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Geometry of lines asymptotic to a pencil of conics
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Abstract. In a previous article we showed how the line pairs that occur as asymptotes to
hyperbolas in a pencil of affine conics can be detected from their incidence geometry alone,
without reference to the pencil. In this article we classify the configurations of all such
line pairs up to affine equivalence. Many of our methods work over an arbitrary field k
of characteristic �= 2, and we use tools from the theory of algebraic curves and projective
duality to obtain a complete classification of the collections of line pairs that are asymptotic
to a pencil of conics if k is real closed or algebraically closed, while we obtain a partial
classification if k is a finite field. A classification for other fields remains an open question.
Ultimately this is a question regarding affine equivalence within a system of certain rational
quartic curves.
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1. Introduction

Consider a pencil of affine conics, a collection of affine conics in the plane
parameterized by the projective line. As in Figure 1, the asymptotes of the
hyperbolas in the pencil form an arrangement of line pairs in the plane. Pairs
of parallel lines can appear in the pencil too, such as in Figure 1(c), and when
this is the case other pairs of parallel lines sharing the same midline can be
viewed as asymptotic to the pencil also. The orderliness of the line pairs in
Figure 1 suggests the question: Is there anything special about the line pair
arrangements that are asymptotic to a pencil of conics?

In [9], it is shown that the answer is yes—that these line pairs are detectable
from the incidence geometry of the lines themselves, independent of any men-
tion of the pencil. The line pairs are distinguished by virtue of satisfying a
rather demanding condition: each line in each pair simultaneously bisects all
the other pairs with the same midpoint, where a line � bisects a pair with
midpoint p if the points where � crosses the pair have p as their midpoint.
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Figure 1. Selected conics from three pencils of conics (top
row) and the line pairs asymptotic to the conics in the pencil
(bottom row). The black points are the midpoints of the inter-
section points where the line crosses all the other pairs. The
black arrows in the bottom row help illustrate the bisection
property

This curious self-bisection property appears also in other contexts. For ex-
ample, studying parallelograms inscribed in line arrangements, such as in [12–
14,17,18] where rectangles are considered, leads eventually to the limit case
of degenerate parallelograms inscribed in quadrilaterals. If we pair the degen-
erate parallelograms when their centers are reflections of each other across
the centroid of the quadrilateral, the lines through the four collinear vertices
of the degenerate parallelograms exhibit the same incidence geometry as the
asymptotes of a pencil of conics: each line in each pair simultaneously bisects
all the other pairs with the same midpoint.1 See Figure 2. These lines in fact
are precisely the bisectors of the quadrilateral, as is proved in [10].

It follows from results in the present paper that there is another source
of this self-bisection property for line pair arrangements, that of the lines
tangent to some curves of classical interest such as the Steiner deltoid or more

1Ultimately, this is explainable by the fact that the line pairs are the asymptotes from a
pencil of conics, namely the pencil of conics through the vertices of the quadrilateral. See
[10]. But making this connection amounts first to showing that the degenerate parallelograms
lie on bisectors of the quadrilateral and hence is really more of a consequence than an
explanation.
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Figure 2. Selected pairs of bisectors of the quadrilateral
whose pairs of opposite sides are black and dark blue. The
marked points trace out a hyperbola and are the midpoints
of bisectors of the same color. Each bisector bisects all other
pairs with respect to the same midpoint

generally the real part of a rational tricuspidal quartic. The pairing in this
case is such that two tangent lines to the deltoid are a pair if they meet on the
circle inscribed in the deltoid. See Figure 3(b). The lines tangent to a deltoid
appear in numerous contexts, such as the envelope of Wallis-Simson lines [1];
construction of the deltoid as a hypocycloid [8]; Böröczky’s configurations of
lines that has an optimal number of triple points [3,6]; and the Poincaré sphere
of polarization ellipses in the theory of optics [11]. However this self-bisection
property of the given pairing does not seem to have been noted in any of these
contexts before.

In the examples mentioned above, the collection of line pairs often has
another strong property: no more line pairs can be added to the collection
without destroying the bisection property. Following [9,10], we call such a
maximal arrangement of line pairs a bisector field. In a future article, we use
bisector fields as a tool to describe the moduli space of quadrilaterals, the idea
being that these fields contain “entangled” classes of quadrilaterals all yoked
together by a shared nine-point conic.

In any case, these examples and applications raise the question of whether
it is possible to classify all possible bisector fields, since doing so would classify
all possible line arrangements that are asymptotes for a pencil of conics. Since
midpoints are preserved by affine transformations, an affine transformation
carries a bisector field to a bisector field, and so it is natural to ask for such a
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Figure 3. It is proved in Section 8 that over the field of real
numbers, each bisector field is affinely equivalent to one of
the four bisector fields represented here. (Only selected bisec-
tors are shown; the bisector field itself would cover the entire
plane.). Two lines of the same color indicate a bisector pair.
The midpoints of the bisectors are marked with black points.
White points indicate an intersection of two bisectors from the
same pair that is not also a midpoint for any of the bisectors
visible in the figures.

classification up to affine equivalence. In this article, we give such a classifica-
tion of bisector fields up to affine equivalence, which for the real plane turns
out to be surprisingly short list of just four line arrangements; see Figure 3.

Most of our methods are algebro-geometric and extend without extra effort
to an arbitrary field k of characteristic �= 2, and so we work often at this level
of generality. Occasionally the field does matter, and we point out when this is
the case and pose some questions that we could not resolve for certain fields.

We define a boundary of a bisector field B and show it is a rational quartic
curve, a parabola or a point. We prove in the first two cases that all the lines
tangent to the boundary of B are bisectors in B. In the first case, that in which
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the boundary is a quartic, the set of tangent lines is the entire bisector field,
and so the bisector field obeys a kind of holographic principle in which all
information in the bisector field is encoded on the boundary. See Figures 3(a)
and 3(b). In the second case, that in which the boundary is a parabola as in
Figure 3(c), there are additional bisectors that are not tangent to the boundary,
but these are easily described as a pencil of parallel lines. The final case is the
simplest one, that in which the boundary is a point, all the lines through the
point are bisectors and there are two additional pencils, each consisting of
parallel lines; see Figure 3(d).

Using these ideas, as well as an arithmetic criterion given in Section 5 for
determining affine equivalence of bisector fields, we classify in the last section
of the paper the bisector fields over an algebraically closed field and show in
this case that up to affine equivalence there are three bisector fields, each of
which can be explicitly described. Over a real closed field, we show there are
four bisector fields, and over the field of rational numbers there are infinitely
many. See Figure 3 for the classification over the field of real numbers. For
finite fields, we are only able to give partial results regarding classification.
This raises the question, stated at the end of the paper, of how many bisector
fields there are for a given choice of the field k.

Terminology. By a (complete) quadrilateral Q = ABA′B′ we mean a col-
lection of four distinct lines A,B,A′, B′, the sides of Q, and their six points of
intersection, some of which are possibly at infinity. The pairs A,A′ and B,B′

are the pairs of opposite sides of Q. All other pairs are pairs of adjacent sides.
The intersection of two adjacent sides is a vertex of Q. The diagonals of Q are
the two lines through non-adjacent vertices of Q. We require that no pair of
adjacent sides of Q consists of parallel lines, and that all four sides do not go
through the same point. We do, however, allow the case in which three sides
go through a single point. (In [9], adjacent sides of a quadrilateral are allowed
to be parallel, i.e., have a vertex at infinity, but we are excluding that case
here.)

2. Background: Bisector fields

We formalize the notion of a bisector field and recall several properties of
bisectors from [10]. Apart from the discussion in this section, the present paper
is mostly independent of the articles [9] and [10].

Let P be a pair of lines in the plane and � also be a line in the plane. Denote
by midP(�) the midpoint of the two points where � meets P, with the following
stipulations. If exactly one of these points is at infinity, then midP(�) is defined
to be the point at infinity for �, while if both are at infinity or � is one of the
lines in P, then midP(�) is left undefined. If neither of the two points is at
infinity then midP(�) is finite.



B. Olberding et al. AEM

Figure 4. Four pairs of bisectors from a bisector field. The
arrows on the black line help visualize the bisection property.
The points shown are the midpoints of the bisectors. Any line
chosen from a bisector field along with its midpoint will bisect
all pairs from this same midpoint

If p is a point, the line � bisects a set B of pairs of lines with midpoint p if
p = midP(�) for all pairs P in B such that midP(�) is defined.

Definition 2.1. A set B of pairs of lines is an affine bisector arrangement if
each line in each pair in B bisects B with a finite midpoint (see Figure 4). An
affine bisector field is an affine bisector arrangement B such that not all lines
in B go through the same point and B cannot be extended to a larger bisector
arrangement. The pairs of lines in B are referred to as B-pairs.

See Figure 3 for examples of affine bisector fields. The reason for the ad-
jective “affine” is that each bisector in B has a finite midpoint, whereas in [9]
we consider also bisector fields for which a bisector can have a midpoint at
infinity, and in such a case “affine” is omitted from the definition. It is not
obvious from the definition that affine bisector fields exist, but a large source
of examples is provided by one of the main theorems in [9]: A bisector field
consists of the pairs of lines that occur as the degenerations of conics in a non-
trivial pencil of conics [9, Theorem 6.3]. For example, if C is the set of conics
through four points in general position, then the asymptotes of the hyperbolas
in the pencil are line pairs in a bisector field, and the only other line pairs in
the bisector field are those that share an axis of symmetry with any degenerate
parabolas that occur in the pencil. Therefore, a pencil of conics in the plane
is asymptotically a bisector field, and every bisector field arises this way. All
this works over any field of characteristic other than 2.

To streamline the present article we will exclude the non-affine bisector
fields, which amount to a couple of pathological cases, and drop the adjective
“affine” from here on out:
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Figure 5. Q-pairs of bisectors. (The quadrilateral Q is not
pictured.) The bisector locus for Q is the red conic, and the red
point is the center of the conic. Q-antipodal pairs of bisectors
meet on the bisector locus

Standing assumption: Throughout the rest of the article, all bisector fields are
understood to be affine, as in Definition 2.1.

A rather different source of bisector fields is relevant for the proofs and
theorems in the present paper. By a bisector of a quadrilateral Q = ABA′B′,
we mean a bisector of the set of pairs {{A,A′}, {B,B′}}, that is, a line � that
is either a side of Q, parallel to a pair of opposite sides of Q, or crosses all four
sides of Q and satisfies midAA′(�) = midBB′(�). We denote the set of bisectors
of Q by Bis(Q). Theorem 2.3 below asserts that every bisector field occurs
as the set of bisectors of some quadrilateral. However, to state this theorem
precisely, it remains to indicate how to pair the bisectors of a quadrilateral Q.
For this, we need the following lemma.

Lemma 2.2. [10, Section 2] For each quadrilateral Q is an inner product (a
nondegenerate symmetric bilinear form) under which the slope vectors of op-
posite sides of Q are orthogonal, as are the slope vectors of the diagonals of
Q.

Two lines are Q-orthogonal if their slope vectors are orthogonal under the
inner product of the lemma. Because of the possibility of parallel lines in the
bisector field, the notion of Q-orthogonality is not quite sufficient to define a
pairing on the bisectors of Q. In order to complete the definition, we require a
symmetry condition also: A pair of bisectors of Q is Q-antipodal if the midpoint
of the midpoints of the bisectors is the centroid of Q. The bisector locus, the
set of midpoints of the bisectors of Q, is a conic (in fact, the nine-point conic
for Q) [10, Theorem 5.2 and Corollary 5.4], whose center is the centroid of Q.
See Figure 3 for examples of bisector loci. Thus two bisectors are Q-antipodal
if and only if their midpoints lie on antipodal points of the bisector locus; see
Figure 2. 5

We can now define the pairing: A pair of bisectors is a Q-pair if it is
Q-antipodal and Q-orthogonal. In almost all cases, a pair of bisectors is Q-
antipodal if and only if it is Q-orthogonal. This happens for example if no
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sides or diagonals of Q are parallel [10, Corollary 6.6]. If � is a bisector of a
quadrilateral Q, then there is a unique bisector �′ such that �, �′ is a Q-pair
[10, Corollary 6.7]. Each pair of opposite sides of Q is a Q-pair of bisectors, as
is the pair of diagonals of Q; this follows from [10, Proposition 2.5].

Thus we may view Bis(Q) as a collection of paired lines whose pairing is
given by Q-pairing. One of the main theorems in [10] is that bisector pairs are
themselves bisected, i.e., the Q-pairs of bisectors of Q not only bisect Q but are
in turn bisected by every bisector of Q. It is this symmetry that is the crucial
property for a bisector field, and which is a part of the following theorem. By
a quadrilateral in B we mean a quadrilateral whose pairs of opposite sides are
B-pairs.

Theorem 2.3. [10, Theorem 6.9] If B is a bisector field (as in Definition 2.1),
then for each quadrilateral Q in B, B = Bis(Q) and the pairing on B is Q-
pairing.

Any two quadrilaterals in the same bisector field have the same centroid,
and so we designate this shared centroid as the center of the bisector field.
That all the quadrilaterals in a bisector field have the same centroid is a
consequence of the fact that all these quadrilaterals share the same nine-point
conic, and this conic has the centroid of the quadrilateral as its center; see [10,
Theorem 5.2].

3. The dual curve of bisectors

For n ≥ 1, we denote by Pn(k) the projective closure of kn. The points
in Pn(k) are written in homogeneous coordinates [x1 : . . . : xn+1], where
(x1, . . . , xn+1) �= (0, . . . , 0) and [x0 : . . . : xn+1] is the line in kn+1 through the
point (x1, . . . , xn+1). Under point-line duality of the projective plane P2(k),
each line tX − uY + vZ = 0 in P2(k) corresponds to the point [t : u : v] in
the dual projective plane. Thus, in describing a bisector field, it is useful to
consider the dual points of the bisectors. We do this in the present section and
show that the coefficients of the bisectors in a bisector field are encoded onto
a singular cubic curve in P2(k).

As discussed in the last section, to describe a bisector field, it is sufficient
to describe the bisectors of any quadrilateral in the bisector field. We begin by
associating two polynomials to a quadrilateral, the shape polynomial and the
position polynomial. We will show in Corollary 3.4 that these two polynomi-
als completely determine the bisectors of Q. We use the following notational
convention throughout the paper.

Given a line L in the affine plane k2, we write an equation for L
as tLx − uLy + vL = 0, where tL, uL, vL ∈ k. In order to have a
canonical choice of coefficients for the line, we assume that if uL = 0
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then tL = 1 and if uL �= 0 then uL = 1. The slope of L will often be
represented as the element [tL : uL] in P1(k).

Let Q = ABA′B′ be a quadrilateral, and consider the polynomial in k[T,U ]
whose zeroes in P1(k) are all the slopes of the sides of Q:

Θ(T,U) = (uAT − tAU)(uBT − tBU)(uA′T − tA′U)(uB′T − tB′U).

Let ΘA be Θ with the A term uAT − tAU deleted, and let ΘA′ be Θ with the
A′ term deleted. Define ΘB and ΘB′ similarly, but by deleting the B and B′

terms from −Θ rather than Θ.

Definition 3.1. The position polynomial for Q is

Ψ(T,U) =
∑

vLΘL(T,U), where L ranges over the sides of Q.

The shape polynomial for Q is the polynomial Φ(T,U) ∈ k[T,U ] for which

TΦ(T,U) =
∑

tLΘL(T,U) and UΦ(T,U) =
∑

uLΘL(T,U),

Alternatively, Φ(T,U) = αT 2 − 2βTU + γU2, where

α = tAuBuA′uB′ − uAtBuA′uB′ + uAuBtA′uB′ − uAuBuA′tB′

β = tAuBtA′uB′ − uAtBuA′tB′

γ = tAtBtA′uB′ − tAtBuA′tB′ + tAuBtA′tB′ − uAtBtA′tB′ .

We write ΦQ and ΨQ for Φ and Ψ when the quadrilateral is not clear from
context.

That these two definitions for Φ are equivalent follows from the fact that

α =
∑

tLΘL(1, 0), γ =
∑

tLΘL(0, 1), −2β =
∑

tLΘL(1, 1) − α − γ,

and similarly for the polynomial
∑

L uLΘL(T,U). Although not needed in
what follows, the polynomial Φ can also be viewed as the squared norm of
the inner product 〈−,−〉Q from Lemma 2.2. This follows from the explicit
description of the inner product given in [10, Section 2].

The shape polynomial Φ depends only on the slopes of the sides of Q, while
the position polynomial Ψ depends also on the position of Q. The reason for
“shape” is that Φ gives the shape of the bisector locus for Q which, if Q
is proper, coincides with the nine-point conic for Q. (The bisector locus is
discussed in Section 2.) Namely, let (h, k) be the centroid of Q and let (a, b) be
a diagonal point of Q, that is, a point in k2 where a pair of opposite sides or
diagonals of Q meets. It is shown in [10, Theorem 5.2] that the bisector locus
of Q is a conic with center (h, k) given by the equation

Φ(Y − k,X − h) = Φ(b − k, a − h).

Definition 3.2. For a quadrilateral Q, the dual polynomial for Q is the homo-
geneous polynomial Ψ(T,U) − V Φ(T,U) ∈ k[T,U, V ]. The dual curve of Q is
the zero set in P2(k) of the dual polynomial.
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Since Ψ and Φ are homogeneous in the variables T and U and the quadratic
form Φ is never the zero polynomial (this follows from the nondegeneracy of
the bilinear form in Lemma 2.2 and the fact that Φ is the quadratic form
associated to this inner product), the dual polynomial has degree 3 for any
choice of quadrilateral Q. Also, since Ψ and Φ are homogeneous, the dual
polynomial has at least one singularity, namely the point [0 : 0 : 1]. The only
other singularities are those that appear when Ψ and Φ share a common zero,
in which case the cubic is not an irreducible curve. As the next theorem shows,
the reason for the terminology of dual curve is that the points on this curve
are the dual points for the bisectors of a quadrilateral.

Theorem 3.3. A line tX − uY + v = 0 bisects a quadrilateral Q if and only if
[t : u : v] is on the dual curve of Q.

Proof. Write Q = ABA′B′. Suppose first the line � : tX − uY + v = 0 is not
parallel to any of the sides of Q. For each line L ∈ {A,B,A′, B′}, set

xL =
uvL − uLv

tuL − tLu
and yL =

tvL − tLv

tuL − tLu
.

Since � is not parallel to L, the line � crosses L at the point (xL, yL). The line
� is a bisector of Q if and only if the midpoint of the points where � crosses
A and A′ is also the midpoint of the points where � crosses B and B′; if and
only if

xA − xB + xA′ − xB′ = 0 and yA − yB + yA′ − yB′ = 0;

if and only if
∑

(uvL − vuL)ΘL(t, u) = 0 and
∑

(vLt − tLv)ΘL(t, u) = 0;

if and only if

(a) u
∑

vLΘL(t, u) − v
∑

uLΘL(t, u) = 0 and

(b) t
∑

vLΘL(t, u) − v
∑

tLΘL(t, u) = 0.

By Definition 3.1,

uΦ(t, u) =
∑

uLΘL(t, u) and tΦ(t, u) =
∑

tLΘL(t, u).

Thus the equations in (a) and (b) become

u
∑

vLΘL(t, u) − vuΦ(t, u) = 0 and t
∑

vLΘL(t, u) − vtΦ(t, u) = 0.

Since u and t are not both 0, the equations in (a) and (b) are valid (and hence
� is a bisector) if and only if

∑
vLΘL(t, u) − vΦ(t, u) = 0.

Since Ψ(t, u) =
∑

vLΘL(t, u), the theorem is proved under the assumption
that � is not parallel to any of the sides of Q.
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Now suppose � is parallel to a side M of Q, so that � is defined by the
equation tMx − uMy + v = 0 for some v ∈ k. We claim � is a bisector of Q if
and only if [tM : uM : v] is on the dual curve of Q. Using Definition 3.1 and
the definition of the polynomials ΘL,

uMΦ(tM , uM ) =
∑

uLΘL(tM , uM ) = uMΘM (tM , uM )

tMΦ(tM , uM ) =
∑

tLΘL(tM , uM ) = tMΘM (tM , uM ).

Since either tM �= 0 or uM �= 0, we conclude Φ(tM , uM ) = ΘM (tM , uM ).
Now [tM : uM : v] is on the dual curve of Q if and only if vΦ(tM , uM ) =

Ψ(tM , uM ); if and only if vΘM (tM , uM ) = vMΘM (tM , uM ); if and only if
v = vM or ΘM (tM , uM ) = 0; if and only if � = M (since � is parallel to M) or
M is parallel to another side of Q; if and only if � is a bisector of Q. �

As discussed in Section 2 (and proved in [10, Corollary 6.10]), two quadri-
laterals that have the same bisectors have the same bisector field. The next
corollary shows that the dual polynomial can also be used to determine if two
quadrilaterals have the same bisector field.

Corollary 3.4. Two quadrilaterals Q and Q′ have the same bisectors (and hence
the same bisector fields) if and only if Q and Q′ have the same dual polynomial;
if and only if ΦQ = λΦQ′ and ΨQ = λΨQ′ for some 0 �= λ ∈ k.

Proof. For each i = 1, 2, let Qi be the extension of Qi to the affine plane over
the algebraic closure k of k. Then Qi and Qi share the same shape, position
and dual polynomials since these are defined in terms of the coefficient data of
the lines that comprise the sides of Qi. Since k is infinite, Theorem 3.3 implies
Q1 and Q2 share the same bisectors if and only if the dual curves of Q1 and
Q2 are the same; if and only if the dual polynomial of Q1 is a scalar multiple
(over k) of the dual polynomial of Q2; if and only if there is 0 �= λλ ∈ k such
that ΦQ1 = λΦQ2 and ΨQ1 = λΨQ2 . In this case, λ ∈ k since the coefficients
of ΦQ1 and ΨQ2 are in k. Thus to prove the corollary it suffices to prove that
Q1 and Q2 have the same bisectors if and only if Q1 and Q2 do.

Suppose Q1 and Q2 have the same bisectors. For this part of the proof we
rely on the discussion of pairing from Section 2. By [10, Corollary 6.10], Q1-
pairing and Q2-pairing are the same for these bisectors. Since Qi-orthogonality
is defined by the same inner product as Qi-orthogonality (it is defined in terms
of the coefficients of the lines that are the sides of Qi; see [10, Section 2]), and
Qi and Qi have the same centroid, it follows that the extensions �, �′ of two
bisectors �, �′ of Qi form a Qi-pair if and only if �, �′ form a Qi-pair. Therefore,
since the sides of Q1, being extended from bisectors of Q1, and hence bisectors
of Q2, are bisectors of Q2, it follows that the quadrilateral Q1 is in the bisector
field of Q2, which, as discussed in Section 2, implies Q1 and Q2 have the
same bisectors. Conversely, if Q1 and Q2 have the same bisectors, then, as we
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have already proved, Q1 and Q2 have the same dual polynomials up to scalar
multiple, and hence Q1 and Q2 have the same bisectors by Theorem 3.3. �

4. Cubic, quadratic and linear bisector fields

Since a bisector field is the set of bisectors of a quadrilateral, Corollary 3.4
allows us to shift our focus from quadrilaterals to bisector fields and attach to
bisector fields the polynomial data developed in the last section for quadrilat-
erals.

Definition 4.1. For each bisector field B, fix a quadrilateral Q such that B =
Bis(Q). The shape polynomial for B is the shape polynomial Φ for Q, the posi-
tion polynomial for B is the position polynomial Ψ for Q, the dual polynomial
for B is the dual polynomial for Q, and the dual curve of B is the dual curve
of Q.

For the polynomials in Definition 4.1, different quadrilaterals in B can yield
different polynomials but these polynomials are by Corollary 3.4 scalar multi-
ples of those for Q. Ultimately, we are interested in zeroes of these polynomi-
als (such as in Theorem 3.3) so uniqueness up to scalar multiple is all that is
needed.

The polynomials Ψ and Φ may share common factors (see Lemma 4.4)
and hence the dual polynomial from Theorem 3.3 may not be irreducible.
We remove these factors in the formulation of the reduced dual polynomial,
defined next. This irreducible polynomial is needed later to distinguish between
moving bisectors and bisectors in a pencil of parallel lines. As discussed in the
last section, Φ is never the zero polynomial. However, it can happen that Ψ = 0
(see Lemma 5.2), and this case matters in the next definition.

Definition 4.2. Let B be a bisector field with shape and position polynomials
Φ and Ψ. If Ψ �= 0, let φ and ψ be homogeneous relatively prime polynomials
in k[T,U ] such that Φψ = Ψφ and φ is monic in T ; otherwise, if Ψ = 0, set
ψ(T,U) = 0 and φ(T,U) = 1. We define the reduced dual polynomial for B as

F (T,U, V ) = ψ(T,U) − V φ(T,U).

The reduced dual curve of B is the zero set of F in P2(k).

The reduced dual polynomial F is a factor of the dual polynomial. The
degree of F , which is at most three, will be important in the next sections for
describing the nature of the bisector field.

Definition 4.3. Let B be a bisector field, and let F be the reduced dual poly-
nomial for B. Then B is cubic if deg F = 3; quadratic if deg F = 2; and linear
if deg F = 1.
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A geometric interpretation of these classes of bisector fields is given in
Theorem 4.6 and Corollary 4.7.

We describe the properties of a special class of bisectors in the next lemma.
Recall that a pencil of lines is the set of lines through a point. This point can
be at infinity, and so the set of all lines having a fixed slope is a pencil of
parallel lines through a point at infinity.

Lemma 4.4. Let B = Bis(Q) be a bisector field, where Q is a quadrilateral. The
following are equivalent for a bisector � of B.
(1) � is parallel to another bisector in B.
(2) � is parallel to, and distinct from, a side or diagonal of Q.
(3) � is parallel to two sides or diagonals of Q.
(4) � belongs to a pencil of parallel bisectors in B.
(5) Φ(t�, u�) = 0.
(6) Φ(t�, u�) = Ψ(t�, u�) = 0.

Proof. The equivalence of (3), (4) and (5) follows from [10, Remark 2.6 and
Lemma 5.3]. That (2) implies (1) is clear since sides and diagonals of Q are
bisectors. To see that (1) implies (5), assume the bisector � is parallel to a
different bisector �′. In this case, [t� : u�] = [t�′ : u�′ ] and v� �= v�′ , and so
Theorem 3.3 implies Φ(t�, u�) = 0. That (3) implies (2) is clear, so (1)–(5) are
equivalent. To see that (5) implies (6),

use Theorem 3.3. That (6) implies (5) is clear. �
Definition 4.5. A bisector in B of a quadrilateral Q is null if it satisfies the
equivalent conditions of Lemma 4.4.

Since the inner product in Lemma 2.2 has Φ as its squared norm, the null
bisectors of Q are the bisectors that are Q-orthogonal to themselves.

Theorem 4.6. A bisector field is linear if and only if it contains exactly two
pencils of parallel lines; it is quadratic if and only if it contains exactly one
pencil of parallel lines; and it is cubic if and only if it contains no pencils of
parallel lines.

Proof. Let B be a bisector field, and let F be the reduced dual polynomial of
B. By Theorem 3.3 and Lemma 4.4, if [t : u] ∈ P1(k), then there is a pencil
of parallel lines in B of slope [t : u] if and only if Φ(t, u) = Ψ(t, u) = 0. Thus
to prove the theorem, it suffices to show that the number of mutual zeroes of
Φ and Ψ in P1(k) is 3 − deg F . By the choice of φ, 2 − deg φ is the number of
mutual zeroes of Φ and Ψ in P1(k). Thus, since deg F = 1 + deg φ, we have
that 3 − deg F = 2 − deg φ is the number of mutual zeroes of Φ and Ψ, which
proves the theorem. �

Theorem 4.6 implies that in Figure 3, the bisector fields in (a) and (b) are
cubic bisector fields; the bisector field in (c) is quadratic; and the bisector field
in (d) is linear.
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Corollary 4.7. Let B be a bisector field.

(1) B is cubic if and only if B is the bisector field of a quadrilateral with no
parallel sides or diagonals.

(2) B is quadratic if and only if B is the bisector field of a trapezoid that is
not a parallelogram.

(3) B is linear if and only if B is the bisector field of a parallelogram.

Proof. By Lemma 4.4 and Theorem 4.6, B is cubic if and only if no bisector
is null, and so (1) follows from Lemma 4.4. For (2), suppose B is quadratic.
By Theorem 4.6, there is a B-pair of distinct parallel bisectors A and A′ in B.
Let B,B′ be a B-pair of non-null bisectors. Since B and B′ are not parallel to
each other or any other bisectors, Q = ABA′B′ is a trapezoid that is not a
parallelogram, and by Theorem 2.3, B = Bis(Q). For the converse, Lemma 4.4
implies that B contains exactly one pencil of parallel lines and so B is quadratic
by Theorem 4.6. The proof of statement (3) is similar to that of (2). �

By Lemma 4.4, each null bisector in a bisector field is in a pencil of parallel
lines in that bisector field. Thus the set of null bisectors is either empty, a
single pencil of parallel lines or a union of two pencils of parallel lines. Non-
null bisectors have a more interesting description, and these will be described
in Sections 6 and 7 with the notion of moving bisectors.

5. Affine equivalence

Since affine transformations preserve midpoints and parallel lines, the image
of a bisector field under such a transformation is again a bisector field. Two
bisector fields B1 and B2 are affinely equivalent if there is an affine transforma-
tion of the plane that carries the lines in B1 onto the lines in B2. The pairing
on the lines in B1 becomes a pairing on the lines in B2, and as discussed in
Section 2 this is the only possible pairing on B2 for which B2 is a bisector
field. We will use affine transformations to reduce to bisector fields of a form
in which the shape and position polynomials Φ and Ψ become more tractable.
This is helpful because the coefficients of a typical polynomial in our context
need to be treated as variables in the course of proofs and so these equations
can involve large expressions. For example, in the general case, with the coeffi-
cients taken as variables, the position polynomial has fifteen variables, degree
seven and too many monomial terms to list reasonably. Lemma 5.2 shows that
finding the right transformation for the bisector field greatly simplifies these
expressions.

Definition 5.1. A bisector field B is in standard form if the axes X = 0 and
Y = 0 are a B-pair of bisectors in B.
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Every bisector field B is affinely equivalent to a bisector field in standard
form.

This is because there is a B-pair of lines � and �′ in B that are not parallel,
and so after a translation of the plane, we may assume � and �′ meet at the
origin. An invertible linear transformation carries � onto the line Y = 0 and
�′ onto X = 0, and so the image of B under this transformation is a bisector
field in standard form. We will use the following lemma often in what follows.

Lemma 5.2. Let B be a bisector field in standard form with center (h, k). Then
t�t�′ has the same value μ for all B-pairs of bisectors �, �′ distinct from the X
and Y -axes, and

Φ(T,U) = T 2 − μU2 and Ψ(T,U) = 4TU(kT + μhU).

Proof. Let A be the line Y = 0 and A′ the line X = 0, and let B,B′ be a
B-pair of distinct bisectors in B, neither of which is parallel to A or A′. Then

tA = uA′ = vA = vA′ = 0 and uA = tA′ = uB = uB′ = 1.

Let μ = tBtB′ . The vertices of the quadrilateral Q = ABA′B′ are

A · B =
(

− tB′vB

μ
, 0

)
, B · A′ = (0, vB), A′ · B′ = (0, vB′),

B′ · A =
(

− tBvB′

μ
, 0

)
. (1)

Thus the centroid (h, k) of Q, which is the center of B, is given by the equations

−4hμ = tB′vB + tBvB′ and 4k = vB + vB′ .

Substituting all this data into the equations for Ψ and Φ from Section 3 yields

Φ(T,U) = T 2 − μU2 and Ψ(T,U) = 4TU(kT + μhU).

In particular, a B-pair �, �′ of bisectors in B, since these bisectors are Q-
orthogonal and Φ(T,U) = T 2 − μU2, satisfies t�t�′ − μu�u�′ = 0 (see [10,
Definition 2.3]). If � and �′ are not parallel to A or A′, we have u� = u�′ = 1
and hence μ = t�t�′ , and so the value μ is independent of the choice of � and
�′. �

The quantity μ in Lemma 5.2 is independent of the choice of B-pair, as long
as the pair is not the pair of axes. Because of this, we can make the following
definition.

Definition 5.3. The coefficient of a bisector field B in standard form is the
product μ = t�t�′ of the slopes t� and t′� of any B-pair �, �′ of bisectors in B not
parallel to X = 0 or Y = 0.
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The coefficient of the bisector field in Figure 3(a) is −1 since all the B-pairs
in this bisector field are perpendicular. The coefficient of the bisector field
in Figure 3(b) is 1 since the lines in the B-pairs are reflected about the line
Y = X. The next theorem is important for the classifications of bisector field
in Section 8.

Theorem 5.4. Two bisector fields in standard form are the same if and only if
they have the same center and the same coefficient.

Proof. By Corollary 3.4, two bisector fields are the same if and only if they
have the same shape and position polynomials up to scalar multiple. This fact
and Lemma 5.2 imply the theorem. �

The theorem shows the center and coefficient uniquely determine a bisector
field in standard form, and so when seeking to determine whether two bisector
fields are affinely equivalent it is natural to do so using the data of the center
and coefficient, as in the next lemma, which will be important in Section 8 as
well as in the rest of this section.

Lemma 5.5. Let B be a bisector field in standard form with coefficient μ1, and
let 0 �= μ2 ∈ k such that μ1μ2 is a square in k.

If �, �′ is a B-pair of bisectors that are not parallel, then there is an affine
transformation of the plane that sends the lines � and �′ to the lines X = 0
and Y = 0 and sends B to a bisector field in standard form with coefficient μ2.

Proof. Let B1 = B, and let μ1 be the coefficient of B1. Write the slope of � as
[t : u] and that of �′ as [t′ : u′]. Then tt′ −μ1uu′ = 0 since �, �′ is a B1-pair and
μ1 is the coefficient of B1. Also, since � and �′ are not parallel, � is not null
(Lemma 4.4), and so Φ(t, u) = t2 − μ1u

2 �= 0 by Lemma 4.4. By assumption,
there is θ ∈ k such that 1 = θ2μ1μ2. Let L be the linear transformation of the
plane given by

L(x, y) = (μ1θ(tx − uy),−μ1ux + ty) for all x, y ∈ k.

Since the determinant of this linear transformation is μ1θ(t2 − μ1u
2) and no

factor in this product is 0, the transformation L is invertible. Thus the image
of B1 under L is a bisector field whose pairing is induced by that of B1.

To determine the slopes of the lines L(�) and L(�′), observe that since
tt′ − μ1uu′ = 0,

L(u, t) = (0, t2 − μ1u
2) and L(u′, t′) = (μ1θ(tu′ − ut′), 0).

Thus L(�) is parallel to X = 0 and L(�′) is parallel to Y = 0. Let A be the
affine transformation that is the composition of L with the translation that
carries the intersection of L(�) and L(�′) to the origin and hence carries these
two lines to the lines X = 0 and Y = 0. Let B2 be the image of B1 under A.
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Since �, �′ is a B1-pair, the lines X = 0 and Y = 0 form a B2-pair of bisectors
in B2. Thus B2 is a bisector field in standard form.

It remains to show B2 has coefficient μ2. Let �1 and �2 be a B1-pair of
bisectors in B1, and let [t1 : u1] and [t2 : u2] be the slopes of these two lines.
For each i = 1, 2, let

υi = μ1θ(tui − uti) and τi = −uuiμ1 + tti.

Then L(ui, ti) = (υi, τi), and so L(�i) has slope [τi : υi]. Now t1t2−μ1u1u2 = 0
since �1, �2 is a B1-pair of bisectors in B1. Using this fact, along with fact that
μ1μ2θ

2 = 1, a calculation shows

τ1τ2 − μ2υ1υ2 = (μ1u
2 − t2)(μ1u1u2 − t1t2) = 0.

Since this is the case for all B1-pairs �1, �2, it follows that the coefficient of B2

is μ2. �

The following theorem gives a simple criterion for when a bisector field in
standard form can be transformed into one with a specified coefficient.

Theorem 5.6. Let B1 be a bisector field in standard form with coefficient μ1,
and let 0 �= μ2 ∈ k. Then μ1μ2 is a square in k if and only if there is a bisector
field in standard form with coefficient μ2 that is affinely equivalent to B1.

Proof. Suppose

g : k2 → k2 : (x, y) �→ (ax + by + e, cx + dy + f)

is an affine transformation that sends B1 to a bisector field B2 in standard
form with coefficient μ2. Then g sends the line Y = 0 to the line whose slope
is [c : a] and the line X = 0 to the line whose slope is [d : b]. Since the X and
Y -axes are a B1-pair of bisectors in B1, the images of these two lines form a
B2-pair of bisectors in B2. Thus cd − μ2ab = 0. The line that maps onto the
line X = 0 is aX + bY + e = 0 and has slope [a : −b]. Similarly, the line that
maps onto Y = 0 is cX + dY + f = 0 and has slope [c : −d]. These lines form
a B1-pair of bisectors, so ac − μ1bd = 0. With the aim of showing μ1μ2 is a
square in k, we consider solutions a, b, c, d to the equations cd − μ2ab = 0 and
ac − μ1bd = 0. We will use that fact that ad − bc �= 0 since g is invertible.

First suppose b = c = 0. In this case, a �= 0 and d �= 0 and

g(x, y) = (ax + e, dy + f) for all (x, y) ∈ k2.

Let B,B′ be a B1-pair of bisectors in B1 that are not parallel to X = 0 or
Y = 0. Then uB = uB′ = 1 and the image of B under g has slope dtB/a
while the image of B′ has slope dtB′/a. This implies d2tBtB′ = a2μ2 since the
images of B and B′ form a B2-pair. Thus

d2μ1 − a2μ2 = d2tBtB′ − a2μ2 = 0.
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Since d �= 0, this implies μ1/μ2 is a square in k, and so μ1μ2 is a square in
k since μ2 ∈ k. A similar argument shows that if a = d = 0, then μ1μ2 is a
square in k.

Finally, suppose at least one of b and c is nonzero and at least one of a
and d is nonzero. In this case, the equations cd − μ2ba = 0 and ac − μ1bd = 0
imply there is an element θ of the algebraic closure of k such that μ1μ2θ

2 = 1,
a = μ1θd and b = θc. If d = 0, then c �= 0 since ad − bc �= 0. In this case,
since θc = b ∈ k, we have θ ∈ k and hence μ1μ2 = θ−1 ∈ k. Similarly, if c = 0,
then d �= 0 and μ1μ2 = θ−1 ∈ k. The converse of the theorem follows from
Lemma 5.5. �

One motivation for the next definition is that the existence of a bisector
through the center of the bisector field allows for a significant simplification
in calculations. This is because, as we will see later, it is possible to take such
a bisector field and transform it into one whose center is on the Y -axis, thus
introducing an extra zero into the calculations.

Definition 5.7. A bisector field is well centered if there is a bisector passing
through its center.

A linear or quadratic bisector field is always well centered. This is because
in both of these cases, the bisector field contains a pencil of parallel lines and
hence every point in the plane has a bisector through it. Thus the question
of whether a bisector field is well centered is of consequence only for cubic
bisector fields. See Example 5.9 for an example of a bisector field that is not
well centered.

Since the center of a bisector field remains a center under affine transfor-
mation, whether a cubic bisector field is well centered is invariant under such
transformations, and so we can reduce to the case of a cubic bisector field in
standard form. In this case there is a straightforward criterion for when the
bisector field is well centered.

Lemma 5.8. A cubic bisector field in standard form with center (h, k) and coef-
ficient μ is well centered if and only if there is a zero in P1(k) of the polynomial

hT 3 + 3kT 2U + 3hμTU2 + kμU3. (2)

Moreover, every bisector field over the field k is well centered if and only if the
polynomial T 3 + 3T 2 + 3μT + μ has a zero in k for every μ ∈ k.

Proof. By Theorem 3.3 and Lemma 5.2,
a cubic bisector field B is well centered if and only if there is a zero in P1(k)

of the polynomial

hT (T 2 − μU2) − kU(T 2 − μU2) + 4TU(kT + μhU).

This polynomial is the same as that in (2).
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To prove the second assertion, let B be a bisector field. We can assume B
is a cubic bisector field in standard form with center (h, k), since linear and
quadratic bisector fields are always well centered. If h = 0 or k = 0, then B is
well centered since the axes are in B. Otherwise, if h �= 0 and k �= 0, then after a
linear transformation that scales each coordinate we can assume (h, k) = (1, 1).
(A bisector field in standard form remains in standard form when scaled.) By
the first claim, B is well centered if and only if T 3 +3T 2 +3μT +μ has a zero.
�

Thus over an algebraically closed field every cubic bisector field is well
centered. This holds true over a real closed field k also since every cubic over
k has a root in k. As another example, if k has characteristic 3, then every
bisector field is well centered if and only if k is closed under cube roots.

Example 5.9. Not all bisector fields are well-centered. Let k be the field with 7
elements, and let B be the unique (cubic) bisector field in standard form with
h = k = 1 and μ = 2. The polynomial in Lemma 5.8

has no zero in k, and so B is not well centered. Similarly, if k is the field
of rational numbers and B is the unique bisector field in standard form with
h = k = μ = 1, then the polynomial in Lemma 5.8 has one real zero in P1(R)
but no zeroes in P1(Q), and so B is not well centered.

The next theorem shows that for well centered bisector fields, the geometric
problem of classification of bisector fields up to affine equivalence is also an
arithmetical one. The difference between this theorem and Theorem 5.6 is that
in the latter we could only assert affine equivalence with some bisector field
having coefficient μ2, whereas here we get equivalence with every such bisector
field.

Theorem 5.10. Let B1 and B2 be well-centered cubic bisector fields in standard
form with coefficients μ1 and μ2, respectively. Then B1 is affinely equivalent
to B2 if and only if μ1μ2 is a square in k.

Proof. If B1 is affinely equivalent to B2, then μ1μ2 is a square by Theorem 5.6.
Conversely, suppose μ1μ2 is a square in k. Since B1 is well-centered, there is a
line A through the center of B1. Let A′ be the bisector in B1 such that A,A′

is a B1-pair. Since B1 is a cubic bisector field, B1 has no null bisectors, and
so A and A′ are not parallel. By Lemma 5.5, B1 is affinely equivalent to a
bisector field in standard form having the same coefficient as B1 and whose
center (h, k) lies on the Y -axis. Thus h = 0, and since B1 is a cubic bisector
field, Lemma 5.2 implies the center of B1 is not the origin since otherwise the
reduced dual curve of B1 will have degree 1, contrary to assumption. Thus
k �= 0. Since uniformly scaling the plane does not change the coefficient of a
bisector field, B1 is affinely equivalent to the cubic bisector field in standard
form with center (0, 1/2) and coefficient μ1. Applying this same reasoning to
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B2, we can assume without loss of generality that both B1 and B2 have center
(0, 1/2).

The fact that μ1μ2 is a square in k implies there is θ ∈ k such that μ2 =
θ2μ1. Define an affine transformation by

g : k2 → k2 : (x, y) �→ (θ−1x, y).

Then g(0, 1/2) = (0, 1/2). Let B,B′ be a B1-pair of bisectors in B1 that are
not parallel to X = 0 or Y = 0. Then g(B), g(B′) is a g(B1)-pair of bisectors
in the bisector field g(B1). The definition of the map g shows neither line in
this pair is parallel to X = 0 or Y = 0, so since B,B′ is a B1-pair and neither
B nor B′ is parallel to the X or Y -axes, we have μ1 = tBtB′ . Now g(B) has
slope θtB and g(B′) has slope θtB′ . Thus the coefficient of the bisector field
g(B1) that is the image of B1 is

tg(B)tg(B′) = θ2tBtB′ = θ2μ1 = μ2,

and so the image of B1 has center (0, 1/2) and coefficient μ2. Since this image
is in standard form (as g sends the X and Y -axes to themselves), we conclude
from Theorem 5.4 that the image of B1 is B2. �

6. The boundary of a nonlinear bisector field

Let B be a bisector field, and let φ and ψ be as in Definition 4.2. Theorem 3.3
implies the lines of the form

tφ(t, u)X − uφ(t, u)Y + ψ(t, u) = 0, where [t : u] ∈ P1(k) and φ(t, u) �= 0,(3)

are bisectors in B. These lines form a “moving line” in the sense of [2]. The
terminology is motivated by the fact that the map

[t : u] �→ tφ(t, u)X − uφ(t, u)Y + ψ(t, u)

from P1(k) to the set of lines in k2 produces a flow of bisectors in B.

Definition 6.1. The moving bisectors in a bisector field are the bisectors in (3).

The dual points of the moving bisectors are the points on the reduced dual
curve from Definition 4.2:

Proposition 6.2. A line � : tX −uY + v is a moving bisector in a bisector field
B if and only if [t : u : v] is a zero of the reduced dual polynomial for B,

F (T,U, V ) = ψ(T,U) − V φ(T,U).

Proof. The line � is a moving bisector if and only if vφ(t, u) = ψ(t, u) and
φ(t, u) �= 0. The condition φ(t, u) �= 0 is redundant since by the choice of φ
and ψ, these polynomials cannot share a zero in P1(k). Thus � is a moving
bisector if and only if F (t, u, v) = 0. �
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By Theorem 4.6, a bisector field is cubic if and only if every bisector is a
moving bisector. For each of the bisector fields in Figure 3, the moving bisectors
are the midlines of the pairs of parallel lines and the lines that are not parallel
to any other lines.

We define a boundary of a bisector field in terms of the (homogeneous)
discriminant of its moving line of bisectors. As the presence of the discriminant
suggests, the boundary will be the envelope of the moving bisectors. We work
out this connection with the envelope in the next section.

Definition 6.3. The boundary of a nonlinear bisector field B is the curve defined
by the homogeneous discriminant Δ(X,Y ) of the moving bisectors of B, i.e.,
the homogeneous discriminant of

Tφ(T,U)X − Uφ(T,U)Y + ψ(T,U)

viewed as a polynomial in variables T and U with coefficients in k[X,Y ]. If B
is linear, the boundary of B is the center of B.

Theorem 6.4. The boundary of a quadratic bisector field is a nondegenerate
parabola. There is an affine transformation of the plane that carries the bound-
ary onto the parabola Y = X2 and the pencil of null bisectors onto the pencil
of lines parallel to the X-axis.

Proof. Let B be a quadratic bisector field. It suffices to prove the claim in the
second sentence, and for this we may assume B is in standard form. We show
first that h �= 0, k �= 0, μ = k2/h2, the slope of every null bisector is −k/h and

φ(T,U) = T − kh−1U and ψ(T,U) = 4kTU.

Let A be the line Y = 0 and A′ the line X = 0. By Lemma 5.2,

Φ(T,U) = T 2 − μU2 and Ψ(T,U) = 4TU(kT + μhU).

Now (h, k) �= (0, 0) since otherwise Ψ(T,U) = 0, contrary to the fact that B
is not linear. Let B,B′ be a B-pair of distinct bisectors in B such that B is
null. It follows from Lemma 4.4 that B is Q-orthogonal to itself, where Q is
a quadrilateral such that B is the bisector field of Q. Since B is Q-orthogonal
to B′ also, B is parallel to B′. By Lemma 4.4, neither B nor B′ is parallel to
A or A′ since A is not parallel to A′. Since tB = tB′ , the calculation of the
centroid of the quadrilateral Q = ABA′B′ in the proof of Lemma 5.2 shows

−4hμ = tB(vB + vB′) = 4tBk,

so that hμ = −tBk, and hence tBh = −k since μ = tBtB′ = t2B . Since (h, k) �=
(0, 0), this implies neither h nor k is 0. Also, the fact that tBh = −k implies
the slope of B is −k/h and μ = t2B = k2/h2. Moreover,

Ψ(T,U) = 4TU(kT + μhU) = 4kTU(T − tBU).
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Since also
Φ(T,U) = T 2 − μU2 = (T − tBU)(T + tBU),

this implies

ψ(T,U) = 4kTU and φ(T,U) = T + tBU = T − kh−1U.

The moving line from Definition 6.3 is

(TX − UY )(T − kh−1U) + 4kTU

= XT 2 + (4k − kh−1X − Y )TU + kh−1Y U2.

Calculating the homogeneous discriminant of this polynomial viewed as a qua-
dratic polynomial with coefficients in k[X,Y ], we find the boundary of B to be
the curve defined by

Δ(X,Y ) =
(
kh−1X − Y

)2 − 8k(kh−1X + Y − 2k).

Let

f(X,Y ) = kh−1X − Y and g(X,Y ) = −8k(kh−1X + Y − 2k).

Then Δ(X,Y ) = f(X,Y )2−g(X,Y ), so since f and g are linear and −16k2h−1 �=
0, the transformation A given by

A(x, y) = (f(x, y), g(x, y))

is affine and carries the curve Δ onto the nondegenerate parabola Y = X2.
Since

ΔX(h, k) = −8k2h−1 and ΔY (h, k) = −8k,

the line � tangent to Δ at (h, k) has slope [−k : h], which, as established earlier
in the proof, is the slope of the null bisectors. The image of (h, k) under A is
(0, 0) and the image of � is the X-axis, so the theorem follows. �

The boundary of a cubic bisector field is more complicated than that of a
quadratic bisector field:

Lemma 6.5. Let B be a cubic bisector field in standard form. Let (h, k) denote
the center of B, and let μ be the coefficient of B. The boundary of B is

Δ(X,Y ) = 4μ(μ2X4 − 12hμ2X3 − 2μX2Y 2 − 20kμX2Y + 4μ(12h2μ + k2)X2

−20hμXY 2 + 88hkμXY − 32hμ(2h2μ + k2)X + Y 4 − 12kY 3

+4(h2μ + 12k2)Y 2 − 32k(h2μ + 2k2)Y + 64h2k2μ).

Proof. Since B is in standard form, Lemma 5.2 implies the moving line in
Definition 6.3 is

XT 3 + (4k − Y )T 2U + μ(4h − X)TU2 + μY U3.

A calculation shows the homogeneous discriminant Δ(X,Y ) of this cubic,
viewed as a polynomial in T and U , is as in the lemma. �
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As illustrated by Figures 3(a) and 1(b), the boundary of a cubic bisector
field can have singularities, unlike the boundary of a quadratic bisector field.

Theorem 6.6. Suppose k is algebraically closed. If B is a cubic bisector field,
then B is affinely equivalent to a bisector field whose boundary is the rational
quartic curve

X4 + 2X2Y 2 + Y 4 + 10X2Y − 6Y 3 − X2 + 12Y 2 − 8Y = 0.

If char k �= 3, the boundary has three singularities, all of which are ordinary
cusps. If char k = 3, there is only one singularity, and this singularity is a
higher-order cusp.

Proof. Since k is algebraically closed, B is well centered in the sense of Section
5. Let A′ be the bisector passing through the center (h, k) of B, and let A be
the line in B for which A,A′ is a B-pair. Since the bisector field B is cubic, B
contains only moving bisectors and so A is not parallel to A′ by Lemma 4.4.
Since k is algebraically closed, every element in k is a square in k, and so by
Lemma 5.5 we may assume B is in standard form, A is the line Y = 0, A′ is
the line X = 0 and B has coefficient μ = −1. Since the center (h, k) of B lies on
A′, we have h = 0. If k = 0, then the centroid of Q is the intersection of A and
A′. However, using Lemma 5.2, this implies Ψ = 0, in which case the reduced
dual polynomial F is linear, contrary to the assumption that B is cubic. Thus
k �= 0, and

after rescaling by a factor of 1/(2k), we can assume the center (h, k) of B
is (0, 1/2).

Substituting h = 0, k = 1/2 and μ = −1 into the equation for the boundary
from Lemma 6.5 yields the curve Δ in the present theorem.

We next find the singularities of the curve Δ. Since k is algebraically closed
there is θ ∈ k such that 16θ2 = 27. A calculation shows there are polynomials
f1, f2 ∈ k[X,Y ] for which each term of f1 and f2 has degree at least 2 and

Δ1(X, Y ) := Δ

(
X − 4

3
θY + θ, Y − 1

4

)
= Xf1(X, Y ) +

27

4
X2 + 16Y 3(Y − 1)

Δ2(X, Y ) := Δ

(
X +

4

3
θY − θ, Y − 1

4

)
= Xf2(X, Y ) +

27

4
X2 + 16Y 3(Y − 1)

Δ3(X, Y ) := Δ (X, Y + 2) = X4 + 2X2Y 2 + 18X2Y + 27X2 + (Y + 2)Y 3

Suppose the characteristic of k is not 3. At the origin p = (0, 0) the curves
Δ1,Δ2,Δ3 each have a singularity of order 2 and unique tangent line X = 0.
Also, with Op the local ring at p, we have Op/(Δi,X) = Op/(Y 3,X) and so
the intersection multiplicity of the curve Δi and line X = 0 at p is 3. Therefore,
the origin is an ordinary cusp in the sense of [5, Exercise 3.22, p. 82] for each of
the curves Δi. Each Δi is the image of Δ under an affine transformation, and
examining these transformations shows Δ has cusps at (θ,−1/4), (−θ,−1/4)
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and (0, 2). Following [5, Corollary 1, Section 8.3] or [7, Lemma 3.24, p. 55],
the genus g of a plane curve of degree d satisfies

0 ≤ g ≤ (1/2)(d − 1)(d − 2) −
∑

q

(1/2)mq(mq − 1),

where q ranges over the points on the curve and mq is the order of the point
q on the curve. Thus the genus g of Δ satisfies 0 ≤ g ≤ 3 − (1 + 1 + 1) = 0,
which proves that the three singularities listed are the only singularities of Δ,
these singularities are ordinary cusps and Δ is a rational curve.

If char k = 3, then θ = 0 and 2 = −(4−1) mod 3 and so all three singu-
larities listed above coincide with (0, 2), and Δ1 = Δ2 = Δ3 (when the term
(−4/3)θ is replaced by 0). Working with Δ3 and reducing mod 3 yields

Δ3(X,Y ) = X4 + 2X2Y 2 + Y 4 + 2Y 3.

Thus Y = 0 is the unique tangent line to the curve Δ3 at the origin, and the
origin has order 3 on this curve. This tangent line has multiplicity 4 at the
origin. Consequently, the singularity (0, 2) is a higher-order cusp. The genus
g of Δ satisfies 0 ≤ g ≤ 3 − 3 = 0 so Δ is a rational curve having a unique
singularity, which is a higher-order cusp. �

Removing the restriction to an algebraically closed field, we have

Corollary 6.7. If B is a cubic bisector field, then the boundary of B is a rational
quartic curve that has at most three singularities, each of which is a cusp.

Proof. Extending to the algebraic closure k of k, Corollary 4.7 implies the
extension B of B to the plane k × k is a cubic bisector field over k. Applying
Theorem 6.6 to B, the boundary of B is a rational quartic curve that has at
most three singularities, each of which is a cusp. The boundary of B is the set
of k-rational points on the boundary of B, and so the corollary follows. �

7. The boundary as an envelope

We show in this section that the moving bisectors from Definition 6.1 are
precisely the lines tangent to the boundary of the bisector field. The results
of the last section allow us to work with bisector fields whose boundaries have
tractable explicit equations. Because of this, some of the results in this section,
such as Lemma 7.1, can alternatively be verified by brute force using computer
algebra software, but we have opted instead for a more conceptual approach
that uses duality for plane curves, with the caveat that since the base field k
may have positive characteristic, the use of duality requires a little more care.

For a polynomial G(X1, . . . , Xn) ∈ k[X1, . . . , Xn], we denote the partial
derivative of G with respect to Xi as GXi

.
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If G ∈ k[X,Y,Z] is a nonzero homogeneous polynomial, the zero set defined
by G is denoted

V(G) = {[x : y : z] ∈ P2(k) : G(x, y, z) = 0}.

Let B be a nonlinear bisector field, and let F be its reduced dual polynomial,
as in Definition 4.2. Let D(X,Y,Z) be the discriminant of

Tφ(T,U)X − Uφ(T,U)Y + ψ(T,U)Z

viewed as a polynomial with coefficients in k[X,Y,Z]. Then Δ(X,Y ) = D(X,Y, 1)
and D is the homogenization of Δ. Thus D(x, y, z) = 0 if and only if

Tφ(T,U)x − Uφ(T,U)y + ψ(T,U)z

has a repeated root in P1(k). Define rational maps at the nonsingular points
of F and D by

f : V(F ) → P2(k) : [t : u : v] �→ [FT (t, u, v) : −FU (t, u, v) : FV (t, u, v)]
d : V(D) → P2(k) : [x : y : z] �→ [DX(x, y, z) : DY (x, y, z) : DZ(x, y, z)].

Denote by V(F )∗ the Zariski closure of the image of f in P2(k) and by V(D)∗

the Zariski closure of the image of d in P2(k). The next lemma verifies that f
and d define a duality.

Lemma 7.1. If k is algebraically closed and B is a nonlinear bisector field, then

V(F )∗ = V(D), V(D)∗ = V(F ) and
d ◦ f = 1V(F ).

Proof. We first prove V(F )∗ ⊆ V(D). Let [t : u : v] ∈ V(F ). Then ψ(t, u) =
vφ(t, u) and so φ(t, u) �= 0 since φ and ψ do not share a common zero in P1(k).
Let

x = FT (t, u, v) y = −FU (t, u, v) z = FV (t, u, v).

We show D(x, y, z) = 0. To prove this, since D(x, y, z) is the discriminant of

P (T,U):=Tφ(T,U)x − Uφ(T,U)y + ψ(T,U)z,

it suffices to show [t : u] is a repeated root of P (T,U). Let n = deg F . By
Euler’s Formula, nF = TFT + UFU + V FV . Using this and the fact that
vφ(t, u) = ψ(t, u), we have

P (t, u) = φ(t, u)(tx − uy + vz) = nφ(t, u)F (t, u, v) = 0,

and so [t : u] is a root of P , which implies tx − uy = −vz since φ(t, u) �= 0.
To see that this root is repeated, in the case in which u �= 0 it is enough to

show PT (t, u) = 0, and in the case that t �= 0 that PU (t, u) = 0. We show the
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former and omit the analogous proof for the latter. Observe

PT (t, u) = xtφT (t, u) + xφ(t, u) − yuφT (t, u) + zψT (t, u)
= φT (t, u)(xt − yu) + xφ(t, u) + zψT (t, u)
= φT (t, u)(−zv) + xφ(t, u) + zψT (t, u)
= z(ψT (t, u) − vφT (t, u)) + xφ(t, u)
= −zFT (t, u, v) + xφ(t, u) = −zx + xφ(t, u) = 0

(The last equality follows from the fact that z = FV (t, u, v) = φ(t, u).) This
proves that [t : u] is a repeated root of P (T,U), and so D(x, y, z) = 0. Thus
V(F )∗ ⊆ V(D). Since the curve D is by Theorem 6.4 and Corollary 6.7 a
rational, hence irreducible, curve (it is the projective closure of a rational
curve) we obtain V(F )∗ = V(D).

To prove the remaining assertions that V(D)∗ = V(F ) and d ◦ f = 1V(F ),
it suffices by [15, Propositions 1.2 and 1.5] to show F has finitely many flexes.
We show in fact that F has at most three flexes. If B is quadratic, then V(F )
is a parabola by Theorem 6.4 and hence has no flexes, so we assume B is cubic.
Since k is algebraically closed by assumption, we may assume as in the proof of
Theorem 6.6 that B is in standard form with center (0, 1/2) and coefficient −1.
By Lemma 5.2,

Φ(T,U) = T 2 + U2 and Ψ(T,U) = 2T 2U.

Thus F (T,U, V ) is a factor of the dual polynomial of B,

G(T,U, V ) = 2T 2U − V (T 2 + U2).

The Hessian of G is the matrix consisting of the second partials

H =

⎡

⎣
4U − 2V 4T −2T

4T −2V −2U
−2T −2U 0

⎤

⎦ .

The flex points and singularities on the curve G are the points in P2(k) on
the intersection of the curve G and the curve

det(H) = 16U(2T 2 − U2) + 8V (T 2 + U2);

see [7, Theorem 1.35, p. 14]. Eliminating V shows the points on this intersection
are the zeroes of 2U(3T 2−U2) = 0. Two such zeroes are [0 : 0 : 1] and [1 : 0 : 0].
If char k = 3, then these are the only points on the intersection. If char k �= 3
and θ is a root of 3Z2−1, then [θ : 1 : 1/2] and [−θ : 1 : 1/2] are the only other
points on this intersection. The only singularity on the curve G is [0 : 0 : 1],
so all the other points listed here are flex points on the curve G. Thus G, and
hence F also, has at most three flexes. Regardless of whether B is cubic or
quadratic, we have established the curve F has finitely many flexes, and so the
lemma is proved. �
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For the next theorem, which is illustrated by Figures 3(a)–(c), we recall the
moving bisectors from Definition 6.1.

Theorem 7.2. The lines tangent to the boundary of a nonlinear bisector field
B are the moving bisectors in B.

Proof. We first prove the theorem in the case in which k is algebraically closed.
Suppose � : tX − uY + v is a line tangent to the boundary of B at the point
(x, y). To prove that � is a moving bisector, it suffices by Proposition 6.2 to
show F (t, u, v) = 0. Now 0 = Δ(x, y) = D(x, y, 1) and so [x : y : 1] ∈ V(D).
Let f and d be as in Lemma 7.1.

If [x : y : 1] is nonsingular, then [t : u : v] = d([x : y : 1]). By Lemma 7.1,
[t : u : v] ∈ V(D)∗ = V(F ), and so F (t, u, v) = 0 and � is a moving bisector.

It remains to consider the case in which [x : y : 1] is singular. Since in this
case Δ is a singular curve, Theorems 6.4 and 6.6 imply B is a cubic bisector
field and [x : y : 1] is a cusp on D. Hence � : tX −uY +v is the unique tangent
line to D at [x : y : 1]. Since k is algebraically closed, we may assume as in the
proof of Theorem 6.6 that Φ(T,U) = T 2 + U2 and Ψ(T,U) = 2T 2U . Since B
is cubic, Φ = φ and Ψ = ψ, and hence the reduced dual polynomial is

F (T,U, V ) = 2T 2U − V (T 2 + U2).

As shown in the proof of Theorem 6.6, the singularity [x : y : 1] of D must be

[0 : 2 : 1], [θ : −1/4 : 1] or [−θ : −1/4 : 1],

where 16θ2 = 27. Using the ideas from the proof of Theorem 6.6, we will find
the tangent lines at each of these points and show they are moving bisectors.

The argument in the proof of Theorem 6.6 shows the tangent line to Δ at
(0, 2) is the image of the line X = 0 under the transformation of the plane
(x, y) �→ (x, y + 2), and hence is again the line X = 0. This line has dual
point [1 : 0 : 0], and since F (1, 0, 0) = 0, this line is a moving bisector by
Proposition 6.2. The tangent line to Δ at (θ,−1/4) is the image of the line
X = 0 under the transformation

(x, y) �→ (x − (4/3)θy + θ, y − (1/4)),

which is the line (3/2)X+2θY −θ = 0. This line has dual point [3/2 : −2θ : −θ],
which is a zero of F , and hence this tangent line is also a moving bisector by
Proposition 6.2. Similarly, the tangent line to Δ at (−θ,−1/4) is the image of
X = 0 under the transformation

(x, y) �→ (x + (4/3)θy − θ, y − (1/4)),

which is the line (3/2)X − 2θY + θ = 0. The dual point [3/2 : 2θ : θ] of this
line is on F , so this line is also a moving bisector. This proves that the lines
tangent to the boundary of B are moving bisectors in B.

Conversely, still under the assumption that k is algebraically closed, suppose
the line � : tX − uY + v is a moving bisector. We show � is tangent to the
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boundary of B. By Proposition 6.2, F (t, u, v) = 0, and so [t : u : v] is a
nonsingular point on the curve F since the only singularity of this curve is
[0 : 0 : 1]. Thus the rational map f from Lemma 7.1 is defined at [t : u : v].
Let [x : y : z] = f([t : u : v]).

We will show tX − uY + vZ = 0 is tangent to the curve D at [x : y : z].
Let t′X − u′Y + v′Z = 0 be the line tangent to the curve D at [x : y : z].
If [x : y : z] is nonsingular, then d([x : y : z]) = [t′ : u′ : v′], so Lemma 7.1

and the fact that f([t : u : v]) = [x : y : z] implies

[t : u : v] = d(f([t : u : v])) = d([x : y : z]) = [t′ : u′ : v′].

Therefore, the line tX − uY + v = 0 is the same as the line t′X − u′Y + v = 0,
and so in the case in which [x : y : z] is nonsingular, the line tX −uY +vZ = 0
is tangent to the curve D at [x : y : z].

Now suppose [x : y : z] = f([t : u : v]) is a singular point on the curve D.
We show that tX − uY + vZ = 0 is tangent to [x : y : z] also in this case. By
Theorem 6.4 and Corollary 6.7, B is cubic since its boundary has a singular
point, and so as in the proof of Theorem 6.6, the singularities of D are

[0 : 2 : 1], [θ : −1/4 : 1], [−θ : −1/4 : 1], where 16θ2 = 27.

Thus [x : y : z] is one of these points, and the bisector tX − uY + v = 0 goes
through this point. As established earlier, there is a unique tangent line to D at
each of these points, and as shown at the beginning of this proof, each tangent
line to D is a bisector in B. Thus to prove the claim that tX − uY + v = 0
is tangent to D at the singularity [x : y : z], it suffices to show each of these
three singularities has at most one bisector passing through it.

We prove this for the singularity [0 : 2 : 1] and omit the very similar proofs
for the singularities [±θ : −1/4 : 1]. Since the bisector field B is cubic, all
the bisectors in B are moving bisectors, and so by Proposition 6.2, the only
bisectors passing through (0, 2) are of the form t′X − u′Y + v′, where

−2u′Φ(t′, u′) + Ψ(t′, u′) = 0.

Since Φ(T,U) = T 2 + U2 and Ψ(T,U) = 2T 2U , it follows that

2u′((t′)2 + (u′)2) = 2(t′)2u′,

so that u′ = 0. It cannot be that t′ = 0, so since

0 = F (t′, u′, v′) = 2(t′)2u′ − v′((t′)2 + (u′)2) = −v′(t′)2,

we have v′ = 0. This implies t′X − u′Y + v′ = 0 is the line X = 0, and so
there is only one bisector through the singularity [0 : 2 : 1]. This proves that if
f([t : u : v]) = [x : y : z] is a singular point on D, the line tX − uY + vZ = 0
is tangent to the curve D at [x : y : z], which verifies the theorem if k is
algebraically closed.
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Now suppose k is not necessarily algebraically closed. Let Υ = ψ/φ ∈
k(T,U, V ). By what we have established, when extended to the plane k × k,
the moving bisectors

tX − uY + Υ(t, u) = 0,

where [t : u] ∈ P1(k) and φ(t, u) �= 0, are tangent to V(D). Given such
a line, then with (x, y) ∈ k × k the point of tangency with the curve Δ,
since f([t : u : v]) = [x : y : 1] and the polynomials that define the map f
are in k[T,U, V ], it follows that (x, y) is a k-rational point, and so the line
tX − uY + Υ(t, u) = 0 is tangent to the curve Δ in k2.

Conversely, suppose tX − uY + v = 0 is a line in k × k tangent to the
boundary at a point (x, y) ∈ k2. By what we have shown in the first part
of the proof, tX − uY + v is a moving bisector in k × k. Thus φ(t, u) �= 0
and v = Υ(t, u), and to complete the proof we need only verify that the
coefficients t and u can be chosen from k. If (x, y) is nonsingular, then since Δ
has coefficients in k and f([t : u : v]) = [x : y : 1], it follows that the coefficients
of tX − uY + v can be chosen from k. If (x, y) is singular, then over k this
point is a cusp. After a translation, we can assume (x, y) = (0, 0) and hence
v = 0. Since this singularity is a cusp,

Δ(X,Y ) = (tX − uY )e + g(X,Y ),

where e > 1 and g is a polynomial with deg g > e. Since the coefficients of Δ
are in k and taub ∈ k for all a, b ≥ 0 with a + b = e, it follows that

tu−1 = te(te−1u)−1 ∈ k

if u �= 0 and similarly t−1u ∈ k if t �= 0. Thus t and u can be chosen in k,
which completes the proof. �

Since every bisector in a cubic bisector field is a moving bisector, Theo-
rem 7.2 implies

Corollary 7.3. A cubic bisector field is the set of lines tangent to its boundary. �

8. Classification of bisector fields

Using the results of the previous sections, we classify bisector fields up to affine
equivalence. For linear and quadratic bisector fields, we obtain a classification
that is independent of the nature of the field k. The case of a cubic bisector field
is more complicated and depends on the choice of field k. For cubic bisector
fields we obtain classifications when k is an algebraically closed field or a real
closed field. We give some partial results for finite fields, and we leave as an
open question the classification of cubic bisector fields over other fields.
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Theorem 8.1. A set of lines in k2 is a linear bisector field if and only if it is
the union of two pencils of parallel lines and a pencil of non-parallel lines. Up
to affine equivalence, there is only one linear bisector field over k.

Proof. If B is a linear bisector field, then B contains two pencils of parallel
lines by Theorem 4.6 and these two pencils contain all the null bisectors. Since
B is linear, φ(T,U) is a nonzero constant, say c ∈ k, and ψ(T,U) = aT − bU
for some a, b ∈ k where possibly a = b = 0. Thus the reduced dual polynomial
F = ψ − V φ defines a pencil P of lines

ctX − cuY + ψ(t, u) = t(cX − a) + u(cY − b),

where [t : u] ∈ P1(k). Each such line passes through (a, b) and is a moving
bisector in B by Proposition 6.2. Also, any line � : tX − uY + v = 0 in B
that is not in the two pencils of parallel lines satisfies ψ(t, u) = vφ(t, u) by
Theorem 3.3 and Lemma 4.4, and so � is in the pencil P. Thus B is the union
of two pencils of parallel lines and another pencil that consists of the moving
bisectors.

In light of Theorem 4.6, to prove the converse it suffices to show that a
union B of two pencils of parallel lines and a third pencil whose midpoint is a
point p in k2 is a bisector field. Let �1 be the line in the first pencil of parallel
lines that passes through p, and let �2 be the line through p in the second
pencil, so that �1 and �2 meet at p.

Let A,A′ be a pair of distinct parallel lines that share �1 as a midline,
let B,B′ be a pair of distinct parallel lines that share �2 as a midline, and
let Q = ABA′B′. It is straightforward to see that each line in B bisects the
parallelogram Q and that any line that bisects Q occurs in one of the three
pencils that comprise B. Therefore, B = Bis(Q), and so B is a bisector field.
Since any parallelogram can be transformed into any other parallelogram in the
plane, it follows that any two linear bisector fields are affinely equivalent. �

See Figure 3(d) for an illustration of Theorem 8.1 in the case where k is
the field of real numbers. The next theorem shows that, as with linear bisector
fields, the classification of quadratic bisector fields is independent of the nature
of the field k.

Theorem 8.2. A set of lines is a quadratic bisector field if and only if it is
affinely equivalent to the union of the set of lines tangent to the curve Y −X2 =
0 and the pencil of lines parallel to the line Y = 0. Up to affine equivalence
there is only one quadratic bisector field.

Proof. Let B be a quadratic bisector field. By Theorem 6.4, B is affinely equiv-
alent to the quadratic bisector field whose boundary is the parabola Y = X2

and is such that the pencil of parallel lines of this bisector field consists of lines
parallel to Y = 0. By Theorem 7.2, this bisector field consists of lines that are
tangent to the curve Y − X2 = 0 or in the pencil of lines parallel to the line
Y = 0. The converse follows from Theorems 6.4 and 7.2. �
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Figure 3(c) shows the only quadratic bisector field up to affine equivalence
over the reals. The classification of cubic bisector fields is more complicated
than that of linear and quadratic bisector fields, but at least if k is algebraically
closed, the classification is definitive and essentially already done.

Theorem 8.3. Suppose k is an algebraically closed field. A set of lines in k2 is
a cubic bisector field if and only if it is affinely equivalent to the set of lines
tangent to the curve

X4 + 2X2Y 2 + Y 4 + 10X2Y − 6Y 3 − X2 + 12Y 2 − 8Y = 0. (4)

Proof. Apply Theorem 6.6 and Corollary 7.3. �

We show in the next theorem that over a real closed field, the cubic case
splits into two cases, the first being the well-known Steiner deltoid. The en-
velopes in these two cases, as shown in Figures 3(a) and (b), are fundamental
singular curves and occur for example as cross-sections of the bifurcation sets
for a hyperbolic umbilic and an elliptical umbilic, respectively, two of Thom’s
seven elementary catastrophes; see [16, Chapter 4].

Theorem 8.4. Suppose k is a real closed field. If B is a cubic bisector field,
then B is affinely equivalent to either the set of lines tangent to the deltoid in
(4) or the cuspidal curve

X4 − 2X2Y 2 + Y 4 − 10X2Y − 6Y 3 + X2 + 12Y 2 − 8Y = 0.

Proof. Since k is real closed, every bisector field B is well centered, and, as in
the proof of Theorem 6.6, every cubic bisector field is affinely equivalent to
a bisector field in standard form with center (0, 1/2). By Theorem 5.10, two
cubic bisector fields B1 and B2 in standard form with coefficients μ1 and μ2,
respectively, are affinely equivalent if and only if μ1 and μ2 have the same sign.
Thus every bisector field is affinely equivalent either to the cubic bisector field
in standard form with coefficient 1 and center (0, 1/2) or to the cubic bisector
field in standard form with coefficient −1 and center (0, 1/2). By Lemma 6.5,
the boundary in the former case is the cardioid in the theorem; in the latter
case it is the deltoid. The theorem follows now from Corollary 7.3. �

We are only able to give partial results for other types of fields.

Example 8.5. If k is the field of rational numbers, then k has infinitely many
bisector fields up to affine equivalence. This is because Theorem 5.6 implies
that if for each prime integer p, Bp is a bisector field in standard form with
coefficient p, then for any two distinct primes p1 and p2, the bisector fields Bp1

and Bp2 are not affinely equivalent.

The case of finite fields is more complicated, and we give a few observations
about such fields in the following examples.
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Example 8.6. If k is a finite field (as always, of odd characteristic), then up to
affine equivalence there are exactly two well-centered cubic bisector fields. Let
B1 and B2 be well-centered bisector fields over k. Without loss of generality,
B1 and B2 are in standard form. Let μ1 and μ2 denote the coefficients of B1

and B2, respectively. Since B1 and B2 are well centered, Theorem 5.10 implies
B1 and B2 are affinely equivalent if and only if μ1μ2 is a square in k. Since
k is a finite field, this is the case if and only if μ1 and μ2 are both squares
or neither is a square. Thus there are two equivalence classes of well-centered
cubic bisector fields.

Example 8.7. Suppose k is a finite field, and let B1 and B2 be bisector fields
in standard form with coefficients μ1 and μ2, respectively. If either (a) 3 is a
square in k and μ1 and μ2 are not squares or (b) 3 is not a square and μ1 and
μ2 are squares, then B1 and B2 are well centered and affinely equivalent. Let
(hi, ki) be the center of Bi. Lemma 5.8 implies Bi is well centered if and only
if the homogeneous polynomial

fi(T,U) = hiT
3 + 3kiT

2U + 3hiμiTU2 + kiμiU
3

has a zero in P1(k); if and only if fi is reducible over k. The polynomial fi(T,U)
has a zero in P1(k) if and only if the cubic fi(T, 1) or the cubic fi(1, U) has a
zero in k; if and only if fi(T, 1) or fi(1, U) is reducible. We claim first fi(T, 1)
is reducible over k, and to show this it suffices by a theorem of Dickson [4,
Theorem 1] to prove the discriminant of f is not a square in k. The discriminant
of fi(T, 1) is −108μi(h2μi − k2)2 and hence is a square if and only if 3μi is
a square. Since k is a finite field, conditions (a) or (b) guarantee 3μi is not a
square for i = 1, 2. Thus B1 and B2 are well centered. Since in case (a) or (b),
μ1μ2 is a square, Theorem 5.10 implies B1 and B2 are affinely equivalent.

The linear and quadratic bisector fields are classified in Theorems 8.1
and 8.2. Theorems 8.3 and 8.4 classify the cubic bisector fields over alge-
braically closed fields and real closed fields, and the preceding examples give
partial information for a potential classification over finite fields. This raises
the following question.

Question 8.8. Given a field k of characteristic �= 2, what are the affine equiv-
alence classes of the cubic bisector fields over k?

Up to affine equivalence we can restrict to cubic bisector fields in standard
form. These bisector fields are entirely determined by their center (h, k) and
coefficient μ. Question 8.8 therefore can be interpreted as seeking an equiv-
alence relation on triples (h, k, μ) that encodes the affine equivalence of the
corresponding bisector fields. In light of Theorem 7.3, another way to put this
question is:

Question 8.9. Given a field k of characteristic �= 2, what are the affine equiv-
alence classes of the system of curves Δ in Lemma 6.5, where h, k, μ ∈ k and
μ �= 0.
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It is straightforward to see that every cubic bisector field is affinely equiv-
alent to a bisector field in standard form with center (0, 1/2) or (1, 1), and so
the focus in this question can be placed on μ.
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[6] Füredi, Z., Palasti, I.: Arrangements of lines with a large number of triangles. Proc.
Amer. Math. Soc. 92, 561–566 (1984)
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