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Abstract
Spiking neural networks (SNNs) can do inference with low power consumption due to their spike sparsity. Although SNNs

can be combined with neuromorphic hardware to achieve efficient inference, they are often difficult to train directly due to

discrete non-differentiable spikes. As an alternative, ANN-SNN conversion is an efficient way to achieve deep SNNs by

converting well-trained artificial neural networks (ANNs). However, the existing methods commonly use constant

threshold for conversion. A high constant threshold value prevents neurons from rapidly delivering spikes to deeper layers

and causes high time delay. In addition, the same response for different inputs may result in information loss during the

information transmission. Inspired by the biological adaptive threshold mechanism, we propose a multistage adaptive

threshold (MSAT) method to alleviate this problem. Instead of using a single, constant value, the threshold is adjusted in

multistages, adapting to each neuron’s firing history and input properties. Specifically, for each neuron, the dynamic

threshold is positively correlated with the average membrane potential and negatively correlated with the rate of depo-

larization. The adaptation to membrane potential and input allows a timely adjustment of the threshold to fire spikes faster

and transmit more information. Moreover, we analyze the spikes of inactivated neurons error, which is pervasive in early

time steps. We also propose spike confidence accordingly to measure confidence about the neurons that correctly deliver

spikes. Such spike confidence in early time steps is used to determine whether to elicit the spike to alleviate the spikes of

inactivated neurons error. Combined with the proposed methods, we examine the performance on CIFAR-10, CIFAR-100,

and ImageNet datasets. We also conduct sentiment classification and speech recognition experiments on the IDBM and

Google speech commands datasets, respectively. Experiments show that our methods can achieve near-lossless and lower

latency ANN-SNN conversion. In summary, we build a biologically inspired multistage adaptive threshold for converted

SNN, with comparable performance to state-of-the-art methods while improving energy efficiency.

Keywords Spiking neural networks � ANN-SNN conversion � Multistage adaptive threshold � Spike confidence �
Low latency

1 Introduction

Artificial neural networks (ANNs) have been widely used

in speech recognition, image processing, and other fields

[1–3]. However, with network structures becoming more

complex, they often require large amounts of computa-

tional resources. In addition, the current ANNs computing

paradigm differs from the human brain’s mechanism,

which communicates by transmitting sparse spike trains.

Spiking neural networks (SNNs) work similarly to the

brains and transmit the spike sequence to the postsynaptic

neurons. The sparsity of spikes and the event-based com-

putational paradigm enables SNN to have low power

consumption characteristics.

SNNs have the potential for efficient inference when

combined with neuromorphic hardware [4–6]. In addition,

SNNs exhibit inherent efficiency in processing temporal

and spatial data due to their diverse coding mechanisms

and event-driven characteristics. However, because the

spikes are not differentiable, it is challenging to train SNNs

directly. To solve this problem, some algorithms based on

surrogate gradients (SG) [7–16] and spike-timing-depen-

dent plasticity (STDP) [17–20] have been proposed.

However, it is still challenging to train deeper SNNs with

Xiang He and Yang Li have contributed equally to this work.

Extended author information available on the last page of the article

123

Neural Computing and Applications (2024) 36:8531–8547
https://doi.org/10.1007/s00521-024-09529-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8565-549X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09529-w&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09529-w


complex network structures from scratch, resulting in a

massive gap in performance between SNNs and ANNs

[9, 16, 21, 22]. To bridge the performance gap between

SNNs and ANNs, methods of converting well-trained

ANNs to SNNs have been proposed. The fundamental

principle of such conversion is that firing rates of spiking

neurons could approximate their counterparts activation

(ReLU) in ANNs with sufficient time steps [23].

Although there has been a lot of work dedicated to

achieving efficient SNNs by converting ANNs [23–30],

they all face the same challenge: that is, the large time

delay of the converted SNNs and the loss of information

during the conversion process. For the first challenge, i.e.,

the large time delay, we argue that this is due to the fact

that in most existing conversion schemes, the thresholds of

neurons in the same layer are identical and equal to the

maximum activation value of that layer in the ANN. In this

case, spatially, the neuron needs to accumulate more

membrane potential to exceed a preset threshold and

deliver the spike, which makes the deeper neuron need to

wait longer to receive the spike from the prior layer, and

temporally, the neuron delivers the same information when

firing the spike at different time steps, regardless of how

much the membrane potential exceeds the threshold,

causing an information loss. While in the biological

counterpart of the spiking neuron, the spiking thresholds

exhibit large variability, which has a significant impact on

the transmission of input information to spiking neurons

[31]. The threshold value is not fixed even for the same

neuron. The threshold variability can be considered as an

inherent characteristic of biological neurons, which exhi-

bits self-adaptation to the membrane potential over a short

time scale [32–36]. It also enhances coincidence detection

properties of cortical neurons [32, 36] as mentioned in

Fontaine et al. [31]. Therefore, from the biological plau-

sibility perspective, the different threshold across neurons

and time steps is a genuine feature of neurons and pro-

foundly impacts the input coding.

For the second challenge, i.e., the conversion error due

to the loss of information during the conversion process,

we find that this is due to a class of errors that are prevalent

in networks, which we define as spikes of inactivated

neurons error, and the analysis and resolution of which is

often neglected by previous work. The purpose of this

paper is to overcome and mitigate these two challenges.

First, to reduce the time delay and obtain SNNs with low

latency, motivated by the above biological mechanisms, we

propose a multistage adaptive threshold (MSAT) for ANN-

SNN conversion to effectively take advantage of the spatial

information brought by different neurons in the same layer

and the temporal information brought by the accumulation

of membrane potentials over time steps. ‘‘Multi-stage’’

implies that the process of threshold updating occurs in

multiple continuous time steps. This multistage process

ensures a more fine-grained and adaptive approach to spike

firing that more closely mimics biological neuronal sys-

tems’ complex, dynamic nature than a constant threshold.

It allows for more efficient and timely threshold adjust-

ments, allowing neurons to fire spikes rapidly and transmit

more information. For each neuron, the dynamic threshold

is related to the firing history, i.e., positively correlated

with the preceding membrane potential, and to the input

characteristics, i.e., negatively correlated with the rate of

depolarization. Then, for the loss of information in the

conversion process, we analyze the conversion error layer-

to-layer and show that the spikes of inactivated neurons

(SIN), i.e., the misfired spikes which are due to the tran-

sient characteristics of the spikes, are generated in the early

time steps and cannot be eliminated in later time steps, thus

causing degradation of accuracy. According to statistical

analysis of the error introduced by SIN in each layer, we

propose spike confidence to measure the confidence about

the correct neurons rather than misfired neurons and use

spike confidence only in early time steps to determine

whether to elicit the spike. Finally, we conduct experiments

on standard object classification benchmarks and non-vi-

sual domains such as natural language processing and

speech to validate the effectiveness and universality of the

proposed method.

Our major contributions can be summarized as follows:

• Inspired by widely existing mechanisms in the nervous

system, we propose the multistage adaptive threshold

(MSAT) for converted SNNs. It adjusts the threshold

value based on the network’s activity and firing history.

This allows neurons to generate spikes more promptly,

reducing the time delay for spike propagation to deeper

layers.

• We formulate the layer-wise conversion error and

derive the spikes of inactivated neurons error. Accord-

ingly, we propose spike confidence to alleviate SIN

error. Each spike is given a confidence according to the

statistical SIN error, and the spike confidence determi-

nes whether to fire a spike rather than fire directly.

• We conduct comprehensive experiments and ablation

studies to show that the multistage adaptive threshold

and spike confidence measurement facilitate faster

transmission of information and reduce information

loss in spike trains. Experimental results show that our

proposed method has a comparable performance with

the state of the art methods but consumes less energy.
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2 Related work

The conversion methods use the well-trained ANN and

map it to an equivalent SNN. The studies begin with Pérez-

Carrasco et al. [37], then Diehl et al. [23] propose the

conditions that SNN conversion should satisfy, namely the

firing rate in integrate-and-fire (IF) neuron [38] can

approximate ReLU activation value. A mathematical

statement of the feasibility of conversion is expressed

firstly in Rueckauer et al. [39]. Since Sengupta et al. [24],

the converted SNNs have begun going deeper and doing

classification tasks in larger datasets. However, perfor-

mance degradation is still the main problem. A more effi-

cient reset method named soft-reset, which uses a reset by

subtraction mechanism, is used in SNN conversion [39–41]

encode activation value of neurons in the ANN as time-to-

first-spike in the converted SNN. Although the perfor-

mance of the converted SNN is improved, the cost of high

time delays also comes. To reduce the high latency of the

conversion SNN, some researchers propose more efficient

ANN activation functions or SNN neuron models, such as

Ding et al. [42] propose Rate Norm Layer to replace the

ReLU activation function in ANN training for better per-

formance. Yu et al. [25] construct the deep SNN with

double-threshold and the augmented spike. Li and Zeng

[27] use burst mechanism and propose LIPooling to solve

the conversion error caused by the MaxPooling layer.

Some other works focus more on the correspondence

between ANN and SNN to reduce the conversion error

from the perspective of analyzing the conversion error. For

example, Bu et al. [26, 30] consider membrane potential

initialization and quantization of the activation function to

obtain faster SNN. Deng and Gu [43] divide conversion

into floor and clip error from a new quantization perspec-

tive, Li et al. [28] further optimize the conversion error.

Meng et al. [44] analyze deviation error and convert very

deep ANNs to SNNs. The ‘‘deviation error’’ is similar to

SIN error, different from prior work, we will then analyze

this statistically to mitigate this error at the early time step.

Nonetheless, most previous works have been limited to the

fixed threshold and ignored utilizing the individual neurons

to transmit information effectively. In summary, compared

to a constant threshold, a multistage threshold is more fine-

grained but has not been explored in depth for deep spiking

neural networks. Only a few existing studies have studied

the dynamic threshold rules within SNNs. In the realm of

converted SNNs, Li et al. [28, Kim et al. [29] take

threshold variation into consideration while they still use

the two-stage or heuristic method for SNNs, which require

careful design or extensive search. Wu et al. [45] also use a

similar dynamic threshold in converted SNNs, but it is not

comprehensive enough in terms of the biological

perspective. In the realm of SNN for robot control, Ding

et al. [46] exploit the biological dynamic threshold mech-

anism, which is similar to our approach. Nevertheless, the

focus of the two works is different: Ding et al. [46] focus

on achieving a steady-state SNN for specific tasks such as

robot obstacle avoidance and continuous control. In con-

verted SNNs, however, we are more concerned with the

timely transmission of information, i.e., the variable

thresholds and the variation itself improve network per-

formance. Our work aims to contribute a bioinspired

multistage threshold for converted SNNs to reduce latency

while analyzing and reducing SIN errors that have received

less attention in other work.

3 Conversion errors analysis

In this section, we first review the neuron models of ANNs

and SNNs. Then, we analyze the conversion errors with

constant threshold and adaptive threshold separately. The

symbols used in this paper are summarized in Table 1.

3.1 Neuron model

In ANN, the activation value ali (after ReLU) of neuron i in

layer l can be computed as

ali ¼ max 0;
XMl�1

j¼0

Wl
ija

l�1
j þ bli

 !
; ð1Þ

where l 2 f1; � � � ; Lg indicates l-th layer in a network with

L layers; Wl
ij is the weight connection between neuron i in

layer l and neuron j in layer l� 1; bli means neuron i bias in

layer l and is constant all the time; we omit the bias for

convenience in the following description. The number of

neurons in layer l is Ml, and activation value ali starts from

l ¼ 0 and a0 ¼ x for the direct input.

In SNN, one of the most widely adopted models is

integrate-and-fire (IF) neuron, the membrane potential

before firing at time step t, Vl
iðtÞ is a sum of the membrane

potential at time step t � 1 and input in current time step.

When Vl
iðtÞ exceeds a certain threshold, it emits an output

spike and resets the membrane potential. Another way of

membrane potential update is through a soft-reset mecha-

nism, which subtracts the threshold in Vl
iðtÞ rather than

resetting the membrane potential to Vreset. We used Vl
i ðtÞ to

denote membrane potential after firing, then the mathe-

matical form is as follows:
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Vl
i ðtÞ ¼ Vl

i ðt � 1Þ þ Vl�1
th

XMl�1

j¼0

Wl
ijH

l�1
t;j � Vl

thH
l
t;i; ð2Þ

where Hl
t;i is the elicited spike of neuron i in layer l at time

step t. Here, we use Hl
t;i to represent Hl

iðtÞ for simplicity.

Hl
t;i ¼ H Vl

i ðt � 1Þ þ zliðtÞ � Vl
th

� �
;

HðxÞ ¼
1; if x� 0

0; else.

� ð3Þ

where zliðtÞ is the input of neuron i in layer l and time t:

zliðtÞ ¼ Vl�1
th

XMl�1

j¼0

Wl
ijH

l�1
t;j : ð4Þ

3.2 Constant threshold conversion error

The main idea in ANN-SNN conversion is using firing rate

rliðtÞ to approximate activation value ali. Here, we give an

analytical explanation for approximation process.

The conversion error comes from two-part: converting

ANN to SNN directly, resulting in quantization error and

clip error eli;QC; the other is transient characteristic of

neurons and irregular elicited spike, resulting in spikes of

inactivated neurons [47] error eli;SIN , as shown in Fig. 1. In

the subsequent error analysis, we assume that the firing rate

of the preceding layer fully represents the activation value,

which means rl�1
i ¼ al�1

i . Then, the conversion error in

layer l could be the following equation:

eli ¼ rli � ali ¼ eli;QC þ eli;SIN: ð5Þ

3.2.1 Quantization and clip error

For Eq. 2, it can be written in the following iterable form

Vl
i ðtÞ � Vl

i ðt � 1Þ ¼ Vl�1
th

XMl�1

j¼0

Wl
ijH

l�1
t;j � Vl

thH
l
t;i; ð6Þ

By accumulating Eq. 6 in time steps from 0 to T and

dividing T simultaneously on the left and right sides of the

equation, we have:

Vl
i ðTÞ � Vl

i ð0Þ
T

¼
PMl�1

j¼0 Wl
ij

PT
t¼0 V

l�1
th Hl�1

t;j

T

�
PT

t¼0 V
l
thH

l
t;i

T

ð7Þ

under the condition that the initial membrane potential

Vl
i ð0Þ is zero, we can derive the firing rate rliðTÞ relation-

ship layer by layer,

rliðTÞ ¼
XMl�1

j¼0

Wl
ijr

l�1
j ðTÞ � Vl

i ðTÞ
T

; ð8Þ

where rliðTÞ ¼
PT

t¼0 V
l
thH

l
t;i=T . When Vl

th is larger than the

maximum activation value, Vl
i ðTÞ will be less than Vl

th.

Thus, the residual membrane potential cannot be output,

which is why information transmission suffers a loss.

Because of the discreteness of the time steps, the mean

firing rate can be described as a step floor function and

cannot precisely approximate the continuous ReLU func-

tion, known as quantization error or flooring error. For

example, as shown in Fig. 1, activation value 0.42 should

be accurately represented by 42 spikes within 100 time

steps, while 4.2 spikes cannot be achieved in discrete 10

time steps because the number of spikes should be an

integer. This can also be represented by making a variation

to Eq. 8

T

Vl
th

rliðTÞ ¼
PMl�1

j¼0 Wl
ijr

l�1
j ðTÞT

Vl
th

� Vl
i ðTÞ
Vl
th

; ð9Þ

The left term in Eq. 9 is the number of fired spikes, i.e.,
T
Vl
th

rljðTÞ ¼
PT

t¼0 H
l
t;j is an integer. In the case where the

residual membrane potential Vl
i ðTÞ is less than the thresh-

old Vl
th, the

Vl
i ðTÞ
Vl
th

value ranges from 0 to 1. Therefore, the

right hand side of the formula should take a round-down

for the first term, i.e.,

Table 1 Summary of notations

in this paper
Symbol Definition Symbol Definition

l Layer index Ml Neuron numbers in layer l

i Neuron index W Weight connection

t Current time step a ANN activation value

T Total time step Vl
iðtÞ Membrane potential before firing

Vth Constant threshold Vl
i ðtÞ Membrane potential after firing

VthðtÞ Dynamic threshold p Spike confidence

Hl
t;i

Spike of i-th in layer l at time step t e Conversion error in total time step

c Spike filter E Early time step
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rliðTÞ ¼
Vl
th

T

PMl�1

j¼0 Wl
ijr

l�1
j T

Vl
th

$ %
; ð10Þ

where rl�1
j means rl�1

j ðTÞ for simplifying the statement and
PMl�1

j¼0 Wl
ijr

l�1
j is ali, and b�c denotes the floor function.

Suppose the voltage threshold is set smaller than the

maximum activation value. In that case, when the Vl
iðtÞ

exceeds the threshold, the emitted spike will not transmit

effective information to distinguish membrane potential

above the threshold, which is known as clip error. Setting

the threshold to maximum activation value can avoid this

but suffers a notable latency.

Considering the clip operation, the actual firing rate can

be expressed as

rliðTÞ ¼ clip
Vl
th

T

PMl�1

j¼0 Wl
ijr

l�1
j T

Vl
th

$ %
; 0;Vl

th

 !
; ð11Þ

the clipðx; 0;Vl
thÞ is a mathematical operation that con-

strains x value within 0 and Vl
th.

Equation 11 shows that even assuming the same inputs

in the previous layer, the average firing rate of the SNN

still differs from the activation values in the ANN due to

discrete quantization and clip, thus generating quantization

and clip errors eli;QC .

3.2.2 Spikes of inactivated neurons error

Inactivated neurons refer to the neurons whose activation

value counterparts in ANN are negative. Theoretically,

they should not fire spike in all time steps to achieve the

ReLU function that filters the negative value. However,

there will be a fraction of inactivated neurons that generate

misfired spikes due to the transient characteristics of the

spikes. We use R to denote this type of neuron, then it can

be expressed as R ¼ i

����
PT

t¼0 H
l
t;i [ 0; aliðtÞ\0

� �
. The

spikes mistakenly fired by neurons in R, which we define

as spikes of inactivated neurons (SINs). The SIN in the ith
neuron of layer l, SINl

i can be expressed by the formula as

SINl
i ¼

XT

t¼0

Hl
t;i; i 2 R: ð12Þ

Once neurons in R elicit spikes, the corresponding mean

firing rate rli will be larger than zero. As shown in Fig. 1,

the adjacent weights of the red neuron are respectively 0.5,

0.5, and �0.5, then the simulation activation value is

�0.01, meaning that no spike should have been fired. A

spike fired by mistake results in SIN error. The SIN error of

ith neuron of layer l, i.e., eli;SIN can be expressed as

eli;SIN ¼
PMlþ1

j¼0

PT
t¼0 W

lþ1
ji Hl

t;i

T
� 0; i 2 R: ð13Þ

Recall thatWlþ1
ji represents the weight connection between

neuron i in layer l and neuron j in layer lþ 1. Thus, Eq. 13

represents that the spikes of inactivated neuron from the

current layer are passed on to the next layer by multiplying

the weights. And it would have been expected that the

spikes should not have been fired.

Since SIN mean undesired error existed in spike, SIN

lead to inaccurate coding of signals and degradation of the

accuracy. By observing outputs of each neuron at different

time steps, we find that the neurons with SIN usually fire at

an early stage and then keep silent at a later stage during

Fig. 1 A multilayer spiking neural network within 10 time steps for

demonstrating conversion error. The red box shows the quantization

error and clip error, caused by the discrete and insufficient time steps.

The green box shows the spikes of inactivated neurons error, caused

by the dynamic transients of the neurons. The MP nodes in the last

layer are IF neurons that only accumulate membrane potential without

firing, using membrane potential as the network output
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the conversion process. We count neurons with SIN pro-

portion in each layer, as shown in Fig. 2. It shows that

neurons with SIN are prevalent and take a larger proportion

in the deeper layer. Moreover, Most SIN appear in the early

time steps. For example, for VGG16 on CIFAR-100 with a

total of 256 time steps, the proportion of neurons with SIN

in 32 time steps is approximately equal to the proportion of

256 time steps. In other words, most of the SIN in the entire

256 time steps occur within 32 time steps, which means

that 32 time steps are representative enough to resolve the

SIN error. This is why we choose to process SIN at an early

time step.

3.3 Adaptive threshold optimization error

In this part, we demonstrate that when the threshold is a

function of time step t, spike trains are able to transmit the

equivalent or more efficient information than the constant

threshold.

With the threshold varied with time step, Eq. 2 can be

rewritten as follows:

Vl
i ðtÞ ¼ Vl

i ðt � 1Þ þ
XMl�1

j¼0

Vl�1
th;j ðtÞWl

ijH
l�1
t;j � Vl

th;iðtÞHl
t;i:

ð14Þ

The firing rate rliðTÞ during time step T is computed as
PT

t0¼0 V
l
th;iðt0ÞHl

t0;i=T , which means Eq. 8, the firing rate

relationship in the higher layer still exists. On this basis, the

residual neuron membrane potential Vl
i ðTÞ can be appro-

priately adjusted, so the spike information could be more

efficient and the conversion latency could be shorten. The

optimization target in threshold adaptation is

min
Vl
th;i

ðTÞ
o� o0ð Þ;

s:t: o ¼ Vl
th

T
clip

PMl�1

j¼0 Wl
ijr

l�1
j T

Vl
th

$ %
; 0; T

 !

þ
P

j2R
PT

t¼0 W
l
ijH

l
t;j

T
;

o0 ¼ ReLU
XMl�1

j¼0

Wl
ijr

l�1
j

 !
:

ð15Þ

There is no closed-form solution to the above problem, Li

et al. [28] use grid search to heuristically find the final

solution. A trivial solution is to make Vl
th;i ¼

PMl�1

j Wl
ijr

l�1
j ,

which means the voltage threshold equals to input value for

each neuron. With this solution, ANN can be converted to

SNN only one time step. However, such SNN elicits spikes

every time step and loses spike sparsity, so it is unrea-

sonable and makes no sense, thus should not be used. In the

next section, we will give a biologically rational method.

4 Methods

4.1 Multistage adaptive threshold

Based on the above analysis, the adaptive threshold, which

is multistage and varies with inference time, could better

facilitate information from different time steps. For each

neuron, the adaptive threshold varies with firing history and

input properties. The adaptive threshold Vl
th;iðt þ 1Þ at time

step t þ 1 can be described as

Fig. 2 Neurons with SIN ratio in each layer of VGG16 and ResNet20

in CIFAR-100. Taking the total simulation time steps T=256 as an

example, it can be seen that the proportion of neurons with SIN in the

total neurons of this layer gradually increases with time step. More

importantly, neurons with SIN in each layer are mainly activated in

early time steps. In addition, neurons in deeper layers have a higher

proportion of SINs
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Vl
th;iðt þ 1Þ ¼ S smpV

l
th mp;iðtÞ þ srdV

l
th rd;iðt þ 1Þ

� �
;

ð16Þ

where smp and srd are the time constant of the dynamic

tracking threshold Vl
th mp;iðtÞ and dynamic evoked thresh-

old Vl
th rd;iðt þ 1Þ separately. S stands for sigmoid function.

Specifically, the dynamic tracking threshold is positively

correlated with the average preceding membrane potential

and the dynamic evoked threshold is negatively correlated

with the rate of depolarization. The first term in Eq. 16

involves computing Vl
th mp;iðtÞ, which is an intermediate

result for the threshold calculation. The adaptive threshold

calculation at time step t þ 1 depends on the result of

Vl
th mp;iðtÞ at the previous time step t. The second term

Vl
th rd;iðt þ 1Þ is another intermediate result for the

threshold. Finally, the two intermediate results are weigh-

ted and combined to obtain the final Vl
th;iðt þ 1Þ.

Figure 3a gives the multistage adaptive threshold sche-

matic diagram: when a neuron receives current input, its

threshold will take average membrane potential and rate of

depolarization into consideration, then the threshold will

vary with these two factors. Finally, it gives a changed

threshold as the adaptation to membrane potential and rate

of depolarization.

4.1.1 Dynamic tracking threshold

The dynamic tracking threshold (DTT) reflects the spiking

threshold that varies with firing history. In Fontaine et al.

[31], the DTT is a similar first-order kinetic equation; here,

we use the steady-state threshold for fitting our SNNs. Let

us use Vl
m;iðtÞ to denote the temporal running average

membrane potential at time step t in layer l neuron i, then

DTT can be described as follows

Vl
th mp;iðtÞ ¼a Vl

i ðtÞ � Vl
m;iðtÞ

� �

þ Vl
T þ kaln 1þ e

Vl
i
ðtÞ�Vl

m;i
ðtÞ

ki

 ! ð17Þ

where a; ka; ki are all time constant, Vl
T is the parameter to

optimize in biological model [31]. In our implementation,

Vl
T is set to a fixed value, which we set to a negative

constant threshold. Vl
i ðtÞ is residual membrane potential.

These parameters above together determine the curvature.

Dynamic tracking threshold Vl
th mp;iðtÞ varies with

membrane potential Vl
i ðtÞ, which is a smooth curve because

the third term in Eq. 17 introduces nonlinearity to the

equation. As shown in Fig. 3a, the slopes of the DTT curve

at the left and right sides of the inflection point are

approximately a and ka
ki
þ a, respectively.

Equation 17 shows that when the residual membrane

potential increases, the threshold correspondingly increases

and vice versa. The function of DTT is equivalent to a

high-pass filter on the membrane potential and there are

several benefits that come along with such DTT scheme;

for example, small voltage fluctuation generated by a small

current input will have no effect on the output spike if it is

smaller than the amplitude of the threshold adaption. In the

early time step, the neuron receives the synaptic current

and adjusts the threshold according to the residual mem-

brane potential, and if it receives a positive total input

current but has not yet delivered a spike, the threshold is

raised according to Eq. 17. Accordingly, the number of

spikes decreases and the probability of spikes of inacti-

vated neurons is reduced, thus alleviating the SIN error.

4.1.2 Dynamic evoked threshold

Dynamic evoked threshold (DET) is a concept that refers to

the spiking threshold of a neuron, which changes based on

the characteristics of the input it receives. Research con-

ducted by Azouz and Gray [32] demonstrates that the

voltage threshold of a neuron varies inversely with the

preceding rate of depolarization, which is the change in

membrane potential over time dVm=dt. They presented this

relationship by plotting a scatter graph. In the case of

integrate-and-fire (IF) neurons, we use the variation of

membrane potential before firing to express the preceding

rate of depolarization thus DET can be expressed as

Vl
th rd;iðt þ 1Þ ¼ srde

�
Vl
i
ðtþ1Þ�Vl

i
ðtÞð Þ

C ; ð18Þ

where Vl
iðtÞ denotes membrane potential before firing and

makes a distinction with Vl
i ðtÞ, which denotes residual

membrane potential after firing. C is the time constant

representing the sensitivity to input membrane potential

variation. The threshold decreases with input value expo-

nentially. The equation for DET in IF neurons incorporates

the time constant and exponential decay to calculate the

threshold potential for the neuron at the next time step.
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4.1.3 MSAT with DET and DTT

Algorithm 1 Conversion from ANN to SNN: Multistage adaptive threshold

MSAT, as shown in Fig. 3a, shows that threshold-

adapted neurons are insensitive to slow changes and

selective to fast input variations with DET and DTT. In

other words, adaptive thresholds filter out slow voltage

fluctuations. The slow voltage fluctuations may come from

the unexpected spikes of inactivated neurons, so it relieves

the SIN error partly and reduces the total spike number thus

promoting energy efficiency. On the other hand, the DET

equation dynamically adjusts the spiking threshold based

on the preceding rate of depolarization, which can be

quantified using the membrane potential variation. Thus,

the threshold variation by DET avoids endlessly increasing

thresholds and reduces the fear of large quantization errors.

4.2 Spike confidence

As shown in Fig. 2, the early fired spikes are not always

reliable, and some parts of them are raised by SIN.

Although dynamic tracking threshold, DTT can partly

relieve this, neurons with SIN will not be distinguished

from other normal neurons until they keep silent in longer

time step. Inspired by image recognition and detection

works [48, 49], we show how the SINs can be distinguished

from normal neuron spikes with confidence, as shown in

Fig. 3b shows. Within early time steps E, the spike confi-

dence acts and every spike which should elicit uses this

spike confidence to generate a spike filter to determine fire

spike or not rather than fire directly. The value of E is

determined based on the statistics of the SIN ratio. More

specifically, computing the SIN ratio requires knowledge

of the true activation value, i.e., for a given dataset, we run

original ANN and converted SNN in parallel and then

calculate SIN ratio from a batch samples in advance.

Hence, the proposed method requires only one additional

batch for original ANN network on a given dataset at a

negligible additional computational cost. Spike confidence

can be formulated as follows:

cli �BernoulliðplÞ ð19Þ

where pl is spike confidence of neurons in layer l and the

value of pl equals to the opposite proportion of SIN in layer

l. Random variable cli, which is sampled from the Bernoulli

distribution whose parameter is defined by the spike con-

fidence, determines whether to fire a spike instead of firing

directly. In this case, the accumulation of membrane

potential becomes
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~H
l

t;i ¼ cli �Hl
t;i;

Vl
i ðtÞ ¼ Vl

i ðt � 1Þ þ
XMl�1

j¼0

Vl
th;jðtÞWl

ij
~H
l�1

t;j

� Vl
th;iðtÞ ~H

l

t;i:

ð20Þ

The MSAT and spike confidence ensure that all neurons

adjust their thresholds and elicit spike according to the

stimulus. The pseudocodes of multistage adaptive thresh-

old are shown in Algorithm 1.

Fig. 3 Illustration of MSAT and spike confidence. a MSAT is

calculated from dynamic tracking threshold Vl
th mp;iðtÞ and dynamic

evoked threshold Vl
th rd;iðt þ 1Þ and varies with inference time. The

two neurons on the far right fire spikes under conditions of constant

and dynamic thresholds, respectively. It is observable that the neuron

with an adaptive threshold effectively filters out slow voltage

fluctuations, with the dashed-line spikes representing the reduced

spikes. b Spike confidence determines whether to fire a spike rather

than fire directly to alleviate SIN error. Spike confidence is only

implemented in the early stages
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4.3 Overall conversion flowchart

We summarize the process of how trained ANNs are

converted to SNNs in this section. To get SNN by con-

verting ANN, it can be divided into a total of four steps,

first obtaining the trained ANN, followed by copying the

learned well learnable parameters from the ANN to the

SNN. Unlike ANN, IF neurons are used in SNN instead of

ReLU neurons in ANN, so the third step is that SNN uses

neurons with MSAT and SC to fire spikes, and the output

spikes are calculated by rate coding to get the firing rate.

Finally, we get a converted SNN. In this paper, we use

direct coding approach as in previous work [16] to deliver

input directly to the network and allow the SNN to process

and transmit the information more efficiently. The entire

flow of the conversion is shown in Fig. 4 and the pseudo-

code of proposed method is shown in Algorithm 2. It is

worth noting that the whole process does not require

retraining of the network.

Algorithm 2 Conversion from ANN to SNN: PyTorch-style pseudocode

5 Experiment

Here, we conduct experiments on CIFAR-10 [50], CIFAR-

100 [50], and ImageNet [51] datasets to demonstrate the

effectiveness of our proposed method. To demonstrate the

generalizability of the proposed method outside the visual

task, we also perform sentiment classification and speech

recognition experiments on the IDBM dataset [52] and the

Google speech command dataset [53], respectively. We use

data augmentation such as random horizontal flip, Cutout

[54], and AutoAugment [55]. Our batch size is 128 and the

total training epoch is 300. We use stochastic gradient

descent (SGD) as the optimizer, with an initial learning rate

of 0.1 and uses a cosine decay strategy. VGG16 [56],

ResNet20, and ResNet34 [57] are used for ANN as in

previous works for comparison. We used IF neurons for

our experiments and our code implementation of deep

SNNs is based on the open-source SNN framework

BrainCog [58].

In the proposed adaptive thresholds, there are six

hyperparameters and we give their meanings and values

used in this paper in Table 2. Although hyperparameters

are manually set, they do not vary with the dataset and

setting these parameters is not difficult based on our

experiments; our method works well for a wide value range

of these parameters. Although these parameters can be set

to trainable, we choose to manually set them for biological

plausibility according to [31, 32].

5.1 Comparison with the state of the art

In order not to do too many restrictions on origin ANN, we

choose to save the topology and use the original weights in
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Fig. 4 The overall conversion flowchart with our methods. The three

dashed boxes from left to right represent: the source ANN, the target

SNN to be obtained, spikes fired by neuron with MSAT and SC. We

use yellow and green neurons to represent ReLU neurons in ANN and

IF neurons in SNN, respectively. Direct encoding delivers input

directly to the network and the output value is obtained by rate

coding, i.e., calculating the firing rate

Table 2 Summary of

hyperparameters on different

network

Symbol Definition VGG16 ResNet20 ResNet34

a Left side slope 0.03 0.3 1.0

ka Right side slope hyperparameter 1 1 1.0

ki Right side slope hyperparameter 1.0 1.0 1.0

C Input sensitivity 5.0 5.0 5.0

smp Coefficient of DTT 1 0.5 0.5

srd Coefficient of DET 1 0.5 0.5

Table 3 Experimental results on

CIFAR-10 and CIFAR-100, DT

means dynamic threshold

Method Use

DT

ANN SNN Loss Step ANN SNN Loss Step

VGG16, CIFAR-10 ResNet20, CIFAR-10

RMP-SNN [40] � 93.63% 93.63% \0.01% 2048 91.47% 91.36% 0.11% 2048

TSC [59] � 93.63% 93.63% \0.01% 2048 91.47% 91.42% 0.05% 2048

Opt [43] � 92.34% 92.24% 0.1% 128 93.61% 93.56% 0.05% 128

Calibration [28] U 95.72% 95.65% 0.07% 128 95.46% 95.42% 0.04% 128

Burst [27] � 95.74% 95.75% 0.02% 256 96.56% 96.59% �0.03% \256

DTIF [45] U 92.37% 92.05% 0.32% 288 – – – –

Ours U 95.45% 95.45% 0.00% 112 96.37% 96.36% 0.01% 174

VGG16, CIFAR-100 ResNet20, CIFAR-100

RMP-SNN [40] � 71.22% 70.93% 0.29% 2048 68.72% 67.82% 0.9% 2048

TSC [59] � 71.22% 70.97% 0.25% 2048 68.72% 68.18% 0.54% 2048

Opt [43] � 70.49% 70.47% 0.02% 128 69.80% 69.49% 0.31% 128

Calibration [28] U 77.89% 77.79% 0.1% [512 77.16% 77.29% �0.13% 64

Burst [27] � 78.49% 78.66% �0.17% 128 80.69% 80.72% �0.03% \256

DTIF [45] U 67.45% 67.80% �0.35% 184 – – – –

Ours U 78.49% 78.50% �0.01% 224 80.69% 80.70% �0.01% 252

Bolded text signifies the highest result in comparison to others
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the target ANN for universal conversion without retraining

ANN. In this way, we compare the state-of-the-art

approaches including TSC [59], RMP-SNN [40], Opt [43],

Calibration [28], Burst [27], DTIF [45]. As shown in

Table 3, with the proposed method, all conversions are

achieved with minimal accuracy degradation and shorter

latency.

To demonstrate the difference in inference speed

between our method and other dynamic threshold work, we

compare our method with calibration and DTIF on CIFAR-

10 dataset. The results are shown in Table 4. It can be seen

that our method achieves best performance in the early

time step, which is attributed to MSAT and spike confi-

dence. It is worth noting that though calibration [28] also

uses the dynamic threshold, our method does not need to

search for the best threshold at each time step, and there-

fore results in less computational cost. Finally, we validate

the robustness of our method on ImageNet. As shown in

Table 5, we also achieve comparative performance with

SOTA methods and nearly lossless conversion from the

source ANN.

5.2 Performance on non-visual domains

Our work aims to contribute a biologically adaptive

threshold system for ANN-SNN conversion, not limited to

computer vision tasks and so MSAT is equally competent

in other tasks. To show this, we further evaluate our

method on non-visual domains, including natural language

processing and speech recognition.

For natural language processing, we choose IMDB

dataset for the sentiment classification task, and the net-

work structure is three-layer bidirectional LSTM built by

ourselves. For the speech processing, we evaluate the

speech recognition task and select the Google speech

command dataset. The dataset consisted of 105,829 utter-

ances of 35 words, each stored as a one-second (or less)

WAVE format file. The specific architecture is modeled

after the M5 network architecture described in Dai et al.

[60]. We report the performance of MSAT on these two

tasks and compare it with RMP-SNN. The results can be

seen in Table 6.

Compared to RMP-SNN, MSAT can achieve lossless

conversion much faster, even in only half the time steps,

for example, 7 steps on IDBM dataset for LSTM. On

complex tasks, such as speech recognition with 35 classes,

MSAT performs better at the same time step. These results

are consistent with earlier analyses and validate the

effectiveness of MSAT.

Table 4 Performance of our method as compared to other dynamic threshold work at different time steps on the CIFAR-10 dataset with VGG16

architecture

Method Network T=16 T=32 T=64 T=128 T=256 ANN acc

Calibration VGG16 – 93.71% 95.14% 95.65% 95.79% 95.72%

DTIF VGG16 71.10% 86.37% 90.61% 91.56% 91.89% 92.37%

Ours VGG16 73.42% 93.87% 95.20% 95.44% 95.50% 95.45%

Bolded text signifies the highest result in comparison to others

Table 5 Experimental results on ImageNet with ResNet34

Method Use DT ANN SNN Loss Step

RMP-SNN � 70.64% 69.89% 0.75% [2048

TSC � 70.64% 69.93% 0.71% [2048

Opt � 75.66% 75.44% 0.22% [2048

Calibration U 75.66% 75.45% 0.21% [2048

Burst � 75.16% 74.94% 0.22% 256

Ours U 75.16% 74.93% 0.23% 2045

Table 6 Experimental results on non-visual task

Task Dataset Network ANN accuracy Method Step SNN accuracy

NLP IDBM LSTM 87.22% RMP-SNN1 11 87.23%

Sentiment classification MSAT 7 87.25%

Speech Speech commands M5 87.81% RMP-SNN1 2048 86.83%

Speech recognition MSAT 2048 87.33%

1. Our implemented
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Fig. 5 The accuracy curves on

CIFAR-10 and CIFAR-100

datasets

Table 7 Averaged Number of

SIN (ANS) and classification

accuracy on different networks

and datasets.

Metric VGG16 ResNet20

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

w/o SC ANS 2.92 4.467 1.972 6.309

w/ SC ANS 2:343�0:577 2:514�1:953 1:558�0:414 3:063�3:246

w/o SC Acc (T=32) 93.48 61.16 93.30 71.92

w/ SC Acc (T=32) 93:85þ0:37 66:73þ5:57 94:02þ0:72 73:25þ1:33

The subscripts mean the decreased ANS and increased accuracy compared to the baseline in 1st and 3rd

rows

Bolded text signifies the highest result in comparison to others

Fig. 6 Classification accuracy

improves with spike confidence.

Spike confidence is used within

the time steps of the green area
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5.3 Ablation study

In our method, Vl
th is chosen as the maximum activation

value and as the initial value of the multistage adaptive

threshold. In Fig. 5, the dotted lines indicate the target

ANN accuracy, from which we observe the DTT, DET, and

fixed threshold impact on classification accuracy. It is

intuitive that with either DTT or DET, we could achieve

faster convergence rate, as shown in Fig. 5b, d. Instead,

with the heuristic method, it is hard to achieve high

accuracy and fast inference speed simultaneously. For

example, 0:2Vth in Fig. 5a, b (yellow lines) lie above other

color lines in early stage and have a shorter latency.

However, yellow lines do not appear in the zoomed-in box

and cannot touch dotted lines, which means that the con-

verted SNN threshold with 0:2Vth suffers from larger per-

formance degradation. Although a manually selected

threshold might achieve a satisfactory result, it needs lots

of computation to search or carefully design for an

appropriate threshold.

The adaptive threshold MSAT with both DTT and DET

could have a faster inference to achieve the target ANN

accuracy. This shows that the MSAT could find an

appropriate threshold at each time step to reduce the

quantization error while not importing larger clip error.

Moreover, we validate the effect of spike confidence on

accuracy in early time steps. In our experiment, we apply

spike confidence to the last IF neuron layer because the last

layer is directly responsible for calculating results. The

spike confidence stage holds 16 time steps. As we men-

tioned before, SIN take a large proportion in each layer, so

a large part of the error comes from SIN besides quanti-

zation and clip error. We use averaged number of SIN

(ANS) over each neuron and the exclusion of spike con-

fidence (SC) in both ANS and classification accuracy as

baseline. Table 7 shows that spike confidence could reduce

the averaged number of SIN and improve classification

accuracy. This verifies that SNN in the early time steps

could elicit fewer error spikes and benefit from spike

confidence.

Figure 6 demonstrates the impact of adding spike con-

fidence on performance. The improvement on CIFAR-10 is

not as significant as on CIFAR-100, mainly because the

SIN proportion in CIFAR-10 is already quite smaller than

that in CIFAR-100. To show this, we statistic the neurons

with SIN ratio in the last layer for CIFAR-10-VGG16,

CIFAR-10-ResNet20, CIFAR-100-VGG16, and CIFAR-

100-ResNet20, respectively. The ratio is 0.059, 0.063,

0.617, and 0.506, respectively, which means that SIN error

is a very small part in CIFAR-10 whose influence on

performance degradation is not as significant as in CIFAR-

100. This also explains the different degrees of perfor-

mance improvement on the two datasets by spike

confidence.

5.4 Energy efficiency and sparsity

Although a realistic calculation and simulation on a neu-

romorphic chip for energy consumption analysis with

proposed method is out of the scope of our work, we

provide a theoretical estimation to demonstrate that the

proposed method is energy efficient. Since the computation

in SNN depends on the number of spikes, the energy

consumption of the SNN is positively correlated with the

firing rate of the neurons. Therefore, firstly, we show the

firing rate of each layer of the converted SNN network

obtained with the proposed method. We chose the VGG16

on CIFAR-100 dataset with time step T=64, and the firing

rates of neurons in each layer are shown in Fig. 7. It can be

observed that the average firing rate of the spikes is 0.0585,

with the maximum and minimum spike firing rates in each

layer being 0.010 and 0.127, respectively. This demon-

strates the sparsity of spike activity.

In ANNs, each computational operation includes one

floating-point (FP) multiplication and one FP addition

(MAC). In contrast, in SNNs, each operation only involves

one FP addition due to the binary nature of spikes. To

quantitatively demonstrate the energy efficiency of our

method, in the same way as with Rathi and Roy [61], we

first calculate the number of layer l computational opera-

tions in the ANN.

Fig. 7 Firing rate in each layer of VGG16 network on CIFAR-100

dataset
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OPl
ANN ¼

kh � kw � cin

�cout � wout � hout; if convolution layer

fin � fout; if fully connected layer

8
><

>:

ð21Þ

Next we calculate the number of computational operations

in the lth layer of the SNN. In our implementation, the first

layer of the SNN is directly encoding the input, so the

energy consumption in this layer is still calculated as 4.6 PJ

per operation. The calculation formula can be written as.

OPl
SNN ¼

OP1
ANN; if l ¼ 1

PMl�1

j¼0

PT
t¼0 H

l
t;j

Ml
� OPl

ANN; ifl[ 1

8
><

>:
ð22Þ

we adopt the results from Horowitz [62]: in 45 nm CMOS

technology, the energy cost per computation in ANNs, i.e.,

a 32-bit floating-point MAC, is 4.6 pJ; on the other hand,

the computation in SNNs is more energy-efficient, with a

32-bit floating-point AC consuming only 0.9 pJ.

Therefore, the energy consumption ratio of SNN to

ANN can be written as:

Energy RatioSNN=ANN ¼
P

l Energy
l
SNNP

l Energy
l
ANN

¼ 4:6OP1
ANN þ

PL
l¼2 0:9OP

l
SNNPL

l¼1 4:6OP
1
ANN

ð23Þ

By incorporating the per-layer spike firing frequencies

from Fig. 7 into our calculations, we find that SNN con-

sumes 0.716 energy compared to the target ANN, which

implies that the SNN has a lower power consumption than

the ANN. Table 8 shows our result. Furthermore, we

reproduced the method of Li and Zeng [27]. Under the

same conditions, the energy consumption ratio of SNN to

ANN is 0.934. The reduced power consumption can be

attributed to our MSAT and SC methods.

6 Conclusion

This paper proposes a biologically multistage adaptive

threshold into ANN-SNN conversion and demonstrates its

advantages in terms of accuracy-latency trade-off. In

addition, we focus on the SIN error that occupies a large

proportion in the early period and accounts for accuracy

degradation but is rarely explored in existing works.

Through statistical analysis of SIN errors, we propose to

mitigate SIN errors by using spike confidence. Our

experiments show that the converted SNN with MSAT and

spike confidence has comparable accuracy to the state of

the art while with lower latency and power consumption.

Good performance on classification tasks in non-visual

domains also demonstrates the generality of the proposed

approach.
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