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Abstract
AI-generated images continue to pose challenges such as misalignment between the text and generated output image and
insufficient naturalness in terms of visual quality. These challenges necessitate the need for image quality assessment of the
generated image to quantify the alignment of the images with the input text prompts. In this context, the BERT (Bidirectional
Encoder Representation from Transformers) model outperforms OpenAI’s GPT on the GLUE (General Language Under-
standing Evaluation) task. Its expanded tokenization length of upto 512 also helps circumvent CLIP’s limitation of reduced
text prompt. Therefore, in the present work, we propose a fusion model that applies BERT as a text encoder combined with
CLIP as an image encoder. A bidirectional prompt learning approach through BERT is employed to extract the text features
of the prompt used for the generation of the images. Further, using cross attention feature fusion, the proposed method
obtains better SRCC and PLCC correlation metric results when compared with state-of-the-art methods on both PKUI2IQA
and AGIQA-3K. Results of the ablation study and comparative characterization with other quality assessment metrics for
AI-generated images demonstrate a noteworthy performance of the proposed method.

Keywords No-reference Image Quality Assessment · Vision-Language Models · AI-generated Images · Deep learning

1 Introduction

Artificial Intelligence (AI)–generated images havewitnessed
an exponential growth in the past few years inwhich the users
can generate images using the text prompts. However, unlike
real-world photographs, AI-generated images (AGIs) often
exhibit quality inconsistencies due to limitations in model
design and a lack of diverse training data Zhang et al. [27].
Generating photo-realistic scenes requires exposure to rich
visual detail and variation, which many models lack. As a
result, synthesizing natural images from text remains a com-
plex task. This often forces users to manually evaluate and
choose the best output. To streamline this process, there is
a growing need for objective image quality assessment to
automatically determine the visual quality and suitability of
AGIs.
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Image quality assessment (IQA) methods are commonly
divided into Full-Reference (FR), Reduced-Reference (RR),
and No-Reference (NR), depending on the availability of
a ground truth image. In practice, especially with AGIs, a
reference image is not available since the images are syn-
thesized from text. Consequently, NR-IQA (or blind IQA)
methods are particularly relevant for assessing the quality of
AI-generated content.

Traditional no-reference image quality assessment (NR-
IQA) methods typically extract handcrafted features such as
visual neuron responses Chang et al. [2], natural scene statis-
tics (NSS), mean-subtracted contrast-normalized (MSCN)
coefficients Mittal et al. [13, 14]; Zhang et al. [28] . Later,
the field shifted towards data-driven models like convolu-
tional neural networks (CNNs) He et al. [7]; Kang et al.
[9], transformers You and Korhonen [24], and other deep
learning-based NR-IQA frameworks Zhang et al. [29]; Su et
al. [19]; Ke et al. [10]; Golestaneh et al. [6]. These models
are mainly designed for natural scene images (NSIs) affected
by common distortions such as noise, blur, or compression.
However, AI-generated images (AGIs) present unique chal-
lenges, requiring evaluation not only of perceptual quality
but also of authenticity (realism) and consistency (seman-
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(a) small group
of nomads stay-
ing at ancient
ruins, cold
color, elevation
view

(b) a portrait
of girl alchemist
in blue dress,
blurred detail,
sci-fi style

(c) sartre hug-
ging a sad alien

Fig. 1 Example of AI-generated images with different AI models with
their prompts and quality scores (human perception scores).

tic alignment with the input prompt). These attributes are
independent and must be assessed separately, calling for
AGI-specific IQA frameworks.AlthoughAGI quality assess-
ment is an emerging field, existing efforts mostly adapt
NSI-oriented methods, which are limited in handling AGI-
specific characteristics. Some approaches compare AGIs
to NSIs at the distribution level, but this fails to capture
individual image quality. Recently, new datasets incorpo-
rating prompts and multiple quality labels have enabled
fine-tuning of existing models. Yet, these models often over-
look text-image correspondence and rely on hand-engineered
solutions, underscoring the need for dedicatedNR-IQA tech-
niques for AGIs.

For instance, Figure 1 shows AIGIs generated from mod-
els such as GAN, auto-regressive model, and diffusion-based
approaches from the AGIQA-3k Li et al. [11]. The text
prompt for image generation and the corresponding the
human perception Mean Opinion Scores (MOS) on percep-
tion and T2I alignment are also included in the database.
The subjects are asked to score the image in terms of visual
quality, alignment score, and consistency. The scores shown
on the image are those of visual quality. As visible, the
images are substantially different in terms of their style and
appearance, yet the image (b) receives the lowest MOS score
although the text prompt includes the mention of blurriness.

Recently,ContrastiveLanguage ImagePre-training (CLIP)
model has shown better performance through textual prompt
tuning Wang et al. [22]. However, there are a few challenges
in implementing the CLIP model for quality assessment
of AIGI. First, IQA methods must bridge the quality gap
between AIGIs and natural scene images (NSIs), as current
generative models still struggle to fully replicate NSIs. Sec-
ond, it is essential to consider the text prompts used during
image generation to evaluate how well AGIs align with their
corresponding prompts. Lastly, CLIP’s transformer-based
text encoder, which operates left-to-right, may limit com-
prehension of prompts, prompting the use of antonym-based

prompt pairs. Based on this, we propose that integrating
vision-language learning could enhanceAIGI quality predic-
tion. Recent advances in AI-based deepfake detection using
deep learning techniques like DenseNet and Vision Trans-
formers, providing robust evaluation protocols Siddiqui et
al. [17, 18]. Though focused on authenticity, their rigorous
evaluation methods offer valuable benchmarks for building
reliable AI-generated image quality assessment models.

To handle the above challenges, we propose a multimodal
bidirectional prompt learning approach. We use user input
text prompts without truncation to guide the optimization of
the vision language learning. The main contribution of this
paper is as follows:

• Useof the conventionalBERT (bidirectional encoder rep-
resentations from transformers) model as a text encoder
in the CLIP model

• Three-pronged fusion to combine text and image features

The subsequent sections of this paper are organized
as follows. Section 3 presents the proposed approach for
the no-reference IQA of AI-generated images. The results,
comparative characterization, and the ablation study are dis-
cussed in Section 4. Section 5 summarizes important findings
from the paper.

2 RelatedWork

Research on evaluating the quality of AI-generated images
(AGIs) is still in its early stages, with limited studies con-
ducted compared to natural scene images (NSIs). Initially,
the Inception Score, introduced by Salimans et al. [16], was
widely used for assessing AGI quality. However, due to fun-
damental Fig 2 differences between NSIs and AGIs, more
sophisticated metrics such as the Frechet Inception Distance
Heusel et al. [8] and Kernel Inception Distance Bińkowski et
al. [1]were later developed. Thesemetrics assessAGI quality
by measuring distributional differences between AGIs and
NSIs. Despite their usefulness, they evaluate AGI quality
from a single perspective and are inadequate for assessing
individual AGIs, highlighting the need for more advanced
evaluation approaches.

Zhang et al. (2023b) were early contributors to the study
of multi-dimensional AGI quality assessment, proposing the
importance of evaluating factors such as technical intelli-
gence, AI-specific attributes, visual artifacts, deviation from
real images, and aesthetic appeal. However, their study
lacked a defined evaluation method or a structured way to
integrate AGI-specific distortions into the assessment frame-
work.

Recent works have proposed specialized IQA techniques
for AGIs, often adapting methods designed for NSIs. Yuan
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Fig. 2 Framework of proposed
model

et al. [25] introduced a contrastive regression network that
enhances feature representation across multiple AGIs. Later,
Yuan et al. [26] presented a regression framework using sep-
arate text and image encoders, merging their features for
quality prediction. Other studies leverage LLMs to assess
text–image consistency Lu et al. [12], such as LLMScore Lu
et al. [12], which generates object- and image-level descrip-
tions and uses LLMs for evaluation. However, these methods
demand large labeled datasets and heavy parameters. To
improve efficiency, Li et al. [11] proposed StairReward,
which segments text prompts into morphemes and images
into hierarchical sections, aligning them one-to-one to pro-
duce a quality score.

Despite the improvements these AGI quality assessment
methods offer over traditional NSI-oriented IQA approaches,
they still face challenges that limit their practical appli-
cations. Most approaches focus on visual quality alone,
overlooking how well the generated content aligns with user
intent, where content relevance and consistency are equally
important. Additionally, many methods evaluate the AGI
in isolation, lacking robust mechanisms for assessing text-
image alignment. Some strategies use prompt segmentation
and imagepartitioning to gauge consistency, but these depend
on handcrafted rules, limiting scalability. Furthermore, the
interplay between multimodal features, especially between
text and images, is often underexplored. These issues high-
light the need for more versatile and holistic AGI evaluation
models.

Due to the limitations of the above methods, we hypothe-
size that a fusion-based approach has the potential tomitigate
the limitation of individual models. We therefore propose a
CLIP-BERT-AGIQA framework in this paper (as described
in Section 3.)

3 ProposedMethod

In this paper, we propose a new approach towards no-
reference quality assessment of AI-generated images by
integrating the CLIP-based embedding technique with the
BERTDevlin et al. [3] text encoder. The recent CLIP models

use antonym prompt pairing strategy to estimate the per-
ceptual quality Wang et al. [22]; Fu et al. [5] of an AIGI.
However, in the proposed model we utilize the text prompt
that was used to generate the image for estimating its percep-
tual quality. Based on this, we verify the similarity between
the AIGI and the user text prompt. In this paper, we lever-
age multimodal prompt and vision learning by fine-tuning
the BERT-based text encoder and CLIP’s ViT-based image
encoder. The proposed CLIP-BERT based framework, as
shown in Fig 2, mainly consists of three blocks: CLIP (image
encoder), BERT (text encoder), and quality prediction.

3.1 CLIP Model

Recent CLIP models are mainly focused on the adjective-
based prompts for the quality assessment of the images or
videos Wang et al. [22]. The CLIP model comprises two
encoders: a transformer for text processing and a vision trans-
former (ViT) or ResNet for image representation. The model
uses a dual-tower design inwhich the text and image encoders
perform independently but are aligned in a common embed-
ding space. It connects the gap between language and vision
by comprehending visual characteristics and textual seman-
tics, which makes it appropriate for a variety of applications
such as assisting visually challenged users, evaluating AI-
generated art, and automating content moderation. CLIP is
more flexible than standard supervised models since it learns
from constraint-free text-image pairings rather than fixed
labels. Initially, the vision encoder of the CLIP models was
based onResNet50 pre-trainedmodelHe et al. [7],whichwas
later replaced by the transformer-based models Dosovitskiy
et al. [4]. Later, a antonym prompt–based pairing strategy
of the CLIP model was used for quality assessment, where
cosine similarity between the text features (e.g. antonym
prompts: “Good Photo”, “Bad Photo”) and the image fea-
tures is computed. The prediction score of CLIP is calculated
based on the similarity score, s, between the image and text
features (for all text prompts) as per equation 1. Then, the
final quality prediction score s̄ is computed using the soft-
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max information as per equation 2 defined as:

si = x � ti
‖x‖ · ‖ti‖ , i ∈ {1, 2} (1)

.
Here, x represents the embedded image features, ti are the

prompt-embedded features (for the antonym pair such that
i = 1, 2), ‖.‖ denotes l2 norm, and � represents vector dot
product.

s̄ = es1

es1 + es2
(2)

The next stage involves text encoding.

3.2 BERTModel

The model architecture of the BERT is based on multi-layer
bidirectional transformer encoder which is inspired by “the
annotated transformer” proposed by Vaswani et al. [21].
We utilize the general language understanding evaluation
(GLUE) task for fine tuning the BERT model with the qual-
ity score annotated text prompts, which is one of the 11 NLP
tasks reported by Devlin et al. for the analysis of the BERT
modelDevlin et al. [3]. Further, theBERTmodel is fine-tuned
using the quality scores of the AIGIs.

In this work, we utilize BERT-based architecture, which
has 12 layers of transformer blocks, a hidden size of 768,
and 12 self-attention heads. While the BERT transformer is
based completely on the bidirectional self-attention method,
the GPT uses a constrained self attention–based transformer.
The conditional language models can train the text either
from left-to-right or right-to-left. Unlike conditional lan-
guage models, BERT is a bidirectional model that allows it
to analyze the context surrounding a target word and predict
it within a multi-layered framework. However, for training
the deep bidirectional representation in BERT, we predict the
masked tokens after randomly masking a certain percentage
of the input tokens. This procedure is referred to as ‘Masked
Language Model (MLM)’, and it is often referred to in the
literature as the Cloze task.

Based on the findings of Devlin et al. [3], BERT-Base and
BERT-Large consistently outperform OpenAI GPT across
all GLUE benchmarks, achieving average gains of 4.5% and
7.0% respectively. Owing to its superior ability to generate
rich textual embeddings, BERT is selected as the text encoder
to extract the feature vector FT from the input prompt. Unlike
CLIP’s text encoder, which limits input to 77 tokens, BERT
supports sequences up to 512 tokens, allowing for more
flexible and detailed prompt encoding. BERT, RoBERTa,
and DistilBERT are transformer-based models tailored for
NLP, each optimized differently. BERT, by Google, uses
masked language modeling and next-sentence prediction to

capture deep context in text. RoBERTa, from Facebook AI,
refines BERT by omitting the NSP task, leveraging larger
datasets, longer training, and dynamic masking for better
performance. In contrast, DistilBERT, from Hugging Face,
streamlines BERT via knowledge distillation, cutting model
size by 40% while preserving most of its accuracy, making
it suitable for low-resource or real-time tasks. While BERT
sets a strong foundation, RoBERTa typically offers higher
accuracy, and DistilBERT prioritizes speed and efficiency,
highlighting the trade-offs in choosing a model based on task
requirements.

3.3 Quality Prediction

As shown in Fig. 2, the features FI and FT are extracted by
feeding the AIGIs to the vision and text encoders. For fus-
ing these features, we select three methods which includes:
Concatenation, Cosine Similarity (CS), and Cross Attention
(CA). For visual quality prediction through CS, we utilize
BERT to encode the text prompt (fromBERT).We then com-
pute the CS between the image feature FI (from CLIP) and
textual feature FT ∈ R

N×768 (where N is maximum length
of the text prompt tokens) as shown below:

SQ = FI � (FT )T

‖FI‖2 · ‖FT ‖2 (3)

For the CA mechanism, the image feature vector, FI , is
used as a query, and the prompt feature vector, FT , is used as
both key and value. Later, we predict the score by passing the
output feature vector of the CA through a regression network
of two Fully Connected (FC) layers.

Fv = [FI , FT ] (4)

Moreover, for fusion of image and text features using con-
catenation, the concatenated vector Fv as represented in Eq.
4, is connected to the FC layer characterized by bias b1 and
weight W1 (Eq. 5). The final score, Qs , is represented as the
linear transformation of FC1 vector (i.e. the output of first
FC layer) with weights W2 and bias b2 (Eq. 6).

FC1 = ReLU (W1Fv + b1) (5)

Qs(I , T ) = W2FC1 + b2 (6)

4 Results and Discussions

4.1 Database and Evaluation Criteria

In the present work, we conduct experiments on three pub-
licly available AI-generated image datasets, i.e., AGIQA-3K

123



Signal, Image and Video Processing          (2025) 19:1254 Page 5 of 9  1254 

Li et al. [11], AIGCIQA2023 Wang et al. [23], and PKU-
I2IQA Yuan et al. [26], for evaluating the quality scores of
AI-generated images and comparative characterization with
state-of-the-art methods. The AGIQA-3K, AIGCIQA2023,
and PKU-I2IQA datasets are benchmark resources for
assessing AI-generated image quality. AGIQA-3K includes
2,982 images from six text-to-image (T2I) models and is
labeled with visual quality, authenticity, and consistency
scores based on 300 diverse prompts. AIGCIQA2023 fea-
tures 2,400 images generated by six T2I models using 100
prompts, with similar quality-related labels. PKU-I2IQA
offers 1,600 images produced by two image-to-image mod-
els, paired with 200 prompts and annotated for authenticity,
consistency, and visual quality.

To quantify the reliability of this quality metric, a correla-
tion must be drawn between the objectively computed metric
(from the model) and the mean opinion scores representing
human perception (available with the databases) as shown in
Fig 3. The correlation metrics used in this study include the
Spearman Rank-order Correlation Coefficient (SRCC), and
the Pearson Linear Correlation Coefficient (PLCC). These
metrics are commonly used in IQA, and have value between
0 and 1, such that larger value denotes greater prediction
performance.

4.2 Implementation Details

Our proposed approach uses the ViT-B/32 as the vision
encoder and BERT as the text encoder. As mentioned in Sec-
tion 3.2, the limit of prompt length for BERT is more than
CLIP’s text encoder.

Each dataset is partitioned differently:While the AGIQA-
3K dataset uses 80:20 ratio between training and testing sets,
the AIGCIQA2023 and PKU-I2IQA are partitioned in 75:25
ratio for training and testing. During training, the text prompt
is given to theBERT tokenizer for creating the attentionmask
of the entire text prompt. As the text prompts are of different
sizes, the mask provides a padding to the text prompt as per
the requirements of the BERT encoder. The Adam optimiza-
tion technique is utilized to optimize the parameters of the
model.We choose 1e−4 and 100 for learning rate and training
epochs, respectively. The proposedmethodwas implemented
on Pytorch-based code, and experiment was performed on an
Nvidia DGX server available at IIT Jodhpur.

4.3 Performance and Comparative Characterization

The performance of the proposed approach is validated using
SRCCandPLCC. The average SRCCvalues forAGIQA-3K,
AIGCIQA2023, and PKU-I2IQA were 0.8813, 0.8397, and
0.7149, respectively. Similarly, the respective average PLCC
for for 0.9153, 0.8641, and 0.7268 databases was found to
be AGIQA-3k, AIGCIQA2023, and PKUI2IQA. This rep-

(a) MOS =
3.1277,
Predicted
Score = 3.1384

(b) MOS =
3.3078,
Predicted
Score = 3.3162

(c) MOS =
3.3910,
Predicted
Score = 3.3950

(d) MOS =
3.8116,
Predicted
Score = 3.8167

(e) MOS =
3.2700,
Predicted
Score = 3.2983

(f) MOS =
3.5831,
Predicted
Score = 3.5016

(g) MOS =
2.7382,
Predicted
Score = 2.5170

(h) MOS =
3.3917,
Predicted
Score = 3.2984

(i) MOS =
2.5460,
Predicted
Score = 2.5132

(j) Predicted
Score = 3.7736

(k) Predicted
Score = 4.3053

(l) Predicted
Score = 4.5130

Fig. 3 Example of AI-generated images with different AI models with
their quality scores (human perception scores)

resents that the proposed metric accurately represents the
quality of AIGIs. To evaluate the generalizability of the pro-
posed model, we conducted additional testing on a set of 200
AGI’s sourced from unseen T2I models, namely DALL·E 2
and Dreame. The model achieved better performance, with
a SROCC of 0.8601 and PLCC of 0.8893. This result high-
lights the robustness and potential of the proposed approach
for quality assessment in evolving real-world T2I systems.
To assess the statistical significance of performance gains
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Table 1 Ablation study of the
Score Fusion on AGIQA-3K
database

BERT-version Concatenation Cosine Similarity Cross Attention
SRCC PLCC SRCC PLCC SRCC PLCC

distillBERT 0.8429 0.8690 0.8318 0.8461 0.8649 0.8906

RoBERT 0.8521 0.8796 0.8591 0.8640 0.8783 0.9072

BERT-Base (proposed) 0.8579 0.8893 0.8648 0.8755 0.8823 0.9173

Table 2 Performance
comparison of the proposed
method with state-of-the-art
methods. Here boldfaced font
represents the best performance
for each metric. The methods
are grouped as (i) traditional (ii)
DL-based (iii) CLIP-based in
this table

Method AGIQA-3K AIGCIQA2023 PKUI2IQA
SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [13] 0.4984 0.5496 0.6289 0.5839 0.4638 0.5281

NIQE Mittal et al. [14] 0.5181 0.5308 0.4971 0.4516 0.4189 0.4319

ILNIQE Zhang et al. [28] 0.6018 0.6194 0.5613 0.5078 0.4585 0.4869

DB-CNN Zhang et al. [29] 0.8391 0.8814 0.8296 0.8520 0.6027 0.6139

HyperIQA Su et al. [19] 0.8427 0.8993 0.8491 0.8736 0.6813 0.6983

CNNIQA Kang et al. [9] 0.7578 0.8149 0.7618 0.8065 0.5896 0.6037

Re-IQA Saha et al. [15] 0.8207 0.8810 0.8166 0.8347 0.6094 0.6209

AMFF-NET Zhou et al. [31] 0.8537 0.9070 0.8419 0.8537 0.7093 0.7718

StairIQA Sun et al. [20] 0.8215 0.8894 0.8136 0.8501 0.5955 0.6071

LIQE Zhang et al. [30] 0.8671 0.8975 0.8481 0.8530 0.6983 0.7385

ResNet50 He et al. [7] 0.8361 0.8794 0.8273 0.8495 0.6219 0.6382

MUSIQ Ke et al. [10] 0.8356 0.8829 0.8423 0.8602 0.6408 0.6410

TReS Golestaneh et al. [6] 0.8367 0.8973 0.8436 0.8637 0.6374 0.6427

CLIPIQA Wang et al. [22] 0.6846 0.6987 0.4171 0.3970 0.6581 0.6562

CLIP-AGIQA Fu et al. [5] 0.8747 0.9190 0.8324 0.8604 0.6515 0.6871

CLIP-BERT-AGIQA (Proposed) 0.8813 0.9153 0.8397 0.8641 0.7349 0.7868

of proposed method, we performed statistical significance
testing using Fisher’s z-transformation. The SRCC improve-
ment from 0.8747 to 0.8813 on AGIQA-3K corresponds to
z = 1.83(p ≈ 0.06), with a 95% confidence interval of
[0.874, 0.890]. This indicates that the observed improvement
is marginally significant.

We also compare the performance of the proposedmethod
with three traditional feature-based methods, five deep
learning–based metrics, and two CLIP-based approaches.
Among the methods, the traditional feature–based Mittal
et al. [13, 14]; Zhang et al. [28] and deep learning–based
Zhang et al. [29]; Su et al. [19]; He et al. [7]; Ke et al. [10];
Golestaneh et al. [6] and CLIP-IQA Wang et al. [22] meth-
ods are designed and trained for NSIs. On the other hand,
the CLIP-AGIQA method Fu et al. [5] is primarily trained
for the AIGI dataset. The obtained quantitative results of the
proposed method (CLIP-BERT-AGIQA) and other methods
are reported in the Table 2.

The following observations can be derived from the Table
2. The proposed approach delivers superior visual quality
predictions on both AGIQA-3K and PKU-I2IQA datasets
compared to baseline methods. Traditional feature-based
techniques consistently underperform across datasets, likely
due to their reliance on natural scene statistics, which do

not align well with the distribution of AI-generated images
(AGIs) created by complex generative models that lack
full photo-realism. On AIGCIQA-2023, the proposed CLIP-
BERT model ranks second in PLCC performance, slightly
behind the best. This may be due to the visual similarities
amongAGIs generated byLafite andControlNet, limiting the
vision encoder’s sensitivity to fine-grained variations. Lastly,
Hyper-IQASu et al. [19] surpasses otherNSI-basedmethods,
likely due to its content-aware hypernetwork, which effec-
tively captures semantic distortions–an important factor in
subjective assessment of AGIs.

Table 3 compares different IQA methods on the AGIQA-
3k dataset. With the highest SRCC score of 0.8813, the
proposed CLIP-BERT-AGIQA model demonstrates a strong
correlation with human visual perception. On comparison
with CLIP-AGIQA Fu et al. [5], the proposed approach
comes in close second with a PLCC of 0.9153. In terms
of both SRCC and PLCC, PSCR Yuan et al. [25] has the
lowest performance among the three. Overall, the proposed
model is found to have a balanced and effective performance
in comparison with other metrics of IQA for AGIs. In our
study, we observed some imperfect and noisy text prompts
(for example: hr giger in the style of hr giger). Due to the
BERT’s bidirectional context modeling, and robustness to
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Table 3 Comparison of the proposed method with other IQA methods
for AGIQA-3k

Method SRCC PLCC

PSCR Yuan et al. [25] 0.8394 0.8859

CLIP-AGIQA Fu et al. [5] 0.8747 0.9190

CLIP-BERT-AGIQA (Proposed) 0.8813 0.9153

incomplete or partially noisyprompts,model producesmean-
ingful embeddings evenwhen portions of the text aremissing
or imperfect.

4.4 Ablation Study

This section presents an ablation study evaluating the effec-
tiveness of the proposed three-pronged feature fusion strat-
egy. The proposed model’s performance is assessed using
three different fusion mechanisms: (i) Concatenation, (ii)
Cosine Similarity, and (iii) Cross Attention, as detailed in
Section 3.3. The comparative results of these fusion tech-
niques are summarized in Table 1.

Evaluation of Fusion Mechanisms:
Concatenation: This approach fuses image and text

features by direct concatenation, followed by two fully
connected layers for quality prediction. While simple and
efficient, it often underperforms due to poor modeling of
interactions between modalities, likely caused by misalign-
ment during training.

Cosine Similarity (CS):CS, used inmodels like CLIP for
IQA, measures alignment between image and text embed-
dings. In our study, it slightly outperforms concatenation but
still lags behind cross-attention, as shown in Table 1.

Cross Attention (CA):CAuses image features as queries
and text features as keys and values, enabling the model
to better capture cross-modal relationships. This results in
refined feature representations andmore accurate quality pre-
dictions. As shown in Table 1, CA consistently achieves the
highest SRCC and PLCC scores across all BERT variants.

Performance Comparison Across BERT Variants
The study also analyzes the trade-offs between model

accuracy, inference time, and computational cost for different
BERT-based text encoders–BERT-Base, DistilBERT, and
RoBERTa–in the context of feature fusion performance.

The proposed BERT-Basemodel delivers the highest per-
formance across all fusion techniques, with Cross Attention
achieving the best results (SRCC: 0.8823, PLCC: 0.9173).
This highlights its ability to capture rich semantic rela-
tionships between image and text features. However, this
performance comes with increased computational cost with
inference time of approximately 217 ms for a single input
image; as BERT-Base has a significantly larger number of

parameters, it leads to a slower inference time compared to
lighter models.

DistilBERT, designed for efficiency, offers faster infer-
ence (approximately 70% of model with BERT-Base i.e.,
152 ms) and a smaller memory footprint while maintain-
ing reasonably competitive performance. Although it shows
slightly lower accuracy than BERT-Base and RoBERTa, it
is a practical choice for resource-constrained environments,
particularly where real-time processing is required.

RoBERTa achieves performance close to BERT-Base,
particularly in the Cross Attention setting (SRCC: 0.8783,
PLCC: 0.9072), benefiting from dynamic masking and train-
ing on a larger corpus. It provides a balance between
performance and computational load (approximately 196
ms), outperformingDistilBERTwhile beingmarginallymore
efficient than BERT-Base.

These findings emphasize the importance of selecting text
encoders based on the target application’s performance and
efficiency requirements.

5 Conclusion

In this paper, we proposed amultimodal bidirectional prompt
learning framework based on the BERT model for quality
assessment of AI-generated images (AGIs). By replacing
CLIP’s text encoder with BERT, the proposed approach
leverages richer bidirectional context and extended prompt
lengths, resulting in more accurate predictions of visual
quality. Our results demonstrate that this framework con-
sistently outperforms several existing IQA methods across
multiple benchmark datasets. An extended ablation study
further shows that cross-attention fusion combined with
BERT-based encoders provides the strongest performance.
While BERT-Base achieves the highest accuracy, our com-
putational analysis highlights that lighter alternatives such as
DistilBERT and RoBERTa deliver competitive results with
substantially reduced overhead. This trade-offmakes the pro-
posed framework adaptable for both high-accuracy research
settings and efficiency-critical real-world applications.Look-
ing ahead,we plan to investigate dynamicmasking strategies,
alternative lightweight encoders (e.g., T5, LLaMA, Mis-
tral), and scaling experiments on larger and more diverse
AGI datasets to further enhance both robustness and deploy-
ment feasibility.In our study,all prompts fit within BERT’s
512-token limit, so truncation was unnecessary. For longer
prompts, methods like hierarchical encoding, segment-wise
processing, or larger-context models could be used, which
we consider this a promising direction for future work.
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