-layer networks (2). The following theorem has its origin in [14]. As
stated here it is an extension of [19, Thm. 4] by replacing the ReLU activation function
by the ReLUk activation functions.

Theorem 8 Let f ∈ Bk
1 , and denote ρ be its representing probability which satisfies

ck,ρ( f ) ≤ (1+ε)‖ f ‖Bk
1
for some small ε > 0. For all0 ≤ m ≤ k, andanyn ∈ N, there

exist a probability ρn and a two-layer network fn, with ‖ fn‖Bk
1

≤ ck,ρn ( fn) ≤ ck,ρ( f )
such that

‖ f − fn‖Hm (�) ≤ C(�, d, k,m)√
n

‖ f ‖Bk
1
.

Proof We define probability distributions ρ and ρ̄ in the same way as in Lemma 2,
such that (10) holds with a constant ck,ρ( f ).

Assume that
{(
āi , b̄i , c̄i

)}n
i=1 are n i.i.d. randomvectors according to the probability

distribution ρ̄, with corresponding functions

gi (x) := ck,ρ( f )āi
(
b̄i · x + c̄i

)k
+ , i = 1, . . . , n.

By construction, each gi is an unbiased estimate for f , and this extends to deriva-
tives ∂αgi and ∂α f , by linearity for |α| ≤ k.We emphasize that‖gi‖Bk

1
≤ ck,ρ( f ), i =

1, . . . , n, because |āi | (‖b̄i‖1 + |c̄i |)k ≤ 1.
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Let

fn(x) = 1

n

n∑

i=1

gi (x). (11)

Recall that the Sobolev space Hm(�) constitutes aHilbert space, and the independence
of the functions gi yields their orthogonality (in Hm(�)). Therefore, we can bound
the mean squared error as

Eρ̄‖ f − fn‖2Hm (�) = Eρ̄‖Eρ̄ fn − fn‖2Hm (�)

= Eρ̄‖1
n

n∑

i=1

(
Eρ̄gi − gi

) ‖2Hm (�) (12)

= 1

n
Eρ̄‖ (

Eρ̄g1 − g1
) ‖2Hm (�) (13)

≤ 1

n
Eρ̄‖g1‖2Hm (�)

≤ C2(�, d, k)

n
Eρ̄‖g1‖2Bk

1

≤ C2(�, d, k)

n
c2k,ρ( f ), (14)

such that we obtain

(
Eρ̄‖ f − fn‖2Hm (�)

)1/2 ≤ C(�, d, k)√
n

ck,ρ( f ).

In the above analysis we used that the variance of the sum equals to the sum of
the variances to turn from (12), that the variance is less than or equal to the norm
to turn from (13), and we applied Theorem 7 in (14). Consequently, there is a
realization (ai , bi , ci )ni=1 with ‖ f − fn‖Hm (�) ≤ C(�,d,k,m)√

n
‖ f ‖Bk

1
.

Finally, let ρn denote the uniform distribution on the above sample
{(
āi , b̄i , c̄i

)}
.

Then we see that

fn =
∫

ck,ρ( f )ā
(
b̄x + c̄

)k
+ ρn(dā, db̄, dc̄),

and therefore we find

ck,ρn ( fn) ≤ ck,ρ( f ),

which completes the proof. �

Beyond this, by choosing more but finite neurons in the two-layer network, we can

obtain an improved approximating rate when m < k below. The proof of following
theorem use stratified sampling. This was first used in [14], our approach is inspired
by [28].
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Theorem 9 Let f ∈ Bk
1 and denote ρ by its representing probability which satisfies

ck,ρ( f ) ≤ (1 + ε)‖ f ‖Bk
1
for some small ε > 0. Then, for all n ∈ N, there exist an

integer N ∈ [n, 2n], a probability ρN and a two-layer network fN with ‖ fN‖Bk
1

≤
ck,ρN ( fN ) ≤ ck,ρ( f ), such that

‖ f − fN‖Hm (�) ≤ C(�, d, k,m)‖ f ‖Bk
1
N− 1

2− 1
d (15)

with 0 ≤ m < k.

Proof We define probability distributions ρ and ρ̄ in the same way as in Lemma 2,
such that (10) holds with a constant ck,ρ( f ). Define a finite covering {P1, P2, . . . , Pn}
of {−1, 1} × S

d such that any
(
ā, b̄, c̄

)
,
(
ā′, b̄′, c̄′) ∈ Ps and there holds

ā = ā′, ‖b̄ − b̄′‖1 + ∣∣c̄ − c̄′∣∣ ≤ C2n
− 1

d ,

where C2 is a constant depending on d, for all s ∈ {1, 2, . . . , n}.
Let μs = (ρ̄ (Ps))−1 ρ̄ |Ps , i.e. μs is the normalized probability distribution of ρ̄

restricted on Ps . Then, (10) can be rewritten as

f (x) = ck,ρ( f )
n∑

s=1

ρ̄ (Ps)Eμs

[
ā

(
b̄ · x + c̄

)k
+
]
,

and

∂α f (x) = ck,ρ( f )
n∑

s=1

ρ̄ (Ps)Eμs

[
k!

(k − |α|)! āb̄
α

(
b̄ · x + c̄

)k−|α|
+

]
,

for all |α| ≤ m.
Now we are going to construct an auxiliary random function. Let Ns = �nρ̄ (P2)�

and N = ∑n
s=1 Ns . It is easy to see that n ≤ N ≤ 2n. We choose N indepen-

dent random vectors
{(
ās,t , b̄s,t , c̄s,t

)}
t=1,2,...,Ns ;s=1,2,...,n such that

(
ās,t , b̄s,t , c̄s,t

)

are sampled from μs . Let

fN (x) = ck,ρ( f )
n∑

s=1

ρ̄ (Ps)
1

Ns

Ns∑

t=1

ās,t
(
b̄s,t · x + c̄s,t

)k
+ ,

and

∂α f (x) = ck,ρ( f )
n∑

s=1

ρ̄ (Ps)
1

Ns

Ns∑

t=1

k!
(k − |α|)! ās,t b̄

α
s,t

(
b̄s,t · x + c̄s,t

)k−|α|
+ ,

for all |α| ≤ m.
Let gs,t (x) = k!

(k−|α|)! ās,t b̄
α
s,t

(
b̄s,t · x + c̄s,t

)k−|α|
+ . Then

E∏n
s=1 μ

Ns
s

[∥∥Dα f − Dα fN
∥∥2
L2

]
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= c2k,ρ( f )
n∑

s=1

ρ̄(Ps)2

Ns
Eμs

∥∥Eμs gs,1 − gs,1
∥∥2
L2 .

Notice that there is a constant C3 depending on �, d, m and satisfies

∂bi

(
k!

(k − |α|)!b
α (b · x + c)k−|α|

+
)

< C3,

∂c

(
k!

(k − |α|)!b
α (b · x + c)k−|α|

+
)

< C3,

for all |α| ≤ m, (b, c) ∈ S
d and x ∈ �. Then, noticing 0 ≤ m < k, we derive

Varμs

(
gs,1(x)

)

≤ esssup
(b,c),(b′,c′)∈Sd

∣∣∣∣
k!

(k − |α|)!
(
bα (b · x + c)k−|α|

+ − b′α (
b′ · x + c′)k−|α|

+
)∣∣∣∣

2

≤ C2
3

(‖b − b′‖1 + ∣∣c − c′∣∣)2

≤ C2
2C

2
3n

− 2
d .

Therefore,

E∏n
s=1 μ

Ns
s

[
‖Dα f − Dα fN‖2L2

]
≤ (ck,ρ( f ))2C2

2C
2
3n

− 2
d

n∑

s=1

(ρ̄ (Ps))2

Ns

≤ (ck,ρ( f ))2C2
2C

2
3n

− 2
d

n∑

s=1

(ρ̄ (Ps))

n

= (ck,ρ( f ))2C2
2C

2
3n

− 2
d

n∑

s=1

(ρ̄ (Ps))

n

≤ (ck,ρ( f ))2C2
2C

2
3n

−1− 2
d ,

and

E∏n
s=1 μ

Ns
s

[
‖ f − fN‖2Hm

]
≤ Cm,d(ck,ρ( f ))2C2

2C
2
3n

−1− 2
d

≤ C2(�, d, k,m)‖ f ‖2
Bk
1
N−1− 2

d ,

which completes the proof. �

Remark 3 We emphasize an important aspect of the above approximation rates. When
using rates in Sobolev spaces Hm(�) for m ≥ 1 then the rates are valid for the
approximation of all derivatives up to order m. This is a specific advantage of the
present approach, focusing on the simultaneous approximation of a function along
with several derivatives.
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Remark 4 Under additional assumptions on the domain � the above given rate can be
improved, and we cite the following result from [23, Thm. 2]. For each n there is a
two-layer ReLUk network fn with at most n neurons such that

‖ f − fn‖Hm � n− 1
2− k−m

d .

In particular this assertion is shown to hold for cubes [0, 1]d . However, the constant
in front of the upper bound may depend on ‖ f ‖Bk

1
as well.

3 Regularization under noisy measurements

Our main focus is the derivative approximation, which is ill-posed in the sense that
noisy measurements may provide unsatisfactory reconstructions [10, 12, 26]. Here we
assume that the measurements f δ satisfy the noise assumption (1), which corresponds
to the standard assumption in numerical differentiation. We emphasize that random
noise, in particular Gaussian white noise, cannot be treated as this is done below,
because the noisy data f δ in general do not belong to L2(�), hence a Tikhonov
functional, see (16) below, cannot be used. Under Gaussian white noise we only
have access to a real-valued random variable

〈
f δ, y

〉
, y ∈ L2(�), and possible

reconstructions must take this into account.We refer to a review paper [8] for extended
discussion.

In order to obtain a stable approximation of the unknown function and its deriva-
tives from the noisy measurement f δ , we shall use a specific variant of Tikhonov
regularization. Denote Fn be the set of all two-layer networks with n neurons, i.e.,
each g ∈ Fn has the form g = 1

n

∑n
i=1 ai (bi · x + ci )k+. For such g ∈ Fn we assign

the penalty

R(g) :=
(
1

n

n∑

i=1

|ai | (‖bi‖1 + |ci |)k
)2 (

= c2k,ρn (g)
)

, g ∈ Fn .

The reconstruction is given as the minimizer of the Tikhonov functional

Jλ(g) := ∥∥g − f δ
∥∥2
L2(�)

+ λR(g), g ∈ Fn . (16)

The regularization parameter λ shall be chosen appropriately.

Remark 5 In classical regularization theory, in order to stably approximate the deriva-
tives of an unknown function, one shall impose high smoothness penalty referring to
(4). Nevertheless, as we will show below, the above regularization scheme (16) with
a Bk

1 norm penalty term yields good approximation of the unknown function and its
derivatives simultaneously.

We next prove that for the regularization scheme (16) a minimizer always exists.

Lemma 10 For each λ > 0 there exists a minimizer of (16).
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Proof First we notice that there is some ambiguity in scaling due to the k-
homogeneity of the ReLUk function, such that we may and do assume that for
each i = 1, . . . , n we have ‖bi‖1 + |ci | = 1. After accordingly confining the
search for the minimizer the penalty R(g) reduces to the squared l1-norm for
the coefficients a1, . . . , an . With respect to those coefficients the Tikhonov func-
tional is coercive, and we may further restrict to a bounded l1-ball in R

n , say
with radius R. Thus, the minimization problem reduces to a search on the compact
set

{
(ai , b1, ci ) ∈ (R × S

d)n,
∑n

i=1 |ai | ≤ R, ‖bi‖1 + |ci | = 1
}
. The continuity of

the Tikhonov functional now guarantees the existence of a minimizer. �

The following error bound for the above regularization scheme (16) is important.

Proposition 11 Let fn be chosen as in Theorem 8. Suppose that an approximation
rate rn = rn( f ) at the element f ∈ Bk

1 is known, i.e., there holds ‖ f − fn‖L2(�) ≤ rn.
Then any minimizer

f δ
n,λ(x) = 1

n

n∑

i=1

aδ
i,λ

(
bδ
i,λ · x + ci,λ

)k
+ ∈ Fn

of the Tikhonov functional (16) satisfies

‖ f − f δ
n,λ‖L2(�) ≤ 2δ + rn + √

λ‖ f ‖Bk
1
, (17)

and

‖ f δ
n,λ‖Bk

1
≤ δ + rn√

λ
+ ‖ f ‖Bk

1
. (18)

Proof We shall compare the Tikhonov functional at the chosen minimizer f δ
n,λ with

its value at the auxiliary element fn from Theorem 8. The latter is given in (11) and its
parameters āi , b̄i , c̄i obey |āi | = ck,ρ( f ). Hence, the respective penalty term is given
as c2k,ρ( fn) ≤ c2k,ρ( f ), see Theorem 8. By the minimizing property of f δ

n,λ this yields
the estimate

‖ f δ − f δ
n,λ‖2L2(�)

≤ ‖ f δ − fn‖2L2(�)
+ λc2k,ρ( fn), (19)

hence

‖ f δ − f δ
n,λ‖L2(�) ≤ ‖ f δ − fn‖L2(�) + √

λck,ρ( fn)

≤ δ + ‖ f − fn‖L2(�) + √
λck,ρ( f )

≤ δ + rn + √
λck,ρ( f ).

Therefore we find

‖ f − f δ
n,λ‖L2(�) ≤ ‖ f δ − f δ

n,λ‖L2(�) + ‖ f − f δ‖L2(�) ≤ 2δ + rn + √
λck,ρ( f ).
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Since this holds true for every representing probability ρ the bound (17) is proved.
Similarly, we see that

√
λck,ρn ( f

δ
n,λ) = √

λ
(R( f δ

n,λ)
) 1
2 ≤ δ + rn + √

λck,ρ( f ).

Again, this yields the norm bound (18), and the proof is complete. �

It is clear from the error bounds, just established, that a suitable choice of the

regularization parameter λ must obey

δ + rn ≤ C
√

λ‖ f ‖Bk
1
, (20)

for a constant C which does not depend on δ, and accordingly on rn , as δ → 0. In
practice the norm ‖ f ‖Bk

1
is usually not known to us. By choosing the regularization

parameter λ of the order δ+rn � √
λ one balances the terms from the error bound (17)

up to coefficients that do not depend on the noise level δ.
This gives the main error bound via interpolation.

Theorem 12 There is a constant C1 such that under the assumptions of Proposition 11,
for a regularization parameter choice of λ with the property (20), and for 0 ≤ m ≤ k
that

‖ f − f δ
n,λ‖Hm (�) ≤ C1λ

k−m
2k ‖ f ‖Bk

1
. (21)

Proof The bound (17) gives under the choice of λ that

‖ f − f δ
n,λ‖L2(�) ≤ (2C + 1)

√
λ‖ f ‖Bk

1
.

Moreover, under the regularization parameter choice rule (20) the following norm
estimate holds

‖ f δ
n,λ‖Hk (�) ≤ C̃‖ f δ

n,λ‖Bk
1

≤ C̃(C + 1)‖ f ‖Bk
1
.

Then, interpolating between L2(�) and Hk(�) with 0 ≤ θ := m/k ≤ 1 yields that

‖ f − f δ
n,λ‖Hm (�) ≤ ‖ f − f δ

n,λ‖
k−m
k

L2(�)‖ f − f δ
n,λ‖

m
k
Hk (�)

.

Inserting the previously obtained bounds allows to complete the proof with a
constant C1 depending on C and C̃ . �

Corollary 13 There is a constant C2 such that if the regularization parameter λ

obeys δ + rn � √
λ then

‖ f − f δ
n,λ‖Hm (�) ≤ C2 (δ + rn)

k−m
k ‖ f ‖Bk

1
.
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This gives rise to the following discussion. The best possible rate which can be

seen from the above analysis is δ
k−m
k . In general, for k-times differentiable functions

this rate cannot be improved, as it can be seen, for example, from [20], where the case
d = 1 has been analyzed. If the rate rn dominates the noise level δ, then an accuracy

of order r
k−m
k

n can be ensured. In that case, the better the rate rn is, the smaller n can be
chosen to achieve a desired accuracy. In Theorem 8 a rate rn � n− 1

2 was established.

That bound was improved in Theorem 9 to n− 1
2− 1

d .
We recall, as discussed in Remark 4, if � is a sufficiently smooth manifold, then

using the technique developed for the proof of [23, Theorem2], and taking into account
the smoothness ofReLUk functions (see also (1.23) in [23]), one can improve the rate of
rn up toO(n−1/2−(k−m)/d), for k ≥ 1. However, see again [23], the constants implicit
in the O symbol may be quite large and accurately estimating them would require
careful consideration of the structure of the manifold �. In our current framework,
we further stress an important difference: For the improved rate as mentioned in
Remark 4, the network needs to be trained anew for different values of m. While the
more conservative choice suggested in Corollary 13 provides a uniform parameter
choice for allm satisfying 0 ≤ m ≤ k, it is computationally more affordable to rely on
modest rate bounds such as the ones in Theorem 9. Numerical experiments reported
in the next section demonstrate that the regularization parameters chosen according
to Corollary 13 for the rate bounds from Theorem 9 lead to regularization procedures
performing stably in different dimensions and orders m.

4 Numerical examples

In this section, we present several numerical examples verifying the theoretical results
in previous sections. Particularly we are interested in performance of the Tikhonov
regularization scheme (16) when the regularization parameter is chosen a priori as in
(20) based on the theoretical analysis in Theorems 9 and 12.

4.1 Setup for the simulations

Throughout the whole section we consider as domain the d-dimensional cube � :=
[0, 1]d , and the dimension d will vary as specified below. The test target functions are
randomly generated polynomials

f (x) =
T∑

j=1

φ j Kd(x, 

j ), x ∈ [0, 1]d , (22)

where

– Kd is a polynomial kernel

Kd(x, 
) = (〈x, 
〉Rd + 1
)r

, x ∈ [0, 1]d , (23)
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with degree r , that will vary in the simulations between r = 3 in Examples 1–3
and r = 2, 4 in Example 4.

– The nodes 
 j = (

j
1, 


j
2, . . . , 


j
d) and φ j , j = 1, . . . , T are uniformly distributed

random elements in the cube [−1, 1]d and [−1, 1] respectively.
– The number T of summands is fixed to T = 5, throughout.
– Approximation is done by two-layer networks fn = 1

n

∑n
i=1 ai (bi · x + ci )k+,

with fixed k := 3, throughout.

The variety of polynomial kernels actually generates a reproducing kernel Hilbert
space of polynomials. Here this is convenient, because the amount of randomness,
measured in terms of T , does not depend on the spatial dimension.

From each of these polynomials f we generate noisy measurements f δ by

f δ(x) = f (x) + δξ, x ∈ [0, 1]d ,

where δ is the (known) noise level, and for each fixed x the noise ξ is independently
uniformly distributed in [−1, 1]. Notice, that this choice yields a (weak) random
function f δ with

‖ f δ − f ‖L2(�) ≤ ‖ f δ − f ‖L∞(�) |�| ≤ δ,

since |�| = 1, and hence the noise model (1) holds true.
For given number n of neurons and given noise level δ the regularization parameterλ

is chosen according to

λ = 1

2

(
n−1− 2

d + δ2
)

, (24)

based on Theorems 9, 12 and Corollary 13.
In order to realize the numerical simulation we shall replace the Tikhonov func-

tional (16), which uses the L2(�)-norm, by approximating this at a finite number of
points by Monte-Carlo simulation, which results in

Lλ ( fn;D) := 1

D
D∑

v=1

(
fn(xv) − f δ(xv)

)2

+ λ

[
1

n

n∑

i=1

|ai | (‖bi‖1 + |ci |)3
]2

.

(25)

Above, the points xv, v = 1, . . . ,D belong to a dataset D, whose cardinality is D,
consisting of i.i.d. uniform random points in the unit cube. One might argue that
in the light of the functional (25) in principle we only need discrete measurements
in order to find the minimizer. In our simulations the random points xv work well.
Nevertheless, when requiring a discrete set of data f δ(x1), . . . , f δ(xD) from the very
beginning, we would face the impact of the design of the given nodes. In particular, in
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higher dimensions thiswould cause serious obstacles. In order to avoid these additional
difficulties our assumption (1) is more appropriate.

Minimization of the functional (25) is performed by using the popular gradient
descent algorithm Adam, see [13]. We choose different batch size V and a fixed epoch
number E = 1000 in all the examples.

The obtained results are reported below.

4.2 Numerical examples for r = k

Here we deal with the case when the target function f from (22) belongs to the Barron
space, which is achieved by letting r = k = 3.

Example 1 In this example, we generate a data pool of cardinality D = 10,000 and
the batch size V = 500. We focus on the univariate case with d = 1, and � = [0, 1].

Figure 1 shows the relative H0, H1 and H2 errors of our approximated neural
networks fn for 5 different functions in form of (22) by choosing random seeds 1768,
6526, 2729, 6888, 6440 in Pytorch (NumPy).

In all pictures of Fig. 1, the solid line denotes the relative errors by choosing n = 10.

The vertical solid line shows a critical value of δ0 := n− 1
2− 1

d when n = 10 and the
regularization parameter depends more on n noticing the a priori choice rule (24).
In order to visualize the influence of different n, we use the same data pool and the
dashed line in these pictures denotes relative errors of n = 500. The vertical dashed
line shows the critical δ0 when n = 500.

Fig. 1 Relative errors of five different experiments with d = 1 and D = 10000. From top (left and right)
to bottom: relative errors in H0, H1 and H2 norm

123



Two-layer networks with theReLUk activation… 339

Fig. 2 Relative errors of five different experiments with d = 1 andD = 1000. From top (left and right) to
bottom: relative errors in H0, H1 and H2 norm

As one can observe, when the noise level is large, the proposed algorithm yields
a large relative error which decreases as the noise level decreases. If the noise level
reaches a threshold value, i.e. that of the solid or dashed vertical line, the regularization
parameter then depends more on the parameter n and relative error becomes flat when
the noise vanishes. Though the random seeds provide different target functions the
trend of all relative errors behaves similarly. In particular, when the noise level is
small, we could observe a direct benefit of the large number n of neurons.

Example 2 Here we generate a smaller data pool with cardinality D = 1000, and the
batch size V = 50. The target functions are the same as in the previous example. The
results are displayed in Fig. 2.

Though both the data pool and the batch size have been decreased essentially, we
still observe a similar behavior as in the previous example. In particular, we can clearly
observe the advantage of more neurons with the data pool of the same size under all
norms. We shall emphasize that by decreasing the cardinality of the data pool we
essentially decrease the computational cost.

Example 3 This example considers a high dimension d = 5 and hence the domain
is� = [0, 1]5. In higher dimension the used data pool has cardinalityD = 5000, with
a batch size V = 250. The results are displayed in Fig. 3.We shallmention that because

of the increased dimensionality, the critical value of δ0 := n− 1
2− 1

d also increases as
displayed by the corresponding solid and dashed vertical lines in Fig. 3. We observe
a similar picture as in the previous two examples, and our algorithm performs better
with more neurons in high-dimensional setting.
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Fig. 3 Relative errors of five different experiments with d = 5 andD = 5000. From top (left and right) to
bottom: relative errors in H0, H1 and H2 norm

4.3 Numerical examples for r �= k

In general the smoothness of the target function is usually unknown, and we simulate
this by letting r �= k, still with k = 3. As illustration, we take r = 2 and r = 4 for the
kernel function (23), respectively.

Example 4 In the final example, the data pool is chosenwith the cardinalityD = 1000,
and the batch size is again V = 50. By choosing different random seeds, we collect the
relative errors in Fig. 4 (r = 2), and Fig. 5 (r = 4), respectively. It is not surprising that
our proposed approach still works well for different choices of r . In case that r < k the
advantage of more neurons under high derivatives might be not so straight forward.

We emphasize the following observations.

1. Qualitatively, with measurement data size of the same level, the more neurons in
the two-layer networks, the better approximate accuracy as shown in all examples.
In high dimension, this conclusion is more solid.

2. In Figs. 1, 2, 3, 4 and 5, when the noise level vanishes, the regularization parameter

will converge to 1
2n

−1− 2
d as shown in (24). Then the relative error slopes become

flat since the noise is vanishing and the regularization parameter is fixed. It can
also be observed that by choosing n = 10 and n = 500 for very small noise, a
(nearly) linear convergence can be achieved by comparing the relative errors of all
tests.

3. The proposed approach is universal under different dimensions, which highlights
the advantage of neural networks in high dimensional setting.
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Fig. 4 r = 2: Relative errors of five different experiments with d = 1 and D = 1000. From top (left and
right) to bottom: relative errors in H0, H1 and H2 norm

Fig. 5 r = 4: Relative errors of five different experiments when d = 1, and D = 1000. From top (left and
right) to bottom: relative errors in H0, H1 and H2 norm
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Fig. 6 Comparison of different parameter choice ruleswith high dimensionality and large number of neurons
(d = 5, n = 500). Left: m = 0. Right: m = 1. The solid line is the error slope of the parameter choice λ

(24) and the dashed-point line is that of the parameter choice λnew (26)

4. We also perform simulations with

λnew = 1

2

(
n−1− 2(k−m)

d + δ2
)

(26)

chosen on the basis of the improved approximation rate from Remark 4 for each
m = 0, 1, 2 and k = 3, where some comparison is displayed in Fig. 6. Computa-
tionally we need to train the network for differentm respectively and no significant
improvements can be observed, provided that the number of neurons is large, such
that the noise level dominates.

5 Concluding remarks

In the theoretical partwehighlighted an intrinsic relation between the newly introduced
Barron spaces and the commonly used Sobolev spaces, see e.g. Theorem 7. In spatial
dimension one it is clear from the approximation theoretic bounds that H1(�) �=
B1
2 . Indeed, in one dimension the neural networks constitute splines. The best rate

of approximation by splines with n nodes in H1(�) is known to be n−1, whereas
the present Theorem 9 yields an order n−3/2, and hence B1

1 = B1
2 ⊂ H1(�) is

a proper subspace. It would be interesting to see a similar result in higher spatial
dimensions. However, the approximation by neural networks with ReLUk functions
is substantially different from tensor splines, which would serve as analog for splines
in higher dimension. While tensor splines are supported on orthants, aligned with the
coordinate axes, this does not hold true for neural networks. The support for a single
function x → (b · x + c)k+ is a halfspace in general position. Thus, to approximate
tensor splines by neural networks requires approximating orthants by such halfspaces.
As far as we know this problem has not been considered. In the context of the present
study this seems to be an important subject worth to be considered in the future.
Meanwhile, whether similar convergence results are valid in a stronger norm, for
instance the (extended) Barron norm, is also open for us.
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