Eigenvalue problem versus Casimir functions for Lie algebras

Alina Dobrogowska ${ }^{1}$ •Marzena Szajewska ${ }^{1}$

Received: 3 October 2023 / Revised: 20 February 2024 / Accepted: 24 February 2024 /
Published online: 25 March 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract

We present a new perspective on the invariants of Lie algebras (Casimir functions). Our approach is based on the connection of a linear mapping $F \in \operatorname{End}(V)$, which has a given eigenvector v, to a Lie algebra. We obtain a solvable Lie algebra by considering a single pair (F, v). However, by considering a set of such pairs (F_{i}, v_{i}), $i=1,2, \ldots, s$, we can obtain any finite-dimensional Lie algebra. We also describe the Casimir function equations in terms of pairs, since the eigenvalue problem of (F, v) yields a Lie bracket. We outline the criterion for the quantity of Casimirs and their formulas for any Lie algebra, which depends on the decomposability of the tensor built from the pairs $\left(F_{i}, v_{i}\right)$. In addition, we present the meaning of lifting Lie algebras in this context and explain how to construct Casimir functions for the lifted Lie algebra based on Casimir functions for the initial Lie algebra. One of the main results of the paper is to present the method to identify all Casimirs for a lifted Lie algebra starting from the initial one.

Keywords Lie algebra • Lie bracket • Poisson bracket • Casimir function •
Decomposable tensor \cdot Nambu bracket $\cdot a x+b$-group • Complete and vertical lifts

1 Introduction

In the theory of Lie algebras, various invariants are a useful tool, which allows to characterise such algebras. Casimir operators, or polynomial invariants, are one of the most important invariants for the study of Lie algebras. The study of quadratic invariants for given Lie algebras was started by the prominent scientists H.B.G. Casimir,

[^0]B.L. van der Waerden in the 1930 s, [1, 4]. In the 1950, G. Racah published a paper in which he gave a construction of polynomial invariants, called Casimir invariants, for semisimple Lie algebras [20]. Also C. Chevalley investigated invariant polynomials in the enveloping algebra of semisimple Lie algebras [6]. In the recent past, a number of researchers have been involved in the study of Casimir invariants for non-simple Lie algebras, $[16,17,19]$.

More generally, we are looking for functions, not necessarily polynomials, which commute with the general element of the given Lie algebra. Such functions will be called generalised Casimir invariants. There are two general methods for the determination of these functions, see [21]. Recall that one of them is the infinitesimal method, which involves a Poisson structure on the dual space \mathfrak{g}^{*} of the Lie algebra \mathfrak{g}. In a fixed basis $e_{1}, e_{2}, \ldots, e_{N}$ the Lie algebra is determined by the structure constants $c_{i j}^{k}$. Vector fields

$$
X_{i}=\sum_{j, k=1}^{N} c_{i j}^{k} x_{k} \frac{\partial}{\partial x_{j}}, \quad i=1,2, \ldots, N
$$

can be associated with them, where x_{k} are coordinates in \mathfrak{g}^{*}. The generalised Casimir invariants c are solutions of a system of partial differential equations

$$
\begin{equation*}
X_{i} c(x)=0, \quad i=1,2, \ldots, N \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$. This system can be written in matrix form

$$
\begin{equation*}
\pi(x) \nabla c(x)=0 \tag{2}
\end{equation*}
$$

where $\pi(x)=\left(\pi_{i j}(x)\right)=\left(\sum_{k=1}^{N} c_{i j}^{k} x_{k}\right)$ is an antisymmetric matrix of dimension $N \times N$ and ∇ is a gradient operator $\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{N}}\right)^{T}$. It is easy to see that $\pi(x)$ is the matrix of the Poisson tensor $\pi \in \Gamma\left(\bigwedge^{2} T \mathfrak{g}^{*}\right)$ of the Lie-Poisson bracket $\{\cdot, \cdot\}$ on \mathfrak{g}^{*}. The rank r of this matrix naturally determines the number of Casimirs, since there are $N-r$ of them.

The paper is organized as follows: in Sect. 2 we recall some information about a lift of multivector field, introduce complete and vertical lifts of such vector field, present properties of Schouten-Nijenhuis bracket and define Casimir function in terms of Poisson geometry. In Sect. 3 we present the method for computing Casimir functions for Lie algebras. The approach presented here is based on relation between a linear mapping $F \in \operatorname{End}(V)$ with a fixed eigenvector v and a Lie algebra. A detailed discussion of the case of the eigenvalue problem given by pairs (F_{i}, v_{i}) are provided and relevant examples are given. The final result of these considerations is Theorem 3, which gives the criterion for the number of Casimir functions and their formulas in any Lie algebra, relating it to the decomposability of the tensor $\star \sum_{i=1}^{N}\left(F_{i} x \wedge v_{i}\right)$. Also we introduce the formulas for Casimir functions for a lifted Lie algebra. Considering an N-dimensional Lie algebra given by one pair (F, v), Theorem 2 says that it contains at
most $N-2$ invariant functions. The other results of the paper are given in Theorems 4 and 5. They consist in giving formulas for all Casimirs on 2 N -dimensional lifted Lie algebra.

2 Preliminaries

The main purpose of this section is to recall some facts from the field of differential geometry and, in particular, Poisson geometry. We briefly review some definitions of complete and vertical lifts of multivector fields, Poisson structures, Lie algebras, and their relationship.

Let M be a finite dimensional smooth manifold with a local coordinate system $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$. Let k-vector fields on M be denoted by $\mathfrak{X}^{k}(M)=\Gamma\left(\bigwedge^{k} T M\right)$. Any multivector field on M in the local coordinate system has a form

$$
\begin{equation*}
X=\sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{N} v_{i_{1}, i_{2}, \ldots, i_{k}}(x) \frac{\partial}{\partial x_{i_{1}}} \wedge \frac{\partial}{\partial x_{i_{2}}} \wedge \ldots \wedge \frac{\partial}{\partial x_{i_{k}}} . \tag{3}
\end{equation*}
$$

Let $(x, y)=\left(x_{1}, x_{2}, \ldots, x_{N}, y_{1}, y_{2}, \ldots, y_{N}\right)$ denotes the induced local coordinate system on a tangent bundle $T M$ of M. A lift of a k-vector field of $\mathfrak{X}^{k}(M)$ is a k-vector field belonging to $\mathfrak{X}^{k}(T M)$. The complete and vertical lifts of (3) on $T M$ are given by

$$
\begin{aligned}
X^{C}= & \sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{N}\left(\sum_{l=1}^{k} v_{i_{1}, i_{2}, \ldots, i_{k}}(x) \frac{\partial}{\partial y_{i_{1}}} \wedge \ldots \wedge \frac{\partial}{\partial y_{i_{l-1}}} \wedge \frac{\partial}{\partial x_{i_{l}}} \wedge \frac{\partial}{\partial y_{i_{l+1}}} \wedge \ldots \wedge \frac{\partial}{\partial y_{i_{k}}}\right. \\
& \left.+\sum_{s=1}^{N} \frac{\partial v_{i_{1}, i_{2}, \ldots, i_{k}}}{\partial x_{s}}(x) y_{s} \frac{\partial}{\partial y_{i_{1}}} \wedge \ldots \wedge \frac{\partial}{\partial y_{i_{k}}}\right), \\
X^{V}= & \sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{N} v_{i_{1}, i_{2}, \ldots, i_{k}}(x) \frac{\partial}{\partial y_{i_{1}}} \wedge \ldots \wedge \frac{\partial}{\partial y_{i_{k}}} .
\end{aligned}
$$

The space of multivectors $\mathfrak{X}(M)=\bigoplus_{k=0}^{\infty} \mathfrak{X}^{k}(M)$, where $\mathfrak{X}^{0}(M)=C^{\infty}(M)$ is endowed with a graded Lie algebra structure. This structure is given by the SchoutenNijenhuis bracket, which is a bilinear map $[\cdot, \cdot]: \mathfrak{X}^{k}(M) \times \mathfrak{X}^{l}(M) \rightarrow \mathfrak{X}^{k+l-1}(M)$ defined by the properties

$$
\begin{align*}
& {[X, Y]=-(-1)^{(k-1)(l-1)}[Y, X]} \tag{4}\\
& (-1)^{(k-1)(m-1)}[X,[Y, Z]]+(-1)^{(l-1)(k-1)}[Y,[Z, X]] \\
& \quad+(-1)^{(l-1)(m-1)}[Z,[X, Y]]=0, \tag{5}\\
& {[X, Y \wedge Z]=[X, Y] \wedge Z+(-1)^{(k-1) l} Y \wedge[X, Z],} \tag{6}
\end{align*}
$$

$$
\begin{gather*}
{[W, Y]=£_{W} Y,} \\
{[f, g]=0,} \tag{8}
\end{gather*}
$$

where $X \in \mathfrak{X}^{k}(M), Y \in \mathfrak{X}^{l}(M), Z \in \mathfrak{X}^{m}(M), W \in \mathfrak{X}^{1}(M), f, g \in \mathfrak{X}^{0}(M)=$ $C^{\infty}(M)$ and $£_{W}$ is a Lie derivative by W. In particular $[W, f]=W(f)$.

Let us recall that a Poisson manifold (M, π) is a pair of a manifold M and a bivector field $\pi \in \Gamma\left(\bigwedge^{2} T M\right)$ with the following property

$$
\begin{equation*}
[\pi, \pi]=0 . \tag{9}
\end{equation*}
$$

The bivector π is called a Poisson tensor and it defines the Poisson bracket $\{\cdot, \cdot\}$: $C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ on M by the formula

$$
\{f, g\}=\pi(d f, d g)
$$

The Poisson bracket is a bilinear, antisymmetric map, which satisfies the Leibniz property and the Jacobi identity.

The Poisson tensor π in a local coordinate system on M has a form

$$
\begin{equation*}
\pi(x)=\sum_{1 \leq i<j}^{N} \pi_{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}} \tag{10}
\end{equation*}
$$

where $\pi_{i j}(x)=-\pi_{j i}(x)=\left\{x_{i}, x_{j}\right\}$. By means of the complete and vertical lifts of the multivectors, the tensor π can be lifted to the tensors on $T M$

$$
\begin{aligned}
& \pi^{C}(x, y)=\sum_{1 \leq i<j}^{N}\left(\pi_{i j}(x) \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial y_{j}}+\pi_{i j}(x) \frac{\partial}{\partial y_{i}} \wedge \frac{\partial}{\partial x_{j}}+\sum_{s=1}^{N} \frac{\partial \pi_{i j}}{\partial x_{s}}(x) y_{s} \frac{\partial}{\partial y_{i}} \wedge \frac{\partial}{\partial y_{j}}\right), \\
& \pi^{V}(x, y)=\sum_{1 \leq i<j}^{N}\left(\pi_{i j}(x) \frac{\partial}{\partial y_{i}} \wedge \frac{\partial}{\partial y_{j}}\right) .
\end{aligned}
$$

Matrices of these tensors are the following

$$
\pi^{C}(x, y)=\left(\begin{array}{c|c}
0 & \pi(x) \\
\hline \pi(x) & \sum_{s=1}^{N} \frac{\partial \pi}{\partial x_{s}}(x) y_{s}
\end{array}\right), \quad \pi^{V}(x, y)=\left(\begin{array}{c|c}
0 & 0 \\
\hline 0 & \pi(x)
\end{array}\right) .
$$

The bivector π^{C} is also called a tangent Poisson tensor, it appears in a natural way in the theory of Lie algebroids, see [18]. Note that for a decomposable Poisson tensor, i.e., $\pi=X \wedge Y$, where $X, Y \in \mathfrak{X}^{1}(M)$, the formula holds

$$
\pi^{C}=(X \wedge Y)^{C}=X^{C} \wedge Y^{V}+X^{V} \wedge Y^{C}
$$

It is shown in [9], that if only $[X, Y]=\alpha Y, \alpha \in \mathbb{R}$, then also $X^{C} \wedge Y^{V}$ gives a Poisson structure on $T M$ (see for example [13]).

A Lie-Poisson structure on the dual \mathfrak{g}^{*} of a Lie algebra \mathfrak{g} is a natural linear Poisson structure defined by

$$
\{f, g\}(x)=\langle x,[d f(x), d g(x)]\rangle
$$

for $f, g \in C^{\infty}\left(\mathfrak{g}^{*}\right)$ and $x \in \mathfrak{g}^{*}$, where $d f(x), d g(x) \in\left(\mathfrak{g}^{*}\right)^{*} \simeq \mathfrak{g}$. There is a one-to-one correspondence between N -dimensional linear Poisson structures and N dimensional Lie algebras. Let $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$ be a basis of \mathfrak{g} and $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ be a linear system of coordinates on the dual space \mathfrak{g}^{*}. The commutator relations of the Lie algebra $\left[e_{i}, e_{j}\right]=\sum_{k=1}^{N} c_{i j}^{k} e_{k}$, where $c_{i j}^{k}$ are the structure constants, give the Lie-Poisson bracket $\left\{x_{i}, x_{j}\right\}=\sum_{k=1}^{N} c_{i j}^{k} x_{k}$.

A smooth function c is called a Casimir function, if

$$
\begin{equation*}
\{f, c\}=0 \tag{11}
\end{equation*}
$$

for any function $f \in C^{\infty}(M)$. For $M=\mathfrak{g}^{*}$ the condition (11) is equivalent to (1) or (2).

3 Eigenvalue problem and invariants

Let V be a finite dimensional linear space over $\mathbb{R}, \operatorname{dim} V=N$. Consider a pair (F, v), where $F \in \operatorname{End}(V)$ and v is an eigenvector of a map F corresponding to eigenvalue $\lambda=0(F v=0)$. By V^{*} we denote a dual space to V. A pair (F, v) gives a Lie bracket on a dual space V^{*}, as it was shown in [10]

$$
\begin{equation*}
[\psi, \phi]_{(F, v)}:=\phi(v) F^{*}(\psi)-\psi(v) F^{*}(\phi), \tag{12}
\end{equation*}
$$

where $\psi, \phi \in V^{*}$ (see also [12]).
Remark 1 The eigenvalue λ of the endomorphism F can be non-zero. However, this does not affect the Lie bracket (12).

It is easy to verify that Lie algebra $\left(V^{*},[\cdot, \cdot]_{(F, v)}\right)$ is solvable and if only operator F is nilpotent, then Lie algebra is also nilpotent. In this paper, by choosing bases, we can identify V and V^{*} with \mathbb{R}^{N} with the canonical basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$ (i.e. $V \simeq V^{*} \simeq \mathbb{R}^{N}$), so that the pairing between V and V^{*} is given by the scalar product. Then formula (12) can be rewritten in the form

$$
\begin{equation*}
[u, w]_{(F, v)}=\langle w \mid v\rangle F^{T} u-\langle u \mid v\rangle F^{T} w \text { for } u, w \in \mathbb{R}^{N}, \tag{13}
\end{equation*}
$$

where $\langle\cdot \mid \cdot\rangle$ is the scalar product in \mathbb{R}^{N}.

Remark 2 The Lie bracket (13) for a pair (F, v) is related to the generalised $a x+b$ group structure, see [2]. Assuming

$$
u=\binom{s_{1}}{t_{1}}, \quad w=\binom{s_{2}}{t_{2}},
$$

where $s_{1}, s_{2} \in \mathbb{R}^{N-1}, t_{1}, t_{2} \in \mathbb{R}$ and putting

$$
v=e_{N}, \quad F=\left(\begin{array}{cc}
-G^{T} & 0 \\
0 & 0
\end{array}\right), \text { where } G \in \operatorname{Mat}_{N-1}(\mathbb{R}),
$$

Lie bracket has a form

$$
[u, w]_{(F, v)}=t_{1} G s_{2}-t_{2} G s_{1},
$$

which can be written as

$$
\left[\binom{s_{1}}{t_{1}},\binom{s_{2}}{t_{2}}\right]=\binom{t_{1} G s_{2}-t_{2} G s_{1}}{0} .
$$

Let notice that if we consider endomorphism in the form $\tilde{F}=\left(\begin{array}{c|c}-G^{T} & 0 \\ \hline p^{T} & \lambda_{N}\end{array}\right)$, where $p \in \mathbb{R}^{N-1}, \lambda_{N} \in \mathbb{R}$ then we get the same Lie bracket, i.e., $[u, w]_{\left(F, e_{N}\right)}=[u, w]_{\left(\tilde{F}, e_{N}\right)}$.

Remark 3 For a Lie algebra \mathfrak{g} with the basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$, given by commutator relations $\left[e_{i}, e_{j}\right]=\sum_{k=1}^{N} c_{i j}^{k} e_{k}$, we can assign N-pairs $\left(F_{1}, e_{N}\right), \ldots,\left(F_{N-i+1}, e_{i}\right)$, $\ldots,\left(F_{N}, e_{1}\right)$, where

$$
\begin{aligned}
& F_{1}=\left(\begin{array}{cccc|c}
c_{1 N}^{1} & c_{1 N}^{2} & \ldots & c_{1 N}^{N-1} & 0 \\
c_{2 N}^{1} & c_{2 N}^{2} & \ldots & c_{2 N}^{N-1} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
c_{N-1 N}^{1} & c_{N-1 N}^{2} & \ldots & c_{N-1 N}^{N-1} & 0 \\
\hline 0 & 0 & \cdots & 0 & 0
\end{array}\right), \quad F_{N}=\left(\begin{array}{c|ccc}
0 & 0 & \ldots & 0 \\
\hline 0 & -c_{12}^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & -c_{1 N}^{N}
\end{array}\right) \text {, } \\
& F_{N-i+1}=\left(\begin{array}{cccc|c|ccc}
c_{1, i}^{1} & c_{1, i}^{2} & \ldots & c_{1 i}^{i-1} & 0 & c_{1 i}^{i+1} & \ldots & c_{1 i}^{N} \\
c_{2 i}^{1} & c_{2 i}^{2} & \ldots & c_{2 i}^{i-1} & 0 & c_{2 i}^{i+1} & \ldots & c_{2 i}^{N} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
c_{i-1 i}^{1} & c_{i-1 i}^{2} & \ldots & c_{i-1 i}^{i-1} & 0 & c_{i-1 i}^{i+1} & \ldots & c_{i-1 i}^{N} \\
\hline 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\hline 0 & 0 & \ldots & 0 & 0 & -c_{i+1}^{i+1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & 0 & -c_{i{ }_{N}}^{N}
\end{array}\right) .
\end{aligned}
$$

The above construction is described in detail in the work [10]. This correspondence is not canonical (see Remark 2), one can choose linear mappings and their eigenvectors differently.

Let an eigenvector of a mapping F be chosen as the last vector of the basis, $v=e_{N}$. Then the operator F in basis B has the form

$$
F=\left(\begin{array}{cccc}
a_{11} & \ldots & a_{1 N-1} & 0 \tag{14}\\
\vdots & \ddots & \vdots & \vdots \\
a_{N-11} & \ldots & a_{N-1 N-1} & 0 \\
0 & \cdots & 0 & 0
\end{array}\right) .
$$

Note that for each pair (F, v) we can associate two vector fields $X, Y \in \Gamma\left(T \mathbb{R}^{N}\right)$. In the case of the mapping F given by (14) and the eigenvector $v=e_{N}$, we have the connection

$$
\begin{align*}
& X_{F}=\sum_{i, j=1}^{N-1} a_{i j} x_{j} \frac{\partial}{\partial x_{i}} \tag{15}\\
& Y_{e_{N}}=\frac{\partial}{\partial x_{N}} \tag{16}
\end{align*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T} \in \mathbb{R}^{N}$, see [3]. The formulas (15) and (16) can be written as $X_{F}=\langle F x \mid \nabla\rangle, Y_{e_{N}}=\left\langle e_{N} \mid \nabla\right\rangle$. This allows us to connect the vector fields X_{F}, Y_{v} with any pair (F, v) by

$$
\begin{equation*}
X_{F}=\langle F x \mid \nabla\rangle, \quad Y_{v}=\langle v \mid \nabla\rangle \tag{17}
\end{equation*}
$$

Theorem 1 If vector fields $X_{F}, Y_{v} \in \Gamma\left(T \mathbb{R}^{N}\right)$ are given by a formula (17), then the Schouten-Nijenhuis bracket for a bivector $X_{F} \wedge Y_{v} \in \Gamma\left(\bigwedge_{\bigwedge}^{\wedge} T \mathbb{R}^{N}\right)$ is equal to zero, namely

$$
\begin{equation*}
\left[X_{F} \wedge Y_{v}, X_{F} \wedge Y_{v}\right]=0 \tag{18}
\end{equation*}
$$

Proof Applying the properties (6) and (7) of the Schouten-Nijenhuis bracket we have

$$
\left[X_{F} \wedge Y_{v}, X_{F} \wedge Y_{v}\right]=2\left[X_{F}, Y_{v}\right] \wedge X_{F} \wedge Y_{v}
$$

The vector fields X_{F}, Y_{v} commute, so we get the result.
According to the property (18), $X_{F} \wedge Y_{v}$ is a Poisson tensor. There is a well known one-to-one correspondence between the structure of the Lie algebra and the linear Poisson structure on the dual space of this algebra.

The structure of Lie algebra $\left(\mathbb{R}^{N},[\cdot, \cdot]_{\left(F, e_{N}\right)}\right)$ defines in a natural way the LiePoisson structure

$$
\begin{equation*}
\{f, g\}=X_{F} \wedge Y_{e_{N}}(d f, d g)=\langle F x \mid \nabla f\rangle\left\langle e_{N} \mid \nabla g\right\rangle-\left\langle e_{N} \mid \nabla f\right\rangle\langle F x \mid \nabla g\rangle \tag{19}
\end{equation*}
$$

Calculating the structure constants of the Lie algebra $\left(\mathbb{R}^{N},[\cdot, \cdot]_{\left(F, e_{N}\right)}\right)$, we obtain the following non-zero commutator relations

$$
\left[e_{i}, e_{N}\right]_{\left(F, e_{N}\right)}=a_{i 1} e_{1}+a_{i 2} e_{2}+\ldots+a_{i N-1} e_{N-1}, \quad i=1,2, \ldots, N-1
$$

There is a connection between the matrix elements of the mapping F and the structure constants of the Lie algebra, namely $a_{i j}=c_{i N}^{j}$. From now on the matrix elements of F will be the structure constants of a given Lie algebra.

It allows to rewrite equations for Casimirs in terms of a pair (F, e_{N}). In our considerations we assume that $F \neq 0$.

Theorem $2 \operatorname{Let}\left(\mathbb{R}^{N},[\cdot, \cdot]_{\left(F, e_{N}\right)}\right)$ be a Lie algebra, then Casimirs $c_{i}, i=1,2, \ldots, N-$ 2 , of the algebra fulfill the following conditions

$$
\begin{align*}
& \left\langle F x \mid \nabla c_{i}(x)\right\rangle=0 \tag{20}\\
& \left\langle e_{N} \mid \nabla c_{i}(x)\right\rangle=0 \tag{21}
\end{align*}
$$

for all $x \in \mathbb{R}^{N}$.
Proof The condition (21) can be written as $Y_{e_{N}} c_{i}=0$, which means that the function c depends only on the coordinates $x_{1}, x_{2}, \ldots, x_{N-1}$. The first condition (20) can be described as $X_{F} c_{i}=0$. From the definition of the Casimir function (11) and from the form of the bracket (19), it follows that these functions must satisfy the condition

$$
\left\langle F x \mid \nabla c_{i}\right\rangle e_{N}-\left\langle e_{N} \mid \nabla c_{i}\right\rangle F x=0
$$

The vectors $e_{N}, F x \in \mathbb{R}^{N}$ are linearly independent, so we obtain (20) and (21).
From the formulas (20) and (21) it follows that ∇c_{i} are orthogonal to the vectors e_{N} and $F x$. This means that they span an $N-2$-dimensional subspace, $N \geq 2$. In summary, for a pair (F, v) giving a Lie algebra structure, we always have $N-2$ Casimir functions.

Example 1 Consider a pair (F, v), where

$$
F=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad v=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
$$

which corresponds to solvable Lie algebra $\mathfrak{s}_{3,2},[21]$. The vector fields have a form

$$
\begin{equation*}
X_{F}=x_{1} \frac{\partial}{\partial x_{1}}+\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{2}}, \quad Y_{e_{3}}=\frac{\partial}{\partial x_{3}} . \tag{22}
\end{equation*}
$$

It follows from Theorem 2, that there is only one Casimir function c. Condition (21) implies that Casimir depends on the coordinates x_{1}, x_{2}. The equation (20) has the form

$$
\langle F x \mid \nabla c\rangle=\left\langle\left(\begin{array}{c}
x_{1} \\
x_{1}+x_{2} \\
0
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
\frac{\partial c}{\partial x_{1}} \\
\frac{\partial c}{\partial x_{2}} \\
0
\end{array}\right)\right.\right\rangle=x_{1} \frac{\partial c}{\partial x_{1}}+\left(x_{1}+x_{2}\right) \frac{\partial c}{\partial x_{2}}=0
$$

and its solution is obviously given by $c\left(x_{1}, x_{2}\right)=x_{1} \exp \left(-x_{2} / x_{1}\right)$.
We consider now the situation where two pairs $\left(F_{1}, v_{1}\right),\left(F_{2}, v_{2}\right)$ give a Lie bracket, i.e., a linear combination of Lie brackets

$$
\begin{equation*}
[\cdot, \cdot]_{\left(F_{1}, v_{1}\right)}+\lambda[\cdot, \cdot]_{\left(F_{2}, v_{2}\right)} \tag{23}
\end{equation*}
$$

is a Lie bracket. It is known that only the Jacobi identity has to be checked. We write the problem in terms of bivectors. We associate vector fields $X_{F_{1}}, Y_{v_{1}}$ and $X_{F_{2}}, Y_{v_{2}}$ with pairs $\left(F_{1}, v_{1}\right),\left(F_{2}, v_{2}\right)$ using (15) and (16). The formula (23) can be written with respect to bivectors as $\pi_{\lambda}=X_{F_{1}} \wedge Y_{v_{1}}+\lambda X_{F_{2}} \wedge Y_{v_{2}}$. Using the Schouten-Nijenhuis bracket properties we check when the bivector fulfills the formula (9), i.e. two Poisson structures given by pairs $\left(F_{1}, v_{1}\right),\left(F_{2}, v_{2}\right)$ are compatible. First, we calculate the following commutators of the vector fields.

$$
\left[X_{F_{1}}, Y_{v_{2}}\right]=-Y_{F_{1} v_{2}}, \quad\left[X_{F_{1}}, X_{F_{2}}\right]=-X_{\left[F_{1}, F_{2}\right]} .
$$

Then we have the following condition (the Jacobi identity)

$$
\begin{align*}
0 & =\frac{1}{2 \lambda}\left[\pi_{\lambda}, \pi_{\lambda}\right] \\
& =-X_{\left[F_{1}, F_{2}\right]} \wedge Y_{v_{1}} \wedge Y_{v_{2}}+X_{F_{1}} \wedge Y_{F_{2} v_{1}} \wedge Y_{v_{2}}+X_{F_{2}} \wedge Y_{F_{1} v_{2}} \wedge Y_{v_{1}} \tag{24}
\end{align*}
$$

Note, that for two pairs (F_{1}, e_{N}), $\left(F_{2}, e_{N-1}\right)$, using formula (19), a Poisson tensor $\pi_{\lambda}=X_{F_{1}} \wedge Y_{e_{N}}+\lambda X_{F_{2}} \wedge Y_{e_{N-1}}$ defines a Poisson bracket

$$
\begin{aligned}
\{f, g\}= & \left\langle F_{1} x \mid \nabla f\right\rangle\left\langle e_{N} \mid \nabla g\right\rangle-\left\langle e_{N} \mid \nabla f\right\rangle\left\langle F_{1} x \mid \nabla g\right\rangle \\
& +\lambda\left\langle F_{2} x \mid \nabla f\right\rangle\left\langle e_{N-1} \mid \nabla g\right\rangle-\lambda\left\langle e_{N-1} \mid \nabla f\right\rangle\left\langle F_{2} x \mid \nabla g\right\rangle .
\end{aligned}
$$

Thus, the Casimir functions are calculated from the equation

$$
\begin{equation*}
\left\langle F_{1} x \mid \nabla c\right\rangle e_{N}-\left\langle e_{N} \mid \nabla c\right\rangle F_{1} x+\lambda\left\langle F_{2} x \mid \nabla c\right\rangle e_{N-1}-\lambda\left\langle e_{N-1} \mid \nabla c\right\rangle F_{2} x=0 \tag{25}
\end{equation*}
$$

The number of conditions for Casimir functions depends on the dimension of the space $V_{2}=\operatorname{span}\left\{e_{N}, e_{N-1}, F_{1} x, F_{2} x\right\}$. If $k=\operatorname{dim} V_{2}$, and m denotes the number of linear independent conditions, then there are $N-m$ Casimirs, where $2 \leq m \leq k$.

Similarly, if we have s pairs $\left(F_{1}, e_{N}\right),\left(F_{2}, e_{N-1}\right), \ldots,\left(F_{s}, e_{N-s+1}\right)$, then the Poisson bracket given by these pairs is of the form

$$
\{f, g\}=\sum_{i=1}^{s} \lambda_{i}\left(\left\langle F_{i} x \mid \nabla f\right\rangle\left\langle e_{N-i+1} \mid \nabla g\right\rangle-\left\langle e_{N-i+1} \mid \nabla f\right\rangle\left\langle F_{i} x \mid \nabla g\right\rangle\right),
$$

where $\lambda_{i}=$ const $, i=1,2, \ldots, s$, and the conditions for Casimir functions are

$$
\sum_{i=1}^{s}\left(\left\langle F_{i} x \mid \nabla c\right\rangle e_{N-i+1}-\left\langle e_{N-i+1} \mid \nabla c\right\rangle F_{i} x\right)=0
$$

If $V_{s}=\operatorname{span}\left\{e_{N}, e_{N-1}, \ldots, e_{N-s+1}, F_{1} x, F_{2} x, \ldots, F_{s} x\right\}, k=\operatorname{dim} V_{s}$ and m-the number of linear independent conditions, then there are $N-m$ Casimirs, where $s \leq$ $m \leq k$.

As shown in [10], the Casimir equation can be written as

$$
\begin{equation*}
\nabla c_{i} \wedge \star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)=0 \tag{26}
\end{equation*}
$$

where $\star: \bigwedge^{2} \mathbb{R}^{N} \rightarrow \bigwedge^{N-2} \mathbb{R}^{N}$ is the Hodge star operator. However, it may be the case that the tensor $\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$ is a decomposable tensor which splits into 1 -vectors. Then ∇c_{i} will be parallel to some vector in the decomposition. Recall that tensor $t \in \bigwedge^{N} V$ is decomposable if there are vectors $w_{i} \in V, i=1,2, \ldots, N$, such that $t=w_{1} \wedge \ldots \wedge w_{N}$. The number of Casimirs is related to the number of vectors in the decomposition of this tensor. In the following examples we will demonstrate such situation.

Example 2 Consider two pairs $\left(F_{1}, v_{1}\right),\left(F_{2}, v_{2}\right)$, where

$$
\begin{gathered}
F_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad v_{1}=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \\
F_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad v_{2}=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),
\end{gathered}
$$

which correspond to $\mathfrak{s o}(3)$. The space V_{2} is spanned by vectors $e_{3}, e_{2}, F_{1} x$, and $F_{2} x$, $k=3$. Using the formula (25)

$$
\begin{aligned}
& \left\langle\left(\begin{array}{c}
x_{2} \\
-x_{1} \\
0
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
\frac{\partial c}{\partial x_{1}} \\
\frac{\partial c}{\partial x_{2}} \\
\frac{\partial c}{\partial x_{3}}
\end{array}\right)\right.\right\rangle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
\frac{\partial c}{\partial x_{1}} \\
\frac{\partial c}{\partial x_{2}} \\
\frac{\partial c}{\partial x_{3}}
\end{array}\right)\right.\right\rangle\left(\begin{array}{c}
x_{2} \\
-x_{1} \\
0
\end{array}\right) \\
& +\left\langle\left(\begin{array}{c}
-x_{3} \\
0 \\
0
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
\frac{\partial c}{\partial x_{1}} \\
\frac{\partial c}{\partial x_{2}} \\
\frac{\partial c}{\partial x_{3}}
\end{array}\right)\right.\right\rangle\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\left\langle\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
\frac{\partial c}{\partial x_{1}} \\
\frac{\partial c}{\partial x_{2}} \\
\frac{\partial c}{\partial x_{3}}
\end{array}\right)\right.\right\rangle\left(\begin{array}{c}
-x_{3} \\
0 \\
0
\end{array}\right)=0
\end{aligned}
$$

conditions for Casimir functions are the following

$$
\begin{aligned}
x_{2} \frac{\partial c}{\partial x_{1}}-x_{1} \frac{\partial c}{\partial x_{2}} & =0 \\
-x_{3} \frac{\partial c}{\partial x_{1}}+x_{1} \frac{\partial c}{\partial x_{3}} & =0 \\
x_{3} \frac{\partial c}{\partial x_{2}}-x_{2} \frac{\partial c}{\partial x_{3}} & =0
\end{aligned}
$$

There are 2 linear independent conditions, so $m=2$. There is $N-m=1$ Casimir, namely $c(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. The vector $\left(x_{1}, x_{2}, x_{3}\right)^{T}$ is known to be proportional to the vector ∇c, which can be written in terms of the pairs $\left(F_{1}, e_{3}\right),\left(F_{2}, e_{2}\right)$ by the formula $\star\left(F_{1} x \wedge e_{3}+F_{2} x \wedge e_{2}\right)=-x_{1} e_{1}-x_{2} e_{2}-x_{3} e_{3}$.

Moreover, in case of 3-dimensional Lie algebras, each of them has one Casimir function (for details, see Table 1).

Example 3 Consider two pairs $\left(F_{1}, v_{1}\right),\left(F_{2}, v_{2}\right)$, where

$$
\begin{aligned}
& F_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad v_{1}=e_{4}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right), \\
& F_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad v_{2}=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),
\end{aligned}
$$

which correspond to solvable Lie algebra $\mathfrak{s}_{4,7}$, see [21]. There are three conditions for Casimir functions

$$
\begin{aligned}
-x_{3} \frac{\partial c}{\partial x_{2}}+x_{2} \frac{\partial c}{\partial x_{3}} & =0, \\
-x_{1} \frac{\partial c}{\partial x_{3}}-x_{3} \frac{\partial c}{\partial x_{4}} & =0, \\
x_{1} \frac{\partial c}{\partial x_{2}}+x_{2} \frac{\partial c}{\partial x_{4}} & =0,
\end{aligned}
$$

among which only two are linear independent. Similarly as in the previous example $N-m=2$, so there are two Casimir functions, namely

$$
c_{1}(x)=x_{1}, \quad c_{2}(x)=-2 x_{1} x_{4}+x_{2}^{2}+x_{3}^{2} .
$$

We can consider the above calculations in another way. Let us compute

$$
\begin{align*}
\star\left(F_{1} x \wedge e_{4}+F_{2} x \wedge e_{3}\right) & =\star\left(-x_{3} e_{2} \wedge e_{4}+x_{2} e_{3} \wedge e_{4}-x_{1} e_{2} \wedge e_{3}\right) \tag{27}\\
& =e_{1} \wedge\left(f(x) e_{1}+x_{2} e_{2}+x_{3} e_{3}-x_{1} e_{4}\right), \tag{28}
\end{align*}
$$

where f is an arbitrary function. This gives us that $\nabla c_{i}, i=1,2$, is parallel to e_{1} or to $f(x) e_{1}+x_{2} e_{2}+x_{3} e_{3}-x_{1} e_{4}$ for $f(x)=-x_{4}$, respectively.

The tensor $t \in \bigwedge^{2} V$, where $\operatorname{dim} V=4$, written in the form $t=\sum_{1 \leq i<j \leq 4} t_{i j} e_{i} \wedge e_{j}$ is decomposable in $V \wedge V$ if satisfies quadratic Plücker relation

$$
\begin{equation*}
t_{12} t_{34}+t_{14} t_{23}-t_{13} t_{24}=0 \tag{29}
\end{equation*}
$$

see for example [15]. In case of (27) the property (29) fulfills. Let consider Lie algebra $\mathfrak{s}_{4,10}$, which correspond

$$
\begin{gathered}
F_{1}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad v_{1}=e_{4}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right), \\
F_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad v_{2}=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) .
\end{gathered}
$$

The tensor
$\star\left(F_{1} x \wedge e_{4}+F_{2} x \wedge e_{3}\right)=\left(x_{2}+x_{3}\right) e_{1} \wedge e_{2}-x_{2} e_{1} \wedge e_{3}-x_{1} e_{1} \wedge e_{4}+2 x_{1} e_{2} \wedge e_{3}$
does not satisfy (29), so it is indecomposable. It is known that this algebra does not have any Casimir functions.

In case of four-dimensional Lie algebras, we have only two possibilities: splitting into two 1 -vectors or no such splitting. Thus in this dimension, Lie algebras have two Casimir functions or do not have them at all (for details, see Table 2).

We can now formulate the main theorems of the paper, which determine the number and form of Casimir functions for a given algebra. First, however, we will introduce the notion of a partially decomposable tensor.

Definition 1 A non-zero tensor $t \in \bigwedge_{\Lambda}^{N} V$ is s-partially decomposable if there exist $w_{i}, i=1,2, \ldots, s$, vectors and $N-s$-tensor $u \in \bigwedge^{N-s} V$ such that

$$
t=w_{1} \wedge w_{2} \wedge \ldots \wedge w_{s} \wedge u
$$

Finally, the following theorem holds
Theorem 3 Let pairs $\left(F_{j}, v_{j}\right), j=1, \ldots, N$, give any Lie algebra \mathfrak{g}. Functions c_{i}, $i=1, \ldots, s$, are functionally independent Casimir functions for \mathfrak{g} if and only if $\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right) \in \bigwedge^{N-2} \mathbb{R}^{N}$ is s-partially decomposable, i.e. if there exist $w_{i} \in$ $\mathbb{R}^{N}, i=1,2, \ldots, s, u \in \bigwedge^{N-s-2} \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)=w_{1} \wedge w_{2} \wedge \ldots \wedge w_{s} \wedge u \tag{30}
\end{equation*}
$$

Furthermore, $\nabla c_{i} \sim w_{i}$.
Proof As we well know, a non-zero tensor $t \in \bigwedge^{N} V$ is decomposable in $\bigwedge^{N} V$ if and only if there exist the set of vectors $w_{1}, w_{2}, \ldots, w_{N}$, such that $t \wedge w_{j}=0$ for $j=1,2, \ldots, N$, see for example [8]. If $c_{1}, c_{2}, \ldots, c_{s}$, are Casimir functions for the Lie algebra \mathfrak{g}, then fulfill formula (26). It means that the tensor $\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$ has to be s-partially decomposable

$$
\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)=\nabla c_{1} \wedge \nabla c_{2} \wedge \ldots \wedge \nabla c_{s} \wedge u
$$

where $u \in \bigwedge^{N-s-2} \mathbb{R}^{N}$. On the other hand, from the decomposition (30) and (26) we see that $\nabla c_{i} \sim w_{i}$ and $c_{1}, c_{2}, \ldots, c_{s}$ are Casimir functions for \mathfrak{g}.

Remark 4 If we have a single pair $\left(F, e_{N}\right)$, then obviously the tensor $F x \wedge e_{N}$ is
decomposable, so consequently the tensor $\star\left(F x \wedge e_{N}\right) \in \bigwedge^{N-2} \mathbb{R}^{N}$ is decomposable. Therefore, algebra with this pair must always have $N-2$ Casimir functions.
Table 1 Linear mappings, their eigenvectors, tensors and invariants (Casimirs) for three dimensional Lie algebras

Algebra	F_{j}	v_{j}	$\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$	$\nabla c_{i} \sim w_{i}$	Casimirs
$\mathfrak{n}_{3,1}$	$F_{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$x_{1} e_{1}$	$\left(\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right)$	$c_{1}=x_{1}$
$\mathfrak{s}_{3,1}$	$F_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$a x_{2} e_{1}-x_{1} e_{2}$	$\left(\begin{array}{c}a x_{2} \\ -x_{1} \\ 0\end{array}\right)$	$c_{1}=\frac{x_{1}^{a}}{x_{2}}$
$\mathfrak{s}_{3,2}$	$F_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$\left(x_{1}+x_{2}\right) e_{1}-x_{1} e_{2}$	$\left(\begin{array}{c}x_{1}+x_{2} \\ -x_{1} \\ 0\end{array}\right)$	$c_{1}=x_{1} e^{-\frac{x_{2}}{x_{1}}}$
$\mathfrak{s}_{3,3}$	$F_{1}=\left(\begin{array}{ccc}a & -1 & 0 \\ 1 & a & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$\left(x_{1}+a x_{2}\right) e_{1}+\left(x_{2}-a x_{1}\right) e_{2}$	$\left(\begin{array}{c}x_{1}+a x_{2} \\ x_{2}-a x_{1} \\ 0\end{array}\right)$	$c_{1}=\left(x_{1}^{2}+x_{2}^{2}\right) e^{2 a \arctan \frac{x_{1}}{x_{2}}}$
$\mathfrak{s l}_{2, \mathcal{R}}$	$F_{1}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$2 x_{3} e_{1}+x_{2} e_{2}+2 x_{1} e_{3}$	$\left(\begin{array}{c}2 x_{3} \\ x_{2} \\ 2 x_{1}\end{array}\right)$	$c_{1}=4 x_{1} x_{3}+x_{2}^{2}$
	$F_{2}=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$			
$\mathfrak{s o}_{3, \mathcal{R}}$	$F_{1}=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$	$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$	$c_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
	$F_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$			

Table 2 Linear mappings, their eigenvectors, tensors and invariants (Casimirs) for four dimensional Lie algebras

Algebra	F_{j}	v_{j}	$\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$	$\nabla c_{i} \sim w_{i}$	Casimirs
$\mathfrak{n}_{4,1}$	$F_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$e_{1} \wedge\left(f(x) e_{1}+x_{2} e_{2}-x_{1} e_{3}\right)$	$\left(\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \end{array}\right),\left(\begin{array}{c} -x_{3} \\ x_{2} \\ -x_{1} \\ 0 \end{array}\right)$ for $f(x)=-x_{3}$	$c_{1}=x_{1}$ $c_{2}=2 x_{1} x_{3}-x_{2}^{2}$
$\mathfrak{s}^{4,1}$	$F_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$e_{1} \wedge\left(f(x) e_{1}+x_{3} e_{2}-x_{1} e_{3}\right)$	$\left(\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \end{array}\right),\left(\begin{array}{c} -\frac{x_{3} x_{2}}{x_{1}} \\ x_{3} \\ -x_{1} \\ 0 \end{array}\right)$ for $f(x)=-\frac{x_{3} x_{2}}{x_{1}}$	$c_{1}=x_{1}$ $c_{2}=x_{3} e^{-\frac{x_{2}}{x_{1}}}$
$\mathfrak{5 4 , 2}$	$F_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{gathered} \left(\left(-\frac{x_{2}+x_{3}}{x_{1}}+\left(x_{1}+x_{2}\right) f(x)\right) e_{1}\right. \\ \left.-x_{1} f(x) e_{2}+e_{3}\right) \wedge\left(\left(x_{1}+x_{2}\right) e_{1}-x_{1} e_{2}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{c} \frac{x_{2}^{2}-x_{1} x_{3}}{x_{1}^{2}} \\ -\frac{x_{2}}{x_{1}} \\ 1 \\ 0 \end{array}\right),\left(\begin{array}{c} x_{1}+x_{2} \\ -x_{1} \\ 0 \\ 0 \end{array}\right) \\ & \text { for } f(x)=\frac{x_{2}}{x_{1}^{2}} \end{aligned}$	$\begin{aligned} c_{1} & =\frac{2 x_{1} x_{3}-x_{2}^{2}}{x_{1}^{2}} \\ c_{2} & =x_{1} e^{-\frac{x_{2}}{x_{1}}} \end{aligned}$
$\mathfrak{s}_{4,3}$	$F_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{aligned} & \left(a x_{2} e_{1}-x_{1} e_{2}\right) \wedge\left(a x_{2} f(x) e_{1}\right. \\ & \left.+\left(\frac{b x_{3}}{a x_{2}}-x_{1} f(x)\right) e_{2}-e_{3}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{c} a x_{1} \\ -x_{1} \\ 0 \\ 0 \end{array}\right),\left(\begin{array}{c} \frac{b x_{3}}{x_{1} x_{2}} \\ 0 \\ -1 \\ 0 \end{array}\right) \\ & \text { for } f(x)=\frac{b x_{3}}{a x_{1} x_{2}} \end{aligned}$	$c_{1}=\frac{x_{1}^{a}}{x_{2}}$ $c_{2}=\frac{x_{1}^{b}}{x_{3}}$

Table 2 continued

Algebra	F_{j}	v_{j}	$\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$	$\nabla c_{i} \sim w_{i}$	Casimirs
$\mathfrak{s}^{4,4}$	$F_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{gathered} \left(\left(x_{1}+x_{2}\right) f(x) e_{1}\right. \\ \left.+\left(-x_{1} f(x)+\frac{a x_{3}}{x_{1}+x_{2}}\right) e_{2}+e_{3}\right) \\ \wedge\left(\left(x_{1}+x_{2}\right) e_{1}-x_{1} e_{2}\right) \end{gathered}$	$\begin{aligned} & \left(\begin{array}{c} -\frac{a x_{3}}{x_{1}} \\ 0 \\ 1 \\ 0 \end{array}\right),\left(\begin{array}{c} x_{1}+x_{2} \\ -x_{1} \\ 0 \\ 0 \end{array}\right) \\ & \text { for } f(x)=-\frac{a x_{3}}{x_{1}\left(x_{1}+x_{2}\right)} \end{aligned}$	$\begin{gathered} c_{1}=\frac{x_{1}^{a}}{x_{3}} \\ c_{2}=x_{1} e^{-\frac{x_{2}}{x_{1}}} \end{gathered}$
$\mathfrak{s}^{4,5}$	$F_{1}=\left(\begin{array}{cccc}a & 0 & 0 & 0 \\ 0 & b & -1 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{gathered} \frac{1}{1-f(x) g(x)}\left[\left(x_{3}+b x_{2}-f(x) \frac{x_{2}+b x_{3}}{a x_{1}}\right) e_{1}\right. \\ \left.+a x_{1} e_{2}+f(x) e_{3}\right) \\ \wedge\left(\left(-\frac{x_{2}+b x_{3}}{a x_{1}}+g(x)\left(x_{3}-b x_{2}\right)\right) e_{1}\right. \\ \left.\left.+a x_{1} g(x) e_{2}+e_{3}\right)\right] \end{gathered}$	$\begin{aligned} & \left(\begin{array}{c} -b \frac{x_{2}^{2}+x_{3}^{2}}{x_{2}} \\ a x_{1} \\ a \frac{x_{1} x_{3}}{x_{2}} \\ 0 \end{array}\right),\left(\begin{array}{c} -\frac{x_{2}^{2}+x_{3}^{2}}{a x_{1} x_{2}} \\ -\frac{x_{3}}{x_{2}} \\ 1 \\ 0 \end{array}\right) \\ & \text { for } \begin{array}{l} f(x)=a \frac{x_{1} x_{3}}{x_{2}} \\ g(x)=-\frac{x_{3}}{a x_{1} x_{2}} \end{array} \end{aligned}$	$\begin{gathered} c_{1}=\frac{\left(x_{2}^{2}+x_{3}^{2}\right)^{a}}{x_{1}^{2 b}} \\ c_{2}=x_{1} e^{a \arctan \frac{x_{2}}{x_{3}}} \end{gathered}$
$\mathfrak{s}_{4,6}$	$F_{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$e_{1} \wedge\left(f(x) e_{1}-x_{3} e_{2}-x_{2} e_{3}-x_{1} e_{4}\right)$	$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}-x_{4} \\ -x_{3} \\ -x_{2} \\ -x_{1}\end{array}\right)$	$c_{1}=x_{1}$ $c_{2}=x_{2} x_{3}+x_{1} x_{4}$
	$F_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$		for $f(x)=-x_{4}$	
${ }^{5} 4,7$	$F_{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$e_{1} \wedge\left(f(x) e_{1}-x_{2} e_{2}+x_{3} e_{3}-x_{1} e_{4}\right)$	$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-x_{4} \\ x_{2} \\ x_{3} \\ -x_{1}\end{array}\right)$	$\begin{gathered} c_{1}=x_{1} \\ c_{2}=x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{4} \end{gathered}$
	$F_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$		for $f(x)=x_{4}$	

Table 2 continued

Algebra	F_{j}	v_{j}	$\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$	$\nabla c_{i} \sim w_{i}$	Casimirs
$\mathfrak{5 4 , 8}$	$F_{1}=\left(\begin{array}{ccccc}1+a & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{gathered} a x_{3} e_{1} \wedge e_{2}-x_{2} e_{1} \wedge e_{3} \\ -x_{1} e_{1} \wedge e_{4}+(1+a) x_{1} e_{2} \wedge e_{3} \end{gathered}$	-	None
	$F_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$			
${ }^{5} 4,9$	$F_{1}=\left(\begin{array}{cccc}2 a & 0 & 0 & 0 \\ 0 & a & -1 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{gathered} \left(x_{2}+a x_{3}\right) e_{1} \wedge e_{2}-\left(a x_{2}-x_{3}\right) e_{1} \wedge e_{3} \\ -x_{1} e_{1} \wedge e_{4}+2 a x_{1} e_{2} \wedge e_{3} \end{gathered}$	-	None
${ }^{5} 4,10$	$F_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$	$\begin{gathered} \left(x_{2}+x_{3}\right) e_{1} \wedge e_{2}-x_{2} e_{1} \wedge e_{3} \\ -x_{1} e_{1} \wedge e_{4}+2 x_{1} e_{2} \wedge e_{3} \end{gathered}$	-	None
	$F_{1}=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$			
	$F_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$			

Table 2 continued

Algebra	F_{j}	v_{j}	$\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$	$\nabla c_{i} \sim w_{i}$	Casimirs
$\mathfrak{5} 4,11$	$F_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{gathered} -x_{2} e_{1} \wedge e_{3}-x_{1} e_{1} \wedge e_{4} \\ +x_{1} e_{2} \wedge e_{3} \end{gathered}$	-	None
	$F_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$			
${ }^{5} 4,12$	$F_{1}=\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$	$\begin{aligned} & -x_{1} e_{1} \wedge e_{3}+x_{2} e_{1} \wedge e_{4} \\ & -x_{2} e_{2} \wedge e_{3}-x_{1} e_{2} \wedge e_{4} \end{aligned}$	-	None
	$F_{2}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	$v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$			

Remark 5 From the physical point of view, the Casimir functions are potentials for the forces w_{1}, \ldots, w_{s}, which appeared in the decomposition $\star \sum_{j=1}^{N}\left(F_{j} x \wedge v_{j}\right)$, and are determined with precision to the function.

Remark 6 If there are $N-2$ smooth Casimir functions c_{1}, \ldots, c_{N-2}, this corresponds to the situation that the Poisson bracket arises from the Nambu bracket by fixing $N-2$ functions as Casimir functions. In this case, the formula has a form

$$
\{f, g\} \Omega=u d f \wedge d g \wedge d c_{1} \wedge \ldots \wedge d c_{N-2}, \quad f, g \in C^{\infty}\left(\mathbb{R}^{N}\right)
$$

where $\Omega=d x_{1} \wedge \ldots \wedge d x_{N}$ is the standard volume element on \mathbb{R}^{N}, and u is some function on \mathbb{R}^{N}. The case, where there are less smooth Casimir functions, namely $c_{1}, \ldots, c_{s}, s<N-2$, then the Poisson bracket has a form

$$
\{f, g\} \Omega=d f \wedge d g \wedge d c_{1} \wedge \ldots \wedge d c_{s} \wedge u
$$

(in details studied in [7]). It is connected with $s+2$-linear Nambu bracket in dimension N, higher than $s+2$, see [5].

4 Eigenvalue problems for operators and complete and vertical lifts of some vector fields

For the eigenvalue problem given by a pair $\left(F, e_{N}\right)$, we define the complete and vertical lifts from \mathbb{R}^{N} to $\mathbb{R}^{2 N}$. Let $B^{C}=\left\{e_{1}, e_{2}, \ldots, e_{N}, f_{1}, f_{2}, \ldots, f_{N}\right\}$ be a basis in $\mathbb{R}^{2 N}$.

Definition 2 Let a pair $\left(F, e_{N}\right)$, where $F \in \operatorname{End}\left(\mathbb{R}^{N}\right), e_{N} \in \operatorname{ker} F$, gives an eigenvalue problem.

1. We say that, a pair $\left(F^{C}, f_{N}\right)$, where

$$
F^{C}=\left(\begin{array}{c|c}
F & 0 \\
\hline 0 & F
\end{array}\right),
$$

is a complete lift of a pair $\left(F, e_{N}\right)$ from \mathbb{R}^{N} to $\mathbb{R}^{2 N}$.
2. We say that, a pair $\left(F^{V}, e_{N}\right)$, where

$$
F^{V}=\left(\begin{array}{c|c}
0 & 0 \\
\hline F \mid 0
\end{array}\right),
$$

is a vertical lift of a pair $\left(F, e_{N}\right)$ from \mathbb{R}^{N} to $\mathbb{R}^{2 N}$.

Note, that the vector fields $X_{F^{C}}, Y_{f_{N}} \in \Gamma\left(T \mathbb{R}^{2 N}\right)$ associated with a pair $\left(F^{C}, f_{N}\right)$ have the following form

$$
\begin{aligned}
X_{F^{C}} & =\sum_{i, j=1}^{N-1} a_{i j} x_{j} \frac{\partial}{\partial x_{i}}+\sum_{i, j=1}^{N-1} a_{i j} y_{j} \frac{\partial}{\partial y_{i}}, \\
Y_{f_{N}} & =\frac{\partial}{\partial y_{N}}
\end{aligned}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{N}, y_{1}, \ldots, y_{N}\right)$ coordinates in $\mathbb{R}^{2 N}$. In the above formulas we recognise a complete and vertical lifts of the vector fields $X_{F}, Y_{e_{N}}$ given by the formulas (15), (16), i.e. $X_{F^{C}}=X_{F}^{C}, Y_{f_{N}}=Y_{e_{N}}^{V}$. By analogy, with the pair (F^{V}, e_{N}) we associate the vector fields $X_{F^{V}}, Y_{e_{N}} \in \Gamma\left(T \mathbb{R}^{2 N}\right)$

$$
\begin{aligned}
X_{F^{V}} & =\sum_{i, j=1}^{N-1} a_{i j} x_{j} \frac{\partial}{\partial y_{i}} \\
Y_{e_{N}} & =\frac{\partial}{\partial x_{N}}
\end{aligned}
$$

which are the vertical $X_{F^{V}}=X_{F}^{V}$ and complete $Y_{e_{N}}=Y_{e_{N}}^{C}$ lifts of the vector fields (15) and (16), respectively.

Remark 7 Notice that if we have the Poisson tensor on the manifold M (in our case it is $\left.\mathbb{R}^{N}\right)$, i.e., $\pi \in \Gamma\left(\bigwedge^{2} T M\right)$, then its complete lift π^{C} gives Poisson structure on the manifold $T M$. It is called a fiber-wise linear Poisson structure. This structure is connected with Lie algebroid structure on $T^{*} M$. Such construction is well known, (see for example $[14,18]$). If the Poisson tensor π is decomposable, i.e., $\pi=X \wedge Y$, then its complete lift is given by

$$
\pi^{C}=(X \wedge Y)^{C}=X^{C} \wedge Y^{V}+X^{V} \wedge Y^{C}
$$

In works [9, 12] were shown that each component $X^{C} \wedge Y^{V}, X^{V} \wedge Y^{C}$ also gives Poisson structure linear in fibres, under appropriate assumptions on X, Y. It means, that on the space $T^{*} M$ we can construct Lie algebroids determined by vector fields X and Y satisfying a suitable commutation relations. On the Lie algebra level it allows to construct from N -dimensional Lie algebras, a family of 2 N -dimensional Lie algebras.

Other situations related to $\left(F^{C}, e_{N}\right),\left(F^{V}, f_{N}\right)$ pairs can also be considered. This would correspond to a complete or vertical lift of both components.

From (12) we conclude that pairs $\left(\mathbb{R}^{2 N},[\cdot, \cdot]_{\left(F^{C}, f_{N}\right)}\right)$ and $\left(\mathbb{R}^{2 N},[\cdot, \cdot]_{\left(F^{V}, e_{N}\right)}\right)$ are Lie algebras. Theorem 2 says that each of the considered structures has $2 N-2$ Casimir functions. We can describe such functions in terms of the Casimirs of the initial pair (F, v).

Theorem 4 If $c_{s}, s=1,2, \ldots, N-2$, are Casimirs for the Lie algebra given by a pair $\left(F, e_{N}\right)$, then $x_{1}, x_{2}, \ldots, x_{N-1}, y_{N}, c_{s}(x, y)=\sum_{i=1}^{N} \frac{\partial c_{s}}{\partial x_{i}}(x) y_{i}$ are all Casimir functions for the Lie algebra $\left(\mathbb{R}^{2 N},[\cdot, \cdot]_{\left(F^{V}, e_{N}\right)}\right)$.

Proof The result is obtained by a straightforward calculation of the conditions in Theorem 2.

Theorem 5 If $c_{s}, s=1,2, \ldots, N-2$, are Casimirs for the Lie algebra given by a pair $\left(F, e_{N}\right)$, then $c_{s}(x), c_{s}(y), x_{N}$ are Casimir functions for the Lie algebra $\left(\mathbb{R}^{2 N},[\cdot, \cdot]_{\left(F^{C}, f_{N}\right)}\right)$.

Proof. The Casimirs $c_{s}(x), c_{s}(y), x_{N}$ are the result of a direct calculation of conditions (20) and (21).

In the last theorem there is one missing Casimir which can be calculated from the equation

$$
\begin{equation*}
\left\langle F x \mid \nabla_{x} c\right\rangle+\left\langle F y \mid \nabla_{y} c\right\rangle=0, \tag{31}
\end{equation*}
$$

where $\nabla c=\left(\nabla_{x} c, \nabla_{y} c\right)^{T}=\left(\frac{\partial c}{\partial x_{1}}, \ldots, \frac{\partial c}{\partial x_{N}}, \frac{\partial c}{\partial y_{1}}, \ldots, \frac{\partial c}{\partial y_{N}}\right)^{T}$.
Procedure described in Definition 2 one can use to more pairs (F_{i}, e_{i}). The following theorem presents a specific situation of this kind.

Theorem 6 If pairs $\left(F^{C}, f_{N}\right)$ and $\left(F^{V}, e_{N}\right)$ are respectively complete and vertical lifts of a pair $\left(F, e_{N}\right)$ from \mathbb{R}^{N} to $\mathbb{R}^{2 N}$, then

$$
[\cdot, \cdot]_{\left(F^{C}, f_{N}\right),\left(F^{V}, e_{N}\right)}=[\cdot, \cdot \cdot]_{\left(F^{C}, f_{N}\right)}+\lambda[\cdot, \cdot]_{\left(F^{V}, e_{N}\right)}
$$

is a Lie bracket on $\mathbb{R}^{2 N}$ for any $\lambda \in \mathbb{R}$.
Proof We proceed from the previous considerations that the condition (24) has to be fulfilled. We have

$$
\left[F^{C}, F^{V}\right]=0, \quad F^{C} e_{N}=0, \quad F^{V} f_{N}=0
$$

so the formula (24) holds.
Example 4 Consider a pair (F, v) from Example 1. Using complete and vertical lifts of the Poisson vector fields (22)

$$
\begin{aligned}
& X_{F^{C}}^{C}=x_{1} \frac{\partial}{\partial x_{1}}+\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{2}}+y_{1} \frac{\partial}{\partial y_{1}}+\left(y_{1}+y_{2}\right) \frac{\partial}{\partial y_{2}}, \quad Y_{f_{3}}^{V}=\frac{\partial}{\partial y_{3}}, \\
& X_{F^{V}}^{V}=x_{1} \frac{\partial}{\partial y_{1}}+\left(x_{1}+x_{2}\right) \frac{\partial}{\partial y_{2}}, \quad Y_{e_{3}}^{C}=\frac{\partial}{\partial x_{3}},
\end{aligned}
$$

we obtain the following splitting

The Poisson tensor

$$
X_{F^{V}}^{V} \wedge Y_{e_{3}}^{C}=-x_{1} \frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial y_{1}}-\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial y_{2}}
$$

corresponds to nilpotent Lie algebra $\mathfrak{n}_{5,1} \oplus\left\langle f_{3}\right\rangle$. We use the classification and the notation from the book [21]. Casimir functions are $x_{1}, x_{2}, y_{3}, c_{1}(x, y)=\left[\left(x_{1}+x_{2}\right) y_{1}-\right.$ $\left.x_{1} y_{2}\right] / x_{1} \exp \left(-x_{2} / x_{1}\right)$ as Theorem 4 says.

The Poisson tensor

$$
\begin{aligned}
X_{F}^{C} \wedge Y_{f_{3}}^{V}= & x_{1} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial y_{3}}+\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial y_{3}} \\
& +y_{1} \frac{\partial}{\partial y_{1}} \wedge \frac{\partial}{\partial y_{3}}+\left(y_{1}+y_{2}\right) \frac{\partial}{\partial y_{2}} \wedge \frac{\partial}{\partial y_{3}}
\end{aligned}
$$

corresponds to solvable Lie algebra $\mathfrak{s}_{5,6}^{a=1} \oplus\left\langle e_{3}\right\rangle$. From Theorem 5 we get the following Casimir functions $x_{3}, c_{1}(x)=x_{1} \exp \left(-x_{2} / x_{1}\right), c_{2}(y)=y_{1} \exp \left(-y_{2} / y_{1}\right)$ and from equation (31) we get the last invariant $c_{3}(x, y)=x_{1} / y_{1}$.

The last Poisson tensor in the splitting

$$
\begin{aligned}
&\left(X_{F} \wedge Y_{e_{3}}\right)^{C}=x_{1} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial y_{3}}+\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial y_{3}}-x_{1} \frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial y_{1}} \\
&-\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial y_{2}}+y_{1} \frac{\partial}{\partial y_{1}} \wedge \frac{\partial}{\partial y_{3}}+\left(y_{1}+y_{2}\right) \frac{\partial}{\partial y_{2}} \wedge \frac{\partial}{\partial y_{3}}
\end{aligned}
$$

corresponds to solvable Lie algebra $\mathfrak{s}_{6,143}$. Casimir functions for complete lift of the Poisson vector fields, in terms of initial Casimirs $c_{i}, i=1, \ldots, s$, are given by

$$
\begin{equation*}
c_{i}, \quad \sum_{s=1}^{N} \frac{\partial c_{i}}{\partial x_{s}} y_{s}, \quad i=1,2, \ldots, s \tag{32}
\end{equation*}
$$

see [11, 14]. From (32) and Example 1, Casimir functions have the form $c_{1}(x, y)=$ $x_{1} \exp \left(-x_{2} / x_{1}\right), c_{2}(x, y)=\left(-y_{2}+\left(x_{1}+x_{2}\right) y_{1}\right) / x_{1} \exp \left(-x_{2} / x_{1}\right)$.

Author contributions A.D. and M.S. wrote the main manuscript text. All authors reviewed the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Abellanas, L., Martinez Alonso, L.: A general setting for Casimir invariants. J. Math. Phys. 16, 15801584 (1975)
2. Beltiță, I., Beltiță, D.: Quasidiagonality of C^{*}-algebras of solvable Lie groups. Integr. Equ. Oper. Theory 90, 5 (2018)
3. Cariñena, J.F., Ibort, A., Marmo, G., Perelomov, A.: On the geometry of Lie algebras and Poisson tensors. J. Phys. A Math. Gen. 27, 7425-7449 (1994)
4. Casimir, H.G.B.: Über die Konstruktion einer zu den irreduziblen darstellungen halbeinfacher kontinuierlicher Gruppen geh origen Differentialgleichung. Proc. R. Acad. Amst. 34, 844 (1931)
5. Chandre, C., Horikoshi, A.: Classical Nambu brackets in higher dimensions. J. Math. Phys. 64, 052702 (2023)
6. Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63, 85-124 (1948)
7. Damianou, P.A., Petalidou, F.: Poisson brackets with prescribed Casimirs. Can. J. Math. 64(5), 9911018 (2012)
8. Dias da Silva, J.A., Rodrigues, F.: Decomposable critical tensors. Linear Algebra Appl. 414, 172-198 (2006)
9. Dobrogowska, A., Jakimowicz, G.: Generalization of the concept of classical r-matrix to Lie algebroids. J. Geom. Phys. 465, 104227 (2021)
10. Dobrogowska, A., Jakimowicz, G.: A new look at Lie algebras. J. Geom. Phys. 192, 104959 (2023)
11. Dobrogowska, A., Jakimowicz, G.: Tangent lifts of bi-Hamiltonian structures. J. Math. Phys. 58, 083505 (2017)
12. Dobrogowska, A., Jakimowicz, G., Szajewska, M.: On some structures of Lie algebroids on the cotangent bundles. In: Kielanowski, P., Dobrogowska, A., Goldin, G., Goliński, T. (eds.) Geometric Methods
in Physics XXXIX, Workshop and Summer School, Białowieża, Poland, 2022. Birkhauser Verlag, Trends in Mathematics (2023)
13. Dobrogowska, A., Jakimowicz, G., Szajewska, M., Wojciechowicz, K.: Deformation of the Poisson structure related to algebroid bracket of differential forms and application to real low dimensional Lie algebras. In: Mladenov, I.M., Pulov, V., Yoshioka, A. (eds.) Geom. Integrability \& Quantization vol. 20, Proceedings of the Twentieth International Conference on Geometry, Integrability and Quantization, pp. 122-130 (2019)
14. Grabowski, J., Urbański, P.: Tangent lifts of Poisson and related structures. J. Phys. A Math. Gen. 28, 6743-6777 (1995)
15. Grone, R.: Tensors as a quadratic variety. Proceedings of the AMS 64(2) (1977)
16. Grundland, A.M., Marquette, I.: The Lie algebra of the lowest transitively differential group of degree three. arXiv:2304.06458 [math-ph] (2023)
17. Latini, D., Marquette, I., Zhang, Y.-Z.: Construction of polynomial algebras from intermediate Casimir invariants of Lie algebras. J. Phys. A Math. Theor. 55, 335203 (2022)
18. Magri, F., Morosi, C.: A Geometrical Characterization of Integrable Hamiltonian Systems Through the Theory of Poisson-Nijenhuis Manifolds, Quaderno S19. University of Milan, Milan (1984)
19. Ndogmo, J.C.: Invariants of a semi-direct sum of Lie algebras. J. Phys. A Math. Gen. 37, 5635 (2004)
20. Racah, G.: Sulla caratterizzazione delle rappresentazioni irriducibili dei gruppi semisemplici di Lie. Lincei-Rend. Sc. fis. mat. e nat 8, 108-112 (1950)
21. Šnobl, L., Winternitz, P.: Classification and identification of Lie algebras. In: CRM Monograph Series, vol. 33, Providence, R.I.: AMS (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Marzena Szajewska
 m.szajewska@math.uwb.edu.pl

 Alina Dobrogowska
 alina.dobrogowska@uwb.edu.pl
 1 Faculty of Mathematics, University of Białystok, 1M Ciołkowskiego, PL-15-245 Białystok, Poland

