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Preface

The 13th International Workshop on Clinical Image-based Procedures: Towards Holis-
tic Patient Models for Personalized Healthcare (CLIP 2024) was held in Marrakesh,
Morocco, on October 6, 2024. As in previous years, it was organized in conjunction
with the International Conference onMedical Image Computing and Computer Assisted
Intervention (MICCAI 2024).

Continuing the long tradition of CLIP in translational research, the goal of our
workshop is to bridge the gap between basic research methods and clinical practice. A
key aspect of the applicability of these methods is the creation of holistic patient models,
which is a crucial step towards personalized healthcare. As a matter of fact, the clinical
picture of a patient is not exclusively composed of medical images. It is the combination
of medical image data from multiple modalities with other patient data, such as omics,
demographics, and electronic health records, that is most desirable. Since 2019, CLIP
has placed special emphasis on this area of research.

Due to the high number of satellite events at MICCAI, CLIP 2024, like many other
MICCAI workshops, was given space for a half-day event. We received 11 submissions,
which is a good outcome considering the number of competing workshops. Based on the
scores assigned by our reviewers, the quality of the received papers improved compared
to previous years. All submitted papers were peer-reviewed by at least two experts, and
nine papers were finally accepted for presentation at the workshop.

We would like to take this opportunity to thank MICCAI for providing the platform
for our workshop. Furthermore, we also like to express our gratitude to our program
committee members and authors who contributed to making CLIP 2024 a success.

August 2024 Klaus Drechsler
Cristina Oyarzun Laura

Moti Freiman
Yufei Chen

Stefan Wesarg
Marius Erdt
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CloverNet – Leveraging Planning
Annotations for Enhanced Procedural
MR Segmentation: An Application
to Adaptive Radiation Therapy
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Abstract. In radiation therapy (RT), an accurate delineation of the
regions of interest (ROI) and organs at risk (OAR) allows for a more
targeted irradiation with reduced side effects. The current clinical work-
flow for combined MR-linear accelerator devices (MR-linacs) requires the
acquisition of a planning MR volume (MR-P), in which the ROI and OAR
are accurately segmented by the clinical team. These segmentation maps
(S-P) are transferred to the MR acquired on the day of the RT fraction
(MR-Fx) using registration, followed by time-consuming manual correc-
tions. The goal of this paper is to enable accurate automatic segmenta-
tion of MR-Fx using S-P without clinical workflow disruption. We pro-
pose a novel UNet-based architecture, CloverNet, that takes as inputs
MR-Fx and S-P in two separate encoder branches, whose latent spaces
are concatenated in the bottleneck to generate an improved segmentation
of MP-Fx. CloverNet improves the absolute Dice Score by 3.73% (relative
+4.34%, p<0.001) when compared with conventional 3D UNet. Moreover,
we believe this approach is potentially applicable to other longitudinal use
cases in which a prior segmentation of the ROI is available.

Keywords: MRI · Radiation Therapy · MR-linac · Patient-specific
Segmentation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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1 Introduction

Radiation Therapy (RT), an established treatment in oncology [14], utilizes
primarily linear accelerator (linac) systems. Linacs with an integrated Mag-
netic Resonance (MR) scanner (MR-linac) have recently enabled MR-guided
RT (MRgRT), a type of Online Adaptive RT (OART), which has superior imag-
ing quality compared to conventional computed tomography (CT)-guided RT
and allows real-time monitoring of the patient motion and delivered dose [13].

The initial step in the RT workflow in MRgRT is the acquisition of planning
CT (CT-P) and MR (MR-P). The clinical team then manually annotates the
MR-P with regions of interest (ROI) and organs at risk (OAR), resulting in a
patient-specific planning segmentation map (S-P). CT-P and S-P are then used
to generate the RT treatment plan (RT-TP).

At the beginning of each RT session, a so-called ”fraction” MR (MR-Fx) is
acquired to retrieve the current location of the ROI and OAR. This is needed
because slight changes in the anatomy (i.e. due to how full the bowel, the stom-
ach, and the bladder are) can happen and they can cause a mis-targeting of the
RT. To avoid damaging the OAR or underdosing the ROI, the RT-TP needs to
be updated. To do so, first, the MR-P and MR-Fx are registered, and then the
obtained transformation is applied to S-P. However, current clinical registration
tools are seldom sufficient to avoid misalignment of MR-P and MR-Fx. For this
reason, the clinical team is still required to correct the registered segmentation
map to generate the segmentation map of the current fraction (S-Fx), which
perfectly matches MR-Fx. This is a time-consuming process, which can take up
to ≈ 40% of the whole RT session [10]. Afterwards, the RT-TP is updated using
S-Fx (so that it accounts for the anatomical changes), it is approved by the
clinical team and the RT is delivered.

This work aims to develop an automatic deep-learning tool for segmenting
ROI and OAR in MR-Fx for clinical practice. A key feature of the tool is using
S-P as prior information to ensure reliable segmentation. Although conventional
neural networks can segment ROI and OAR using a single input (i.e. only the
medical image volume) [1,6], incorporating S-P introduces clinical expertise of
the clinician segmenting MR-P, making the segmentation more robust and tai-
lored to patient anatomy. Therefore, we designed a Convolutional Neural Net-
work (CNN) that leverages S-P information to accurately segment MR-Fx.

The main contributions of this work are:

– We offer a pipeline for streamling the workflow of MRgRT which can be
seamlessly integrated in the clinical workflow

– We propose a lightweight segmentation CNN, called CloverNet, able to
incorporate prior information, without the need for a joint registration-
segmentation or patient-specific training

– We benchmark our approach with a static 3D CNN and a patient-specific
segmentation pipeline
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1.1 Related Work

Propagating the planning contours to the MR-Fx it is being addressed by multi-
ple research groups, in mainly two ways: patient-specific segmentation, or joint
registration-segmentation.

Segmentation-based approaches rely on personalized annotations to train
patient-specific segmentation CNNs. As an example, Kawula et al. [7] proposed
to train a baseline UNet on multi-patient data and then fine-tune it using the
MR-P of one specific patient, who was not included in the training set of the base-
line. They tested their approach on a private MR-Fx dataset with 92 patients for
the segmentation of bladder and rectum and reported a relative improvement
≈ +3% in Dice Score over the baseline when using the patient-specific fine-
tuning. Li et al. [11] proposed a patient-specific CNN segmentation approach in
which the DL model is trained first with the contours of the first MR-Fx, and
then it is re-trained with the following ones. They reported an improvement in
DSC over conventional registration methods of +0.27 % in 6 in-house patients.

Some studies tried to simultaneously solve the problems of registration and
segmentation in a multi-task learning fashion. For example, Zhou et al. [16] used
a joint loss formulation for the training of one multi-modal registration CNN as
well as two mono-modal segmentation CNNs, with the goal of using the predicted
segmentations as an additional weak-supervision signal for the registration. In
a mono-modality problem, Kohr et al. [8] proposed to use one registration and
one segmentation CNN followed by cross-attention blocks. Finally, Elmahdy et
al. [3] proposed to use two UNet-based networks, one for segmentation and one
for registration, and applied a ”cross-stitch network” approach [12] in which a
dedicated learning-based unit is used to determine the amount of feature sharing
between the two tasks.

The purely registration-based approaches for patient-specific segmentation
[4,5,9] are outside of the scope of this work, but, in general, they focus on
solving a global problem (i.e., the global alignment of the images) and not on
the ROI. The use of additional information which specifies the ROI was shown
to be helpful [5], but it would require the generation of the segmentation maps
of both images beforehand.

As summary, joint registration-segmentation approaches often require com-
plex architectures [3,8] and loss formulations [16], while the purely segmentation-
based approaches can suffer from the limited amount of patient-specific data [11].

2 Methodology and Materials

This work serves as a proof of concept for incorporating prior patient-specific
additional information into the learning process. We chose kidney segmentation
as a showcase for our proposed method, but believe it can be applied to any
anatomical structure with low deformation over time. For this study, both kid-
neys were segmented as a single class, though the methodology is adaptable to
a multi-organ framework.
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Baseline 1: 3D UNet. In this work, we use as first baseline architecture for
conventional segmentation a 3D UNet [2] with 4 layers (with size [16, 32, 64,
128] and stride 2), single-channel input (MR-Fx), and double-channel output
(S-Fx), in which the joint segmentation of both kidneys is returned in one-hot
encoding format. We used PRELU as activation function inside the UNet and
softmax after the last layer. In 3D UNet, S-P is not used in any way.

Baseline 2: TotalSegmentator-MRI. [1] Akinci D’Antonoli et al. [1] recently
released the pre-trained weights for a nnUNet-based MR multi-organ segmenta-
tion task within the TotalSegmentator framework [15]. TotalSegmentator-MRI is
trained on both MR (with different sequences) and CT volumes and can robustly
segment major anatomical structures in MR images regardless of the sequence
used [1]. Therefore, we utilized it as our second baseline for conventional seg-
mentation.

Baseline 3: nnUNet. [6] We employed the nnUNet [6] approach to generate
the third baseline of conventional segmentation. Among the possible training
settings, we chose to train nnUNet for 250 epochs, to stay as close as possible
to the training set-up of the proposed approach (see Sect. 2.3), as well as to use
the suggested 5-fold cross-validation.

Baseline 4: Kawula et al. [7] As baseline for patient-specific segmentation, we
followed the approach proposed by Kawula et al. [7]. First, we trained a baseline
model (Kawula-B) on MR-P with cross-validation (see Sect. 2.2) using as archi-
tecture the baseline 3D UNet to ensure comparability. Afterwards, the patient-
specific network (Kawula-PS) was obtained by finetuning the best-performing
fold of Kawula-B using the MR-P of one test patient, and finally, it was tested
on MR-Fx1 and MR-Fx5 of the same patient.

2.1 CloverNet Pipeline

Mimicking the current clinical workflow, the proposed pipeline begins with a rigid
registration step that aligns MR-P and S-P with MR-Fx in a common coordinate
space (MR-PR and S-PR, respectively). It then employs a novel segmentation
architecture, called CloverNet, which extracts relevant features from S-PR to
generate a more precise S-Fx (see Fig. 1). As previously noted, simply aligning
S-P with MR-Fx is insufficient to address changes in patient anatomy. Therefore,
CloverNet is designed to utilize S-PR while correcting any misalignments.

Preliminary Rigid Registration. We rigidly registered MR-P to MR-Fx
using the SimpleITK registration workflow, with the Normalized Cross Correla-
tion as optimization metric. The transformation was then applied to S-P (S-PR)
to bring it in the same coordinate space as MR-Fx. Following the consensus in
the literature [3,4,9], MR-P is considered the “moving image” and MR-Fx the
“fixed image”.
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Architecture. The proposed architecture extends the baseline 3D UNet by
adding a new encoder branch ES, with exactly the same design as the 3D UNet
encoder EMR. The latent space of ES is concatenated to the latent space of EMR

and then fed to the bottleneck and afterwards to one common decoder D (see
Fig. 1). The input of EMRI and the output are the same as in the baseline UNet.
The input of ES is a two-channel tensor representing S-PR in one-hot encoding.

Fig. 1. Graphical illustration of the proposed pipeline with the CloverNet architecture.

2.2 Dataset

The data was acquired at the LMU University Hospital (Munich, Germany)
between January 2020 and November 2022 from a total of 178 patients under-
going MRgRT for the treatment of various types of cancers in the abdomen.
Informed written consent was obtained from all patients (LMU: ethics project
number 20-291). The MR volumes were acquired with a 0.35 T MR-Linac (MRId-
ian, ViewRay Inc, Cleveland, Ohio) with a balanced steady-state free precession
(bSSFP) sequence resulting in T2∗/T1 contrast. Each patient received between
1 and 20 RT fractions. We considered only patients with MR-P, MR-Fx1 and/or
MR-Fx5. Moreover, we curated the dataset by discarding patients with low-
quality segmentation of the kidneys and those in which the field of view was not
consistent among MR-P, MR-Fx1 and MR-Fx5. Afterwards, the dataset con-
sists of a total of 65 patients and 104 volumes. The volumes were resampled to
isotropic 1.5 mm spacing, but not resized. We applied 99th-percentile clipping to
the MR volumes, and then rescaled them to ∈ [0, 1].

The dataset was split at a patient level: 11 patients, corresponding to 17 vol-
umes, were used as test, 18 patients as validation and the remaining 36 patients
as training set. We performed 3-fold cross-validation. Given that not all the
patients have both MR-Fx1 and MR-Fx5, the size of the training set and the val-
idation set was slightly different depending on the fold (∈ [57, 59] and ∈ [28, 30],
respectively).
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2.3 Experimental Set-Up: 3D UNet and CloverNet

The networks were trained in a patch-based approach (with patch size equal to
[112, 112, 112]) to limit memory usage when processing large 3D volumes. The
selection of the patches was performed by RandCropByPosNegLabeld from the
monai library, and 75% of the samples were chosen to have a foreground voxel
in the middle of the patch. Following Kawula et al. [7], we applied as data aug-
mentation RandAffine, RandZoom, RandBiasField from the monai library, and
RandomNoise from the torchio library. All augmentation was applied randomly
with a probability of 0.5.

The models were trained using ADAMW as optimizer for a maximum 150
epochs, with a batch size equal to 10, an initial learning rate (LR) of 0.01, and
instance normalization. For 3D UNet the LR was halved at epochs 30, 40, and
50, whereas for CloverNet it was halved at epochs 5, 10, and 20 to take into
account the faster convergence due to the use of S-PR. The final model was the
one of the epoch with the best DSC on the kidneys on the validation set.

As a post-processing step, we applied to all the predictions FillHoles and
KeepLargestConnectedComponent as implemented in the monai library.

The Dice Loss was used as loss function, and Dice Score (DSC [%]) and the
Hausdorff Distance (HD [mm]) were used as evaluation metrics.

Table 1. Evaluation of the presented approaches (mean (median) ± standard devi-
ation) on the test set. For the approaches with N-fold cross-validation, the average
metric of the N folds in the test set is reported. The statistical significance against 3D
UNet (∗: p-value < 0.05, ∗∗: p-value < 0.001) is reported for the patient-specific 3D
UNet-based approaches.

Architecture DSC [%] HD [mm]

Initial 37.16 (27.89) ± 21.38 23.84 (23.89) ± 8.40

After Rigid Registration 72.12 (73.45) ± 6.09 14.41 (13.49) ± 4.77

3D UNet 86.00 (86.92) ± 3.79 12.39 (11.47) ± 4.23

TotalSegmentator-MRI [1] 83.25 (83.92) ± 0.02 11.61 (11.04) ± 1.48

nnUNet [6] 92.93 (93.24) ± 1.24 8.00 (8.24) ± 2.47

Kawula-B [7] 84.87 (85.36) ± 3.61 13.11 (12.09) ± 3.22

Kawula-PS [7] 88.33 (88.75) ± 1.77 ∗ 11.10 (10.72) ± 3.87

CloverNet 89.73 (90.23) ± 1.81 ∗∗ 10.58 (10.28) ± 4.07

3 Results

First, we performed a naive approach by simply propagating the S-P to MR-Fx.
Without applying any registration, this resulted in an average DSC in the test
dataset of 37.16±21.38% (∈ [9.16, 75.52]%), whereas after the rigid registration
the average DSC was 72.12±6.09 % (∈ [54.92, 78.39]%).
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Among the conventional segmentation approaches, namely 3D UNet,
TotalSegmentator-MRI [1], nnUNet [6] and Kawula-B [7], the best performing
one is nnUNet, with a DSC of 92.93 ± 1.24 % and an HD of 8.00 ± 2.47 mm
(see Table 1).

On the other hand, among the patient-specific approaches, CloverNet is supe-
rior to Kawula-PS [7], with +1.4 % DSC and -0.52 mm HD, being statistically
significantly different in DSC with p-value < 0.05.

The well-known superiority of nnUNet [6] was demonstrated also in our task,
where it achieved an improvement ∈ [+6.93, +9.68] % DSC and ∈ [-5.11, -3.61]
mm HD against the other conventional segmentation approaches.

However, the performance of the proposed CloverNet should not be directly
compared against to nnUNet because CloverNet does not employ the automatic
fingerprinting pipeline of nnUNet. On the other hand, 3D UNet and Clover-
Net can be fairly compared because they only differ in the architecture design.
Indeed, the performance of CloverNet was superior to the one of the baseline
UNet by +3.73 % DSC and -1.81 mm HD, and the difference in DSC was statis-
tically significant with p-value < 0.001 (see Fig. 2).

Fig. 2. Box plot representation of the DSC [%] of the UNet-based approaches.

4 Discussion

The superiority of nnUNet [6] with respect to both UNet-based patient-specific
approaches, Kawula-PS [7] and the proposed CloverNet, is not surprising,
given its well-known and widely reported performance. This motivates us to
continue developing a nnUnet-based patient-specific automatic segmentation
tool. Nonetheless, we continue the discussion focusing only on the UNet-based
approaches to ensure fair comparability.

Our proposed framework, the CloverNet pipeline, represents a clinically
aligned solution for incorporating patient-specific prior information into RT.
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By leveraging readily available data during MRgRT, we avoid disruptions to the
clinical workflow. The statistical rationale behind the CloverNet pipeline lies in
its simplicity, seamless integration, and potential to enhance personalized out-
comes. As clinicians continue their established practices, they can confidently
utilize our framework to speed up RT-TP and improve patient care without any
additional burden or complexity.

Given that CloverNet partially relies on S-P to segment MR-Fx, high-quality
annotation in S-P is crucial. Clinical practice shows that annotating physicians
have more time during the planning stage, ensuring this quality. Training exclu-
sively on S-P (as in Kawula-B) would reduce the amount of available data, while
training solely on S-Fx (as in 3D UNet) would reduce the annotation qual-
ity due to time constraints during RT delivery. Consequently, patient-specific
segmentation methods like Kawula-PS and CloverNet outperform conventional
non-patient-specific approaches.

Although CloverNet was only slightly superior to Kawula-PS [7] (see Fig. 3),
it has higher clinical applicability because it requires only one training phase,
and the same model can be applied to multiple patients without the need of
time- and memory-consuming patient-specific fine-tuning.

Fig. 3. Examples of segmentation results for the two patient-specific approaches and
three selected patients (left to right), including the DSC [%], the contour of the ground
truth (red) and prediction (green), and of S-PR (black), when relevant (Color figure
online).

5 Conclusion

In this work, we address the problem of segmentation of MR-Fx in the case in
which a previous annotation of the ROI is available, as required for MRgRT.
The proposed architecture, CloverNet, includes a dedicated encoder to encode
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the spatial information of the S-PR and then uses it in the segmentation of MR-
Fx. We showed that the proposed approach was better than a conventional 3D
UNet baseline, and therefore we proved that the information coming from S-PR

was beneficial to segment MR-Fx.
The design of the proposed CloverNet is superior to other comparable

approaches for MR-Fx segmentation for multiple reasons. First of all, Clover-
Net only performs rigid registration as a pre-processing step and relies on the
segmentation network to fine-tune the initial segmentation. This ensures the real-
ism of the S-PR and no folding artifacts, which are often reported in the purely
registration-based approaches [5,9]. Second, its design is simple and it does not
require complex architectures or loss formulations [3,8,16]. Finally, compared
to other segmentation-based approaches for patient-specific segmentation [7,11],
CloverNet does not require additional training for each new patient or fraction,
giving it a significant advantage in terms of time and the need for computational
resources. All these aspects make CloverNet more suitable for clinical use.

While in this work we concentrate on MRgRT, the proposed pipeline could be
used in other longitudinal segmentation cases, for example where registration-
based approaches struggle. Indeed, CloverNet only requires a clinical scenario
where a planning segmentation is available at the time a procedural medical
image is acquired and needs to be segmented. Moreover, we hypothesize that
the planning segmentation could be based on another modality, given that the
prior information is only a binary mask.

Personalized medicine is one of the emerging fields in clinical practice, and
patient-specific approaches are essential for its implementation. In segmenta-
tion, non-personalized approaches with great performance [6] are already avail-
able. However, they are not patient-specific and can not make use of previous
knowledge on the patient to perform the segmentation, which is sub-optimal.
Using patient-specific approaches, particularly in scenarios like MRgRT where
segmentation accuracy is crucial, would reduce the time needed to correct the
automatically-generated segmentations. In this perspective, CloverNet integrates
easily the prior segmentation, and guarantees robust results, enabling seamless
integration in clinical routine.

Acknowledgements. This work was partially funded by the German Research Foun-
dation (DFG, grant 469106425 - NA 620/51-1).
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Abstract. Accurate and robust medical image classification is a chal-
lenging task, especially in application domains where available annotated
datasets are small and present high imbalance between target classes.
Considering that data acquisition is not always feasible, especially for
underrepresented classes, our approach introduces a novel synthetic aug-
mentation strategy using class-specific Variational Autoencoders (VAEs)
and latent space interpolation to improve discrimination capabilities. By
generating realistic, varied synthetic data that fills feature space gaps,
we address issues of data scarcity and class imbalance. The method
presented in this paper relies on the interpolation of latent represen-
tations within each class, thus enriching the training set and improving
the model’s generalizability and diagnostic accuracy.

The proposed strategy was tested in a small dataset of 321 images cre-
ated to train and validate an automatic method for assessing the quality
of cleanliness of esophagogastroduodenoscopy images.

By combining real and synthetic data, an increase of over 18% in the
accuracy of the most challenging underrepresented class was observed.
The proposed strategy not only benefited the underrepresented class
but also led to a general improvement in other metrics, including a 6%
increase in global accuracy and precision.

Keywords: Synthetic Data Augmentation · Variational Autoencoder ·
Esophagogastroduodenoscopy Image Classification · Image
Classification

1 Introduction

Gastric cancer (GC) is the 5th most common cancer worldwide and there were
more than 1 million new cases of GC reported in 2020. Esophagoduodenoscopy
(EGD) is the gold standard method for the diagnosis of GC: several studies show
that the detection of GC at earlier stages has a clear impact in the decrease of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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mortality (hazard ratio [HR] 0.51) [1,2]. Nevertheless, up to 10% of the cancers
are missed during the exploration, with a clear impact on patient’s survival rate
[3]. Poor mucosal visualization is one of the factors that can negatively affect
the diagnostic accuracy of gastric cancer.

For this reason, the degree of cleanliness and the quality of gastric mucosa
visibility are of paramount importance. However, no broadly accepted cleanliness
scale for the upper gastrointestinal tract (UGI) has been uniformly accepted and
used in routine practice. Two scales have been recently published: POLPREP [4]
and Barcelona scale [5]. Both evaluate the level of cleanliness in the esophagus,
stomach and duodenum. They differ on the number of levels (4 for POLPREP,
3 for Barcelona scale) and in the degree of evaluation detail: Barcelona scale
further divides stomach by segments (fundus, corpus and antrum).

However, these scales are prone to a certain degree of subjectivity. To cope
with this, and following other methods already developed to assist clinicians in
similar tasks [6], there is room for AI systems that can provide an objective
assessment of the degree of UGI cleanliness by an automatic classification of
EGD images. The benefits of such a system are clear: if clinicians can be sure of
those cases when gastroscopies are inappropriate due to insufficient cleanliness,
they can make a recommendation to repeat the exploration. In the opposite
case, where the UGI is clean, unnecessary repetitions can be avoided with the
consequent saving of scarce economic resources.

The main technical challenge in medical image classification comes from the
limited size and imbalance of available datasets. This limitation reflects the real-
world shortage of annotated medical images and uneven distribution of patho-
logical findings, making it difficult to develop robust models with traditional
deep learning which usually requires large, balanced datasets. Additionally, the
detailed nature of EGD images, which needs accurate identification of different
levels of cleanliness, adds to the challenge. The scarcity of significant features
in smaller datasets can result in model biases or underperformance. Overcoming
these challenges requires innovative approaches that improve data diversity and
representation, enhancing model’s ability to generalize in real-world scenarios.

The key contributions of our work include:

– Use of class-Specific variational autoencoders (VAEs): By generating
synthetic images through latent representation interpolation within classes,
we can expand the feature space and directly address class imbalance.

– Focused enrichment of feature space: Our technique fills gaps in the
feature space with realistic synthetic images, improving training effectiveness
and model sensitivity to critical subtle features for accurate classification.

– Proof of the versatility of our approach across architectures: We
demonstrate the benefits of our methodology across two prominent image
classification architectures such as EfficientNet-V2 [20] and ResNet-50.

2 Related Work

The previously mentioned scarcity of annotated medical datasets has led to novel
strategies for data augmentation in image classification.
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Garay-Maestre et al. [7] exploited Variational Autoencoders (VAEs) to gen-
erate synthetic samples, demonstrating how synthetic data, when combined with
traditional augmentation methods, can improve the robustness and performance
of machine learning models. Following this line of thought, Auzine et al. [8]
applied Generative Adversarial Networks (GANs) with conventional augmenta-
tion to enhance the accuracy of deep learning architectures, such as ResNet50
[17] and VGG16 [18], on endoscopic esophagus imagery. Further advancing the
field, Zhou et al. [19] introduced ’Diffusion Inversion’, a technique for creating
synthetic data by manipulating the latent space of pre-trained diffusion models
to achieve comprehensive data manifold coverage and improved generalization.

Liu et al. [9] investigated data augmentation via latent space interpolation
for image classification, showing significant improvements in model performance.
Oring [10] and Cristovao et al. [11] also explored the use of VAEs for generating
in-between images through latent space interpolation, emphasizing the potential
of this approach for enhancing data diversity. Moreno-Barea et al. [12] and Elbat-
tah et al. [13] focused on improving classification accuracy using data augmen-
tation techniques on small datasets, highlighting the effectiveness of synthetic
data in addressing class imbalance. Wan et al. [14] specifically addressed imbal-
anced learning through VAE-based synthetic data generation, demonstrating its
potential to improve model performance on imbalanced datasets.

While data augmentation has been widely used in several research domains
there is no work, to the best of our knowledge, that applies this technique to
assess the degree of cleanliness of EGD images. Nevertheless there are works
applied to similar images, such as the work of Nam et al. [16], which use Incep-
tionResnetV2 to classify wireless capsule endoscopy images to determine the
degree of mucosa visualization or the work of Zhu et al. [15], which applies
a compact convolutional neural network with 2 Densenet layers to label bowel
preparation in colonoscopy images according to Boston Bowel Preparation Scale.

While some of the previously mentioned studies have demonstrated the
potential of generative models for data augmentation, our approach specifically
targets class imbalance in EGD image classification by leveraging class-specific
VAEs. By generating realistic synthetic images for each class, we aim to fill
gaps in the feature space, thereby enhancing the training process and improving
sensitivity to subtle features. This synthetic data augmentation methodology
stands out by directly addressing the challenges posed by small and unbalanced
datasets, particularly for EGD images, and notably improving performance.

3 Methodology

Variational Autoencoders (VAEs) [21] represented a groundbreaking shift in the
generation of synthetic data by providing a probabilistic approach to data encod-
ing and decoding. A VAE is composed of an encoder, for translating input data
into a latent space representation, and a decoder, for reconstructing data from
this latent space. The encoder function, denoted as qφ(z|x), maps an input x to
a latent space representation z, parameterized by φ.
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Fig. 1. The encoding and decoding process in VAEs for synthetic image generation
via latent vector interpolation.

This process introduces a stochastic element by generating a distribution
characterized by mean μ and variance σ, rather than a fixed point for the latent
variables. This distribution allows for the sampling of new data points from the
latent space, using the reparameterization trick: z = μ + σ � ε, where ε is an
element-wise product with a random noise vector.

The decoder, denoted as pθ(x|z) and parameterized by θ, reconstructs the
data from the latent space representation. The objective of training a VAE is
to minimize the loss function L(θ, φ;x), which is a combination of the negative
log-likelihood of the reconstructed data and the Kullback-Leibler (KL) diver-
gence, promoting an effective balance between data reconstruction fidelity and
distribution approximation:

L(θ, φ;x) = −Eqφ(z|x)[log pθ(x|z)] + KL(qφ(z|x)‖p(z)) (1)

The flexibility in generating new data points through this probabilistic frame-
work makes VAEs particularly suitable for tasks like medical image augmenta-
tion, where capturing the diversity of pathological features is crucial.

The capabilities of VAEs are leveraged to generate synthetic images tailored
for each class within the dataset. By training class-specific autoencoders, the
unique characteristics and nuances of each class are captured in the latent space.

Post-training, the VAE synthesizes new images by performing an interpo-
lation between the latent representations of two images within the same class,
with the process illustrated in Fig. 1. This interpolation is achieved by com-
puting a weighted sum of their latent vectors z1 and z2, yielding a new latent
representation, denoted as zinterp:

zinterp = αz1 + (1 − α)z2 (2)

where α corresponds to the interpolation weight [0, 1]. This parameter modulates
the contribution of each original image to the synthesized image. The resulting
latent vector zinterp is then decoded to generate a new synthetic image. This new
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image merges characteristics of the parent images while maintaining the class’s
defining features, effectively enriching the dataset’s diversity and quantity.

By integrating additional synthetic images for each class, this iterative and
monitored approach not only augments the dataset but also introduces mean-
ingful and realistic variations which enrich the feature space.

The incorporation of these synthetic images into the training process is
designed to enhance the classifiers’ performance, particularly by improving its
understanding of the underlying distribution of the underrepresented classes,
thereby ensuring a more comprehensive representation of each class’s feature
space and subsequently elevating model accuracy.

4 Experimental Setup

4.1 Dataset

Our study utilized a dataset comprising 321 esophagogastroduodenoscopy
(EGD) images, capturing various stomach regions including the esophagus, duo-
denum, antrum, body, and fundus. Images were labelled into different categories
according to different degree of stomach cleanliness by seven clinicians following
the definitions of the Barcelona scale.

The consensus among the experts determined the final class assignment: 1)
class 0, which corresponds to images with presence of non aspirable solid or
semisolid particles, bile or foam preventing from clear mucosa visualization; 2)
class 1, which corresponds to images with small amount of semisolid particles,
bile or foam and 3) class 2, which comprises images without any kind of rest,
allowing a complete visualization of the mucosa. We show in Fig. 2 an example
of some of the images in the dataset.

With respect to class distribution within the dataset, class 0 was represented
with 65 images, class 1 with 165 and class 2 with 91. The dataset was split in a
standard 80–20 fashion for training/validation and testing.

Fig. 2. Sample image for each of the classes, labelled according to Barcelona scale.
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4.2 Metrics

To assess model performance, a suite of metrics was employed, including overall
accuracy, precision, recall, and F1-score, complemented by class-specific mea-
sures for a thorough analysis. The evaluation concentrated on the efficacy of
several augmentation strategies, encompassing traditional methods such as rota-
tions and mirroring, as well the proposed approach involving synthetic data
generation via VAEs. Results were tabulated to compare the impact of these
techniques on model performance.

4.3 Implementation Details

Synthetic Data Generation: The synthetic data was generated using class-
specific Variational Autoencoders (VAEs). Each VAE was trained separately
for each class, capturing the unique characteristics of the respective class. The
architecture of the VAE consisted of an encoder and decoder, with the encoder
mapping input images to a latent space and the decoder reconstructing images
from the latent space. We selected a latent space dimension of 256 based on
empirical analysis, and the VAEs were trained for 1000 epochs with a learning
rate of 0.0001, using the Adam optimizer. To generate synthetic images, we
performed latent space interpolation between pairs of latent vectors within the
same class, ensuring realistic and varied synthetic samples. We experimented
with different quantities of synthetic images, ultimately finding that adding 300
extra images per class yielded the best performance, hence, results shown in
Sect. 5 include 300 synthetic images per class.

Classification: For the classification task, we employed two well-known archi-
tectures: EfficientNet-V2 and ResNet-50. Both pretrained models were imple-
mented and fine-tuned using PyTorch. The training process involved a batch
size of 24 images and an initial learning rate set to 5 × 10−4. The learning rate
was dynamically adjusted based on performance plateaus, with a reduction factor
of 10 upon stagnation in validation loss improvement. To ensure reproducibility
and consistency across experiments, a random seed was set to 42.

Multiple configurations were explored for both EfficientNet-V2 and ResNet-
50 architectures, including training on real data with and without traditional
augmentations, and extending the dataset with synthetically generated images
through VAE interpolation. Synthetic images were integrated into both classi-
cally augmented and non-augmented training sets to assess the combined effect
of classical and synthetic augmentation techniques on the models’ ability to
generalize and accurately classify EGD images.

5 Results

Experimental results, presented in Table 1, remark the efficacy of incorporating
synthetic data augmentation via class-specific VAEs in enhancing classification
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Table 1. Classification performance of EfficientNet-V2 and ResNet-50 models with
various data augmentation strategies.

Model Data Overall Acc. Overall Prec. Overall Rec. Overall F1 Class-0 Acc. Class-1 Acc. Class-2 Acc.

EfficientNet-V2 Real No Aug. 85.94 86.18 86.4 85.3 92.81 64.05 96.85

Real with Aug. 87.5 87.51 87.5 87.46 81.43 74.56 97.10

Real + Gen No Aug. 89.06 88.96 88.88 88.74 92.85 72.22 97.15

Real + Gen with Aug. 92.19 92.27 91.03 91.93 92.23 82.06 98.73

ResNet-50 Real No Aug. 82.81 82.84 82.81 81.41 92.38 52.18 96.72

Real with Aug. 84.38 84.3 84.38 84.38 88.89 68.89 94.15

Real + Gen No Aug. 86.02 85.8 85.94 85.16 92.00 66.91 96.55

Real + Gen with Aug. 89.49 88.93 89.06 88.74 92.15 75.12 96.61

performance. A comparative analysis across different models and augmentation
strategies reveals that the addition of VAE-generated synthetic images leads to
substantial improvements in overall accuracy, precision, recall, and F1-scores.

Notably, the most pronounced gains are observed in the accuracy metrics
for the most challenging underrepresented class; class 1, where the conventional
data pool is limited. The proposed strategy achieves the best performance in the
majority of the experiments, being a very close second in the remaining cases.

The impact of different augmentation techniques on Class-1 accuracy is fur-
ther highlighted in Fig. 3. The results confirm that synthetic data augmentation,
particularly when combined with traditional augmentation techniques, substan-
tially improves the robustness of classification models.

EfficientNet-V2, when trained with both real and synthetically augmented
data, shows an overall accuracy boost from 85.94% to 92.19%, and a signifi-
cant increase in Class-1 accuracy from 64.05% to 82.06%. Similarly, ResNet-50’s
performance escalates from 82.81% to 89.49% in overall accuracy, with Class-
1 accuracy rising from 52.18% to 75.12%. These enhancements suggest that

Fig. 3. Comparison of Class 1 Accuracy Across Different Augmentation Techniques
and Classifiers. Improvement points are with respect to the Real No Augmentation bar
for each model.
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Fig. 4. Expansion of feature space for each EGD image class post-augmentation. X
and Y axes represent PCA features 1 and 2 respectively.

synthetic data not only supplements the training set but also instills a better
understanding of the feature space associated with each class.

Importantly, the augmented data appears to guide the model towards a more
detailed comprehension of the subtle distinctions within the EGD image classes.
This is critical for clinical applications where the differentiation between vary-
ing levels of cleanliness directly impacts the diagnostic process and subsequent
patient care. Therefore the use of VAEs for data augmentation could suppose
an advancement for medical imaging fields struggling with data constraints.

Figure 4 represents the data distribution for each class before and after syn-
thetic augmentation. The original sparse distribution of each of the classes, as
seen on the left side of each class’s panel, becomes notably denser on the right
side, following the application of VAE-based latent vector interpolation. This
visual enhancement of the feature space is especially significant for Class 1,
the primary focus of our study, where the augmented data points fill previ-
ously underpopulated regions, indicating a more balanced representation post-
augmentation.

These visual findings align with the quantitative improvements in classifica-
tion performance, confirming the value of VAE-based synthetic data in address-
ing class imbalance and enhancing model training for medical diagnostics.

6 Conclusions and Future Work

The research proposed in this paper demonstrates the effectiveness of synthetic
data augmentation using class-specific Variational AutoEncoders (VAEs) for
medical image classification, specifically targeting esophagogastroduodenoscopy
(EGD) images. This is the first time such a system with these characteris-
tics has been applied to the EGD imaging field, marking a significant impact
in this domain. By interpolating latent representations within classes, a new
method that significantly counters the limitations posed by small and unbal-
anced datasets has been developed and validated.

This approach has improved performance, particularly for challenging under-
represented classes, by effectively filling feature space gaps and achieving a more
uniform dataset distribution. The success of this approach is demonstrated across
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two distinct architectures, EfficientNet-V2 and ResNet-50, showing its adapt-
ability and the broad applicability of synthetic data augmentation in improving
model classification capabilities.

Furthermore, the study explored the compounded benefits of combining tra-
ditional augmentation techniques with synthetic data augmentation, revealing a
notable enhancement in the models’ ability to generalize and accurately classify
EGD images, discovering a synergistic effect.

The proposed work represents a significant step forward in utilizing AI for
medical diagnostics, particularly by employing a methodologically innovative
approach to synthetic data generation. By focusing on class-specific latent repre-
sentation interpolations, it provides a scalable solution to the persisting problem
of data scarcity and imbalance in medical imaging. This innovative methodology
has set a precedent in the EGD imaging field, paving the way for its potential
application in other medical imaging domains.

Despite these promising results, several limitations should be noted. The
synthetic images generated by VAEs, while effective, may not capture all the
nuances of real medical images, potentially leading to some biases in the training
process. Additionally, the study was conducted on a relatively small dataset,
which may limit the generalizability of the findings.

This contribution lays the groundwork for future explorations into more
sophisticated synthetic data generation methods and their application across
various domains within medical image analysis. A compelling direction for this
research could involve adopting latent diffusion models (LDMs), well known for
their capacity to generate high-quality, realistic images, to augment the diver-
sity and authenticity of synthetic medical images. This approach, coupled with
assessing the impact of such augmentation techniques on larger and more diverse
medical image datasets, could significantly advance the scalability, robustness
and applicability of these methods.

Finally, refining the interpolation techniques for synthetic image creation to
achieve more precise and clinically relevant datasets remains a critical area for
development. Future efforts could also focus on understanding how synthetic
data influences model interpretability and reliability in real-world clinical envi-
ronments, aiming to not only elevate classification accuracy but also improve
the trust and efficacy of diagnostic models in medical practice.
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Abstract. During Endovascular aneurysm repair (EVAR) procedures,
surgeons always require several views of vessel structures to accurately
assess the size, shape, and location of the aneurysm, along with the sur-
rounding vasculature. However, even expert surgeons often require mul-
tiple attempts to find a desired view, which leads to increased radiation
exposure, high doses of contrast agents for patients, and time-consuming
re-positioning of the C-arm. This paper introduces an automatic frame-
work to provide optimal multi-view for the whole EVAR procedure. First,
a 3D nnUNet is employed to extract geometric information and seman-
tic information, providing accurate vascular and aneurysm segmentation
as well as semantic bifurcation detection. Then, a semantic vessel tree
model is built by integrating semantic information and geometric infor-
mation. A local 3D plane at each critical bifurcation is fitted based on the
centerlines surrounding this bifurcation, where we regard the estimated
3D local plane as a good view plane in patient physical space. Next,
some 3D points are collected from these centerlines, projected onto the
estimated local 3D plane, and transformed to the image domain to get
the paired 2D points. Finally, based on the geometric information of the
C-arm X-ray imaging device, the most informative view pose for C-arm
positioning is solved via RANSAC Perspective-n-Point algorithm with
the Levenberg-Marquardt optimization. Our work not only streamlines
the surgical planning process, but also helps in customizing the patient-
specific strategies to reduce risks and improve surgical outcomes. Our
framework has been validated using an in-house dataset collected from
27 patients, which contains preoperative CTA data and intraoperative X-
ray angiography images. The qualitative and quantitative results demon-
strate the reliability and effectiveness of our approach. Meanwhile, our
system achieved an average runtime of 6 min per patient.

Keywords: Multiple View Planning · Abdominal Aortic Aneurysm ·
EVAR procedures
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1 Introduction

In recent years, the rate of patients treated with Endovascular Aneurysm
Repair (EVAR) procedures has increased notably. Typically, successful EVAR
procedures demand the acquisition of multiple views to guide the intervention
comprehensively. Each view serves a vital role in navigating the intricate vascu-
lar anatomy, ensuring precise placement of endovascular devices, and monitoring
post-procedural outcomes. However, the safety of patients is still a major con-
cern as imaging surveillance is required. This comes with risks associated with
radiation exposure, contrast agent use, as well as increased costs.

With the exponential growth of medical imaging data and advancements in
computational power, deep learning algorithms have demonstrated remarkable
performance in various healthcare applications [19]. Utilizing preoperative CT
angiography images, significant progress has been made in 3D vascular segmen-
tation [3], aneurysm detection [17], aneurysm growth prediction [10], vascular
centerline extraction [6], and vessel labeling [20] to assist EVAR procedures.
Intra-operative X-ray images have also been the focus of numerous learning-
based approaches to aid EVAR procedures, such as X-ray/CT registration [13]
and 2D vessel segmentation [8]. However, few studies directly address the acqui-
sition of the optimal surgeon’s view. The definition of good views involves ensur-
ing that the imaging provides clear, accurate, and comprehensive visualization
of the relevant anatomical structures during the procedure. Fallavollita et al. [2]
proposed a user interface concept enabling the surgeon to manually select the
desired view before surgery, aiming to alleviate the challenges associated with
constantly repositioning the angiographic C-arm during intervention. Tehlan et
al. [16] suggested using an augmented reality head-mounted display for the sur-
geon to choose a desired X-ray view, providing corresponding C-arm configura-
tion as visual feedback. Nevertheless, manually selecting these optimal views can
be time-consuming and subjective, potentially leading to suboptimal outcomes
and increased patient risks. Recently, Kausch et al. [9] introduced a convolu-
tional neural network regression model to predict five degrees of freedom pose
updates directly from the initial X-ray image in orthopedic surgery, facilitating
automated C-arm positioning to achieve the desired view. However, this app-
roach necessitates manual annotations of desired views for training, which is a
labor-intensive and time-consuming task that significantly restricts its applica-
bility.

In this paper, we introduce a complete framework for automatically providing
multiple optimal views to guide EVAR procedure, thereby reducing the need for
manual selection and minimizing procedural inefficiencies. The main contribu-
tions are as follows. (1) We leverage 3D nnUNet to extract geometric information
and semantic information, where 3D center distance loss is proposed for accurate
semantic bifurcation detection. (2) Our framework effectively integrates semantic
geometric information extracted from patient-specific pre-operative CTA data
and geometric information of C-arm X-ray imaging device for multi-view C-
arm positioning. (3) We validate the feasibility and effectiveness of the proposed
framework using CTA data of 27 patients and their corresponding intraoperative
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X-ray angiography images, and the entire pipeline achieves an average runtime
of 6 min per patient.

Fig. 1. An overview of the proposed pipeline for automated multi-view planning. The
notation V represents the vascular segmentation, PA is the aneurysm coordinates.

2 Method

2.1 Aorta and Aneurysm Segmentation

We employ a 3D nnU-Net [7] to segment both the aortic vascular and the
aneurysms from pre-operative CTA data, trained with the Dice loss function,
as shown in Fig. 1(A). The coordinates of the aneurysm PA are further deter-
mined by calculating the centroid of the segmented aneurysm area.

2.2 Semantic Bifurcation Detection

This section focuses on extracting semantic information from pre-operative data.
Relying solely on extracting and labeling the centerline from vascular segmen-
tation V can lead to inaccuracies, particularly when the segmentation is not
continuous [18]. To improve accuracy, we focus our semantic annotations exclu-
sively on four key bifurcations. We utilize a 3D nnU-Net [7] to detect these
bifurcations directly by regressing Gaussian heatmap kernels in a supervised
learning manner, as illustrated in Fig 1(B).

For the ground truth, it has four channels, and the channel order represents
distinct semantic information. Each channel G ∈ RD×H×W contains an unnor-
malized 3D Gaussian distribution centered on each key bifurcation:

G(i, j, k) = exp
(

− (i − ci)2 + (j − cj)2 + (k − ck)2

2σ2

)
(1)
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where (ci, cj , ck) is the IJK coordinates of each bifurcation. Although
heatmap-based regression method is commonly used in 2D key point detec-
tion [11], it faces challenges in 3D space due to spatial sparsity. To mitigate this,
we set the σ value to 28mm to maximize non-overlapping area and minimize
sparsity.

We downsampled the vascular segmentation results to help the network rec-
ognize global structures more easily and simplify learning, especially for dis-
tinguishing symmetric key points, like left common iliac artery bifurcation and
right common iliac artery bifurcation. Additionally, we employ specialized loss
functions to adapt the sparsity of 3D space.

Weighted Mean Squared Loss. To encourage the network to learn non-zero
values, errors associated with non-zero values are given higher weight [4].

LWMSE =
1
N

N∑
i=1

wi(yi − ŷi)2 where wi =

{
1.8 if yi > 0
1 otherwise

(2)

Here, ŷi and yi represent the predicted and ground truth values. The weight wi

emphasize foreground values.

3D Center Distance Loss. While the weighted mean squared error loss
LWMSE can align predicted voxel values with the ground truth Gaussian dis-
tribution, it does not guarantee the accuracy of the predicted center point coor-
dinates. Typically, the Gaussian distribution peaks at the coordinates of anno-
tated bifurcations. While the Argmax function torch.argmax() returns the peak
coordinates of predicted Gaussian distributions, it is not differentiable. Inspired
by the differentiable 2D SoftArgmax function [12], we implement a 3D variant
that reduces the distance between the predicted and real center coordinates. It
has been proved that the maximum value location can be approximated by a
weighted sum of the predicted heatmap G ∈ R

D×H×W [5], namely taking the
expectation of the probability map G. The predicted maximum value coordinate
ĉ is calculated as:

ĉ = SoftArgmax(G) =
3∑

n=1

D∑
i=1

H∑
j=1

W∑
k=1

Wn,i,j,kG
′
i,j,k (3)

where the G′
i,j,k is the softmax normalized value of G at location (i, j, k). With

the location coordinate (i, j, k), we calculate weighted matrix W ∈ R
3×D×H×W ,

which can be treated as 3D discrete normalized ramps along axis I, J,K. The
notation n corresponds to these three channels:

W1,i,j,k =
i

D
,W2,i,j,k =

j

H
,W3,i,j,k =

k

W
(4)
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Our center distance loss calculates the L1 Loss between the predicted and
ground-truth key bifurcation:

Lcenter = |ĉ − cgt| (5)

Therefore, the composite loss uses coefficiency λ = LWMSE/LCenter to
dynamically combine these two losses:

Ltotal = LWMSE + λLcenter (6)

2.3 Automated Optimal View Selection

Until now, the vascular segmentation V and the predicted bifurcation coor-
dinates K are obtained. In order to integrate these geometric and semantic
information together, a semantic vascular tree is built. For the centerline extrac-
tion from vascular segmentation V , the classic iterative thinning algorithm [14]
is adopted. Then, based on topological analysis in 26 neighborhood system, all
bifurcations, edges points and end points are identified from extracted centerline
model. Predicted bifurcation coordinates K are adjusted to align with nearby
bifurcations on the centerline model if they fall within a specified threshold.
When we identify a nearest bifurcation point, we accurately determine the loca-
tion of key points and provide relevant semantic information for those points.
Next, we can fit a 3D plane based on the interested bifurcations and the sur-
rounding branches. Of note, due to the multiple bifurcations exist above the
renal artery, we apply an outlier exclusion algorithm to discard atypical vessel
orientations to ensure that the planes accurately represented the majority of
vessel orientations. For further details, please check Algorithm 1.

We then randomly sample some points on the centerline model around the
interested key points. The 2D-3D point pairs are obtained by projecting these 3D
points onto the fitted plane and transforming them into image domain, result-
ing in 2D IJ coordinates. RANSAC Perspective-n-Point (PnP) algorithm [1] is
utilized to calculate the pose for virtual C-arm positioning. The goal of using
the RANSAC algorithm is to identify and mitigate outlier effects to accurately
estimate the object’s pose. The intrinsic camera matrix provided to the algo-
rithm is calculated based on the following geometric parameters of the C-arm
device: the distance from the X-ray source to the isocenter of device is 742.5 mm;
the distance from the detector to the isocenter of device is 517.15 mm; both the
width and height of the detector are 432 mm, and the pixel size in detector is 0.3
mm. Meanwhile, to enhance stability across each sampling iterations, we apply
the Levenberg-Marquardt algorithm [15] iteratively, calculating the reprojection
error from the PnP solution. We then remove outlier points according to the
error while ensuring a minimum number of points are maintained. Finally, we
visualize our pose quality by rendering X-ray images using Digital Reconstructed
Radiography (DRR) method [21].
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Algorithm 1
Input: Vascular segmentation V , aneurysm position PA ∈ R3, predicted key bifurca-

tions coordinates list K = {ki ∈ R3, i = 4}
Output: Final key bifurcations coordinate list Kfinal = {kfinali ∈ R3, i = 4}, adja-

cent points dict Kadj = {kfinali : kadjj ∈ R3, j = min(len(points), 90)}
1: Get vessel tree T and bifurcation points Pb from V via thinning algorithm
2: for ki in K do
3: Relocate ki with nearest bifurcation point Pb within threshold dist = 20mm as

kfinali , if larger than threshold, choose ki as kfinali

4: Identify vessel sub-tree Tsubk = Tkfinali
from T associated with kfinali . Sample

adjacent points kadjj on Tsubk for kfinali .
5: if kfinali is not kidney or aneurysm key point or degree(kfinali — Tsubk) = 3

then
6: continue
7: else
8: for each branch t∗ in Tsubk do
9: Let S = Tsubk \ {t∗} {Set S contains all branches except t∗}

10: Compute the angle θ between the directional vector of t∗ and the normal
vector of the plane fitted to S

11: if all angle is greater than a threshold=25 then
12: Exclude branch t∗ from Tsubk

13: Fit arbitrary local plane L using final key points Kfinal and adjacent points Kadj .

3 Experiments and Results

3.1 Dataset

An abdominal dataset is collected from 27 patients diagnosed with aneurysms.
For each patient, it includes a preoperative CTA data obtained using a GE Rev-
olution EVO CT scanner and some intraoperative X-ray angiography images.
For CTA images, the reconstructed slice thickness ranges from 1mm to 3mm
and in?plane spacing from 0.79mm to 1.34mm. In addition, abdominal vascular
mask, aneurysm mask and four key bifurcations from each CTA data are man-
ually annotated using open source 3D-Slicer software. The four key bifurcations
are the renal artery bifurcation, iliac bifurcation, and the bifurcations of the left
and right common iliac arteries, as shown in Fig. 1(B).

3.2 Results on Vascular and Aneurysm Segmentation

The experiment results of vascular and aneurysm segmentation by five-fold cross
validation are shown in Table 1. Obviously, the vascular and aneurysm segmenta-
tion show strong performance, laying a solid foundation for subsequent geometric
analysis.

3.3 Results on Semantic Key Bifurcation Detection

The performance of semantic key bifurcation detection is evaluated by calculat-
ing the mean distance and variance between predicted coordinates and ground
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Table 1. Experiment results on vascular and aneurysm segmentation by five-fold cross
validation

Dice Precision Recall F1-Score IoU

Vessel Segmentation 0.975 0.964 0.986 0.975 0.952

Aneurysm Segmentation 0.866 0.933 0.831 0.879 0.770

Table 2. Ablation study on semantic bifurcation detection evaluated by L1 distance
error

LWMSE Lcenter Input Mean/mm ↓ Variance/mm2 ↓
� � Segmentation 10.968 8.954

� � Raw CTA 22.313 165.515

� Segmentation 18.811 89.561

� Segmentation 99.506 12057.061

truth coordinates of each key bifurcation. The performance of our method is
shown in the first row of Table 2. Meanwhile, Table 2 also reflects outcomes
from ablation studies testing various combinations of inputs and loss functions.
Compared with taking raw CTA data as input, taking vascular segmentation as
input has more advantages, resulting in less errors in the mean distance and dis-
tance criterions. While employing LWMSE alone yields commendable regression
outcomes, it is crucial to note that this loss function does not directly target
bifurcation coordinates. Therefore, the integration of Lcenter loss can further
enhances our results. Interestingly, when only Lcenter is used, it leads to the
worst performance.

3.4 Results on View Planning

An ablation study is conducted on view pose solution, as shown in Table 3.
The PnP re-projection error is employed as evaluation metric. From Table 3,
traditional PnP algorithm fails in solving view pose. And our experiment results
demonstrate that the RANSAC PnP algorithm [1] combined with the Levenberg-
Marquardt (LM) algorithm [15] achieves very stable and accurate view pose
solution.

Table 3. Ablation study on view pose solution evaluated by re-projection error

Algorithms Mean /mm ↓ Variance/mm2 ↓
Traditional PnP 3333.945 2.803 × 107

RANSAC PnP 1.060 0.060

RANSAC PnP + LM 0.565 0.043
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Fig. 2. Visual comparison between real X-rays and DRRs generated from planned
view poses in three patients. The locations of the comparison correspond to the 3D
visualization of the CTA and are marked with different colors.

Since our work is the first to propose multi-view planning for EVAR proce-
dures, there are no existing works available for direct comparison. To validate
the effectiveness of our proposed framework, we compared our results with intra-
operative X-Ray angiography images, as illustrated in Fig. 2. Compared to the
X-ray images used by surgeons during intervention, the DRR images generated
using our planned views are very similar to them and show clearer vascular pro-
jection anatomy. The surgeons further evaluated the planning views generated by
our proposed framework in these 27 patients and they were confident that these
planning views were sufficient to guide the surgery. Additionally, more planning
views are shown in Fig. 3. Our proposed method can not only provide a view
based on a single key point of interest, but also coordinate multiple key points

Fig. 3. Different views based on various key points of interest.
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of interest to plan the view. Compared to standard AP view, the planned views
help surgeons understand complex vascular anatomy more easily and quickly,
showing less overlap and clearer branching structures.

4 Conclusion

In this paper, we present an efficient framework that automatically provides mul-
tiple optimal views for guiding EVAR procedures. By utilizing 3D nnUNet for
precise vascular segmentation and semantic bifurcation detection, we construct a
semantic vessel tree model integrating geometric and semantic information. This
model assists in identifying optimal viewing planes at critical bifurcations. We
then accurately determine the C-arm pose using the RANSAC Perspective-n-
Point algorithm. Our framework helps address challenges such as excessive radi-
ation exposure, high contrast agent doses, and time-consumption repositioning,
streamlining the surgical planning process and enabling patient-specific strate-
gies. Validated with an in-house dataset from 27 patients, our system demon-
strates reliability, effectiveness, and a practical runtime of 6 min per patient.
Future work will focus on further refining the framework to enhance its adapt-
ability to a wider range of vascular surgeries and integrating preoperative and
intra-operative registration modules to smoothly apply preoperative view plan-
ning to intra-operative settings.
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Abstract. This paper proposes a semi-supervised intestine segmenta-
tion method from CT volumes. Our method can use densely and sparsely
annotated CT volumes for training to reduce the labor of manually
annotating intestines. The proposed Hybrid Two-stage Segmentation
(HTSeg) framework consists of two networks, a 2D swin-transformer-
based network as the first stage and a 3D network as the second stage. In
the first stage, we use 6964 labeled CT slices to train the 2D Swin U-Net.
The trained 2D Swin U-Net is used to generate pseudo-labels for sparse
annotation data. In the second stage, we use sparsely annotated datasets
with pseudo-labels and densely annotated datasets to train a 3D multi-
view symmetrical network (MVSNet). Experimental results showed that
the Dice score of the proposed method was 74.70%, which was 1.03%
higher than just using MVSNet. Compared with the other four previ-
ous methods (3D U-Net, CPS, EM, MT), the proposed method pro-
duced competitive segmentation performance. The code can be found
at: https://github.com/MoriLabNU/semi-pseudo-labels.

Keywords: Intestine segmentation · Semi-supervision · Pseudo-label ·
Sparse annotation

1 Introduction

This paper proposes a semi-supervised intestine segmentation method for CT
volumes. Given the complexity of the intestine, there is a desire to utilize CT
volumes that are not fully annotated. Our method can incorporate both densely
and sparsely annotated CT volumes for training.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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The intestine is a long organ in the human body, highly folded in the abdom-
inal cavity and surrounded by various organs with complex structures. Intesti-
nal obstruction [1–4] is a medical condition characterized by blockage of the
intestines. Intestine segmentation can help clinicians know the structure of the
intestine and locate the position of intestinal obstruction from CT volumes.

Full-supervised learning-based methods have been investigated for many
years, with most methods gradually being applied in medical image segmen-
tation [5–8]. Specifically, U-Net [9] and its variants [10–12] have achieved good
results in various organ segmentation tasks. However, these methods require
extensive voxel-level annotations, which is especially challenging for CT volumes
composed of hundreds of CT slices. Additionally, correct annotations of CT vol-
umes require expertise from medical professionals. Exploring semi-supervised
learning segmentation methods that leverage unlabeled data is useful in reduc-
ing the amount of annotations required.

Non-machine-learning-based methods, such as intensity thresholding and
region growing, have been explored for intestine segmentation. Machine learning
has also been used in several works [13–18]. However, the intestine has similar
intensities to the surrounding organs on CT volumes and has a complex struc-
ture. Furthermore, the shape and location of the intestines vary from person to
person. These methods do not comprehensively describe the information about
the intestines, which results in the segmentation effect failing to meet expecta-
tions.

Considering these challenges, we propose the hybrid two-stage segmentation
(HTSeg) framework to enhance the accuracy of segmenting intestines in CT
volumes. Our method aims to segment intestine regions and assist clinicians in
quickly and accurately diagnosing intestinal diseases. The contributions of the
proposed method are summarized as follows:

– New segmentation method for semi-supervised learning. This method
is a two-stage network that combines a 2D transformer and a 3D convolutional
neural network (CNN). In the first stage, we employ large-scale labeled CT
slices to train a 2D Swin U-Net [19] for generating pseudo-labels [20]. In the
second stage, we concatenate CT patches from densely and sparsely labeled
data and corresponding predictions from 2D Swin U-Net. These are used as
inputs to train a 3D multi-view symmetrical network (MVSNet) [21] as the
final model.

– Combination of pseudo-labels and sparsely-annotated labels. The
pseudo-labels are generated by the 2D Swin U-Net and sparse annotation is
labeled by clinicians to create semi-pseudo-labels for sparse label data. This
approach helps reduce the unreliability of the pseudo-labels that just rely on
the model’s predictions.

2 Method

2.1 Overview

Our HTSNet is a two-stage framework that combines the 2D transformer and
3D CNN architecture. It uses different dimensional features to reduce insufficient
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Fig. 1. Flowchart of the proposed method. In the first stage, we use labeled slices to
train a 2D Swin U-Net. The trained model is used to generate pseudo-labels. In the
second stage, the densely labeled and sparsely labeled data are used to train MVSNet.
Finally, we employ the trained MVSNet to infer the testing dataset. The content in
the green box is the main contribution point in the paper. (Color figure online)

intestine segmentation from CT volumes. Our proposed method is based on
semi-supervised learning, where the first stage aims to train a model to generate
pseudo-labels for sparsely labeled data. The second stage utilizes limited labeled
data and a large amount of sparse labeled data to train a 3D CNN network.

Different from common-used pseudo-labels, we use semi-pseudo-labels that
fuse sparse labels and pseudo-labels for sparsely labeled data. This approach aims
to reduce the influence of incorrect pseudo-labels that may result from mistakes
made by the model during the labeling process. These mistakes can be used to
further train the model, potentially reinforcing and amplifying training errors.
The semi-pseudo-labels can decrease the influence of incorrect pseudo-labels by
utilizing sparse labels created by clinicians.

Our dataset includes limited dense-labeled CT volumes and plenty of sparse-
labeled CT volumes. We obtain labeled axial, sagittal, and coronal CT slices
from dense-labeled CT volumes to train the 2D Swin U-Net. The trained model
is used to generate pseudo-labels for CT volumes with sparse labels. Then we use
the semi-pseudo-label that combines the pseudo-label and sparse label to train
MVSNet as the final segmentation model. The flowchart of the overall method
is shown in Fig. 1.

2.2 Semi-pseudo-labels

In this work, pseudo-labeling relies on the prediction of the first model, which
can propagate and amplify errors from the model’s predictions. These errors can
lead to incorrect training of the second network. Therefore, we propose the ’semi-
pseudo-label’, combining the sparse-labels and the pseudo-labels to increase the
correction of the pseudo-labels Fig. 2.
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Fig. 2. The process of generating semi-pseudo-labels for sparsely-labeled data. We
obtain the sum of the sparse- and pseudo-labels and normalize the result to 0, 1. The
semi-pseudo-label consists of values {0, 1}.

2.3 Hybrid Two-Stage Segmentation (HTSeg) Framework

In this research, we utilize a limited number of densely and plenty number of
sparsely labeled data. Using only a limited amount of densely labeled data to
train the network could lead to overfitting and poor segmentation performance.
Similarly, sparsely labeled data may not provide enough information for the
model to learn complex features in the data, limiting its ability to make accurate
predictions. To address these challenges and fully utilize the small amount of
densely labeled data while better leveraging sparsely labeled data, we propose a
two-stage model called the hybrid two-stage segmentation (HTSeg) framework.

The CT volumes, as three-dimensional images, consist of a series of consecu-
tive two-dimensional CT slices, which can be obtained from axial, sagittal, and
coronal planes, respectively. Based on this characteristic, we can get thousands
of CT slices from the densely-labeled CT volumes. In the first stage, we use
these thousands of CT slices to train a 2D Swin U-Net. The 2D Swin U-Net
is used to generate pseudo-labels for sparsely-labeled data. However, since the
structure of intestines in CT volumes is complex, both the inter-slices and intra-
slices features are crucial. Moreover, in the first stage, we only utilize 2D CT
slices leading to ignore the inter-slice features. This limitation may result in the
underperformance of the network due to insufficient semantic features.

To address this issue, in the second stage, we train a 3D convolutional neu-
ral network (CNN), MVSNet, using densely labeled and sparsely labeled CT
volumes. Different from using only the original data, we concatenate the orig-
inal data and the corresponding prediction of 2D Swin U-Net as inputs of the
MVSNet. In this stage, we can use hybrid features [22] from 2D and 3D to train
MVSNet. The structure of the proposed method is shown in Fig. 3.

2.4 Loss Function

The method involves training two networks, each with a distinct loss function.
The 2D Swin U-Net is trained using a supervised loss function, while the MVSNet
is trained using both supervised and unsupervised loss functions. The overall
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Fig. 3. The structure of the proposed method. In the first stage, CT slices from densely
labeled data train a 2D Swin U-Net. In the second stage, original CT patches from both
sparsely and densely labeled data are concatenated with the corresponding prediction
of the 2D Swin U-Net as input to train the MVSNet.

loss function includes the supervised and unsupervised loss functions and is
calculated by the equation Loverall = Lsup + Lun.

In the first stage, the main task is to train the 2D Swin U-Net for generat-
ing pseudo-labels. We use the CT slices with their corresponding ground truth
as inputs, so only the supervised loss function is used. We use a combination
of cross-entropy (CE) loss Lce and Dice loss Ldice as the supervised loss func-
tion [23]. The CE loss focuses on optimizing the pixel-wise classification accu-
racy, while the Dice loss emphasizes the spatial overlap between the predicted
and ground truth masks. Combining these two losses can improve segmentation
performance and produce more accurate segmentation.

Lsup(Ps
d,G) = αLce(Ps

d,G) + (1 − α)Ldice(Ps
d,G), (1)

where Ps
d represent the predictions of the 2D network, G represents the ground

truth.
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In the second stage, we use densely labeled and sparsely labeled data, both
supervised and unsupervised loss functions are used. We just use Dice loss Ldice

as the unsupervised loss function.

Lsup(Pc
d,G) = αLce(Pc

d,G) + (1 − α)Ldice(Pc
d,G), (2)

Lun(Pc
s,P

∗
s) = Ldice(Pc

s,P
∗
s), (3)

where Pc
d and Pc

s represent the prediction of MVSNet for densely labeled and
sparsely labeled data, respectively. P∗

s represents Pc
s’s pseudo-labels generated

in first stage. Here, we set the weight α = 0.5.

3 Experimental Results

3.1 Dataset and Experimental Settings

Our experiments used 171 CT volumes from various patients, comprising 13
densely labeled and 158 sparsely labeled datasets. Densely labeled CT volumes
indicate that clinicians have labeled intestines in hundreds of consecutive slices,
while sparsely labeled CT volumes indicate labeling in only some of the non-
consecutive slices. Before training, we performed an interpolation operation on
the original CT images. The CT volume specification is shown in Table 1.

The program code was implemented in PyTorch and executed on an NVIDIA
A100 GPU. The model was trained for up to thousands of iterations, with early
stopping implemented applied if the best Dice score on validation remained
unchanged for 200 iterations. The training used the SGD optimizer with a poly-
learning rate strategy, starting with an initial learning rate of 0.01.

Table 1. CT volumes before and after interpolation. We present detailed information
on the dataset.

Original Interpolation result

Slice size (pixels) 512×512 (281 - 463)×(281 - 463)

Number of slices 198 - 546 396 - 762

Resolution (mm3) (0.549−0.904)×
(0.549−0.904)×(1.000−2.000) 1.000×1.000×1.000

3.2 Results

Table 2 shows the results of various methods including classical full-supervised
learning and semi-supervised learning methods. We evaluated these methods
based on Dice score, recall, and precision rates. Additionally, we calculated the
standard deviation (SD) value based on all test cases.
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Fig. 4. Intestine segmentation results from different methods. (a) is the ground truth;
(b) is the result of 3D U-Net; (c)-(f) are the results of previous semi-supervised learning
methods; (g) is the result of the proposed method. We use different colors to present
the different segmentation regions.

The classical full-supervised learning method 3D U-Net achieved a 39.66%
Dice score. In comparison, CPS [23], EM [24], MT [25], Qin et al. [21], and our
proposed method, which utilize both densely and sparsely labeled data achieved
a 73.11%, 68.97%, 68.30%, 73.67%, and 74.70% Dice score, respectively. The
performance of our method was better than the other previous method. The
intestine segmentation results are shown in Fig. 4.

4 Discussions

We propose a new two-stage framework to segment the intestine from CT
volumes. Our framework combines transformer and CNN architecture and
introduces the concept of semi-pseudo-labels. Compared to the classical full-
supervised learning method 3D U-Net, which is trained only on limited densely
labeled data, our proposed method achieves competitive performance.

From Table 2, it is evident that the semi-supervised learning method is sig-
nificantly more effective than the fully supervised learning method. From Fig 4,
we can see that our method segments more intestine regions than other meth-
ods. We deduce that a small amount of densely labeled data is insufficient to
fully leverage fully supervised learning methods, making semi-supervised learn-
ing a preferable option for tasks lacking abundant densely labeled data. Com-
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Table 2. Evaluation results of different methods. We show the results by percentage
and the bold font presents the best performance of each evaluation term.

Methods Dice (%) Recall (%) Precision (%)

3D U-Nett [12] 39.66±15.67 81.88±12.71 28.72±13.73

CPS [23] 73.11±9.49 85.23±10.90 67.26±11.45

EM [24] 68.97±9.70 82.98±10.94 62.07±11.13

MT [25] 68.30±12.71 82.94±12.55 60.90±13.36

Qin et al. [21] 73.67±8.41 84.10±9.89 67.55±8.30

Proposed 74.70±8.86 83.72±10.84 70.41±10.69

pared to other semi-supervised learning methods, our proposed method not only
uses pseudo-labels but also creates semi-pseudo-labels that retain the accuracy
of manual labels based on pseudo-labels and complement the missing parts of
sparse labels, ultimately enhancing network performance.

We also observe that the intestines can overlap with surrounding organs of
similar intensity, which increases the difficulty of segmentation and introduces
more uncertainty in the pseudo-labeling of the boundary. To address this chal-
lenge, we can focus on refining the boundary part to enhance the reliability of
the pseudo-labels, thereby improving the model’s performance.

5 Conclusions

This paper proposes the HTSeg framework for intestine segmentation from CT
volumes to help clinicians effectively diagnose intestine diseases. The HTSeg
framework, including a 2D Swin U-Net and an MVSNet, performs competi-
tive segmentation from the densely and sparsely labeled data. Additionally, the
method creates the semi-pseudo-label, which reduces the unreliable that pseudo-
labels just rely on the prediction of the network. The performance of the pro-
posed method in another dataset should be further explored. Furthermore, as
mentioned in the discussion, segmentation of the boundary faces more challenges
than other parts. Our method has a space for improvement by focusing more on
refining the boundary regions to enhance accuracy.
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Abstract. Advancements in intra-operative visualization have accel-
erated the adoption of C-Arm Fluoroscopy imaging modalities within
Image-Guided Spine Surgery (IGSS) procedures. The proposed research
provides a novel technique for improving precision in IGSS via EnPrO
by refining the mapping of 2D fluoroscopic images to the patient’s
anatomy. The fundamental strategy is to minimize reprojection error
(RPE) by picking optimal fiducial sites via weighted norm approxima-
tion. In EnPrO, we propose two methods to perform optimization for
fiducial weights, namely, using fiducial coordinates and using a cam-
era projection matrix (CPM). Using EnPrO, the C-Arm imaging distor-
tion that contributes to increasing RPE can be identified and excluded
from the IGSS calibration procedure. Using EnPrO, fiducials were chosen
based on weights obtained using the fiducial coordinates and the CPM
clearly showed an average RPE decrease of 6.96% and 8.36% respec-
tively. The implementation of the project can be found in this repository:
EnPrO - GitHub

Keywords: Image-Guided Spine Surgery · Fiducial Localization ·
Reprojection Error · Camera Calibration · Weighted Norm
Optimization

1 Introduction

Recent advancements in IGSS enable accurate localization of unseen anatomy
such as spinal structures when operated in Minimally Invasive Surgery (MIS)
mode [7]. This necessitates the need to improve intra-operative visualization
using various imaging modalities such as CT, X-ray, fluoroscopy MRI, etc. [3].
This paper focuses on the C-Arm fluoroscopy modality which is brought into
IGSS using a calibration drum allowing for precise measurement between the
C-Arm fluoroscopic image and the patient anatomy. Calibration drums usually

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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https://doi.org/10.1007/978-3-031-73083-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-73083-2_5&domain=pdf
https://github.com/HTIC-IGRS/Fiducial-Optimization
https://doi.org/10.1007/978-3-031-73083-2_5


EnPrO 43

Fig. 1. Schematic of the Spine C-Arm image acquisition with fiducials overlayed
using the calibration drum and shots captured in anterior-posterior (AP) and lateral-
posterior (LP) views.

consist of embedded metallic markers and fiducials whose detection forms one of
the primary requirements in IGSS [6]. Through the detection of the fiducials, all
the algorithms of the IGSS pipeline such as distortion correction, point detection,
calibration, etc. could be carried out which will enable the IGSS procedure [11].
The precision of the IGSS is very much dependent on the efficacy of the above
computation algorithms which in turn depend on the fiducials detection [14].

Several factors can impede accurate fiducial recognition, including C-Arm
distortion, fiducial occlusion owing to surgical instrument placement or dimin-
ished contrast in the C-Arm machine, flaws in the imaging method, and so on
[13]. The twofold possibility from this drawback is that we detect the fiducials
with severe distortion to hamper the RPE or we dont detect the fiducials which
have minimum distortion. In either case, it is imperative to decide to either
remove the distorted fiducial from the computational process leading the bet-
ter precision or redo the image capture again such as to detect the fiducials
with minimum distortion. Since the clinically acceptable error is <2mm, even
a meagre reduction in the RPE proves to improve the accuracy of the process
greatly [8]. During clinical data testing, it was observed that the accuracy of the
IGSS improved significantly when some fiducials were excluded during calibra-
tion which meant that certain fiducials could contribute substantially to the RPE
than others. In such instances, removing these fiducials may reduce the RPE.
Therefore, selecting the optimal fiducials to achieve the lowest RPE leading to
the highest precision is essential.

The main contributions of the proposed EnPrO are:
(i) EnPrO successfully identifies the fiducials that contribute the most and

least to the precision of the IGSS.
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(ii) EnPrO can work with only the fiducial positions independent of the
CPM which is useful as the camera matrix cannot often be generated for high
distortion fiducials.

(iii) With the availability of the CPM, the EnPrO utilizes the projected
points which makes the optimization more robust on the criteria of producing
the least RPE.

(iv) The proposed EnPrO approach is device-specific and tested on two C-
Arm manufacturers but still could be made agnostic.

2 Related Works

Medical imaging computing frequently necessitates the detection and optimiza-
tion of small structures, which provide major hurdles due to issues such as inten-
sity changes, indistinct boundaries, and aberrations in images. Also, anatomical
information must be kept intact because any anatomical deviation during com-
putation could result in incorrect surgical interpretations. To address these chal-
lenges, many researchers have proposed innovative algorithms, Zhang et al. [13]
pioneered a method for automatic detection and removal of fiducial projections
in C-Arm calibration images and Bertelsen et al. [1] presented a novel auto-
matic method for C-Arm distortion correction and calibration, emphasizing the
importance of fiducial identification in enhancing the accuracy of IGSS. Their
approach aimed to improve precision and reliability by utilizing fiducials for
distortion correction and calibration processes, thus contributing to more accu-
rate surgical interventions. D. H. Tungadio et al. [12] introduced a weighted
and iterative weighted least squares method for power estimation, overcoming
the convergence issues in linear programming methods and the constraints han-
dling limitations in Newton and Gradient methods. El Hazzat et al. [2] and F.
Mai and Y. S. Hung [9] both focused on improving 3D reconstruction accuracy
by minimizing RPE. El Hazzat et al. used a binocular stereo-vision system with
local bundle adjustment and the Levenberg-Marquardt algorithm, while Mai and
Hung employed a factorization-based algorithm and the augmented Lagrangian
method for projective reconstruction.

3 Methodology

For the proposed method, we utilize an in-house designed calibration drum which
has 81 fiducials - 17 calibration fiducials and 64 distortion fiducials. To accurately
map the patient space with the image space, the non-coplanarity is maintained
in the distribution of the fiducials. The inputs to the EnPrO would be these
detected distortion and calibration fiducials which would be detected using a
novel spatio frequency algorithm [10]. The coordinates of these calibration fidu-
cials, {(xi, yi)}17i=1 are then extracted from the C-Arm fluoroscopic image. Prior
to using EnPrO, a comprehensive analysis of fiducials was conducted to evaluate
the individual contribution of the fiducials to the RPE. As shown in Fig. 2, after
obtaining the fiducial weights, the weights are sorted in ascending order. As the
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Fig. 2. Schematic representation of the proposed EnPrO: C-Arm input image is com-
putationally processed for fiducial extraction which is then utilized in weighted norm
optimization. As only less than half of the detected fiducials are required for camera
calibration matrix computation, we split the fiducials into top and bottom fiducials
and do the RPE comparison.

minimum number of fiducials required for proper calibration is only 50%, we
can now choose to keep the best half of the detected fiducials. Consequently,
the ten fiducials with the highest weights and the ten fiducials with the lowest
weights are selected. The RPE obtained when all distortion fiducials are used
in calibration is compared with the errors obtained when the top ten fiducials
and the bottom ten fiducials, along with the significant fiducials, are used for
calibration. The fiducials that give the minimum error are the optimal fiducials
for that image.

3.1 Optimization for Fiducial Weights

This paper proposes two methods under EnPrO, an optimization methodology
trying to tie the fiducial coordinates to the RPE. The intent is to make the
best possible choice of the fiducials by the matrix problem abstraction as a set
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of error choices. The CVX toolbox from Stanford University is utilized for this
purpose [4,5]. We implement the Least Squares method in the optimization of
the form

minimize f(x) = ||Ax − b||2 (1)

where x ∈ R
n is obtained, A ∈ R

m×n is skinny and full rank (i.e., m ≥ n and
Rank(A) = n). The solution of the least-squares problem can be expressed as:

(ATA)−1x = ATb (2)

The weighted norm approximation is applied as

minimize Wx(||Ax − b||) (3)

Here, the weight is taken to be single dimensional for a particular set of fiducial
coordinates such that Wx ∈ x ∈ R

n. Equation (3) can be approximated as
Wx||A|| representing the fiducial position with minimum RPE. The proposed
methods may estimate weights regardless of whether a CPM is present. In the
former, the centroid is used to determine the point with the least distortion and
RPE, whereas in the latter method involving the CPM, the least RPE point is
computed.

Fiducial Co-ordinates Based Optimization. The objective function in this
method involves only the fiducial coordinates and the average coordinates for
each fiducial. Thus, the weights are determined for the x and y coordinates of
the fiducials using the following objective function:
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]
and b =(xiaverage, yiaverage) (i =

1, . . . , n)
Here, (x, y) denotes the coordinates of the fiducials obtained during the fiducial

extraction algorithm. The average of each fiducial’s x and y coordinates are repre-
sented by x1average, . . . , xnaverage and y1average, . . . , ynaverage respectively. The mini-
mum RPE fiducial position is considered to be the centre of all the fiducial coordinate
predictions taken individually as that point has the least distortion. The weights are
now estimated to minimize the difference between actual erroneous fiducial coordinates
to fiducial coordinates which have minimum RPE as shown in Algorithm 1.

x̂w = argmin(||Aijxw − bjmin||2) (5)
The above weights are estimated to optimize the coordinates together and using these
weights, we can infer which fiducials have more error and hence contribute to reduction
in accuracy. Since one of the primary reasons for the fiducial errors is due to the C-Arm
device-induced distortion, the proposed weights would be apt for a particular C-Arm
given a suitable amount of data is collected from that C-Arm. The above approach
works on the intuition of using the centroid as the minimum RPE fiducial coordinate.
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Camera Projection Matrix (CPM) Based Optimization. Another approach we
tried in this paper is to utilize the reprojected fiducial coordinate using CPM as

F ′(x, y) − F (x, y) = RPE (6)

where F(x, y) and F’(x, y) are the original points and reprojected points respectively.
This should provide a more robust approximation than before and can be modelled as
weighted robust minimization as shown in Algorithm 2,

x̂w = argmin(||Aijxw − ||P proj − RPE + ε(P proj)||||)2 (7)

where P proj represents the reprojected point vector R
n.

The objective function in this method incorporates the detected points, projected
points and the original RPE. Detected points are obtained during the detection of
fiducials. The projected points and RPE are obtained during the calculation of a camera
projection matrix using Direct Linear Transformation (DLT) [1].
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1, . . . , n)
Here, (x, y) is the detected point and (x ’,y ’) is the projected point. RPE is the repro-

jection error previously obtained during calibration. The above minimization becomes
more robust as the RPEminimum is computed rather than being picked on using intu-
ition in the previous method.

Algorithm 1. Optimize Fiducial Weights xn: Using Fiducial Coordinates
Require: Am×n and bm

Use Weighted Norm: Wx(||Ax − b||)
||WxA||||Wxx|| − ||Wxb||
||WxA|| = Aij = Fiducial Position
||Wxb|| = bjmin = Fiducial Position with Minimum RPE
||Wxx|| = xw = Fiducial Weight

if Aijxw − bjmin = 0 then
xw = [Unity Matrix]

else
x̂w = argmin(||Aijxw − bjmin||2)
Converge at AT

ijAijxw = AT
ijbjmin

end if
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Algorithm 2. Optimize Fiducial Weights xn: Using Camera Pojection Matrix
Require: Am×n and bm

Use Weighted Norm: Wx(||Ax − b||)
||WxA||||Wxx|| − ||Wxb||
||WxA|| = Aij = Fiducial Position
||Wxb|| = bjmin = Fiducial Position with Minimum RPE
||Wxx|| = xw = Fiducial Weight
bjmin = ||P proj − RPE + ε(P proj)||
P proj = Projected Points
RPE = Reprojection Error
ε = Robust Approximation Term

if Aijxw − bjmin = 0 then
xw = [Unity Matrix]

else
x̂w = argmin(||Aijxw − bjmin||2)

= argmin(||Aijxw − ||P proj − RPE + ε(P proj)||||)2
Converge at xw = (Aij)(P

proj − RPE + ε(P proj))
end if

In Equations (4) and (8), n and m represent the number of fiducials and the number
of images respectively. The weights wx1, wx2, . . . , wxn and wy1, wy2, . . . , wyn represent
the multiplication factors that the optimization algorithm gives as output for the x
and y coordinates respectively, to keep the error minimum. The weight of the fiducial
is the average of these weights obtained for the x and y coordinates separately. The
weights for the individual coordinates are obtained by solving the equations for all the
fiducials detected in every image.

4 Results and Discussion

Dataset: The proposed EnPrO was modelled on 309C-Arm fluoroscopic images cap-
tured from two different C-Arms. The IGSS in-house design had 17 fiducials reserved for
calibration and 64 fiducials reserved for distortion. The weights were computed using
only the calibration fiducials whereas the RPE metric was evaluated over the entire
distortion and calibration fiducials to make it more generalized across the image. The
absence of a particular fiducial due to non-detection or occlusion usually leads to an
increase or decrease in RPE. Since for IGSS, the medical-grade accuracy is less than
2 mm, it becomes important to analyse these variations in RPE using the proposed
EnPrO.

Study of Fiducials: From the RPE analysis performed on all images, the 4th, 5th and
7th fiducials were found to be significant, as shown in Fig. 3(a). The study was further
narrowed to images in which all the calibration fiducials were detected (74 images). As
described in Fig. 3(b), images with all the calibration fiducials showed that removing
the 4th and 7th fiducials significantly increased the RPE, thus identifying them as the
most significant fiducials. In contrast, removing the 6th and 9th fiducials minimized the
error, classifying them as non-significant. The images used in this analysis were further
classified based on the C-Arm used for acquisition. When C-Arm 1 was used for image
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Fig. 3. RPE Analysis of the Calibration Fiducials: (a) All dataset images, (b) Images
with full Calibration Fiducials, (c) Images with full Calibration Fiducials acquired
using C-Arm 1, (d) Images with full Calibration Fiducials acquired using C-Arm 2

acquisition (13 images), the 4th and 5th fiducials were significant. The 8th fiducial was
non-significant, as shown in Fig. 3(c). In images acquired using C-Arm 2 (61 images),
depicted in Fig. 3(d), the 4th and 7th fiducials were significant, whereas the 6th and
9th fiducials were non-significant. From this study, it was predicted that including the
4th and 7th fiducials and excluding the 6th and 9th fiducials during calibration would
reduce the RPE.

Results Using EnPrO: Using EnPrO, we obtained the fiducial coordinates weights
using the above-mentioned fiducial coordinates method and the CPM on images from
two different C-Arms manufacturers. Ten fiducials with the highest and lowest weights
were chosen for calibration and the RPE obtained in this case was also compared with
the RPE obtained when the significant fiducials were included and the non-significant
fiducials were excluded in the same cases. In the proposed EnPrO for all images, the
minimum RPE from the above scenarios was chosen as the final RPE. Table 1 rep-
resents the fiducial weights obtained using fiducial coordinates in EnPrO where the
RPE decrease of 6.96 % is achieved. When the fiducial weights were obtained using
the CPM, the RPE decreased by 8.36% and the results are presented in Table 2. The
ε varied from -200 to +200 in steps of 10.

Results from Different C-Arms: As demonstrated in Fig. 4, the RPE measured
with the proposed EnPrO is compared on images acquired using C-Arm 1 and C-
Arm 2 taken separately and together, the fiducials chosen using the weights obtained
from the fiducial coordinates minimize the RPE 4(a) whereas in images acquired using
C-Arm 2, using the CPM gives weights that help choose the optimal fiducials 4(b).
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Table 1. Quantitative analysis of the RPE using weights obtained with fiducial coor-
dinates method of EnPrO

Experiments Initial RPE

Fiducials chosen for calibration

based on their weights
Final RPEDecrease in

RPE (%)
Bottom 10

Bottom 10

Include 4, 7

Exclude 6, 9

Top 10

Top 10

Include 4, 7

Exclude 6, 9

All images with

17 Fiducials

Average 0.7742 0.7829 0.7632 0.8947 0.7835 0.7203
6.96

SD 0.1018 0.143 0.1169 0.1337 0.1167 0.0986

Images with 17 fiducials

acquired using C-Arm1

Average 0.5855 0.5458 0.6112 0.8625 0.6512 0.5579
4.72

SD 0.0546 0.0661 0.0975 0.1774 0.103 0.0381

Images with 17 fiducials

acquired using C-Arm2

Average 0.8071 0.8243 0.7897 0.9004 0.8066 0.7487
7.24

SD 0.066 0.1083 0.0982 0.1236 0.1028 0.0758

Table 2. Quantitative analysis of the RPE using weights obtained with CPM method
of EnPrO

Experiments Initial RPE

Fiducials chosen for calibration

based on their weights
Final RPEDecrease in

RPE (%)
Bottom 10

Bottom 10

Include 4, 7

Exclude 6, 9

Top10

Top10

Include 4, 7,

Exclude 6, 9

All images with

17 Fiducials

Average 0.7742 0.7520 0.7256 0.8296 0.7868 0.7094
8.36

SD 0.1018 0.1175 0.0971 0.1511 0.1118 0.0966

Images with 17 fiducials

acquired using C-Arm1

Average 0.5855 0.6217 0.5839 0.6859 0.6353 0.5472
6.54

SD 0.0546 0.1345 0.0714 0.0927 0.0840 0.0423

Images with 17 fiducials

acquired using C-Arm2

Average 0.8071 0.7748 0.7503 0.8547 0.8133 0.7378
8.59

SD 0.0660 0.0979 0.0779 0.1452 0.0935 0.0725

Fig. 4. Performance Comparison of the EnPrO for the RPE metric on (a) images with
17 Fiducials acquired using C-Arm 1, (b) images with 17 Fiducials acquired using
C-Arm 2

Phantom Study: To validate the EnPrO method, a phantom clinical research was
conducted. The fiducials were chosen based on the optimization weights and tracking
results provided in shown in Fig. 5. As illustrated, IGSS tracking for a pedicle screw
point in the L4, L5 spine is accurate, as indicated by the colour code, with the yellow
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colour of the tracking tool representing accuracy between 1 mm and 2 mm and the
green colour representing accuracy less than 1 mm.

Fig. 5. Results using proposed EnPrO on clinical phantom study. The results show the
anatomy tracking on (a) AP and (b) LP images based on weighted fiducial selection

Both the above approaches allow us to understand the contribution of each fiducial
in IGSS. Using the computed weights, we can improve the precision by avoiding the
fiducials contributing to more error. The weights can also be generalized across the
device C-Arms though we find the weights at this stage to be non-device agnostic.

5 Conclusion

Prior to the proposed EnPrO, a fiducial-based study for RPE comparison was con-
ducted which proved that each fiducial contributed differently to the RPE. The presence
of significant fiducials during calibration minimizes the error and thus ensures higher
accuracy by better mapping between the 3D patient anatomy and the 2D image for
IGSS. Optimal fiducials that minimise the RPE can be chosen based on their weights
obtained using EnPrO. Fiducials were chosen based on weights obtained using the
fiducial coordinates and the CPM clearly showed an RPE decrease of 6.96% and 8.36%
respectively. Future studies would include conducting comprehensive clinical research
using phantom and cadaver trials, as well as linking the RPE effect to clinical tracking
accuracy.
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Abstract. In the treatment of burn wounds, an accurate estimation of
the ratio of the wound’s area to the total body surface area (%TBSA) is
crucial. Medical doctors use %TBSA as one of the factors to determine
the initial treatment, track the healing process, and devise subsequent
treatments. Existing works estimate the %TBSA using generic human
models with predefined percentages for each body part. These generic
human models do not consider the patients’ actual body shape. Further-
more, the estimation of wound size depends greatly on the doctor’s expe-
rience, resulting in inaccurate estimated %TBSA. This work addresses
the problem by using 3D modeling techniques and machine learning to
give a better estimation of %TBSA for each individual patient. We do
this by training a regressor to predict the patient’s body surface area
from images of his face and hand, and by using a portable 3D scanner
to determine the wound’s area. Our method estimates %TBSA with an
average error of 8.5%, which is a huge improvement over the 140% error
produced by existing methods. Our method is also easily accessible since
it uses commercial-off-the-shelf (COTS) devices. This makes it practical
for anyone, even those without medical knowledge, to use. Project page:
https://github.com/nganntk/BurnWounds.

Keywords: Burn wounds · Wound size estimation · Patient-specific

1 Introduction

The severity of the burn wounds is assessed based on the cause of the wound
(chemical, thermal, etc.), and the characteristics of the wound such as the depth
of the wound and the ratio of the wound surface area (WSA) and total body
surface area (TBSA), i.e., %TBSA = WSA/TBSA. Among these characteristics,
the %TBSA is the most difficult to assess by paramedics in the initial assessment,
i.e., outside of burn centers, because the wounds may have irregular shapes and
spread over a large area of the patient’s body. Over- and under-estimation of
the %TBSA will cause over- and under-resuscitation of burn fluid, which may
lead to serious complications such as edema formation, acute kidney injury, etc.

This work was done when Han Ching Yong was in NUS.
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Thus, proper initial assessment of %TBSA by the paramedics is crucial to avoid
such undesired outcomes and to determine the transferring of a burn patient to
a specific burn center [15].

To estimate the %TBSA, existing works adopt either generic-%TBSA or
specific-%TBSA. Generic-%TBSA uses templates with predefined percentages
of each body part to estimate %TBSA. These templates were built based on
either clinically-defined percentage charts or 2D/3D models of the human body.
Chart-based and 2D-model methods, such as the Lund and Browder Chart, are
commonly used in practice due to their simplicity, but they do not account for
the curvature of the human body [2,11,19,23]. On the other hand, 3D-model
methods capture the curvature of the human body, however, they need either
manual marking of the wound on the 3D model [14] or utilize a Kinect scanner
which is error-prone and impractical [18].

Specific-%TBSA methods estimate WSA and TBSA separately to compute
%TBSA. They measure WSA by either placing a measurement tool, i.e., grid
paper or ruler, onto the wound, or using a camera to capture the entire wound
in a single image [17,22]. Then, they estimate TBSA using the formula TBSA =
Heighta ×Weightb × c , where a, b, c are constants that adjust the importance of
height and weight [3,7–9,13]. These constants were derived from empirical data,
and do not consider biometric features that can affect the body shape such as
the age and gender of the patient.

The main shortcomings of existing methods are their impracticality, slowness,
and the use of generic models that do not consider the differences in the curvature
of different body parts. For example, burn size estimation requires burn wound
segmentation as a prerequisite step, even though 2D images do not capture the
accurate 3D shapes of burn wounds, burn wound segmentation models are still
developed using 2D images as input. In this paper, we propose a novel method
that overcomes the above shortcomings. Our main contributions are:

– A new dataset of accurate 3D body scans of 21 healthy human subjects, along
with their face and hand images. This will be publicly released to the research
community.

– A novel method to estimate total body surface area that is patient-specific
rather than generic.

– A novel method to estimate wound surface area using a COTS scanner that
is patient-specific, and that accounts for body curvature.

2 Methods

Our work falls under the specific-%TBSA approach, we propose a novel and
practical method for estimating the WSA (Sect. 2.1) and TBSA (Sect. 2.2) along
with a method for automatically measure %TBSA with accessible devices.

2.1 Estimating WSA

To estimate WSA, we use a COTS scanner, namely, an iPhone, that outputs a
3D colored mesh P of the scanned burn wound region. Vertex vi of P includes the
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Fig. 1. Left to right ((a) - (e)): sample of 3D body scan, face shape, face geometry [24],
palm only features, and palm with fingers features.

position and the color of vi. The WSA is computed using the following procedure
(Fig. 2a):

1. Remove duplicate, non-manifold vertices and faces on mesh P .
2. Compute the mesh parameterisation U of P using Least Squares Conformal

Maps [12] that maps each vertex vi in the mesh P to a 2D point Ui = (u, v).
3. Render U to a 2D image I of a fixed size, i.e., 512 × 512.
4. Perform burn wound segmentation on I to obtain a segmentation mask of the

burn wound I ′.
5. Map the segmented burn wound region in I ′ to P to obtain the wound mesh

P ′. Specifically, for each pixel in I ′, find its approximated vertex vi in P .
Then, take all the neighboring vertices of vi that are within a certain radius
r, i.e., r = 0.02 mm.

6. Compute WSA =
∑

t At for all faces in P ′, where At denote the area of a
face at index t in P ′.

For the segmentation in step 4, we used a recent burn wound segmentation
method called DeepASPP [4]. Note that this may be replaced by any other
segmentation method.

2.2 Estimating TBSA

Inspired by existing works that estimate a human body mass index (BMI) from
human face photo [6,24], our proposed method uses face and palm features
extracted from their respective photographs to build a linear regressor that esti-
mates the TBSA of a person. To achieve this, the proposed method is composed
of three stages, namely (1) data normalization, (2) feature selection, and (3)
training a linear regressor. Note that we also developed TBSA estimation models
using other regression models, but linear regression gives the best performance.

First, shape normalization using stable points is applied to ensure uniform
size for all face and palm photographs. Stable points are the three points with a
constant distance ratio regardless of the subject’s expression or skin movement.
For the face, they are the center of the eyes and the nose. For the palm, they are
the bottom corners of the index and pinky fingers and the bottom left corner
of the palm. A reference image Ir is manually chosen, and all other images are
aligned using affine transformation to match the stable points in Ir, ensuring
similar sizes of faces and palms across images.
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Fig. 2. Proposed method for burn size estimation. (a) Obtain WSA using an iPhone.
(b) Regression model to estimate TBSA from biometrics features.

Second, several features are selected for both the face and palm. For the
face, two types of facial features are computed from facial landmarks, namely
face-shape and face-geometry. The face-shape features include the outline of the
face, the nose, and the mouth which should reflect the person’s body shape
(Fig. 1b). The face-geometry features include the seven physiology features that
have been proven to be able to give clues on a person’s weight and BMI [5,16,24].
Specifically, the face-geometry features are: (1) Cheekbone width over jaw width,
(2) Cheekbone width over upper facial height, (3) Perimeter over area of the
face, (4) Average size of both eyes, (5) Lower face height over entire face height,
(6) Face width over lower face height, (7) Average distance between eyebrows
and the upper edge of eyes. For the palm, two types of features are used: (1)
palm without fingers (Fig. 1d) and (2) palm with fingers (Fig. 1e). (1) includes
the creases around the palm, whereas (2) adds in the tip of the fingers. Next,
the visual features, height, and weight are normalized. The normalization is
necessary to ensure the convergence of the linear regressor during training.

Finally, the last stage is to train a linear regressor on the selected features.
Given a dataset of n subjects, each subject i(i = 1, n) has a set of features F that
includes a face feature fi, a palm feature pi, height hi, weight wi, and a TBSA
ti. A linear regressor is trained that takes one or more features in F and predicts
the estimated TBSA of the subject t′i (Fig. 2b). Since the body compositions of



Patient-Specific 3D Burn Size Estimation 57

males and females are usually quite different, we use two separate regressors, one
for each gender. During inference, each regressor will then take a combination
of visual features, i.e., face and/or palm features, height, and weight to form the
feature vector. To evaluate the accuracy of the proposed model, we use leave-
one-out cross-validation due to a limited number of data samples.

3 Experiments

3.1 Data Collection

We collected and used two datasets: (1) 3D-Healthy-Body-Scan for developing
the TBSA prediction model and (2) Burn-Wound-Scan for evaluating the pro-
posed method for burn size estimation.

For the 3D-Healthy-Body-Scan dataset, we collected 3D body scans of 21
healthy human subjects (10 females, 11 males, 21 - 50 years old) and their bio-
metrics features, i.e., face photograph, palm photograph, weight, height, gender,
and age group. This data collection is a one-time effort used to train a regressor.
In practice, the 3D body scan of burn patients is not required. To train the
regressor, the TBSA of each participant is needed. TG3D Studio’s Scanatic 360
Body Scanner [20] is used to obtain the body shape as a point cloud (Fig. 1a).
Then, Poisson surface reconstruction [10] is used to generate a 3D mesh. Finally,
the TBSA is computed as the sum of areas of all faces in the 3D mesh.

For the Burn-Wound-Scan dataset, due to the lack of publicly available burn
wound images especially in 3D and COVID restrictions, we devised a prolific
way to replicate the burn wound on patients to evaluate the performance of the
proposed method. To achieve that, we created artificial wounds by using two
mannequins (1 male, 1 female) and 13 wound images from the dataset in [4].
We note that this practice of using mannequins with artificial burn wounds is
commonly used in burn wound analysis literature as well as for medical teaching
and research purposes. The wounds were placed on various body parts with
different levels of curvature such as the torso which has low curvature and the
arm which has high curvature. To scan the wound, we considered two scanners,
Artec Eva [1] and iPhone 12’s True Depth camera. Artec Eva uses structured
light while the iPhone’s TrueDepth camera uses an infrared sensor to create a
point cloud with color information. For the iPhone, we used Heges API to retrieve
the most accurate point cloud from the iPhone’s sensor [21]. The scanning time
for a burn wound is <5 min for the Artec and <1 min for the iPhone.

3.2 Performance Metric and Evaluation Setup

Percentage error is used to evaluate the accuracy of the proposed method in
computing WSA, TBSA, and %TBSA. Given the estimated value vE and the
ground-truth value vA, the percentage error δ is computed as follows:

δ =
|vE − vA|

vA
× 100 (1)
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The ground-truth TBSA of the two mannequins were obtained in a similar way
to those of participants (Sect. 3.1), but the Artec scanner was used instead. The
acquisition of ground-truth WSA was more involved, which will be described in
the next paragraph. The estimated TBSA and WSA are computed as described
in Sect. 2.2 and Sect. 2.1, respectively. Finally, the estimated and ground-truth
%TBSA is computed from TBSA and WSA.

Due to the wounds’ irregular shapes, it is not trivial to get the actual wound
area. Therefore, we obtain the wound area by taking a picture of each wound
with a reference object of a known size (i.e., a green sticker with a diameter of
12 mm). Then, the camera is calibrated using the standard calibration method
[25] to remove any effects from lens distortion. Finally, the area of the wound in
meter Wm is computed from the area of the wound in pixel Wp, the area of the
reference object in pixel Rp and meter Rm using Eq. 2. This area is the pseudo
ground truth of the wound and is considered the ground truth wound size for
the following experiments.

Wm =
Wp ∗ Rm

Rp
(2)

The performance evaluation of the proposed method was done by comparing
its metrics with three existing works, namely (1) Rule of 9 s, (2) Lund and
Browder chart, and (3) Mersey Burns. To obtain the results of the previous
works, two researchers separately computed the %TBSA using the previous work
the average of the computed %TBSA between the two researchers is used for
comparison. We also manually segmented the burn wound to obtain the upper-
bound performance of our method.

4 Results and Discussions

4.1 Percentage Error of the TBSA

Table 1 summarizes the percentage error of the TBSA for each gender group
with different combinations of visual features. The average percentage error is
less than 10 % for both genders. The model always performs slightly better in
the male group compared to the female group, except when only the face feature
is used. The smallest average errors for female and male groups are 3.46% and
4.00%, respectively, and they are obtained with face shape as the visual feature
for females and palm region as the visual feature for males.

Table 2 compares the percentage error of the proposed model with those of
the previous works. The table shows that the proposed model with face shape
feature, i.e., lowest error, gives comparable error for females and males to those
of the previous works. The estimated TBSA of the male and female mannequins
are 1.57 m2 and 1.83 m2, respectively. We note that previous works have also
used mannequins to aid the development of burn size estimation methods.
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Table 1. Percentage error (%) of
TBSA with different visual fea-
tures.

Models Female Male

Face shape (FS) 3.46 5.06

Face geometry (FG) 3.73 5.82

Palm only 6.28 4.00

Palm + fingertips 6.79 4.06

FS + palm 7.70 6.00

FS + palm + fingertips 9.14 5.91

FG + palm 6.18 4.42

FG + palm + fingertips 3.73 5.82

Table 2. Comparison of percentage error
(%) of TBSA

Methods Female Male

Bois 1.87 2.90

Boyd 63.15 63.62

Haycock and Schwarz 3.02 3.53

Gehan and George 3.03 3.69

Mosteller 2.57 3.23

Proposed 3.46 5.06

4.2 Percentage Error of the WSA

The performance of the WSA is highly dependent on the wound segmentation
model. Current methods in burn wound segmentation focus on 2D burn wound
segmentation, however, to get an accurate estimation of the wound size, we need
to use 3D scans to account for different curvatures of the wound surface. Further-
more, 2D burn wound segmentation models are often trained on images taken
in good lighting conditions and are not tested on a variety of lighting conditions
in real life. Therefore, in this work, we evaluated our method with the wounds
either manually segmented or by using DeepASPP. The method’s performance
when the wound is manually segmented is the upper-bound performance, while
the model performance when using DeepASPP served as a baseline of the cur-
rent state-of-the-art method for 2D burn wound segmentation when applied to
real-life scenarios. The results showed that when the wounds were manually
segmented, both Artec and Heges produced a small average percentage error,
i.e., < 10%. However, when the wounds were segmented using DeepASPP, the
percentage error of both Artec and Heges increased four times. Artec’s average
percentage error increases from 6.00% to 25.02%, while the average error for
Heges increases from 7.62% to 31.62%. DeepASPP was the SOTA burn wound
segmentation model, however, it cannot perform well under real life scenario
with varying lighting conditions. Thus, our work aims to bring focus on the gap
between the performance of burn wound segmentation model performance on
2D images compared to its performance in practical conditions.

4.3 Percentage Error of the %TBSA

Table 3 compares the percentage error of %TBSA between the proposed model
and the previous works, i.e., chart-based and 2D model-based methods. By
accounting for the curvature of the specific patient, especially when computing
the WSA, the proposed method achieves a significantly lower percentage error of
%TBSA compared to previous works. The average errors of the proposed method
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Table 3. Comparison of percentage error of %TBSA between the previous works (3 left
columns) and the proposed method (4 right columns). (F) means female, (M) means
male. The previous works include: (Ro9) Rule of 9 s, (LB) Lund and Brow- der chart,
and (MB) Mersey Burns. For the proposed method, different variant of the proposed
methods are compared: (ArtecM) Artec-manual, (ArtecD) Artec-DeepASPP, (HegesM)
Heges-manual, (HegesD) Heges-DeepASPP. All values are in percentage.

Wound position Ro9 LB MB ArtecM ArtecD HegesM HegesD

(F) arm large 20.26 36.66 33.02 6.09 4.34 3.24 14.61

(F) arm small 51.22 46.34 17.07 8.00 8.00 1.27 35.71

(F) foot 26.88 384.66 206.75 22.09 65.03 20.25 71.78

(F) hand 98.10 161.72 134.38 25.78 0.00 21.09 66.41

(F) headback 293.36 205.94 188.46 0.52 12.59 9.79 116.08

(F) headfront large 199.54 132.92 150.57 19.82 30.98 9.11 0.91

(F) headfront small 241.73 166.19 223.74 0.72 46.04 4.32 50.36

(F) leg large 3.20 0.61 19.33 11.91 37.85 12.36 37.56

(F) leg small 18.80 13.58 82.77 2.35 29.63 0.26 13.06

(F) torsoback large 229.52 122.07 77.66 0.82 4.61 2.80 30.34

(F) torsoback small 193.05 112.01 167.73 3.62 12.30 0.43 14.47

(F) torsofront large 276.28 171.76 52.03 0.53 19.50 6.69 16.42

(F) torsofront small 217.04 129.19 190.62 1.72 16.91 1.32 21.27

(M) arm large 21.92 20.76 34.70 4.78 2.18 7.71 28.57

(M) arm small 88.44 88.44 69.60 9.42 15.96 12.44 50.50

(M) foot 56.00 276.00 260.00 10.40 172.00 16.00 78.40

(M) hand 155.10 185.71 308.16 7.14 47.96 15.31 19.39

(M) headback 452.46 329.69 290.63 6.92 6.25 12.05 2.90

(M) headfront large 286.03 200.74 208.82 6.77 3.24 12.65 1.77

(M) headfront small 287.17 200.89 209.74 13.27 94.69 12.39 2.66

(M) leg large 26.64 29.59 28.75 6.67 16.25 9.46 76.40

(M) leg small 33.90 61.02 94.92 8.31 13.22 10.00 30.17

(M) torsoback large 117.39 56.94 113.25 4.35 1.08 6.13 29.73

(M) torsoback small 226.49 135.08 226.49 7.09 2.99 6.90 0.75

(M) torsofront large 183.42 104.54 67.69 7.46 8.60 9.54 8.17

(M) torsofront small 131.96 67.53 217.87 10.65 16.50 11.00 12.20

AVERAGE 151.38 132.33 141.34 7.97 26.49 9.02 31.95

are around 8–9% for manual segmentation and 26–31% for segmentation using
DeepASPP. These errors are significantly smaller than those of the previous
works, where the average errors are around 130% to 150%. When comparing the
average errors between the Artec and Heges, their difference is not significant,
i.e., around 1% with manual segmentation. Most importantly, the errors of both
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Artec and Heges are less than 10% with manual segmentation, which is about
15 times smaller than those of the previous works.

This proof-of-concept work currently has some limitations. First, we used
mannequins because COVID-19 prevented access to real patients. Second, we
used fake wounds, resulting in a clear boundary between the wound and the
skin which makes it easier to segment compared to real wound. However, this
could be addressed by incorporating a more accurate and robust burn wound
segmentation model than the SOTA model, i.e., DeepASPP [4]. Finally, we only
have a limited dataset of body scans for estimating TBSA. In future steps, we
aim to broaden the 3D body scan dataset to encompass diverse age groups and
ethnicities. Additionally, we intend to integrate our model into a mobile app and
conduct clinical trials with real patients to enhance and validate its performance.

5 Conclusion

This work presents an automated, accurate, and easy-to-use method to estimate
the %TBSA with COTS devices. More precisely, we introduce a new dataset that
includes 3D body scans and biometric features of 21 healthy human subjects. We
also proposed a method that estimates the TBSA from biometrics features and
estimates WSA using 3D modeling techniques. We emphasize that each patient
only needs to provide (a) a video of the burn wound, (b) a single photo of the
face and/or palm, and (c) personal information that consists of height, weight,
and gender. No 3D body scan of the patient is needed. This makes our method
practical because these inputs are easily acquired from the patient, who may
be in great pain because of the burns. Our experiments with different wound
sizes, locations, and 3D scanners demonstrate the effectiveness and accuracy
of our proposed method as compared to the previous works. These promising
outcomes motivate further clinical trials and eventual practical deployment.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. Temporomandibular Degenerative Joint Disease (TM DJD)
is characterized by chronic and progressive degeneration of the joint,
leading to functional limitations. Converging on enhancing TM DJD
diagnosis, prognosis, and personalized patient care, multimodal Cone
Beam Computed Tomography (CBCT) and Magnetic Resonance Imag-
ing (MRI) registration aims to allow comprehensive understanding of the
articular disc and subchondral bone alterations towards elucidating the
onset, advancement, and progression of TM DJDs. This study proposes
a novel multimodal image registration (fusion) approach that combines
image processing techniques with mutual information to register MRI
to CBCT images, enhancing TMJ complex visualization and analysis.
The algorithm leverages automated image orientation, resampling, MRI
inversion, normalization and rigid mutual information registration meth-
ods to align and overlay multimodal images while preserving anatomi-
cal details. Evaluation on 70 CBCT and 70 MRI scans acquired at the
same time points for 70 TM DJD patients demonstrates robustness to
variations in image quality, anatomical morphology, and acquisition pro-
tocols. By integrating MRI soft tissue information with CBCT bony
details, this novel open-source tool available in the 3D Slicer platform
provides a more comprehensive patient-specific TM DJD model. The
current 98.75% success rate, with mean absolute rotation differences of
1.53◦ ± 1.75◦, 1.69◦ ± 1.54◦, and 2.70◦ ± 2.89◦ in Pitch, Roll and Yaw
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respectively; and translation differences of 0.92mm ± 1.64mm, 0.98mm
± 0.85mm, and 0.5mm ± 0.43mm in respectively the Left-Right, Antero-
Posterior and Supero-Inferior axes. The proposed approach has potential
to enhance care for TM DJD and other conditions requiring multimodal
images.

Keywords: Multimodal image · Fusion · Degenerative joint disease

1 Introduction

Temporomandibular joint (TMJ) disorders are complex conditions affecting the
jaw joint and surrounding tissues [1]. Accurate diagnosis and treatment planning
require detailed visualization of both bony structures and soft tissues, including
the articular disc, ligaments, and musculature. Cone-beam computed tomogra-
phy (CBCT) is widely used in dental and maxillofacial imaging due to its high
spatial resolution and relatively low radiation dose [2]. However, CBCT has lim-
ited soft tissue contrast and cannot adequately visualize the disc and surrounding
tissues crucial for TMJ assessment [3].

Magnetic resonance imaging (MRI) provides superior soft tissue delineation
without ionizing radiation, making it an ideal complement to CBCT for com-
prehensive TMJ evaluation [4–6]. Integrating MRI and CBCT data represents a
significant advancement in craniofacial assessment, offering unprecedented diag-
nostic accuracy and treatment planning precision [6,7].

Despite the recognized value of utilizing both modalities, integration remains
challenging due to differences in patient positioning, image resolution, and field
of view. Traditional registration algorithms are less effective due to the inherent
differences in information provided by each modality, necessitating advanced,
automated solutions to ensure accurate and efficient data fusion [8]. Manual
registration is time-consuming and prone to inter-observer variability [7].

This study aims to address these limitations by developing an algorithm for
automated MRI to CBCT registration, enabling efficient and accurate fusion of
the complementary information provided by each modality. The novel approach
employs image processing methods to achieve robust alignment and natural-
looking integration of the multimodal images. By providing a holistic 3D model
of the patient’s TMJ anatomy [9,10], this technique has the potential to greatly
enhance diagnostic capabilities and facilitate personalized treatment strategies.

2 Materials

A total of 70 CBCT and 70 MRI scans of the head in Digital Imaging and Com-
munications in Medicine (DICOM) format were used in this work. The images
were acquired at different clinical centers with different scanners, acquisition
protocols, and fields of view. All DICOM files were anonymized removing all
identifiable personal information using the 3D Slicer Batch Anonymizer module.



Enhanced Registration of MRI and CBCT 65

The University of Michigan Institutional Review Board (IRB) HUM00239207
waived the requirement for informed consent and granted IRB exemption. The
CBCT and MRI scans were acquired using standard clinical protocols with-
out any additional imaging performed for research purposes. All images were
anonymized and stripped of protected health information prior to being trans-
ferred to the researchers. The data was securely stored on encrypted servers with
access restricted to authorized personnel only.

3 Methods

3.1 Data Preprocessing

To achieve accurate registration of MRI to CBCT scans, we developed a novel
pipeline that combines both newly developed automated procedures and previ-
ously developed tools. The overall workflow of the MR2CBCT registration pro-
cess is illustrated in Fig. 1. Initially, the CBCT files were not oriented because
of the inconsistency in imaging acquisition protocols, patient position during
image acquisition, and settings used on scanners in different clinical centers [11].
Therefore, the first step involved orienting and centering these CBCT scans to a
common frame of reference. To do this, we used Automated Orientation available
on 3DSlicer [12]. Similarly, the MRI data required orientation and centering to
align with the CBCT scans.

Fig. 1. Workflow of the MR2CBCT registration. The proposed novel pipeline consists
of both new automated procedures (shown in green) and previously available tools
(shown in gray) that are leveraged to build the overall registration workflow. (Color
figure online)

Following this, a clinician expert performed a manual registration using the
3D Slicer Transforms tool to register the CBCT scans with the MRI scans. This
manual alignment was essential to establish an initial correspondence between
the two modalities. Once the initial registration was achieved, a consistent
bounding box was used to crop both the CBCT and MRI scans around the
temporomandibular joint (TMJ) area, which was the primary region of interest
for our analysis. The machine learning models for CBCT segmentation of the
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cranial base were automatically computed using the tools called AMASSS [13]
from the 3D Slicer 5.6.2 and used as stable regions of reference for registration.
The MRI images underwent inversion of the gray level intensity values to bet-
ter match the contrast of the CBCT scan, as MRI and CBCT images typically
present different intensity distributions (Fig. 2). After inversion, we normalized
the intensity values of the MRI and CBCT images to a common range, typically
[0, 100] for MRI and [0, 75] for CBCT, to ensure consistent intensity scales over
the regions of interest in our two images. The preprocessed images were then
saved and used in the registration process.

3.2 MRI to CBCT Registration (Fusion)

Following the clinician’s manual registration and preprocessing steps, the Elastix
mutual information rigid registration method was applied to refine the alignment
between the MRI and CBCT scans [14]. The steps involved in this process were:

Mask Application: The mask obtained from the segmentation of the CBCT
was applied to the preprocessed CBCT image, isolating the cranial base region to
serve as a stable reference for registration with the MRI. This step ensures that
the registration focuses on the most relevant anatomical structures and reduces
the influence of noise or artifacts in other regions.

Rigid Registration: The rigid registration approach in Elastix optimizes the
transformation parameters, including translation and rotation, to achieve the
best overall alignment between the two imaging modalities. Unlike non-rigid
methods, this approach maintains the original geometry of the images, which
is particularly important for preserving anatomical relationships. The rigid reg-
istration allows for correction of global misalignments, improving the overall
spatial correspondence between MRI and CBCT.

Optimization: Elastix utilizes an optimization algorithm to iteratively adjust
the transformation parameters to maximize the mutual information between the
images. Mutual information is a statistical measure that quantifies the amount
of information obtained about one image given the other, making it suitable for
multimodal registration. The optimization process seeks to find the transforma-
tion that results in the highest mutual information, indicating the best alignment
between the MRI and CBCT scans.

Transformation Parameters: The optimized transformation parameters,
including the translation and Euler angles (rotation), were extracted and ana-
lyzed to quantify the registration accuracy in six degrees of freedom (DOF).
These parameters provide a quantitative measure of the registration performance
and can be used to assess the reliability of the registration results.
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The Elastix mutual information rigid registration approach leverages the
strengths of both imaging modalities, combining the soft tissue contrast of MRI
with the bony detail of CBCT. By iteratively optimizing the transformation
parameters to maximize mutual information, this method aims to achieve a
more precise and robust alignment compared to manual registration alone. The
application of the CBCT segmentation mask aims to enhance the registration
accuracy by focusing on the most stable and relevant anatomical regions. The
goal of this approach is for the resulting registered images to provide a compre-
hensive 3D model of the TMJ, enabling improved visualization and analysis of
both soft tissue and bony structures.

Fig. 2. Preprocessing steps for MRI-CBCT registration. (A) Overlay of the automated
CBCT segmentation (shown in green) on the MRI scan, highlighting the cranial base as
a stable region of reference. (B) Inversion of the gray level contrast of the MRI scan to
better match the intensity characteristics of the CBCT scan, facilitating the registration
process. (C) Normalization of the CBCT scan to achieve consistent intensity scales over
the regions of interest between the MRI and CBCT images. (Color figure online)

3.3 Evaluation Metrics

To quantify the quality of registration between MRI and CBCT images, a multi-
step approach was employed. Initially, a clinician performed manual registration
to align the MRI with the CBCT using the 3D Slicer Transforms module, provid-
ing a baseline for comparison. We then calculated the registration matrices for
the whole sample using the Elastix mutual information rigid registration. The
voxel-based registration was quantitatively assessed in the six degrees of free-
dom of the translation (Left-Right, Antero-Posterior and Supero-Inferior axes)
and rotation (Pitch, Roll, and Yaw axes). Summary statistics were computed
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in Jamovi software version 2.3.28 to report for the differences in each degree of
freedom, including the mean difference, mean absolute difference, minimum and
maximum absolute differences, and 75th and 90th percentiles of the absolute
differences, and graphically display the errors distribution. The quality of voxel-
based registration was verified through visual inspection by an expert clinician.
The clinician’s quality control check focused on the alignment of key anatomical
structures and overall spatial correspondence between the two imaging modal-
ities. This quality control allowed detection of clinically relevant registration
improvements not captured by the quantitative metrics. Cases were classified as
successfully registered if they demonstrated clear visual improvement over the
clinician manual registration and if the linear differences in the MR translation
were less than 4mm relative to the CBCT. Adjustment of the MRI normaliza-
tion parameters was used to improve the precision of the MRI registration to the
CBCT. As a gold standard, a panel of expert clinicians reviewed the results after
the method was applied, providing a final validation of the registration quality.

4 Results

The registration method was applied to a dataset of 70 MRI-CBCT image pairs.
The transformation matrices were then evaluated for quality control by an expert
clinician, and the variability of the six degrees of freedom was assessed by com-
paring the automated registration results to the clinicians’ gold standard regis-
tration (Table 1 and Fig. 3).

Table 1. Differences in six Degrees of Freedom between clinician and Elastix Image
Registration.

ROTATION (◦)

Pitch Roll Yaw

Mean difference (SD*) 0.49 (2.28) -0.62 (2.21) -0.99 (3.84)

Mean absolute difference (SD*) 1.53 (1.75) 1.69 (1.54) 2.70 (2.89)

Minimum absolute difference 0.00 0.02 0.03

Maximum absolute difference 8.72 6.79 16.60

75th percentile of absolute difference 1.93 2.56 3.04

90th percentile of absolute difference 3.51 3.32 5.10

TRANSLATION (mm)

LR AP SI

Mean difference (SD*) 0.3 (1.86) 0.89 (0.94) -0.20 (0.63)

Mean absolute difference (SD*) 0.92 (1.64) 0.98 (0.85) 0.50 (0.43)

Minimum absolute difference 0.01 0.01 0.00

Maximum absolute difference 13.10 3.52 2.57

75th percentile of absolute difference 1.16 1.48 0.72

90th percentile of absolute difference 1.55 2.12 0.95
* Abbreviation of Standard Deviation (SD)
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The results indicate small differences, with mean absolute rotation differ-
ences of 1.53◦, 1.69◦ and 2.70◦, respectively in Pitch, Roll and Yaw, and mean
absolute translation differences of 0.92mm, 0.98mm and 0.50mm respectively in
the Left-Right, Antero-Posterior and Supero-Inferior axes. Sixty-nine out of 70
cases presented less than 4mm in the MRI translation in each axis relative to the
CBCT compared to the clinician manual registration. Eleven cases whose MRIs
presented darker gray level intensity had a difference of MR translation >2mm
and <4mm. Fifty-two cases presented less than 2mm in the MR translation in
each axis relative to the CBCT compared to the clinician manual registration,
with improved MRI to CBCT image registration in the clinician quality control
check (Fig. 4). The sequence of image processing steps for images centering, ori-
entation, resampling, MRI inversion, normalization and Elastix mutual intensity
registration of MRI to CBCT were deployed in Github as a 3D Slicer module
for multimodal registration called MR2CBCT.

Fig. 3. Box plots with overlaid density plots showing the differences in six degrees of
freedom (Pitch, Roll, Yaw, Left-right, Antero-posterior, and Supero-inferior) between
the clinician registration and the Elastix registration approaches. The boxes represent
the interquartile range (IQR) between the 25th and 75th percentiles, with the median
marked by the horizontal line inside the box. The whiskers extend to the most extreme
data points within 1.5 times the IQR from the box edges. Outliers beyond the whiskers
are plotted as individual points. The density plots on either side of the boxes illustrate
the distribution of the data points, with the width of the shaded area representing the
proportion of data at each value. Positive and negative values indicate the direction of
differences between the clinician and Elastix registration approaches.
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5 Discussion

The present study introduces a novel automated method for registering MRI to
CBCT scans, focusing on the TMJ region. The proposed approach addresses the
limitations of existing methods by integrating image processing techniques to
perform robust and accurate multimodal image registration. The results demon-
strate the effectiveness of the developed pipeline in aligning MRIs and CBCTs,
enabling the fusion of complementary information provided by each modality.

Our study underscores the critical importance of thorough preprocessing in
achieving accurate MRI-CBCT registration. The initial steps of orientation, cen-
tering, and manual approximation proved fundamental in establishing a common
frame of reference, addressing a key challenge in multimodal imaging [11,12]. By
utilizing the Automated Orientation tool in 3D Slicer and incorporating clinical
expertise, we were able to overcome the inherent differences in image acquisi-
tion between MRI and CBCT. The focused cropping of the TMJ area not only
streamlined the registration process but also enhanced its precision by concen-
trating on the most relevant anatomical structures.

The segmentation of the cranial base in CBCT images provided stable ref-
erence regions, improving the reliability of the registration process. Our image
enhancement techniques, including the inversion of MRI gray level intensities and
normalization of both MRI and CBCT images, played a vital role in bridging
the gap between the two imaging modalities [7,10]. These preprocessing steps
significantly facilitated the identification of corresponding anatomical features
across modalities, addressing a persistent challenge in multimodal registration.

Fig. 4. MRI-CBCT Overlays: (A) Manual registration; (B) Post MR2CBCT Registra-
tion using the Cranial Base as a stable region of reference. Note that the CBCT was
taken with the mouth slightly open which may have been challenging for the clinician
performing manual registration; also note how the fit of the cranial base was improved
in the mutual information registration performed by the MR2CBCT algorithm in B.
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When considering differences between the gold standard and Elastix registra-
tions, the smallest linear displacement errors were observed in the supero-inferior
direction, while the greatest in antero-posterior direction. Regarding rotational
differences, the largest error was in pitch. These findings are similar to the direc-
tions of greater differences in automated orientation and registration for multiple
CBCT scans tested previously [12]. Although these errors can be minimized by
future research, they are already within a clinically acceptable range.

Successful integration of MRI and CBCT scans has profound implications for
TMJ disorder diagnosis, treatment planning, and research. By providing a holis-
tic 3D model of TMJ anatomy, including both hard and soft tissues, clinicians
can gain a more comprehensive understanding of underlying pathologies [3,6].
This enhanced visualization enables identification of subtle changes in articular
disc, ligaments, and musculature, invisible on CBCT alone, guiding personalized
treatment strategies [8]. The proposed method also has potential to advance
TMJ disorder research, opening new opportunities for large-scale studies inves-
tigating etiology, progression, and treatment outcomes [1,2].

Despite the insights gained, this study has some limitations. Eleven cases
with darker MRI gray level intensity presented a difference of MR translation
>2mm and <4mm. Although they were considered successful cases, there is still
space for further refinement of preprocessing techniques to handle varied image
qualities. Future studies should validate the proposed method on larger, more
heterogeneous datasets to assess generalizability. Establishing target points on
both MRI and CBCT images or creating MRI segmentations would allow us to
incorporate quantitative metrics like Target Registration Error (TRE) and Dice
Similarity Coefficient. This future addition will provide a more comprehensive
evaluation of registration quality [7].

The proposed automated registration method demonstrates high success
rates and has the potential to significantly enhance diagnosis, treatment plan-
ning, and research. The comprehensive preprocessing pipeline, combined with
the rigid registration approach, enables accurate alignment of MRI and CBCT,
providing a holistic 3D model of TMJ anatomy. The proposed pipeline was
tested and implemented as functionalities of a free open-source module (available
at https://github.com/DCBIA-OrthoLab/SlicerAutomatedDentalTools) with a
user-friendly interface in 3DSlicer. Future work should focus on further refine-
ment of preprocessing techniques, quantitative comparisons with various regis-
tration approaches as well as incorporate automated segmentation of the artic-
ular disc to improve the robustness and clinical applicability of the proposed
method.

6 Conclusion

The novel MRI to CBCT registration method developed in this study repre-
sents a significant advancement in multimodal image fusion for TMJ disorders.
The proposed approach integrates state-of-the-art image processing techniques
to enable accurate and efficient alignment of MRI and CBCT scans, providing

https://github.com/DCBIA-OrthoLab/SlicerAutomatedDentalTools
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a comprehensive 3D model of the patient’s TMJ anatomy. The results demon-
strate a high success rate and small mean absolute differences in rotation and
translation, indicating the robustness of the registration approach. This holis-
tic visualization has the potential to enhance diagnostic capabilities, facilitate
personalized treatment planning, and advance research in the field of TMJ dis-
orders.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. Non-alcoholic fatty liver disease is one of the most common
diffuse liver diseases worldwide, affecting approximately 25–30% of the
global population. Accurate liver fibrosis staging and longitudinal track-
ing are crucial for effective care. Core needle biopsy is the current gold
standard but it is invasive, inaccurate, and costly. Abdominal B-mode
ultrasound (US) in conjunction with shear wave elastography (SWE)
offers a non-invasive alternative but suffers from high variability, impair-
ing quantitative assessments. Consistent liver views in the abdominal
ultrasound during multiple visits will likely result in consistent SWE-
based fibrosis staging. This study presented a proof-of-concept pipeline
for identifying the most anatomically similar transverse view in the right
liver lobe in abdominal US videos across multiple visits. Our three-stage
framework consisted of liver view classification, liver capsule and hepatic
vessel segmentation, and quantitative similarity measurement. We used a
pretrained EfficientNet-B3 network for liver view classification, achieving
99% accuracy. We then used Efficient-UNet to segment the liver capsule
and hepatic vessels, obtaining Dice scores of 90% and 58%, respectively.
The classification and segmentation outputs were used for similarity anal-
ysis. We evaluated four similarity metrics including deep image structure
and texture similarity (DISTS), Root Mean Squared Error (RMSE), Nor-
malized Cross Correlation (NCC), and structural similarity index mea-
sure (SSIM), with SSIM resulting in the best results. This pipeline has
the potential to improve SWE-based quantitative fibrosis staging and
enable cost effective longitudinal tracking.
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1 Introduction

Non-alcoholic fatty liver disease is one of the most common diffuse liver dis-
eases worldwide, affecting approximately 25–30% of the global population [1].
Proper fibrosis staging and longitudinal tracking are crucial for effective care
management. Biopsy, the current gold standard, is invasive, costly, and prone to
sampling error and operator variability [2]. B-mode ultrasound (US), in conjunc-
tion with shear wave elastography (SWE), offers a non-invasive alternative [3,4].
A consistent US scanning protocol is key to consistent SWE-based liver stiffness
measurement [5], but variability in obtaining liver views hampers longitudinal
tracking and reduces sensitivity to changes. SWE estimation at similar anatom-
ical locations over multiple visits can reduce SWE measurement variability and
track liver fibrosis progression more robustly. Qualitative analysis alone does not
guarantee sonographers to obtain consistent measurements at the same locations
across exams. An algorithmic solution is needed to address noise in the ultra-
sound (e.g., speckles, shadows, and low signal-to-noise ratio etc.) and operator
and patient variability. Existing metrics like Root Mean Squared Error (RMSE)
[6] and Normalized Cross Correlation (NCC) [7] only provide pixel-wise mea-
surements, not considering liver anatomy. Deep learning (DL) methods have
shown state-of-the-art results in tasks like object detection, image reconstruc-
tion, segmentation, and classification [8–13]. Siamese networks [14], a subset of
DL methods, use convolutional neural networks (CNNs) to compare reference
and target images for pattern recognition, anomaly detection, landmark track-
ing, etc. [15–17]. A reference image is an image used as a standard or baseline
in image processing tasks. It serves as a point of comparison for other images.
A target image is the image that is being analyzed or processed in relation to
the reference image. A fully convolutional Siamese network has been reported to
identify anatomical landmarks in US images [18], while another estimated disease
severity in retinal and knee images [19]. However, these methods are often task-
specific and not generalizable to other clinical applications. We propose a novel
framework for consistent B-mode liver image acquisition to enable reproducible
SWE measurement. This framework includes: 1) liver view classification, 2) liver
capsule and hepatic vessel segmentation, and 3) similarity analysis based on the
outputs from 1) and 2). We hypothesize that this approach can guide sonogra-
phers to the similar liver view in abdominal ultrasound during each visit and
obtain consistent SWE measurements. To our knowledge, this is the first attempt
to determine the similar anatomical liver right lobe transverse view (LRLTV)
across multiple visits. Four similarity metrics, including deep image structure
and texture similarity (DISTS) [20], RMSE [6], NCC [7], and structural similar-
ity index measure (SSIM) [21], were implemented and analyzed.

2 Materials and Methods

2.1 Datasets

With Institutional Review Board (IRB) approval, US data were retrospectively
collected and consisted of static B-mode images and two-visit longitudinal videos
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(cine-loops) from two ultrasound vendors/models including Supersonic Imaging
(SSI) and GE LOGIQ E9.
DS1: GE Static B-mode. Total of 477 patients (477 images), split into train
(70%), validation (10%), and test (20%) sets to train the liver classification
and segmentation models. Additionally, 50 patients (370 images) were used to
develop the hepatic vessel segmentation method, split into train (35 patients),
validation (5 patients), and test (10 patients) sets.
DS2: SSI Static B-mode. Total of 161 patients with 2D B-mode liver US
images, each of 8 to 12 US images. We selected 50 patients, each with 4 US
images and matching annotations. The data were split into train (60%), valida-
tion (10%), and test (30%) sets and were used to fine-tune the liver capsule and
hepatic vessel segmentation model.
DS3: GE Cine-loops. Two-visit videos from 100 patients, 1 video per patient.
We selected 64 patients with liver right lobe transverse view (LRLTV) for this
study, each cine-loop containing 8 to 397 US frames.

2.2 Liver View Similarity Analysis Framework

Our proposed multi-stage similarity framework includes liver view classification,
liver capsule, hepatic vessel segmentation, and similarity measurement (Fig. 1).
In Stage 1, an EfficientNet-B3 [22] was used to classify liver views in the abdomi-
nal US. The primary objective was to exclude images that did not contain quality
liver view. A ’quality liver view’ is defined as a liver view that contains the key
anatomical landmarks such as liver capsule and Morrison’s pouch, with minimal
shadow artifacts and other interfering factors. The ground-truth was provided
by a medical doctor. Images without any liver view were excluded (Fig. 2). Liver
view classification is crucial in our proposed framework as Stage 2 depends on
a good liver view that includes the presence of the liver capsule and hepatic
blood vessels. The pre-trained EfficientNet-B3 [22] used an Inverted Residual
Block called MBConv with a squeeze-and-excitation block to extract spatial and
global features efficiently.

Fig. 1. Proposed framework for liver view similarity analysis in abdominal ultrasound.
It consists of three stages: liver view classification, liver capsule, hepatic vessel segmen-
tation, and similarity measurement.
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In Stage 2, an Efficient-UNet [23] model was chosen to segment the liver
and hepatic vessels because it is computationally efficient. Efficient-UNet has
an encoder-decoder network where the encoder uses pre-trained EfficientNet-
B3 to extract features like liver textural patterns and edges, while the decoder
unpools feature maps with transposed convolutional layers. Skip connections
with element-wise feature concatenation enhance segmentation results. The liver
and hepatic vessel segmentation models were first developed on DS1 and then
fine-tuned with DS2 for generalizability. A weighted combination of binary cross-
entropy (BCE) and dice losses were used for the training and validation.

In Stage 3, the liver and vessel masks generated in Stage 2 were used for
image similarity analysis. The main reason for using binary masks was to elimi-
nate speckle noise, background artifacts, and machine-generated symbols in the
B-mode US, which could interfere with the performance of similarity metrics.
DISTS is a deep learning based similarity analysis method. We compared it
against conventional RMSE, NCC, and SSIM methods.

Fig. 2. Example images of good and poor quality liver views in the abdominal US
showing the high variability and the necessity of liver view selection.

3 Experimental Results

The similarity scoring algorithm has two-channel inputs including liver masks
and hepatic vessel masks. The deep learning model architecture is based on
DISTS [20]. We implemented our model using the PyTorch neural network
library on a 3.4GHz Intel Core-i9 with 32 GB of RAM and NVIDIA-RTX 2080Ti
GPU with a memory of 11 GB. For proof-of-concept, we applied the model to
all the frames in an abdominal ultrasound video with manually selected anchor
frame and compared the similarity scores across all other frames in the video.
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Fig. 3. Three examples of raw B-mode image, liver segmentation, and hepatic vessel
segmentation, showing true positives in yellow, false positives in green, and false nega-
tives in red. We observe excellent agreement between the truth and algorithm results.
(Color figure online)

3.1 Liver View Classification Results

In Stage 1, DS1 was used for training and evaluation. Data augmentation
techniques, such as rotation and horizontal flipping, were applied. The model
was trained with an input size of 384 × 384, using the ADAM optimizer
with a learning rate of 0.0002 and β1 = 0.5, β2 = 0.999. The mini-batch
size was two, with 100 epochs, using binary cross-entropy loss. We com-
pared the EfficientNet-B3 liver view classification results with EfficientNet-B0,
EfficientNet-B1, and EfficientNet-B2. Our experimental findings showed that,
on the test set, EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2 achieved
an accuracy score of 94%, 96.11%, and 97.47%, respectively, while EfficientNet-
B3 achieved the highest overall accuracy of 99%. From the results, except for
one sample, the rest of the images were correctly predicted by the classification
model.

3.2 Liver Capsule and Hepatic Vessel Segmentation Results

Efficient-UNet was adapted to this segmentation task. The input image size was
384 × 384 pixels, with binary masks of corresponding liver and vessel images as
truth. Pixel values were normalized from 0–255 to 0–1. The optimizer settings
were the same as in Stage 1, with a mini-batch size of 4. The model was trained
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Fig. 4. Examples of similarity scores of four metrics: DISTS, RMSE, NCC, and SSIM.
In each example, an anchor image is compared with the target samples. Colors blue,
orange, pale green, and red refer to DISTS, RMSE, NCC, and SSIM similarity scores,
respectively. We can see qualitatively and quantitatively that in Example 1, Frame 29
is the best match to the anchor image while in Example 2, Frame 17 is the best match.
This is consistent with the expectation that in each video, frames closer to the anchor
frame resemble the anchor frame more. (Color figure online)

for 100 epochs, saving the best weights based on the highest Dice coefficient
score on the validation set. A threshold of 0.5 was used to generate the binary
segmentation map of the liver capsule and hepatic vessels. The model achieved
Dice scores of 90% on the liver capsule and 58% for hepatic vessel segmentation.
We observed that accurate vessel segmentation was challenging due to the small
and varying vessel sizes and neighboring shadows. The proposed network seg-
mented clearly identified vessels but failed to delineate the blurry or suspicious
boundaries. Figure 3 presents example results of the liver capsule and vessel seg-
mentation with true positive in yellow, false positive in green, and false negative
in red. From the visual inspection, it can be seen that Efficient-UNet segmented
the liver and vessel region efficiently. However, the model performance degraded
in the presence of acoustic shadows.
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3.3 Similarity Score Analysis

To compare the performance of similarity scoring, we evaluated four image sim-
ilarity metrics (i.e., DISTS, SSIM, RMSE, and NCC) on 64 patients. We first
manually selected the anchor frame of the best liver view from each video. The
rest of the frames in each video served as the target frames. We then applied
similarity scoring between the anchor frame and each of the target frames. Since
the ultrasound video is of at least 30 frames per second, the frames closer to the
anchor frame were expected to have higher similarity.

Figure 4 shows two examples of similarity scoring results on cine-loops gen-
erated by various metrics. In Example 1, we chose Frame 30 as the anchor frame
and compared it against the rest of the frames (target). It can be seen that
Frame 29 achieved the highest similarity scores of 0.83, 0.81, 0.88, and 0.92 by
the DISTS, RMSE, NCC, and SSIM, respectively. Upon the visual inspection,

Fig. 5. Proof-of-concept similarity analysis on liver ultrasound videos. Corresponding
sub figures of a, b, c, d, e, and f are representative results on anchor frame with-
out variation, with rotation of 15◦C, 30◦C, 60◦C, horizontal flipping, and wrapping,
respectively. Four metrics were compared. The SSIM performed the best against other
metrics and showed that its scores are much more robust to geometric transforms.
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anatomical landmarks, such as the liver capsule and hepatic vessels, represented
similar shapes and positions. The segmentation model accurately identified rel-
evant landmarks in anchor and target images. As expected, similarity scores
decreased with increasing distance from the anchor frame. Similarly, in Example
2, we selected Frame 18 as the anchor. The neighboring Frame 17 obtained the
highest similarity score of 0.61 by SSIM when compared to the other frames.
This proof-of-concept study demonstrated the utility of our similarity analysis
pipeline.

In clinical settings, liver US scanning is subjected to various external fac-
tors such as patient breathing and probe misalignment. Thus, it is necessary
to understand the effectiveness of each computed metric on various geometric
changes on anchor images, such as translation and rotation. Figure 5 presented
the average similarity score plots under various spatial transformations on the 64-
patient data above. We computed the average similarity scores between anchor
and target frames in conditions including anchor image without variation, with
rotation of 15◦C, 30◦C, 60◦C, horizontal flipping, and wrapping. For a better
comparison of the 64 videos, the index of the anchor frame was set to 0, and
the indices of the target frames (n) were rescaled to [(−n, 0) ∪ (0,+n)]. The
results showed that SSIM was more robust to translation and rotation because
it evaluated the similarity in shape and structure, capturing the structural details
that are robust to geometric changes. RMSE, DISTS, and NCC methods how-
ever showed less consistency under geometric transforms. RMSE, which solely
measured pixel-wise differences, was less informative when dealing with binary
masks since it did not capture structural changes accurately. NCC, while more
suitable for comparing binary data than RMSE, still fell short in accounting for
the subtle structural variations that could occur due to geometric transforms.
Additionally, the DISTS method did not perform better than SSIM, specifically
for rotational changes and flipping operations, likely because it failed to extract
spatial information from the masks alone. For instance, with a rotation of 60◦C,
SSIM achieved 0.95 while the DISTS and RMSE around 0.7 and 0.65, respec-
tively. Also, NCC and RMSE showed more sensitivity to changes even when the
frames were close to the anchor frame. Thus, for binary masks, SSIM was a more
effective similarity metric in comparing the mask alignment and the liver capsule
and vessel structure under geometric transforms.

4 Discussion and Conclusions

Abdominal B-mode US is a real-time, cost effective, non-invasive imaging modal-
ity that provides the basis for SWE-based quantitative liver fibrosis staging. To
reduce the variability in obtaining the optimal liver view during patient return-
ing visits, we developed a proof-of-concept deep learning-based framework to
compute similarity scores between an optimal liver view of LRLTV and a tar-
get image frame. Our approach consists of three stages: liver view classifica-
tion, liver capsule and hepatic vessel segmentation, and similarity measurement.
Four image similarity metrics including DISTS, SSIM, RMSE, and NCC were
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implemented, and their performance was evaluated. The experimental results
demonstrated that the segmentation models accurately identified the relevant
landmarks in both the anchor and target images. The preliminary similarity
results also indicated that with masks as inputs, DISTS, RMSE, and NCC are
sensitive to translation and rotation changes, even when the frames are close to
the anchor frame. SSIM is more robust to rotation variations and invariant to
translations. One limitation of this study is the small datasets for each stage.
The next step is to generate ground truth from cine-loops by domain experts
and retrain the deep learning models. Future datasets will be expanded to cover
the diverse physical characteristics of patients and image variations from ultra-
sound vendors. Motion artifacts from patient movements will also need to be
addressed. We plan to conduct experiments encompassing a wide range of sce-
narios representing real-world clinical conditions. This will enable us to capture
variations in the anchor images and refine the similarity metrics. We hypothesize
that liver B-mode similarity analysis can reduce the variability in SWE measure-
ments thus improving liver fibrosis staging. To fully test this hypothesis, in the
future, we will design prospective experiments where we will collect abdominal
liver US and SWE measurements from a diverse patient population and compare
SWE performance with and without the use of similarity analysis. The pipeline
presented has the potential to improve SWE-based quantitative fibrosis staging
and enable cost effective longitudinal tracking.
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Abstract. Interventional devices and insertable imaging devices such as trans-
esophageal echo (TOE) probes are routinely used in minimally invasive cardio-
vascular procedures. Detecting their positions and orientations in X-ray fluoro-
scopic images is important formany clinical applications. Nearly all interventional
devices used in cardiovascular procedures contain a wire or wires and are inserted
into major blood vessels. In this paper, novel attention mechanisms were designed
to guide a convolution neural network (CNN) model to the areas of wires in X-ray
images. The first attentionmechanismwas achieved by usingmulti-scaleGaussian
derivative filters in the first convolutional layer inside the proposed CNN back-
bone. By combining thesemulti-scaleGaussian derivative filters together, they can
provide a global attention on the wire-like or tube-like structures. Furthermore,
the dot-product based attention layer was used to calculate the similarity between
the random filter output and the output from the Gaussian derivative filters, which
further enhances the attention on the wire-like or tube-like structures. By using
both attention mechanisms, a high-performance CNN backbone was created, and
it can be plugged into light-weighted CNN models for multiple object detection.
An accuracy of 0.88 ± 0.04 was achieved for detecting an echo probe in X-ray
images at 58 FPS, which was measured by intersection-over-union (IoU). Based
on the detected pose of the echo probe, 3D echo can be fused with live X-ray
images to provide a hybrid guidance solution. Codes are available at https://git
hub.com/YingLiangMa/AttWire.

Keywords: Rotated Object Detection · X-ray Imaging · Attention CNN

1 Introduction

Minimally invasive cardiovascular procedures are routinely carried out to treat dis-
eases such as coronary heart diseases, valvular heart disease, congenital heart diseases
and more. The procedure is usually guided using X-ray fluoroscopy and interventional
devices and insertable imaging devices are routinely used during the procedure. Real-
time object detection for medical devices is one of the most important tasks in hybrid
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guidance systems as well as robotic procedure systems. Hybrid guidance systems for
minimally invasive cardiovascular procedures involves fusing information from Mag-
netic Resonance Imaging (MRI) images, CT images or real-time 3D transesophageal
echo (TOE) with X-ray fluoroscopy [1][2]. Device detection can facilitate the hybrid
guidance system using both 3D echo volumes and X-ray fluoroscopic images, and the
real-time registration is achieved by detecting the pose of the TOE probe in X-ray images
[3]. Real-time device detection also facilitates motion compensation and automatic reg-
istration in MRI or CT based hybrid guidance systems [4]. Furthermore, knowing the
locations of devicesmay allowprocedureswith complete or shared autonomywith robots
in the near future.

The detection of the TOE probe and interventional devices in X-ray images has
been previously studied. Existingmethods can be divided into two categories: traditional
computer vision techniques [5][6] and learning-basedmethods [7–10].Methods based on
traditional computer vision techniques are prone to errors due to image artifacts and the
presence of other similar objects. Although learning-based methods have demonstrated
a great potential to detect devices robustly, they relied on manual feature selection.
Therefore, these methods are not easily transferred to other target devices or detect
multiple devices at the same time.

In recent years, state-of-the-art multiple object detection methods have been devel-
oped to detect and identify common objects (e.g. vehicles, people, animals and more)
[11]. The majority of these methods use axis-aligned bounding boxes to locate the tar-
get objects. However, our proposed method requires rotated bounding boxes as medical
devices in X-ray images often have arbitrary orientations and rotated bounding boxes are
more accurate to determine their locations. Furthermore, applications such as the hybrid
guidance using echo and X-ray images requires the orientation of the TOE probe in
X-ray images. Few deep-learning based object detection methods using rotated bound-
ing boxes have been developed and they are mainly in the domain of satellite image
analysis [12]. However, all existing methods do not meet our requirements for device
detection. First, existing methods do not optimize for grayscale X-ray images and lack
attention mechanisms for our target objects. Secondly, existing methods do not have
sufficient accuracy, robustness or speed to be used in our applications. Therefore, we
designed a convolution neural network (CNN) from scratch to achieve our requirements
and also to take advantage of additional information available in X-ray images. Many
interventional devices contain a wire and wire mesh and are inserted into major blood
vessels. Insertable imaging devices are tube-like structures. Therefore, novel attention
mechanisms using trainable pre-defined filters and an attention layer were designed to
guide our CNN models to the areas of wires in the X-ray images.

2 Method

2.1 Image Acquisition and Image Synthesis

10,072 X-ray images were acquired in 43 different clinical cases using a mono-plane X-
ray systemat St. ThomasHospital London. Therewere 6,533 images from9 transcatheter
aortic valve replacement (TAVR) procedures, 250 images fromone atrial fibrillation (AF)



Real-Time Device Detection 85

procedure guided by X-ray and transesophageal echo images and 3,289 images from 33
standard AF procedures.

As 4,789 images out of total 10,072 images do not contain the TOE probe, a method
of image synthesis has been developed to automatically insert an image patch of a TOE
probe. It is based on Poisson image editing (PIE) [13][14], which blends an image patch
into the context of a destination image. The blendingwas achieved via solving the Eq. (1).

min
fin

¨
�

|∇fin − v|2with fin|∂� = fout |∂� (1)

where ∇ is the gradient operator. The goal of Eq. (1) is to find the intensity values fin
within the masked area (Ω) of image patch matching with the surrounding values fout of
the destination image. A binary mask will be used to create the masked area (Ω), which
is the loose selection of the blending object. ∂� is the border of the masked area and v
is the image gradient within the masked area. Figure 1 gives an example of PIE.

Fig. 1. An example of PIE. (a) The original image. (b) Overlay the image patch with the original
image. The red contour is the border of the masked area (∂�). (c) Image after applying PIE. (d)
The intensity profiles. Arrows in the images indicate the location of the intensity profiles.

40 image patches were extracted from 40 image sequences which contain the TOE
probe. Data augmentation techniques were used to increase the variation of the pose
of the TOE probe in X-ray images. Random rotations and translations were applied
to the extracted image patches. There are restrictions applied to random rotations and
translations to ensure the generated image are anatomically correct.

2.2 The Attention Backbone

Our clinical applications require real-time object detection while maintaining high accu-
racy and robustness. To achieve this goal, attention mechanisms were designed to take
advantage of additional information about the location and structure of medical devices.
Many devices contain a wire and wire mesh or tube-like structures. To guide the atten-
tion of our CNNmodels, the multi-scale Gaussian derivative filters were used in the first
convolution layer to enhance the visibility of wire-like or tube-like objects [15]. This
process involves the calculation of a 2x2 Hessian matrix, and it is computed at every
image pixel [16]. The Hessian matrixH consists of second order derivatives that contain
information about the local curvature. H is defined such as:

H =
[
Lxx(x, y; s) Lxy(x, y; s)
Lyx(x, y; s) Lyy(x, y; s)

]
(3)
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where Lxy(x, y; s) = ∂2L(x,y;s)
∂x∂y and the other terms are defined similarly. Here,

Lxy(x, y; s) = Lyx(x, y; s). L(x, y; s) is an image smoothed by a Gaussian filter of the
appropriate scale s. L(x, y; s) is computed as L(x, y; s) = L(x, y)∗G(x, y; s), where ∗ is
the convolution operator and theGaussian filterG(x, y; s) = 1

2πs e
−(

x2+y2
)
/2s. Therefore,

Eq. (3) can be converted to

H =
[
L(x, y) ∗ Gxx(x, y; s) L(x, y) ∗ Gxy(x, y; s)
L(x, y) ∗ Gyx(x, y; s) L(x, y) ∗ Gyy(x, y; s)

]
(4)

where Gxx(x, y; s), Gyy(x, y; s) and Gxy(x, y; s) are Gaussian derivatives and are often
known as Laplacian of Gaussians (LoG). In practice, we just pre-compute the masks of
these Gaussian derivatives, convolve with the input image. By combining these multi-
scale Gaussian derivative filters together, they can provide a global attention on the
wire-like or tube-like structures.

The architecture of the attention backbone is illustrated in Figs. 3 and Fig. 4 LoG
filters are used in the first convolution layer to provide the first attention mechanism.
Among 15 filters, there are five groups, and each group contains three LoG filters with
the same scale factor s, which are defined as Gxx(x, y; s), Gyy(x, y; s) or Gxy(x, y; s). To
accommodate different sizes of objects on the wires, five different scale factors were
used in five groups of LoG filters. To calculate the scale factor s0 for object size r0,
we use s0 = ((r0 − 1)/3)2. This equation is motivated by the “3σ” (s0 = σ 2) rule that
99% of energy of the Gaussian is within three standard deviations. The final multiscale
s0 is in the range of 0.11 ≤ s0 ≤ 9 and it is based object size from 2 to 10 (Unit is in
image pixels) in an image with a 200x200 resolution. The second attention mechanism
is achieved by a dot-product based attention layer [17], which calculates the similarity
between the random filter output and the output from LoG filters (Fig. 3). The attention
layer further enhances the attention on the wire-like or tube-like structures.

Fig. 2. Attention backbone and an example of its usage in single object detection.
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2.3 Single Object Detection

Firstly, a customized CNN was designed for single object detection using the proposed
attention backbone. As shown in Fig. 2, the localization of a rotated bounding box is
achieved by the output of the final dense layer, which provides five parameters: center
(x, y), size (w, h) and angle (δ).

Two object detectors were trained, one for the TOE probe and the other one for
the transcatheter aortic valve (before deployment). A modulated rotation loss function
was designed and adapted from [18]. It minimizes the difference between the predicted
values and ground truth values. All five parameters which define the rotated bonding box
were normalized between 0 and 1 to avoid errors caused by objects on different scales.
The loss function is defined as:

lcp = ∣∣xg − xp
∣∣/Wimg + ∣∣yg − yp

∣∣/Himg (5)

lmr = min

{
lcp + ∣∣wg − wp

∣∣/Wimg + ∣∣hg − hp
∣∣/Himg + ∣∣δg − δp

∣∣/90◦

lcp + ∣∣wg − hp
∣∣/Wimg + ∣∣hg − wp

∣∣/Himg + ∣∣90◦ − ∣∣δg − δp
∣∣∣∣/90◦ (6)

where lcp is the central point loss,
(
xp, yp

)
is the predicted center point and

(
xg, yg

)
is the

ground-truth center point. Equation (6) is for the exchangeability of height and width.
As shown in Fig. 3, the activationmaps of selected layers were visualized to illustrate

the model attentions in the aortic valve detector. The model global attention is clearly on
the wires in the first layer and then enhanced by the attention layer. Finally, the model
shifts the attention to the local areas of the target object (the aortic valve) in the final
convolution layer.

Fig. 3. The original image. (b) The activation map from the convolution layer with 15 LoG filters.
(c) The activation map from the attention layer. (d) The activation map from the last convolution
layer in the attention backbone(a).

2.4 Multiple Object Detection

Inspired by the CenterNet [19], a one-stage multiple-object detector was designed by
using a similar attention backbone proposed in this paper. The one-stage detector can
achieve ahigher inference speed and it is suitable for real-time applications. Theproposed
detector is a light-weight CNN model and only contains 3.7M trainable parameters for
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two-class object detector. As shown in Fig. 4, the proposedCNNmodel consists of down-
sampling layers and up-sampling layers. The model has four outputs. The first one is
the center-point heatmap and it is used to localize the center point (x, y) of the rotated
bounding box. The second output is used to determine the object size (w, h). The third
output is the rotate angle (δ) of the bounding box. The fourth output is the offset output,
and it is used to recover from the discretization error caused due to the downsampling
of the input. For example, in our model, the input image resolution is 256x256 and the
image resolution after the last up-sampling layer is 128x128. If the ground truth of center
point is

(
xg, yg

)
in center heatmap output, the corresponding ground truth of center point

in the input image is
(
2xg + εx, 2yg + εy

)
. Both εx and εy are discretization errors and

they are either 0 or 1 in our model.
The proposed CNN model not only outputs a rotated bounding box for each object

but also outputs a confidence value. Therefore, the model can predict whether the target
object exists in the image or not. The model also can achieve multiple object detection
as it has multiple channels of center heatmaps and each channel can localize the center
points of one class of objects. The ground-truth heatmap for center points is not defined
as either 0 or 1 because locations near the target point should get less penalization than

locations far away. Therefore, Gaussian heatmap e
P−P2g
2σ2 was used and P is the predicted

center point and Pg is the ground truth. σ is set to 1/3 of the radius, which is determined
by the size of objects. Focal loss [20] is used in the output for center-point heatmap and
it is mainly to solve the problem of imbalanced classification in target detection. The
loss functions for the remaining outputs are L1 loss function. Figure 5 presents some
results of center-point heatmaps and detection results.

Fig. 4. The CNN architecture for multiple object detection. N is the number of classes.
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Fig. 5. Center point heatmaps and object detection with confidence values

2.5 Clinical Application: Fusing 3D Echo with Live X-ray Images

The object detector can detect the location as well as in-plane rotation (Fig. 6(a)) and
scale of the TOE probe. There are two additional rotations: roll and pitch (Fig. 6b), which
are out-of-plane. Roll and pitch angles could not be detected by our object detector. A
template library was developed to detect both out-of-plane rotation angles and it is a
comprehensive collection of images of the TOE probe in different roll and pitch rotation
angles. These images are created from a digitally reconstructed radiography (DRR)
model of the TOE probe. As the TOE probe is sitting inside the oesophagus during
the procedure, the probe is not free to move in all directions. Our template library
only covers the pitch angle from -45° to 45° and the roll angle from -90° to 90°. The
angle interval is 2°. Therefore, the number of images in the library is 4050 images
(4050 = (180/2) × (90/2)). The normalized cross correlation is used to compute the
similarity between the detected probe image patch and an image from the template
library. A real-time performance can be achieved by using aGPU-based implementation.

Fig. 6. (a) In-plane rotation. (b) Roll and pitch (out-of-plane). (c) The DRR model

The 3D TOE image volume can be visualized in the 2D X-ray fluoroscopic image
by aligning the TOE and X-ray system coordinate systems. The transformation matrix,
TTOE_to_Xray, which transforms from 3D TOE image space to 2D X-ray image space
consists of a rigid body transformation matrix Trigid and a projection matrix Tproj. It
can be computed as TTOE_to_Xray = TprojTrigid . The projection matrix transforms from
3D X-ray C-arm space to 2D X-ray image space. This can be calculated by using the
intrinsic parameters of theX-ray system [21].Trigid can be decomposed into twomatrices
(Trigid = Tmodel_to_C−armTTOE_to_model). Where TTOE_to_model transforms from 3D TOE
model space to 3D X-ray C-arm space. This matrix is generated by the probe detection
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algorithm and probe image matching method that positions the 3D TOEmodel in C-arm
space. TTOE_to_model relates the position of the 3D TOE images to the position of the 3D
TOEmodel. This is the TOE probe calibration matrix and is calculated pre-procedurally
using a specifically designed calibration phantom and the calibration method can be in
[22].

3 Results

A total of 10,072 X-ray images (80% train, 10% validation and 10% testing) was used
to train and test object detectors. Both validation and testing images are real images, and
4,789 synthetic images were only used in the training dataset. All models using different
backbones were implemented in Keras with a Tensorflow (version 2.10) backend and
were trained on a GPU farm (NVidia RTX 6000 Ada with 48G memory). The trained
models were evaluated on an Intel i7 1.8GHz laptop with a NVidia T550 graphics card to
test the inference speed. Tables 1 andTable 2 show the comparison results of our approach
(AttWire) with state-of-the-art backbones in single and multiple object detection. AP50
and AP75 are the average precisions, which are evaluated at IoU = 0.5 and IoU = 0.75.
AP50 and AP75 in multiple object detection are the mean values of all objects. mAP is
the mean value across different IoU thresholds (IoU thresholds from 0.5 to 0.95 with a
step size of 0.05).

Table 1. Results for single object detection.

Target Object Backbone Parameters FPS IoU AP50 AP75

TOE probe
head

VGG16 17.1M 43 0.77 ± 0.21 0.9 0.812

ResNet-50 36.4M 31 0.83 ± 0.14 0.977 0.794

AttWire 6.8M 55 0.89 ± 0.05 1.0 0.978

Aortic valve VGG16 17.1M 52 0.81 ± 0.11 0.972 0.743

ResNet-50 36.4M 37 0.85 ± 0.08 0.981 0.886

AttWire 6.8M 59 0.93 ± 0.04 1.0 1.0

Table 2. Results for multiple object detection.

Backbone Parameters FPS IoU (TOE) IoU (valve) mAP AP50 AP75

MobileNet 7.3M 53 0.79 ± 0.09 0.77 ± 0.17 0.546 0.999 0.603

ResNet-50 28.7M 41 0.81 ± 0.07 0.80 ± 0.15 0.618 0.998 0.729

DenseNet121 11.1M 34 0.81 ± 0.07 0.79 ± 0.16 0.584 0.997 0.644

AttWire 3.7M 58 0.88 ± 0.04 0.87 ± 0.11 0.779 1.0 0.922

Overall accuracy of fusing 3D echo with X-ray images was evaluated by using target
registration error (TRE). TRE is defined as error distances between corresponding points
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in bothX-ray and echo images. Although real-time synchronized visualization of the live
data stream was possible during the clinical procedures, the post-procedure analysis for
this paper required that the recorded X-ray and echo data were synchronized manually,
resulting in only approximately synchronized sequences. The manual synchronization
was done through visual matching using landmarks such as catheters or artificial valves.
Total 20 overlay views are created from 10 X-ray image sequences. Corresponding
cathetersweremanually defined in the echo andX-ray views using spline curves. Equally
spaced points along the echo curve were automatically defined as measurement points.
The corresponding X-ray point was defined as the closest point on the X-ray curve. An
example of these error measurements is given in Fig. 7(b). Overall, our method achieves
a TRE of 2.5 ± 1.2 mm at a speed of 32 FPS.

a b

Fig. 7. An example of error measurement. (a) Echo X-ray overlay. (b) Error measurement. Red
lines are the shortest distances.

4 Conclusion and Discussions

Clinical applications for minimally invasive heart procedures require highly robust and
accurate algorithms for detecting interventional and imaging devices in real-time X-ray
fluoroscopic images. In this paper, novel attention mechanisms were designed to guide
the CNN model to the areas of wires in X-ray images. The attention-based backbones
were implemented in both single and multiple object detection models and they outper-
form existing state-of-the-art and light-weight backbones by every metric. In addition,
our single object detection framework has achieved above 0.97 in AP75 andmore than 50
FPS. The proposedmodels formultiple object detection also can performkeypoint detec-
tion. With the attention mechanisms we designed, the framework could robustly localize
the positions of electrodes on the catheter, and this will enable detecting catheters and
devices simultaneously. The detection CNN model facilitates real-time fusion between
X-ray fluoroscopy and 3D echo images. It could provide both detection of both TOE
probe and other surgical devices.
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