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Abstract
We present a new perspective on the invariants of Lie algebras (Casimir functions).
Our approach is based on the connection of a linear mapping F ∈ End(V ), which
has a given eigenvector v, to a Lie algebra. We obtain a solvable Lie algebra by
considering a single pair (F, v). However, by considering a set of such pairs (Fi , vi ),
i = 1, 2, . . . , s, we can obtain any finite-dimensional Lie algebra.We also describe the
Casimir function equations in terms of pairs, since the eigenvalue problem of (F, v)

yields a Lie bracket. We outline the criterion for the quantity of Casimirs and their
formulas for any Lie algebra, which depends on the decomposability of the tensor built
from the pairs (Fi , vi ). In addition, we present the meaning of lifting Lie algebras in
this context and explain how to construct Casimir functions for the lifted Lie algebra
based on Casimir functions for the initial Lie algebra. One of the main results of the
paper is to present the method to identify all Casimirs for a lifted Lie algebra starting
from the initial one.

Keywords Lie algebra · Lie bracket · Poisson bracket · Casimir function ·
Decomposable tensor · Nambu bracket · ax + b-group · Complete and vertical lifts

1 Introduction

In the theory of Lie algebras, various invariants are a useful tool, which allows to char-
acterise such algebras. Casimir operators, or polynomial invariants, are one of the
most important invariants for the study of Lie algebras. The study of quadratic invari-
ants for given Lie algebras was started by the prominent scientists H.B.G. Casimir,
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B.L. van der Waerden in the 1930s, [1, 4]. In the 1950, G. Racah published a paper in
which he gave a construction of polynomial invariants, called Casimir invariants, for
semisimple Lie algebras [20]. Also C. Chevalley investigated invariant polynomials
in the enveloping algebra of semisimple Lie algebras [6]. In the recent past, a number
of researchers have been involved in the study of Casimir invariants for non-simple
Lie algebras, [16, 17, 19].

More generally, we are looking for functions, not necessarily polynomials, which
commute with the general element of the given Lie algebra. Such functions will be
called generalised Casimir invariants. There are two general methods for the determi-
nation of these functions, see [21]. Recall that one of them is the infinitesimal method,
which involves a Poisson structure on the dual space g∗ of the Lie algebra g. In a
fixed basis e1, e2, . . . , eN the Lie algebra is determined by the structure constants cki j .
Vector fields

Xi =
N∑

j,k=1

cki j xk
∂

∂x j
, i = 1, 2, . . . , N

can be associated with them, where xk are coordinates in g∗. The generalised Casimir
invariants c are solutions of a system of partial differential equations

Xi c(x) = 0, i = 1, 2, . . . , N , (1)

where x = (x1, x2, . . . , xN ). This system can be written in matrix form

π(x)∇c(x) = 0, (2)

where π(x) = (πi j (x)) =
(∑N

k=1 c
k
i j xk

)
is an antisymmetric matrix of dimension

N × N and ∇ is a gradient operator ∇ =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xN

)T
. It is easy to see that

π(x) is the matrix of the Poisson tensor π ∈ �

(
2∧
T g∗

)
of the Lie–Poisson bracket

{·, ·} on g∗. The rank r of this matrix naturally determines the number of Casimirs,
since there are N − r of them.

The paper is organized as follows: in Sect. 2 we recall some information about a lift
of multivector field, introduce complete and vertical lifts of such vector field, present
properties of Schouten–Nijenhuis bracket and define Casimir function in terms of
Poisson geometry. In Sect. 3 we present the method for computing Casimir functions
for Lie algebras. The approach presented here is based on relation between a linear
mapping F ∈ End(V ) with a fixed eigenvector v and a Lie algebra. A detailed
discussion of the case of the eigenvalue problem given by pairs (Fi , vi ) are provided
and relevant examples are given. The final result of these considerations is Theorem 3,
which gives the criterion for the number of Casimir functions and their formulas in any
Lie algebra, relating it to the decomposability of the tensor �

∑N
i=1 (Fi x ∧ vi ). Alsowe

introduce the formulas for Casimir functions for a lifted Lie algebra. Considering an
N -dimensional Lie algebra given by one pair (F, v), Theorem 2 says that it contains at
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most N −2 invariant functions. The other results of the paper are given in Theorems 4
and 5. They consist in giving formulas for all Casimirs on 2N -dimensional lifted Lie
algebra.

2 Preliminaries

The main purpose of this section is to recall some facts from the field of differential
geometry and, in particular, Poisson geometry. We briefly review some definitions of
complete and vertical lifts of multivector fields, Poisson structures, Lie algebras, and
their relationship.

Let M be a finite dimensional smooth manifold with a local coordinate system

x = (x1, x2, . . . , xN ). Let k-vector fields on M be denoted by Xk(M) = �(
k∧
T M).

Any multivector field on M in the local coordinate system has a form

X =
N∑

i1,i2,...,ik=1

vi1,i2,...,ik (x)
∂

∂xi1
∧ ∂

∂xi2
∧ . . . ∧ ∂

∂xik
. (3)

Let (x, y) = (x1, x2, . . . , xN , y1, y2, . . . , yN ) denotes the induced local coordinate
system on a tangent bundle T M of M . A lift of a k-vector field ofXk(M) is a k-vector
field belonging to Xk(T M). The complete and vertical lifts of (3) on T M are given
by

XC =
N∑

i1,i2,...,ik=1

⎛

⎝
k∑

l=1

vi1,i2,...,ik (x)
∂

∂ yi1
∧ . . . ∧ ∂

∂ yil−1

∧ ∂

∂xil
∧ ∂

∂ yil+1

∧ . . . ∧ ∂

∂ yik

+
N∑

s=1

∂vi1,i2,...,ik
∂xs

(x)ys
∂

∂ yi1
∧ . . . ∧ ∂

∂ yik

⎞

⎠ ,

XV =
N∑

i1,i2,...,ik=1

vi1,i2,...,ik (x)
∂

∂ yi1
∧ . . . ∧ ∂

∂ yik
.

The space of multivectors X(M) = ⊕∞
k=0 X

k(M), where X0(M) = C∞(M) is
endowed with a graded Lie algebra structure. This structure is given by the Schouten–
Nijenhuis bracket, which is a bilinear map [·, ·] : Xk(M) × Xl(M) → Xk+l−1(M)

defined by the properties

[X ,Y ] = −(−1)(k−1)(l−1)[Y , X ], (4)

(−1)(k−1)(m−1)[X , [Y , Z ]]+(−1)(l−1)(k−1)[Y , [Z , X ]]
+(−1)(l−1)(m−1)[Z , [X ,Y ]] = 0, (5)

[X ,Y ∧ Z ] = [X ,Y ] ∧ Z + (−1)(k−1)lY ∧ [X , Z ], (6)
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[W ,Y ] = £WY , (7)

[ f , g] = 0, (8)

where X ∈ Xk(M),Y ∈ Xl(M), Z ∈ Xm(M), W ∈ X1(M), f , g ∈ X0(M) =
C∞(M) and £W is a Lie derivative by W . In particular [W , f ] = W ( f ).

Let us recall that a Poissonmanifold (M, π) is a pair of amanifoldM and a bivector

field π ∈ �(
2∧
T M) with the following property

[π, π ] = 0. (9)

The bivector π is called a Poisson tensor and it defines the Poisson bracket {·, ·} :
C∞(M) × C∞(M) → C∞(M) on M by the formula

{ f , g} = π(d f , dg).

The Poisson bracket is a bilinear, antisymmetric map, which satisfies the Leibniz
property and the Jacobi identity.

The Poisson tensor π in a local coordinate system on M has a form

π(x) =
N∑

1≤i< j

πi j (x)
∂

∂xi
∧ ∂

∂x j
, (10)

where πi j (x) = −π j i (x) = {xi , x j }. By means of the complete and vertical lifts of
the multivectors, the tensor π can be lifted to the tensors on T M

πC (x, y) =
N∑

1≤i< j

⎛

⎝πi j (x)
∂

∂xi
∧ ∂

∂ y j
+πi j (x)

∂

∂ yi
∧ ∂

∂x j
+

N∑

s=1

∂πi j

∂xs
(x)ys

∂

∂ yi
∧ ∂

∂ y j

⎞

⎠ ,

πV (x, y) =
N∑

1≤i< j

(
πi j (x)

∂

∂ yi
∧ ∂

∂ y j

)
.

Matrices of these tensors are the following

πC (x, y) =
⎛

⎝
0 π(x)

π(x)
N∑

s=1

∂π
∂xs

(x)ys

⎞

⎠ , πV (x, y) =
(
0 0
0 π(x)

)
.

The bivector πC is also called a tangent Poisson tensor, it appears in a natural way in
the theory of Lie algebroids, see [18]. Note that for a decomposable Poisson tensor,
i.e., π = X ∧ Y , where X ,Y ∈ X1(M), the formula holds
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πC = (X ∧ Y )C = XC ∧ Y V + XV ∧ YC .

It is shown in [9], that if only [X ,Y ] = αY , α ∈ R, then also XC ∧Y V gives a Poisson
structure on T M (see for example [13]).

A Lie–Poisson structure on the dual g∗ of a Lie algebra g is a natural linear Poisson
structure defined by

{ f , g}(x) = 〈x, [d f (x), dg(x)]〉

for f , g ∈ C∞(g∗) and x ∈ g∗, where d f (x), dg(x) ∈ (g∗)∗ � g. There is a
one-to-one correspondence between N -dimensional linear Poisson structures and N -
dimensionalLie algebras. Let {e1, e2, . . . , eN }be abasis ofg and x = (x1, x2, . . . , xN )

be a linear system of coordinates on the dual space g∗. The commutator relations of
the Lie algebra [ei , e j ] = ∑N

k=1 c
k
i j ek , where c

k
i j are the structure constants, give the

Lie–Poisson bracket {xi , x j } = ∑N
k=1 c

k
i j xk .

A smooth function c is called a Casimir function, if

{ f , c} = 0 (11)

for any function f ∈ C∞(M). For M = g∗ the condition (11) is equivalent to (1) or
(2).

3 Eigenvalue problem and invariants

Let V be a finite dimensional linear space overR, dim V = N . Consider a pair (F, v),
where F ∈ End(V ) and v is an eigenvector of a map F corresponding to eigenvalue
λ = 0 (Fv = 0). By V ∗ we denote a dual space to V . A pair (F, v) gives a Lie bracket
on a dual space V ∗, as it was shown in [10]

[ψ, φ](F,v) := φ(v)F∗(ψ) − ψ(v)F∗(φ), (12)

where ψ, φ ∈ V ∗ (see also [12]).

Remark 1 The eigenvalue λ of the endomorphism F can be non-zero. However, this
does not affect the Lie bracket (12).

It is easy to verify that Lie algebra (V ∗, [·, ·](F,v)) is solvable and if only operator
F is nilpotent, then Lie algebra is also nilpotent. In this paper, by choosing bases,
we can identify V and V ∗ with R

N with the canonical basis {e1, e2, . . . , eN } (i.e.
V � V ∗ � R

N ), so that the pairing between V and V ∗ is given by the scalar product.
Then formula (12) can be rewritten in the form

[u, w](F,v) = 〈w|v〉FT u − 〈u|v〉FTw for u, w ∈ R
N , (13)

where 〈·|·〉 is the scalar product in RN .
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Remark 2 The Lie bracket (13) for a pair (F, v) is related to the generalised ax + b-
group structure, see [2]. Assuming

u =
(
s1
t1

)
, w =

(
s2
t2

)
,

where s1, s2 ∈ R
N−1, t1, t2 ∈ R and putting

v = eN , F =
(−GT 0

0 0

)
, where G ∈ MatN−1(R),

Lie bracket has a form

[u, w](F,v) = t1Gs2 − t2Gs1,

which can be written as

[(
s1
t1

)
,

(
s2
t2

)]
=

(
t1Gs2 − t2Gs1

0

)
.

Let notice that if we consider endomorphism in the form F̃ =
(−GT 0

pT λN

)
, where

p ∈ R
N−1, λN ∈ R thenweget the sameLie bracket, i.e., [u, w](F,eN ) = [u, w]

(F̃,eN )
.

Remark 3 For a Lie algebra g with the basis {e1, e2, . . . , eN }, given by commutator
relations [ei , e j ] = ∑N

k=1 c
k
i j ek , we can assign N -pairs (F1, eN ), . . . , (FN−i+1, ei ),

. . . , (FN , e1), where

F1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

c11N c21N . . . cN−1
1N 0

c12N c22N . . . cN−1
2N 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

c1N−1 N c2N−1 N . . . cN−1
N−1 N 0

0 0 . . . 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, FN =

⎛

⎜⎜⎜⎝

0 0 . . . 0
0 −c21 2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 0 −cN1 N

⎞

⎟⎟⎟⎠ ,

FN−i+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 i c21 i . . . ci−1
1 i 0 ci+1

1 i . . . cN1 i
c12 i c22 i . . . ci−1

2 i 0 ci+1
2 i . . . cN2 i

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

c1i−1 i c2i−1 i . . . ci−1
i−1 i 0 ci+1

i−1 i . . . cNi−1 i
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 −ci+1

i i+1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 0 0 0 0 −cNi N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The above construction is described in detail in the work [10]. This correspondence
is not canonical (see Remark 2), one can choose linearmappings and their eigenvectors
differently.

Let an eigenvector of a mapping F be chosen as the last vector of the basis, v = eN .
Then the operator F in basis B has the form

F =

⎛

⎜⎜⎜⎝

a11 . . . a1N−1 0
...

. . .
...

...

aN−11 . . . aN−1N−1 0
0 . . . 0 0

⎞

⎟⎟⎟⎠ . (14)

Note that for each pair (F, v) we can associate two vector fields X ,Y ∈ �(TRN ). In
the case of the mapping F given by (14) and the eigenvector v = eN , we have the
connection

XF =
N−1∑

i, j=1

ai j x j
∂

∂xi
, (15)

YeN = ∂

∂xN
, (16)

where x = (x1, x2, . . . , xN )T ∈ R
N , see [3]. The formulas (15) and (16) can be

written as XF = 〈Fx |∇〉,YeN = 〈eN |∇〉. This allows us to connect the vector fields
XF ,Yv with any pair (F, v) by

XF = 〈Fx |∇〉, Yv = 〈v|∇〉. (17)

Theorem 1 If vector fields XF ,Yv ∈ �
(
TRN

)
are given by a formula (17), then the

Schouten–Nijenhuis bracket for a bivector XF ∧ Yv ∈ �

(
2∧
TRN

)
is equal to zero,

namely

[XF ∧ Yv, XF ∧ Yv] = 0. (18)

Proof Applying the properties (6) and (7) of the Schouten–Nijenhuis bracket we have

[XF ∧ Yv, XF ∧ Yv] = 2[XF ,Yv] ∧ XF ∧ Yv.

The vector fields XF ,Yv commute, so we get the result. �

According to the property (18), XF ∧Yv is a Poisson tensor. There is a well known
one-to-one correspondence between the structure of the Lie algebra and the linear
Poisson structure on the dual space of this algebra.
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The structure of Lie algebra (RN , [·, ·](F,eN )) defines in a natural way the Lie–
Poisson structure

{ f , g} = XF ∧ YeN (d f , dg) = 〈Fx |∇ f 〉〈eN |∇g〉 − 〈eN |∇ f 〉〈Fx |∇g〉. (19)

Calculating the structure constants of the Lie algebra (RN , [·, ·](F,eN )), we obtain the
following non-zero commutator relations

[ei , eN ](F,eN ) = ai1e1 + ai2e2 + . . . + aiN−1eN−1, i = 1, 2, . . . , N−1.

There is a connection between the matrix elements of the mapping F and the structure
constants of the Lie algebra, namely ai j = c ji N . From now on the matrix elements of
F will be the structure constants of a given Lie algebra.

It allows to rewrite equations for Casimirs in terms of a pair (F, eN ). In our con-
siderations we assume that F �= 0.

Theorem 2 Let (RN , [·, ·](F,eN )) be aLie algebra, thenCasimirs ci , i = 1, 2, . . . , N−
2, of the algebra fulfill the following conditions

〈Fx |∇ci (x)〉 = 0, (20)

〈eN |∇ci (x)〉 = 0 (21)

for all x ∈ R
N .

Proof The condition (21) can be written as YeN ci = 0, which means that the function
c depends only on the coordinates x1, x2, . . . , xN−1. The first condition (20) can be
described as XFci = 0. From the definition of the Casimir function (11) and from the
form of the bracket (19), it follows that these functions must satisfy the condition

〈Fx |∇ci 〉eN − 〈eN |∇ci 〉Fx = 0.

The vectors eN , Fx ∈ R
N are linearly independent, so we obtain (20) and (21).

From the formulas (20) and (21) it follows that ∇ci are orthogonal to the vectors
eN and Fx . This means that they span an N−2-dimensional subspace, N ≥ 2. In
summary, for a pair (F, v) giving aLie algebra structure,we always have N−2Casimir
functions. �

Example 1 Consider a pair (F, v), where

F =
⎛

⎝
1 0 0
1 1 0
0 0 0

⎞

⎠ , v = e3 =
⎛

⎝
0
0
1

⎞

⎠ ,

which corresponds to solvable Lie algebra s3,2, [21]. The vector fields have a form

XF = x1
∂

∂x1
+(x1+x2)

∂

∂x2
, Ye3 = ∂

∂x3
. (22)
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It follows from Theorem 2, that there is only one Casimir function c. Condition (21)
implies that Casimir depends on the coordinates x1, x2. The equation (20) has the
form

〈Fx |∇c〉 =
〈⎛

⎝
x1

x1+x2
0

⎞

⎠

⎛

⎜⎝

∂c
∂x1
∂c
∂x2
0

⎞

⎟⎠

〉
= x1

∂c

∂x1
+(x1+x2)

∂c

∂x2
= 0

and its solution is obviously given by c(x1, x2) = x1exp(−x2/x1).

We consider now the situation where two pairs (F1, v1), (F2, v2) give a Lie bracket,
i.e., a linear combination of Lie brackets

[·, ·](F1,v1) + λ[·, ·](F2,v2) (23)

is a Lie bracket. It is known that only the Jacobi identity has to be checked. We write
the problem in terms of bivectors. We associate vector fields XF1 ,Yv1 and XF2 ,Yv2

with pairs (F1, v1), (F2, v2) using (15) and (16). The formula (23) can be written with
respect to bivectors as πλ = XF1 ∧ Yv1 + λXF2 ∧ Yv2 . Using the Schouten–Nijenhuis
bracket properties we check when the bivector fulfills the formula (9), i.e. two Poisson
structures given by pairs (F1, v1), (F2, v2) are compatible. First, we calculate the
following commutators of the vector fields.

[XF1,Yv2 ] = −YF1v2 , [XF1, XF2 ] = −X[F1,F2].

Then we have the following condition (the Jacobi identity)

0 = 1

2λ
[πλ, πλ]

= −X[F1,F2] ∧ Yv1 ∧ Yv2 + XF1 ∧ YF2v1 ∧ Yv2 + XF2 ∧ YF1v2 ∧ Yv1 . (24)

Note, that for two pairs (F1, eN ), (F2, eN−1), using formula (19), a Poisson tensor
πλ = XF1 ∧ YeN + λXF2 ∧ YeN−1 defines a Poisson bracket

{ f , g} =〈F1x |∇ f 〉〈eN |∇g〉−〈eN |∇ f 〉〈F1x |∇g〉
+λ〈F2x |∇ f 〉〈eN−1|∇g〉−λ〈eN−1|∇ f 〉〈F2x |∇g〉.

Thus, the Casimir functions are calculated from the equation

〈F1x |∇c〉eN−〈eN |∇c〉F1x + λ〈F2x |∇c〉eN−1−λ〈eN−1|∇c〉F2x = 0. (25)

The number of conditions for Casimir functions depends on the dimension of the space
V2 = span{eN , eN−1, F1x, F2x}. If k = dim V2, and m denotes the number of linear
independent conditions, then there are N−m Casimirs, where 2 ≤ m ≤ k.
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Similarly, if we have s pairs (F1, eN ), (F2, eN−1), . . . , (Fs, eN−s+1), then the Pois-
son bracket given by these pairs is of the form

{ f , g} =
s∑

i=1

λi (〈Fi x |∇ f 〉〈eN−i+1|∇g〉−〈eN−i+1|∇ f 〉〈Fi x |∇g〉) ,

where λi = const , i = 1, 2, . . . , s, and the conditions for Casimir functions are

s∑

i=1

(〈Fi x |∇c〉eN−i+1−〈eN−i+1|∇c〉Fi x) = 0.

If Vs = span{eN , eN−1, . . . , eN−s+1, F1x, F2x, . . . , Fsx}, k = dim Vs and m–the
number of linear independent conditions, then there are N−m Casimirs, where s ≤
m ≤ k.

As shown in [10], the Casimir equation can be written as

∇ci ∧ �

N∑

j=1

(
Fj x ∧ v j

) = 0, (26)

where � :
2∧

R
N →

N−2∧
R

N is the Hodge star operator. However, it may be the
case that the tensor �

∑N
j=1

(
Fj x ∧ v j

)
is a decomposable tensor which splits into

1-vectors. Then ∇ci will be parallel to some vector in the decomposition. Recall that

tensor t ∈
N∧

V is decomposable if there are vectors wi ∈ V , i = 1, 2, . . . , N , such
that t = w1 ∧ . . .∧wN . The number of Casimirs is related to the number of vectors in
the decomposition of this tensor. In the following examples we will demonstrate such
situation.

Example 2 Consider two pairs (F1, v1), (F2, v2), where

F1 =
⎛

⎝
0 1 0

− 1 0 0
0 0 0

⎞

⎠ , v1 = e3 =
⎛

⎝
0
0
1

⎞

⎠ ,

F2 =
⎛

⎝
0 0 −1
0 0 0
0 0 0

⎞

⎠ , v2 = e2 =
⎛

⎝
0
1
0

⎞

⎠ ,
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which correspond to so(3). The space V2 is spanned by vectors e3, e2, F1x , and F2x ,
k = 3. Using the formula (25)

〈⎛

⎝
x2

− x1
0

⎞

⎠
∣∣∣∣

⎛

⎜⎜⎝

∂c
∂x1
∂c
∂x2
∂c
∂x3

⎞

⎟⎟⎠

〉 ⎛

⎝
0
0
1

⎞

⎠ −
〈⎛

⎝
0
0
1

⎞

⎠
∣∣∣∣

⎛

⎜⎜⎝

∂c
∂x1
∂c
∂x2
∂c
∂x3

⎞

⎟⎟⎠

〉 ⎛

⎝
x2

− x1
0

⎞

⎠

+
〈⎛

⎝
−x3
0
0

⎞

⎠
∣∣∣∣

⎛

⎜⎜⎝

∂c
∂x1
∂c
∂x2
∂c
∂x3

⎞

⎟⎟⎠

〉 ⎛

⎝
0
1
0

⎞

⎠ −
〈⎛

⎝
0
1
0

⎞

⎠
∣∣∣∣

⎛

⎜⎜⎝

∂c
∂x1
∂c
∂x2
∂c
∂x3

⎞

⎟⎟⎠

〉 ⎛

⎝
−x3
0
0

⎞

⎠ = 0

conditions for Casimir functions are the following

x2
∂c

∂x1
− x1

∂c

∂x2
= 0,

−x3
∂c

∂x1
+ x1

∂c

∂x3
= 0,

x3
∂c

∂x2
− x2

∂c

∂x3
= 0.

There are 2 linear independent conditions, so m = 2. There is N − m = 1 Casimir,
namely c(x) = x21 + x22 + x23 . The vector (x1, x2, x3)T is known to be proportional
to the vector ∇c, which can be written in terms of the pairs (F1, e3), (F2, e2) by the
formula � (F1x ∧ e3 + F2x ∧ e2) = −x1e1 − x2e2 − x3e3.

Moreover, in case of 3-dimensional Lie algebras, each of them has one Casimir
function (for details, see Table 1).

Example 3 Consider two pairs (F1, v1), (F2, v2), where

F1 =

⎛

⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞

⎟⎟⎠ , v1 = e4 =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

F2 =

⎛

⎜⎜⎝

0 0 0 0
− 1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , v2 = e3 =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ ,
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which correspond to solvable Lie algebra s4,7, see [21]. There are three conditions for
Casimir functions

−x3
∂c

∂x2
+ x2

∂c

∂x3
= 0,

−x1
∂c

∂x3
− x3

∂c

∂x4
= 0,

x1
∂c

∂x2
+ x2

∂c

∂x4
= 0,

among which only two are linear independent. Similarly as in the previous example
N − m = 2, so there are two Casimir functions, namely

c1(x) = x1, c2(x) = −2x1x4 + x22 + x23 .

We can consider the above calculations in another way. Let us compute

� (F1x ∧ e4 + F2x ∧ e3) =� (−x3e2 ∧ e4 + x2e3 ∧ e4 − x1e2 ∧ e3) (27)

=e1 ∧ ( f (x)e1 + x2e2 + x3e3 − x1e4) , (28)

where f is an arbitrary function. This gives us that ∇ci , i = 1, 2, is parallel to e1 or
to f (x)e1 + x2e2 + x3e3 − x1e4 for f (x) = −x4, respectively.

The tensor t ∈
2∧
V , where dimV = 4, written in the form t = ∑

1≤i< j≤4 ti j ei ∧e j
is decomposable in V ∧ V if satisfies quadratic Plücker relation

t12t34 + t14t23 − t13t24 = 0, (29)

see for example [15]. In case of (27) the property (29) fulfills. Let consider Lie algebra
s4,10, which correspond

F1 =

⎛

⎜⎜⎝

2 0 0 0
0 1 0 0
0 1 1 0
0 0 0 0

⎞

⎟⎟⎠ , v1 = e4 =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

F2 =

⎛

⎜⎜⎝

0 0 0 0
− 1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , v2 = e3 =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ .

The tensor

�(F1x ∧ e4 + F2x ∧ e3) = (x2 + x3)e1 ∧ e2 − x2e1 ∧ e3 − x1e1 ∧ e4 + 2x1e2 ∧ e3

does not satisfy (29), so it is indecomposable. It is known that this algebra does not
have any Casimir functions.
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In case of four-dimensional Lie algebras, we have only two possibilities: splitting
into two 1-vectors or no such splitting. Thus in this dimension, Lie algebras have two
Casimir functions or do not have them at all (for details, see Table 2).

We can now formulate themain theorems of the paper, which determine the number
and form of Casimir functions for a given algebra. First, however, we will introduce
the notion of a partially decomposable tensor.

Definition 1 A non-zero tensor t ∈
N∧

V is s-partially decomposable if there exist

wi , i = 1, 2, . . . , s, vectors and N − s-tensor u ∈
N−s∧

V such that

t = w1 ∧ w2 ∧ . . . ∧ ws ∧ u.

Finally, the following theorem holds

Theorem 3 Let pairs (Fj , v j ), j = 1, . . . , N, give any Lie algebra g. Functions ci ,
i = 1, . . . , s, are functionally independent Casimir functions for g if and only if

�
∑N

j=1

(
Fj x ∧ v j

) ∈
N−2∧

R
N is s-partially decomposable, i.e. if there exist wi ∈

R
N , i = 1, 2, . . . , s, u ∈

N−s−2∧
R

N such that

�

N∑

j=1

(
Fj x ∧ v j

) = w1 ∧ w2 ∧ . . . ∧ ws ∧ u. (30)

Furthermore, ∇ci ∼ wi .

Proof As we well know, a non-zero tensor t ∈
N∧

V is decomposable in
N∧

V if
and only if there exist the set of vectors w1, w2, . . . , wN , such that t ∧ w j = 0 for
j = 1, 2, . . . , N , see for example [8]. If c1, c2, . . . , cs , are Casimir functions for the
Lie algebra g, then fulfill formula (26). It means that the tensor �

∑N
j=1

(
Fj x ∧ v j

)

has to be s-partially decomposable

�

N∑

j=1

(
Fj x ∧ v j

) = ∇c1 ∧ ∇c2 ∧ . . . ∧ ∇cs ∧ u,

where u ∈
N−s−2∧

R
N . On the other hand, from the decomposition (30) and (26) we

see that ∇ci ∼ wi and c1, c2, . . . , cs are Casimir functions for g. �

Remark 4 If we have a single pair (F, eN ), then obviously the tensor Fx ∧ eN is

decomposable, so consequently the tensor � (Fx ∧ eN ) ∈
N−2∧

R
N is decomposable.

Therefore, algebra with this pair must always have N − 2 Casimir functions.
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Remark 5 From the physical point of view, the Casimir functions are potentials for the
forcesw1, . . . , ws , which appeared in the decomposition �

∑N
j=1

(
Fj x ∧ v j

)
, and are

determined with precision to the function.

Remark 6 If there are N −2 smooth Casimir functions c1, . . . , cN−2, this corresponds
to the situation that the Poisson bracket arises from the Nambu bracket by fixing N −2
functions as Casimir functions. In this case, the formula has a form

{ f , g}
 = u d f ∧ dg ∧ dc1 ∧ . . . ∧ dcN−2, f , g ∈ C∞(RN ),

where 
 = dx1 ∧ . . . ∧ dxN is the standard volume element on R
N , and u is some

function on R
N . The case, where there are less smooth Casimir functions, namely

c1, . . . , cs , s < N − 2, then the Poisson bracket has a form

{ f , g}
 = d f ∧ dg ∧ dc1 ∧ . . . ∧ dcs ∧ u

(in details studied in [7]). It is connected with s+2-linear Nambu bracket in dimension
N , higher than s + 2, see [5].

4 Eigenvalue problems for operators and complete and vertical lifts
of some vector fields

For the eigenvalue problemgiven by a pair (F, eN ), we define the complete and vertical
lifts from R

N to R2N . Let BC = {e1, e2, . . . , eN , f1, f2, . . . , fN } be a basis in R2N .

Definition 2 Let a pair (F, eN ), where F ∈ End(RN ), eN ∈ ker F , gives an eigen-
value problem.

1. We say that, a pair (FC , fN ), where

FC =
(
F 0
0 F

)
,

is a complete lift of a pair (F, eN ) from R
N to R2N .

2. We say that, a pair (FV , eN ), where

FV =
(
0 0
F 0

)
,

is a vertical lift of a pair (F, eN ) from R
N to R2N .
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Note, that the vector fields XFC ,Y fN ∈ �(TR2N ) associated with a pair (FC , fN )

have the following form

XFC =
N−1∑

i, j=1

ai j x j
∂

∂xi
+

N−1∑

i, j=1

ai j y j
∂

∂ yi
,

Y fN = ∂

∂ yN
,

where (x1, x2, . . . , xN , y1, . . . , yN ) coordinates in R
2N . In the above formulas we

recognise a complete and vertical lifts of the vector fields XF ,YeN given by the for-
mulas (15), (16), i.e. XFC = XC

F ,Y fN = Y V
eN . By analogy, with the pair (FV , eN ) we

associate the vector fields XFV ,YeN ∈ �(TR2N )

XFV =
N−1∑

i, j=1

ai j x j
∂

∂ yi
,

YeN = ∂

∂xN
,

which are the vertical XFV = XV
F and complete YeN = YC

eN lifts of the vector fields
(15) and (16), respectively.

Remark 7 Notice that if we have the Poisson tensor on the manifold M (in our case

it is RN ), i.e., π ∈ �
(∧2 T M

)
, then its complete lift πC gives Poisson structure

on the manifold T M . It is called a fiber–wise linear Poisson structure. This structure
is connected with Lie algebroid structure on T ∗M . Such construction is well known,
(see for example [14, 18]). If the Poisson tensor π is decomposable, i.e., π = X ∧ Y ,
then its complete lift is given by

πC = (X ∧ Y )C = XC ∧ Y V + XV ∧ YC .

In works [9, 12] were shown that each component XC ∧ Y V , XV ∧ YC also gives
Poisson structure linear in fibres, under appropriate assumptions on X ,Y . It means,
that on the space T ∗M we can construct Lie algebroids determined by vector fields X
and Y satisfying a suitable commutation relations. On the Lie algebra level it allows to
construct from N -dimensional Lie algebras, a family of 2N -dimensional Lie algebras.

Other situations related to (FC , eN ), (FV , fN ) pairs can also be considered. This
would correspond to a complete or vertical lift of both components.

From (12) we conclude that pairs
(
R
2N , [·, ·](FC , fN )

)
and

(
R
2N , [·, ·](FV ,eN )

)
are

Lie algebras. Theorem 2 says that each of the considered structures has 2N−2 Casimir
functions. We can describe such functions in terms of the Casimirs of the initial pair
(F, v).
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Theorem 4 If cs , s = 1, 2, . . . , N−2, are Casimirs for the Lie algebra given by a
pair (F, eN ), then x1, x2, . . . , xN−1, yN , cs(x, y) = ∑N

i=1
∂cs
∂xi

(x)yi are all Casimir

functions for the Lie algebra (R2N , [·, ·](FV ,eN )).

Proof The result is obtained by a straightforward calculation of the conditions in
Theorem 2. �

Theorem 5 If cs , s = 1, 2, . . . , N−2, are Casimirs for the Lie algebra given by
a pair (F, eN ), then cs(x), cs(y), xN are Casimir functions for the Lie algebra
(R2N , [·, ·](FC , fN )).

Proof. The Casimirs cs(x), cs(y), xN are the result of a direct calculation of condi-
tions (20) and (21). �

In the last theorem there is one missing Casimir which can be calculated from the
equation

〈Fx |∇x c〉 + 〈Fy|∇yc〉 = 0, (31)

where ∇c = (∇x c,∇yc
)T =

(
∂c
∂x1

, . . . , ∂c
∂xN

, ∂c
∂ y1

, . . . , ∂c
∂ yN

)T
.

Procedure described inDefinition 2 one can use tomore pairs (Fi , ei ). The following
theorem presents a specific situation of this kind.

Theorem 6 If pairs (FC , fN ) and (FV , eN ) are respectively complete and vertical
lifts of a pair (F, eN ) from R

N to R2N , then

[·, ·](FC , fN ),(FV ,eN ) = [·, ·](FC , fN )+λ[·, ·](FV ,eN )

is a Lie bracket on R
2N for any λ ∈ R.

Proof We proceed from the previous considerations that the condition (24) has to be
fulfilled. We have

[FC , FV ] = 0, FCeN = 0, FV fN = 0,

so the formula (24) holds. �

Example 4 Consider a pair (F, v) from Example 1. Using complete and vertical lifts
of the Poisson vector fields (22)

XC
FC =x1

∂

∂x1
+(x1+x2)

∂

∂x2
+y1

∂

∂ y1
+ (y1 + y2)

∂

∂ y2
, Y V

f3 = ∂

∂ y3
,

XV
FV =x1

∂

∂ y1
+(x1+x2)

∂

∂ y2
, YC

e3 = ∂

∂x3
,

we obtain the following splitting
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n5,1 ⊕ 〈 f3〉

s3,2

sa=1
5,6 ⊕ 〈e3〉,

s6,143

⎛

⎜⎜⎜⎜⎜⎜⎝
FV=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, e3

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎝F=
⎛

⎝
1 0 0
1 1 0
0 0 0

⎞

⎠ , e3

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎝
FC=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, f3

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(FV , e3), (FC , f3)

The Poisson tensor

XV
FV ∧ YC

e3 = −x1
∂

∂x3
∧ ∂

∂ y1
− (x1 + x2)

∂

∂x3
∧ ∂

∂ y2

corresponds to nilpotent Lie algebra n5,1 ⊕ 〈 f3〉. We use the classification and the
notation from the book [21]. Casimir functions are x1, x2, y3, c1(x, y) = [(x1+x2)y1−
x1y2]/x1exp(−x2/x1) as Theorem 4 says.

The Poisson tensor

XC
FC ∧ Y V

f3 = x1
∂

∂x1
∧ ∂

∂ y3
+ (x1 + x2)

∂

∂x2
∧ ∂

∂ y3

+y1
∂

∂ y1
∧ ∂

∂ y3
+ (y1 + y2)

∂

∂ y2
∧ ∂

∂ y3
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corresponds to solvable Lie algebra sa=1
5,6 ⊕〈e3〉. From Theorem 5we get the following

Casimir functions x3, c1(x)=x1exp(−x2/x1), c2(y) = y1exp(−y2/y1) and from
equation (31) we get the last invariant c3(x, y) = x1/y1.

The last Poisson tensor in the splitting

(XF ∧ Ye3)
C = x1

∂

∂x1
∧ ∂

∂ y3
+ (x1 + x2)

∂

∂x2
∧ ∂

∂ y3
− x1

∂

∂x3
∧ ∂

∂ y1

−(x1 + x2)
∂

∂x3
∧ ∂

∂ y2
+ y1

∂

∂ y1
∧ ∂

∂ y3
+ (y1 + y2)

∂

∂ y2
∧ ∂

∂ y3

corresponds to solvable Lie algebra s6,143. Casimir functions for complete lift of the
Poisson vector fields, in terms of initial Casimirs ci , i = 1, . . . , s, are given by

ci ,
N∑

s=1

∂ci
∂xs

ys, i = 1, 2, . . . , s, (32)

see [11, 14]. From (32) and Example 1, Casimir functions have the form c1(x, y) =
x1exp(−x2/x1), c2(x, y) = (−y2 + (x1 + x2)y1)/x1exp(−x2/x1).
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