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Abstract
Let Sn = ∑n

k=1 ξk , n ∈ N, be a standard random walk with i.i.d. nonnegative incre-
ments ξ1, ξ2, . . . and associated renewal counting process N (t) = ∑

n≥1 1{Sn≤t},
t ≥ 0. A decoupling of (Sn)n≥1 is any sequence Ŝ1, Ŝ2, . . . of independent random
variables such that, for each n ∈ N, Ŝn and Sn have the same law. Under the assump-
tion that the law of Ŝ1 belongs to the domain of attraction of a stable law with finite
mean, we prove a functional limit theorem for the decoupled renewal counting pro-
cess N̂ (t) = ∑

n≥1 1{Ŝn≤t}, t ≥ 0, after proper scaling, centering and normalization.

We also study the asymptotics of logP{minn≥1 Ŝn > t} as t → ∞ under varying
assumptions on the law of Ŝ1. In particular, we recover the assertions which were
previously known in the case when Ŝ1 has an exponential law. These results, which
were formulated in terms of an infinite Ginibre point process, served as an initial
motivation for the present work. Finally, we prove strong law of large numbers-type
results for the sequence of decoupled maxima Mn = max1≤k≤n Ŝk , n ∈ N, and the
related first-passage time process τ̂ (t) = inf{n ∈ N : Mn > t}, t ≥ 0. In particular,
we provide a tail condition on the law of Ŝ1 in the case when the latter has finite mean
but infinite variance that implies limt→∞ t−1τ̂ (t) = limt→∞ t−1

Eτ̂ (t) = 0. In other
words, t−1τ̂ (t)may exhibit a different limit behavior than t−1τ(t), where τ(t) denotes
the level-t first-passage time of (Sn)n≥1.
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1 Introduction andMain Results

For a given sequence (ξn)n≥1 of i.i.d. nonnegative random variables, consider the
associated standard random walk Sn = ∑n

k=1 ξk for n ≥ 1. Further, let (N (t))t≥0
and (τ (t))t≥0 denote the associated renewal counting process and first-passage time
process, respectively, which are defined by

N (t) :=
∑

n≥1

1{Sn≤t} and τ(t) := N (t) + 1 = inf{n ≥ 1 : Sn > t}

for t ≥ 0. In this article, we are interested in decoupled versions of these processes,
which are obtained by replacing (Sn)n≥1 with a decoupling (Ŝn)n≥1, i.e., with a
sequence of independent Ŝ1, Ŝ2, . . . such that Ŝn is a copy of Sn for each n ∈ N.
The counterparts of N (t) and τ(t) for this decoupling are denoted N̂ (t) and τ̂ (t), and
we note that, with Mn := max1≤k≤n Ŝk for n ∈ N,

τ̂ (t) = inf{n ≥ 1 : Mn > t}, t ≥ 0.

As limn→∞ Mn = +∞ a.s., we have τ̂ (t) < ∞ a.s. for all t .
Our interest in (Ŝn)n≥1 and (N̂ (t))t≥0 was raised by their recent appearance in

connection with a particular determinantal point process. To be more precise, let C
as usual denote the set of complex numbers, z̄ the complex conjugate of z ∈ C,
Leb Lebesgue measure on C, and finally ρ the measure defined by ρ(dz) :=
π−1e−|z|2Leb(dz) for z ∈ C. Then � is called an infinite Ginibre point process on C

if it is a determinantal point process with kernel C(z, w) = ezw̄ for z, w ∈ C with
respect to ρ, which in turn means that � is a simple point process such that, for any
k ∈ N and any pairwise disjoint Borel subsets B1, . . . , Bk of C,

E

k∏

j=1

�(Bj ) =
∫

B1×···×Bk
det(C(zi , z j ))1≤i, j≤k ρ(dz1) . . . ρ(dzk).

See [13] for detailed information on determinantal point processes, in particular Sec-
tions 4.3.7 and 4.7 for a discussion of the Ginibre point process.

For t ≥ 0, let �(Dt ) denote the number of points of � in the disk Dt := {z ∈
C : |z| < t1/2}. According to an infinite version of Kostlan’s result [17], stated as
Theorem 1.1 in [9], the process

(�(Dt ))t≥0 has the same law as (N̂ (t))t≥0 =
( ∑

n≥1 1{Ŝn≤t}
)

t≥0
,

where ξ is a standard exponential random variable and thus (N̂ (t))t≥0 a decoupled
standard Poisson process. Prop. 1.4 in [9] is a functional limit theorem for (�(Dt ))t≥0,
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properly scaled, centered and normalized. Prop. 7.2.1 on p. 124 in [13] provides the
first-order asymptotics of the logarithmic hole probability for an infinite Ginibre point
process. When formulated in terms of a decoupled Poisson process and thus assuming
the law of ξ to be standard exponential, this is equivalent to the first-order asymptotics
of logP{minn≥1 Ŝn > t} as t → ∞. The main purpose of the present paper is to prove
corresponding results for (N̂ (t))t≥0 and logP{minn≥1 Ŝn > t} as t → ∞ without
specifying the law of ξ . Additionally, we provide strong law of large numbers-type
results for (Mn)n≥1 and (̂τ (t))t≥0 and also find the first-order asymptotics of Eτ̂ (t)
as t → ∞. Functional limit theorems for (Mn)n≥1 and (̂τ (t))t≥0, however, will be
discussed in a separate article. Our motivation to investigate (̂τ (t))t≥0, which to our
knowledge has not been discussed in the literature so far, is to compare asymptotic
properties of this process with those of (τ (t))t≥0. An analysis of (Mn)n≥1 plays an
auxiliary role, its relevance being based on duality relation (37).

2 Weak Convergence of the Decoupled Renewal Counting Process

Wewill state our functional limit theorem for (N̂ (t))t≥0 in Sect. 2.2 below after a brief
review of corresponding results for suitable normalizations of (N (t))t≥0 and (τ (t))t≥0
which are known in the literature. Our result will assume that the law of ξ belongs to
the domain of attraction of a stable law with index α ∈ (1, 2]. This particularly entails
μ := Eξ < ∞. As for α = 2, let us recall that the law of ξ belongs to the domain of
attraction of a normal law, if, and only if, either σ 2 := Var ξ ∈ (0,∞), or Var ξ = ∞
and the truncated mean of ξ2 is slowly varying at infinity, thus

Eξ2 1{ξ≤t} ∼ 	(t) as t → ∞ (1)

for some slowly varying function 	, where x(t) ∼ y(t) as t → ∞ has the usual
meaning limt→∞(x(t)/y(t)) = 1. And if α ∈ (1, 2), then the law of ξ belongs to the
domain of attraction of an α-stable law if, and only if,

P{ξ > t} ∼ t−α	(t) as t → ∞ (2)

for some 	 as before.

2.1 A Quick Review of the Ordinary Renewal Case

Let D denote the Skorokhod space of càdlàg functions defined on [0,∞). According
to Theorem 5.3.1 and Theorem 5.3.2 in [10] or Section 7.3.1 in [19]

(
τ(wt) − μ−1wt

μ−1−1/αcα(t)

)

w≥0
�⇒ Sα := (Sα(w))w≥0 as t → ∞, (3)

where

(A1) If σ 2 < ∞, then α = 2, c2(t) = σ
√
t , S2 is standard Brownian motion, and

the convergence takes place in the J1-topology on D;
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(A2) If σ 2 = ∞ and (1) holds, then α = 2, c2 is some positive continuous function
such that

lim
t→∞ t	(c2(t))(c2(t))

−2 = 1,

and the convergence takes place in the J1- topology on D;
(A3) If (2) holds for α ∈ (1, 2), thenSα is a spectrally negative α-stable Lévy process

such that Sα(1) has the characteristic function

E[exp(i zSα(1))] = exp{−|z|α
(1−α)(cos(πα/2)+i sin(πα/2)sign (z))}, z ∈ R. (4)

Here
 denotesEuler’s gamma function, cα is somepositive continuous function
satisfying

lim
t→∞ t	(cα(t))(cα(t))−α = 1,

and the convergence takes place in the M1-topology on D.

Observe that (3) also holds with N (wt) replacing τ(wt) and Eτ(wt) replacing
μ−1wt . We refer to [19] for extensive information concerning both the J1- and M1-
convergence on D.

The function cα is regularly varying at ∞ with index 1/α. Hence, the function
t �→ t/cα(t) is regularly varying at ∞ with index 1 − 1/α. By Theorem 1.8.2 in [3],
there exists an eventually strictly increasing and differentiable function dα satisfying
limt→∞(tdα(t)/d ′

α(t)) = 1− 1/α and t/cα(t) ∼ dα(t) as t → ∞. Thus, we can and
do assume without loss of generality that the function t �→ t/cα(t) itself possesses all
these properties. With this at hand, we can put hα(t) := (t/cα(t))−1 (inverse function)
for large t and point out that hα is ultimately strictly increasing, regularly varying with
index (1 − 1/α)−1, and

lim
t→∞

th′
α(t)

hα(t)
= lim

t→∞
h′

α(t)

cα(hα(t))
= α

α − 1
. (5)

2.2 Functional Limit Theorem for the Decoupled Renewal Counting Process

Denote by D(I ) the Skorokhod space of càdlàg functions defined on an interval I , by

N (0, 1) the standard normal law and by� its distribution function. We write
f.d−→ and

d−→ for weak convergence of finite-dimensional and one-dimensional distributions,
respectively, and in the statement of Theorem 2.1, the random variable Sα(1), hα and
a smooth version of cα are as defined in the previous subsection. Finally, let V be the
renewal function of (Sn)n≥1 and thus also its decoupling (Ŝn)n≥1, that is

V (t) :=
∑

n≥1

P{Sn ≤ t} =
∑

n≥1

P{Ŝn ≤ t} = EN̂ (t), t ≥ 0.

Theorem 2.1 If (A1), (A2), or (A3) holds, then

(
N̂ (hα(t + u)) − V (hα(t + u))

(μ−1−1/αcα(hα(t)))1/2

)

u∈R
f.d−→ Xα as t → ∞,
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where Xα = (Xα(u))u∈R is a centered stationary Gaussian process with covariance
function

Cov (Xα(u), Xα(v)) =
∫

R

P{Sα(1) > aα(u ∨ v) + y}P{Sα(1) ≤ aα(u ∧ v) + y} dy
(6)

for u, v ∈ R and aα := μ1/αα/(α − 1). Furthermore,

Cov (X2(u), X2(v)) = π−1/2 exp(−a22(u − v)2/4) − a2|u − v|(1 − �(2−1/2a2|u − v|))
(7)

for all u, v ∈ R. Under the additional assumption that the function V is Lipschitz
continuous on [0,∞), even

(
N̂ (hα(t + u)) − V (hα(t + u))

(μ−1−1/αcα(hα(t)))1/2

)

u∈R
�⇒ Xα as t → ∞

in the J1-topology on D(R) holds true.

Remark 2.2 If (A1) holds, in particular α = 2, and V is Lipschitz continuous, then
h2(t) = σ 2t2 and c2(h2(t)) = σ 2t for all t > 0. As a consequence, the limit assertion
of Theorem 2.1 takes the simpler form

(
N̂ (σ 2(t + u)2) − V (σ 2(t + u)2)

(μ−3/2σ 2t)1/2

)

u∈R
�⇒ X2 as t → ∞, (8)

and a2 = 2μ1/2. Standard renewal theory provides

−1 ≤ V (t) − μ−1t ≤ μ−2
Eξ2 − 1 for all t ≥ 0,

where the left-hand side follows from t ≤ ESτ(t) = μEτ(t) = μ(V (t) + 1) for
t ≥ 0 (using Wald’s identity), and the right-hand side is Lorden’s inequality. Hence,
by replacing V (σ 2(t + u)2) with μ−1σ 2(t + u)2 in (8), we conclude that1

(
N̂ (σ 2(t + u)2) − μ−1σ 2(t + u)2

(μ−3/2σ 2t)1/2

)

u∈R
�⇒ X2 as t → ∞. (9)

Assuming the law of ξ to be standard exponential (thus μ = σ 2 = 1 and V (t) = t
for t ≥ 0), we recover the result obtained in [9] as Proposition 1.4 and Remark 1 on
p. 7424. Putting u = 1 in (9) and noting that, by (7), Var X2(1) = π−1/2, we obtain a
one-dimensional central limit theorem

N̂ (t) − μ−1t

(π−1t)1/4
d−→ N (0, 1).

1 For α > 1 and close to 1, (V (t) − μ−1t)/cα(t)1/2 does not converge to 0 as t → ∞. Whenever this is
the case, the centering in Theorem 2.1 cannot be replaced with μ−1hα(t + u).
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Remark 2.3 For α ∈ (1, 2), it seems that Cov (Xα(u), Xα(v)) does not admit a useful
semi-explicit representation like (7). However, according to Lemma 5.1 below

Var Xα(u) = π−1
(1 − 1/α)(2
(1 − α) cos(πα/2))1/α, u ∈ R,

where 
 is Euler’s gamma function.

Remark 2.4 To compare the asymptotic behavior of N and its decoupled counterpart
N̂ , it is instructive to have a look at the normalizations that provide one-dimensional
convergence in distribution, namely

N (t) − μ−1t

μ−1−1/αcα(t)
d−→ N (0, 1) and

N̂ (t) − V (t)

(μ−1−1/αVar Xα(0)cα(t))1/2
d−→ N (0, 1).

As one can see, these normalizations, which are the asymptotic equivalents of the
standard deviations of N and N̂ , are strikingly different. An intuitive explanation of
the relation behind it, namelyVar N̂ (t) ∼ const (Var N (t))1/2 as t → ∞, is as follows.
Fix large t and choose values n−(t) and n+(t) such that P{N (t) < n−(t)} ≈ 0.01 and
P{N (t) < n+(t)} ≈ 0.99. Then N (t) exhibits fluctuations of the order n+(t)−n−(t).
On the other hand, the principal contribution to N̂ (t) comes from the indicators1{Ŝn≤t}
with n ∈ [n−(t), n+(t)]. Since the indicators are independent, we conclude with
the help of the central limit theorem that the fluctuations of N̂ (t) are of the order
(n+(t) − n−(t))1/2.

Remark 2.5 Next we give sufficient conditions for the Lipschitz continuity of V on
[0,∞). Let the distribution of ξ be absolutely continuous with respect to Lebesgue
measure and its density f be bounded and satisfying limt→∞ f (t) = 0. Then
the renewal density v, given by v(t) := ∑

n≥1 f ∗(n)(t) for t ≥ 0, exists and is
bounded, thereby ensuring the Lipschitz continuity of V . Here, f ∗(n) denotes the n-
fold Lebesgue convolution of f with itself. As for the boundedness of v, we note
that limt→∞ v(t) = μ−1 by the key renewal theorem for spread-out distributions,
see, for instance, Corollary 1.3 on p. 187 in [1]. Moreover, it can be checked, but
we omit details, that the boundedness and integrability of f ensure that the function
t �→ ∑

n≥2 f ∗(n)(t) is continuous on [0,∞), hence bounded on [0, a] for any a > 0.

Let W be Gaussian white noise on R × [0, 1] with intensity measure being
Lebesgue measure Leb. This means that, for any Borel sets A, B ⊆ R × [0, 1]
of finite Lebesgue measure, W (A) is a zero-mean Gaussian random variable and
EW (A)W (B) = Leb(A ∩ B). The Gaussian stochastic integral assigns to every
function f ∈ L2(R × [0, 1]) a zero-mean Gaussian random variable I ( f ) :=∫
R×[0,1] f (x, y)W (dx, dy). Furthermore, for any n ∈ N and any L2-functions
f1, . . . , fn the random vector (I ( f1), . . . , I ( fn)) is Gaussian and the covariance of
I ( f j ) and I ( fk) is equal to

∫
R×[0,1] f j (x, y) fk(x, y)dxdy. We refer to Section 7.2 in

[16] for more details, where the term ‘Gaussian random measure’ is used rather than
‘Gaussian white noise’.

The weak limit Xα arising in Theorem 2.1 admits an integral representation with
respect to W as shown by the following theorem.
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Theorem 2.6 Putting �α(y) := P{Sα(1) ≤ y} for y ∈ R, the process Yα :=
(Yα(u))u∈R defined by

Yα(u) =
∫

R×[0,1]
(1{y≤�α(aαu+x)} −�α(aαu + x)) W (dx, dy) for u ∈ R

is a stationary centered Gaussian process with the same covariance function as Xα ,
so

Cov (Yα(u),Yα(v)) = Cov (Xα(u), Xα(v)) for all u, v ∈ R.

Moreover, Yα has a version with sample paths which are Hölder continuous with
exponent γ for any γ ∈ (0, 1/2).

3 Tail Asymptotics for theMinimum of the Decoupling (̂Sn)n≥1

In this section, we focus on the logarithmic asymptotics of

P

{
min
n≥1

Ŝn > t
}

=
∏

n≥1

P{Ŝn > t} =
∏

n≥1

P{Sn > t}

as t → ∞ under various assumptions on the law of ξ . Sect. 3.1 treats the case
when the law of ξ has light tails, that is, when E exp(s0ξ) < ∞ for some s0 > 0,
whereas Sect. 3.2 is devoted to the case when the law of ξ has heavy tails and thus
E exp(sξ) = ∞ holds for all s > 0.

3.1 Light Tails

Under mild assumptions including μ = Eξ < ∞, we will show in Lemma 6.1 that
the variables Ŝn for n > �t/μ� do not contribute to the logarithmic asymptotics of
P{minn≥1 Ŝn > t} as t → ∞. Under the assumptions of Theorem3.1(a), these asymp-
totics are drivenby Ŝn forn ∈ [�at�, �t/μ�] andpositivea close to 0.They are therefore
determined by the large deviations of the standard randomwalk (Sn)n≥1, which in turn
are described by Cramér’s theorem. This particularly explains the appearance of the
Legendre transform I in part (a). Under the assumptions of Theorem 3.1(b2), the
asymptotics are driven by the first elements of the sequence (Ŝn)n∈N and are thus
determined by− logP{ξ > t} as t → ∞. The setting treated in part (b1) is intermedi-
ate between the aforementioned two, which manifests itself in − logP{ξ > t} ∼ I (t)
as t → ∞.

Theorem 3.1 (a) Assume that

Ees0ξ < ∞ for some s0 > 0 (10)

123



23 Page 8 of 34 Journal of Theoretical Probability (2025) 38 :23

and

∫ 1

0
−y logP{ξ > 1/y} dy < ∞ (11)

with the standard convention − log 0 = +∞. Then

lim
t→∞ −t−2 logP

{
min
n≥1

Ŝn > t
} =

∫ 1/μ

0
y I (1/y)dy < ∞,

where μ = Eξ < ∞, I denotes the Legendre transform of the law of ξ , that is,

I (x) := sup
s∈J

(sx − logE exp(sξ)) for x > 0,

and J := {s ≥ 0 : E exp(sξ) < ∞}.
(b) For some α ≥ 2 and some 	 slowly varying at ∞, assume

lim
t→∞

− logP{ξ > t}
tα	(t)

= c ∈ (0,∞). (12)

(b1) If α = 2, (11) fails to hold, and

lim
t→∞

(
	(λt)

	(t)
− 1

)

log 	(t) = 0 for some λ > 1, (13)

then

lim
t→∞

− logP{minn≥1 Ŝn > t}
t2	∗(t)

= c,

where 	∗(t) := ∫ t
1 y−1	(y)dy satisfies limt→∞ 	∗(t) = ∞.

(b2) If α > 2, then

lim
t→∞

− logP{minn≥1 Ŝn > t}
tα	(t)

= cζ(α − 1),

where ζ(x) = ∑
n≥1 n

−x for x > 1 is the Riemann zeta function.

Remark 3.2 Neither of the two conditions (10) and (11) entails the other, and both are
crucial in Theorem 3.1. For instance, if

− logP{ξ > t} ∼ ctα as t → ∞ (14)

for some c > 0 and α ∈ (0, 1), then (11) holds, but (10) does not. And it goes the other
way ((10) holds, while (11) does not) if (14) is valid for some α ≥ 2, or if there exists
t0 > 0 such that P{ξ > t} = 0 for all t ≥ t0. The latter situation has no relevance in
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the present context because P
{
minn≥1 Ŝn > t

}
=0 for all t ≥ t0. A sufficient condition

for both (10) and (11) is − logP{ξ > t} ∼ tα	(t) for some α ∈ [1, 2) and some 	

slowly varying at ∞. If α = 2, then (11) holds for some 	 and fails to hold for the
other.

If condition (10) fails to hold, then the Legendre transform I is identically 0 (recall
the standard convention that the supremum taken over an empty set equals 0). Under
the assumptions of parts (b1) and (b2) of Theorem 3.1, condition (11) fails to hold,
and the function t �→ − logP{minn≥1 Ŝn > t} grows faster than t2. This suggests that
condition (11) is close to necessary, although we do not claim it is indeed necessary.

Remark 3.3 If ξ has a standard exponential law (μ = 1), then I (x) = x − 1 − log x
for x > 0 and

∫ 1
0 y I (1/y)dy = ∫ 1

0 (1 − y + y log y)dy = 1/4. With this at hand, we
recover the result stated as Proposition 7.2.1 on p. 124 of [13].

Remark 3.4 Relation (13) is satisfied if 	 converges to a positive constant, or by 	(x) =
(logk x)

α for α ∈ R, where logk is the kth iterate of log, and by products of such 	,
see Example 1 on p. 433 in [3].

3.2 Heavy Tails

The case when the law of ξ has heavy tails is divided into two subcases treated in
Theorems 3.5 and 3.6. In the first subcase, the law of ξ has regularly varying tails of
index 0 < α �= 1. Then,

• If α ∈ (0, 1) and thus μ = Eξ = ∞, the logarithmic asymptotics of
P{minn≥1 Ŝn > t} are driven by the variables Ŝn for n ∈ [�a/P{ξ > t}�, �b/P{ξ >

t}�] with positive a close to 0 and large b (Theorem 3.5(a)) and thus by the dis-
tributional convergence of P{ξ > t}τ(t). For further explanation, we refer to (34)
where the convergence is stated.

• If α > 1, these asymptotics are driven by the Ŝn for n ∈ [�at�, �t/(μ + δ)�]
with positive a and δ close to 0 and therefore by the large deviation behavior of
the random walk (Sn)n≥1. More importantly, such n belong to the ‘one big-jump
domain’, that is, P{Sn −μn > t} ∼ P{max1≤k≤n ξk > t} ∼ nP{ξ > t} as t → ∞.
(Theorem 3.5(b))

In the second subcase, treated by Theorem 3.6, the driving force behind the asymp-
totics is still the ‘one big-jump domain’, which covers all positive integers n ≤ �t/μ�.
All larger integers n do not contribute to the asymptotics in question as will be shown
in Lemma 6.1.

In order to state our results, let (Wα(t))t≥0 for α ∈ (0, 1) denote a drift-freeα-stable
subordinator with

− logE exp(−zWα(t)) = 
(1 − α)t zα for z ≥ 0,

where 
 is again Euler’s gamma function. Let further W←
α denote an inverse α-stable

subordinator, defined by W←
α (t) := inf{s ≥ 0 : Wα(s) > t} for t ≥ 0. The law of
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W←
α (1) is known in the literature as a Mittag–Leffler law with parameter α ∈ (0, 1),

the name stemming from the fact that

E exp(s
(1 − α)W←
α (1)) =

∑

n≥0

sn


(1 + nα)
, s ≥ 0,

and that the right-hand side defines the Mittag–Leffler function with parameter α, a
generalization of the exponential function which corresponds to α = 1.

Theorem 3.5 Assume P{ξ > t} ∼ t−α	(t) as t → ∞ for some α > 0 and some 	

slowly varying at ∞.
(a) If α ∈ (0, 1), then

lim
t→∞ − logP

{
min
n≥1

Ŝn > t
}
P{ξ > t} =

∫ ∞

0
− logP{W←

α (1) ≤ x} dx < ∞.

(b) If α > 1, then

lim
t→∞

− logP{minn≥1 Ŝn > t}
t log t

= α − 1

μ
,

where μ = Eξ < ∞.

Theorem 3.6 Assume P{ξ > t} = e−tα	(t) for t > 0, some α ∈ (0, 1) and some 	

slowly varying at ∞. Putting H(t) := − logP{ξ > t}, assume also

H(t + h(t)) − H(t) = α h(t) t−1H(t) + o(h(t) t−1H(t)) + o(1) as t → ∞ (15)

for any h satisfying h(t) = o(t) as t → ∞. Then

lim
t→∞

− logP{minn≥1 Ŝn > t}
tα+1	(t)

= 1

μ(α + 1)
,

where μ = Eξ < ∞.

Remark 3.7 We note that (15) is not very restrictive and refer to p. 991 in [5], where
sufficient conditions are provided.

4 The Sequence of DecoupledMaxima and First-Passage Times

Recall that Mn = max1≤k≤n Ŝk for n ∈ N, τ̂ (t) = inf{n ∈ N : Mn > t} for t ≥ 0 and
μ = Eξ . We state our result in the subsequent theorem.

Theorem 4.1 Let the law of ξ be nondegenerate. Then the following assertions hold.
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(a) If Eξ2 < ∞, then

lim
n→∞

Mn

n
= μ and lim

t→∞
τ̂ (t)

t
= 1

μ
a.s. (16)

(b) If μ < ∞ and Eξ2 = ∞, then

lim sup
n→∞

Mn

n
= ∞ and lim inf

t→∞
τ̂ (t)

t
= 0 a.s.

Moreover, even

lim
n→∞

Mn

n
= ∞ and lim

t→∞
τ̂ (t)

t
= 0 a.s. (17)

holds under the additional assumption limt→∞ t2 P{ξ > t}/ log log t = ∞,
whereas

lim inf
n→∞

Mn

n
= μ and lim sup

t→∞
τ̂ (t)

t
= 1

μ
a.s. (18)

if limt→∞ t2 P{ξ > t}/ log log t = 0.
(c) If μ = ∞, then (17) holds.
(d) The family {t−1τ̂ (t) : t ≥ t0} is uniformly integrable for any t0 > 0 and therefore

lim
t→∞

Eτ̂ (t)

t
= lim

t→∞
τ̂ (t)

t

whenever the second limit exists a.s. In particular, the limit is equal to 1/μ if
Eξ2 < ∞.

It is a standard result from renewal theory (see, for instance, Theorem 5.1 on
p. 57 in [10]) that μ ∈ (0,∞) alone ensures both limt→∞ t−1τ(t) = μ−1 a.s. and
limt→∞ t−1

Eτ(t) = μ−1. Thus, if μ ∈ (0,∞), but Eξ2 = ∞, then the asymptotics
of τ̂ (t) and τ(t) are very different.

5 Proofs for Sect. 2

5.1 Auxiliary Results

For x ∈ R, we put as common x+ for max(x, 0) and x− = max(−x, 0).

Lemma 5.1 Let θ be an integrable random variable with distribution function F and
θ1, θ2 be two independent copies. Then

Ia :=
∫

R

F(x + a)(1 − F(x)) dx = E(θ1 − θ2 − a)+ < ∞, (19)
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for all a ∈ R. Moreover,

(a) If θ = S2(1) and thus has law N (0, 1), then

Ia = π−1/2 exp(−a2/4) + a �(2−1/2a),

in particular I0 = π−1/2, and (7) holds true.
(b) If θ = Sα(1) for α ∈ (1, 2) and thus has a spectrally negative α-stable law

with characteristic function given by (4), then I0 = π−1
(1 − 1/α)(2
(1 −
α) cos(πα/2))1/α .

Proof Eq. (19) is a consequence of

∫

R

F(x + a)(1 − F(x)) dx

=
∫ ∞

0
(1 − F(x + a)F(x)) dx −

∫ ∞

0
(1 − F(x + a)) dx

+
∫ 0

−∞
F(x + a) dx −

∫ 0

−∞
F(x + a)F(x) dx

= E(max(θ1 − a, θ2))+ − E(θ − a)+ + E(θ − a)− − E(max(θ1 − a, θ2))−
= a − Eθ + E(max(θ1 − a, θ2))+ − E(max(θ1 − a, θ2))−
= a − Eθ + Emax(θ1 − a, θ2)

= a + E(max(θ1 − a, θ2) − θ2)

= a + E(θ1 − θ2 − a)+.

(a) If θ has the standard normal law, then the law of θ1−θ2−a is normal with mean
−a and variance 2 and has density x �→ exp(−(x + a)2/4)/(2π1/2). Consequently,

E(θ1 − θ2 − a)+ = 1

2π1/2

∫ ∞

0
x exp(−(x + a)2/4) dx

= exp(−a2/4)

π1/2 − a P{θ > 2−1/2a}.

Putting a = 0, we see that I0 = π−1/2, and a change of variable x = a2(u ∨ v) + y
in (6) provides

Cov (X2(u), X2(v))

=
∫

R

P{S2(1) ≤ −a2|u − v| + x} − P{S2(1) ≤ −a2|u − v|+x}P{S2(1) ≤ x} dx
= I−a2|u−v| = π−1/2 exp(−a22(u − v)2/4) − a2|u − v|P{θ ≤ −2−1/2a2|u − v|}
= π−1/2 exp(−a22(u − v)2/4) − a2|u − v|P{θ > 2−1/2a2|u − v|},

and thus validity of (7).
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(b) Using

|x | = π−1
∫

R

y−2(1 − cos(xy)) dy for x ∈ R,

one finds E|θ | = π−1
∫
R
y−2(1 − E exp(iyθ)) dy and then Eθ+ = π−1

∫ ∞
0 y−2(1 −

E exp(iyθ)) dy for any random variable θ with a symmetric law. Now, if θ has the
characteristic function given by (4), then

E exp(iz(θ1 − θ2)) = exp(−c|z|α) for z ∈ R,

where c = 2
(1 − α) cos(πα/2). Moreover,

E(θ1 − θ2)+ = 1

π

∫ ∞

0
y−2(1 − exp(−cyα) dy

= 1

πα

∫ ∞

0
y−(1+1/α)(1 − exp(−cy))dy = 
(1 − 1/α)c1/α

π
,

where the second equality is obtained by the change of variable and the third follows
with the help of integration by parts. ��

Lemma 5.2 If (A1), (A2), or (A3) holds, then

Cov (N̂ (hα(t + u)), N̂ (hα(t + v)))

μ−1−1/αcα(hα(t))
t→∞−−−→

∫

R

P{Sα(1) > aα(u ∧ v) + y}P{Sα(1) ≤ aα(u ∨ v) + y} dy

for all u, v ∈ R, where aα = μ1/αα/(α − 1) (cf. Thm.2.1).

Proof Put S0 := 0. For u < v,

Cov (N̂ (hα(t + u)), N̂ (hα(t + v)))

= E

[ ∑

k≥1

(1{Ŝk≤hα(t+u)} −P{Ŝk ≤ hα(t + u)})
∑

j≥1

(1{Ŝ j≤hα(t+v)} −P{Ŝ j ≤ hα(t + v)})
]

=
∫ ∞
0

P{S�x� ≤ hα(t + u)}P{S�x� > hα(t + v)} dx .

By putting bα(t) := μ−1−1/αcα(hα(t)) for our convenience, making the change of
variable x = μ−1hα(t+u)+bα(t)y and using the duality relation {Sk ≤ z} = {τ(z) >
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k} for k ∈ N and z ≥ 0, we further obtain

Cov (N̂ (hα(t + u)), N̂ (hα(t + v)))

= bα(t)
∫ ∞

−μ1/αhα(t+u)/cα(hα(t))
P{S�μ−1hα(t+u)+bα(t)y� ≤ hα(t + u)}

× P{S�μ−1hα(t+u)+bα(t)y� > hα(t + v)} dy
= bα(t)

∫ ∞

−μ1/αhα(t+u)/cα(hα(t))
P{τ(hα(t + u)) > �μ−1hα(t + u) + bα(t)y�}

× P{τ(hα(t + v)) ≤ �μ−1hα(t + u) + bα(t)y�} dy. (20)

Put w = 1 in (3) to see that, for any fixed y ∈ R,

lim
t→∞P{τ(hα(t + u)) > �μ−1hα(t + u) + bα(t)y�} = P{Sα(1) > y}.

By recalling the fact that hα(t)/(tcα(hα(t))) = 1 for large t and combining it with the
mean value theorem for differentiable functions and (5), we obtain for some ζ ∈ [v, u]

hα(t + u) − hα(t + v)

cα(hα(t))
= (u − v)th′

α(t + ζ )

hα(t)

hα(t)

tcα(hα(t))
t→∞−−−→ α

α − 1
(u − v).

For any fixed y ∈ R, this entails

lim
t→∞P{τ(hα(t + v)) ≤ �μ−1hα(t + u) + bα(t)y�}

= P{Sα(1) ≤ μ1/αα(u − v)/(α − 1) + y}.

We have just shown the convergence of the integrand in (20) and intend to prove
next that the integral in (20) converges as well. Fixing any r > 0, this integral taken
over [−r , r ] plainly converges to

∫ r
−r P{Sα(1) > y}P{Sα(1) ≤ μ1/αα(u − v)/(α −

1) + y} dy as t → ∞ by dominated convergence. Moreover, for t ≥ t1, t1 sufficiently
large, and y > r , the integrand in (20) can be bounded from above with the help of
Markov’s inequality by

E

( |τ(hα(t + u)) − μ−1hα(t + u) + 1|
bα(t + u)

)p(bα(t + u)

bα(t)

)p 1

y p

≤ A(α, p) sup
t≥t0

E

( |τ(t) − μ−1t + 1|
cα(t)

)p 1

y p

for appropriate t0 > 0, a positive constant A(α, p), and with p = 3/2 under (A1) or
(A2), and p ∈ (1, α) under (A3). Since the last supremum is finite by Theorems 1.1
and 1.2 in [15], we have thus found an integrable bound for y > b. By a completely
analogous argument, we obtain for t ≥ t2, t2 sufficiently large, and y < −r the
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integrable majorant

B(α, p) sup
t≥t1

E

( |τ(t) − μ−1t + 1|
cα(t)

)p 1

|y|p

with a positive constant B(α, p) and p as before. Hence, by another appeal to the
dominated convergence theorem, the integral in (20), now taken over (−∞,−r) ∪
(r ,∞), converges to

∫
|y|>r P{Sα(1) > y}P{Sα(1) ≤ μ1/αα(u − v)/(α − 1) + y} dy

as t → ∞. ��
Corollary 5.3 The variance of N̂ (t) exhibits the following asymptotics as t → ∞:

Var N̂ (t) ∼
( σ 2t

μ3π

)1/2
under (A1),

Var N̂ (t) ∼
( 1

μ3π

)1/2
c2(t) under (A2),

Var N̂ (t) ∼ 
(1 − 1/α)(2
(1 − α) cos(πα/2))1/α

μ1+1/απ
cα(t) under (A3).

Proof Lemma 5.2 provides

Var N̂ (t) ∼ μ−1−1/αcα(t)
∫

R

(
P{Sα(1) ≤ y} − (P{Sα(1) ≤ y})2) dy as t → ∞,

and the value of the integral is calculated in Lemma 5.1. ��

5.2 Proof of Theorem 2.1

For t > 0 sufficiently large, we consider the process

Z(t, u) : = N̂ (hα(t + u)) − V (hα(t + u))

(μ−1−1/αcα(hα(t)))1/2
, u ∈ R.

By the Cramér–Wold device, the weak convergence of its finite-dimensional distribu-
tions is equivalent to

k∑

i=1

λ j Z(t, ui )
d−→

k∑

i=1

λi Xα(ui ) as t → ∞ (21)

for all k ∈ N, all λ1, . . . , λk ∈ R and all −∞ < u1 < · · · < uk < ∞. The left-hand
side in (21) is equal to

∑
n≥1

∑k
i=1 λi (1{Ŝn≤hα(t+ui )} −P{Ŝn ≤ hα(t + ui )})

(μ−1−1/αcα(hα(t)))1/2
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and as such an infinite sum of independent centered random variables with finite
second moments. Hence, in order to prove (21), it suffices to show (see, for instance,
Thm.3.4.5 on p. 129 in [7]) that

lim
t→∞E

( k∑

i=1

λi Z(t, ui )

)2

= E

( k∑

i=1

λ j Xα(ui )

)2

=
k∑

i=1

λ2i Var Xα(ui ) + 2
∑

1≤i< j≤k

λiλ j Cov (Xα(ui ), Xα(u j ))

(22)

and

lim
t→∞

∑

n≥1

E

([ ∑k
i=1 λi (1{Ŝn≤hα(t+ui )} −P{Ŝn ≤ hα(t + ui )})

]2

cα(hα(t))
1En(t,ε)

)

= 0 (23)

for all ε > 0, where

En(t, ε) =
{∣
∣
∣
∣

k∑

i=1

λi (1{Ŝn≤hα(t+ui )} −P{Ŝn ≤ hα(t + ui )})
∣
∣
∣
∣ > ε(cα(hα(t)))1/2

}

.

Eq. (22) follows immediately from Lemma 5.2. Equation (23) trivially holds because

∣
∣
∣

k∑

i=1

λi (1{Ŝn≤hα(t+ui )} −P{Ŝn ≤ hα(t + ui )})
∣
∣
∣ ≤ k max

1≤i≤k
|λi | a.s.

and therefore the indicator 1En(t,ε) equals 0 for sufficiently large t . This completes the
proof of (21).

Assume now that V is Lipschitz continuous on [0,∞), thus

|V (t) − V (s)| ≤ C |t − s| for all t, s ≥ 0 and some C > 0. (24)

The subsequent proof is similar to that of Theorem 1.1 in [14], where an infinite sum
of other independent indicators was investigated. We intend to prove that the family
of distributions of the processes (Z(t, u))u∈R, t > 0, is tight in the Skorokhod space
D[−A, A] for any fixed A > 0. To this end, we will show that there is a constant
C1 > 0 such that

E(Z(t, v) − Z(t, u))2(Z(t, w) − Z(t, v))2 ≤ C1(w − u)2 (25)

for all u < v < w in the interval [−A, A] and sufficiently large t > 0. Together
with the already shown fact that Z(t, 0) converges in law as t → ∞, this implies
the claimed tightness by a well-known sufficient condition (see Theorem 13.5 and
formula (13.14) on p. 143 in [2]).
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For n ∈ N, we introduce the Bernoulli random variables

Ln := 1{hα(t+u)<Ŝn≤hα(t+v)} and Mn := 1{hα(t+v)<Ŝn≤hα(t+w)}

along with their centered versions

Ln := Ln − ELn and Mn := Mn − EMn,

where the dependence of Ln on u, v, t and Mn on v,w, t is suppressed in our notation.
Let also

qn := P{Ln = 1} = ELn and zn := P{Mn = 1} = EMn .

Owing to (24),

∑

n≥1

qn = V (hα(t + v)) − V (hα(t + u)) ≤ C(v − u) sup
z∈[t−A, t+A]

h′
α(z) (26)

and

∑

n≥1

zn = V (hα(t + w)) − V (hα(t + v)) ≤ C(w − v) sup
z∈[t−A, t+A]

h′
α(z). (27)

Recalling bα(t) = μ−1−1/αcα(hα(t)), we observe that

bα(t)1/2(Z(t, v) − Z(t, u)) =
∑

n≥1

Ln (28)

and

bα(t)1/2((Z(t, w) − Z(t, v)) =
∑

n≥1

Mn,

which implies that (25) is equivalent to

E

( ∑

n1≥1

Ln1

)2( ∑

n2≥1

Mn2

)2

≤ C1(w − u)2bα(t)2

for all u < v < w in the interval [−A, A] and large t > 0. After term-wise multipli-
cation, our task reduces to showing that

∑

n1,n2,n3,n4≥1

E

[
Ln1Ln3Mn2Mn4

]
≤ C1(w − u)2 bα(t)2.
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If one number of n1, . . . , n4 appears only once in (n1, n2, n3, n4), then
E

[
Ln1Ln3Mn2Mn4

] = 0 because the variable with that index number is indepen-
dent of the other variables in the random vector (Ln1Ln3Mn2Mn4). This leaves us
with the consideration of those (n1, n2, n3, n4) in which every number appears at
least twice.

Case 1.We begin with the case when n1 �= n3. Then, either n2 = n1 and n4 = n3
must hold, or n2 = n3 and n4 = n1. We only investigate the first situation, the second
being similar. The corresponding contribution is

∑

n1 �=n3

E

[
Ln1Ln3Mn1Mn3

]
=

∑

n1 �=n3

E

[
Ln1Mn1

]
E

[
Ln3Mn3

]
.

Since Ln1 and Mn1 cannot be equal to 1 at the same time, we infer Ln1Mn1 = 0 and
thereupon

E

[
Ln1Mn1

]
= −ELn1EMn1 = −qn1 zn1 .

By the same argument, E
[
Ln3Mn3

] = −qn3 zn3 . It follows that

∑

n1 �=n3

E

[
Ln1Ln3Mn1Mn3

]
=

∑

n1 �=n3

qn1 zn1qn3 zn3 ≤
∑

n1≥1

qn1
∑

n2≥1

zn2 .

By invoking (26) and (27), we arrive at

∑

n1≥1

qn1
∑

n2≥1

zn2 ≤ C2(w − u)2
(

sup
z∈[t−A, t+A]

h′
α(z)

)2

≤ C1(w − u)2bα(t)2 (29)

for all u < v < w in the interval [−A, A], all sufficiently large t > 0 and a suitable
C1 > 0. Here we have used

lim
t→∞

supz∈[t−A, t+A] h′
α(z)

cα(hα(t))
= α

α − 1

which is guaranteed by (5).
Case 2. Let now n1 = n3, and also n2 = n4, for otherwise E

[
Ln1Ln3Mn2Mn4

] =
0. Then

∑

n1,n2≥1

E

[
Ln1Ln1Mn2Mn2

]
=

∑

n1 �=n2

E
[
L
2
n1

]
E

[
M

2
n2

] +
∑

n≥1

E

[
L
2
nM

2
n

]

≤
∑

n1 �=n2

qn1 zn2 + 2
∑

n≥1

qnzn ≤ 2
∑

n1≥1

qn1
∑

n2≥1

zn2

≤ C1(w − u)2bα(t)2
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for allu < v < w in the interval [−A, A], all sufficiently large t > 0 and someC1 > 0.
The first equality holds because Ln and Mn cannot be equal to 1 simultaneously, and
the last inequality is just (29). Regarding the first inequality, one has to combine

E[L2
n1] = qn1(1 − qn1) ≤ qn1 , E[M2

n2 ] = zn2(1 − zn2) ≤ zn2

and

E

[
L
2
nM

2
n

]
= qn(1 − qn)

2(−zn)
2 + zn(1 − zn)

2(−qn)
2 + (1 − qn − zn)(−qn)

2(−zn)
2

= qnzn(qn + zn − 3qnzn) ≤ 2qnzn .

This completes the proof of tightness, and the convergence

( N̂ (hα(t + u)) − V (hα(t + u))

(μ−1−1/αcα(hα(t)))1/2

)

u∈R �⇒ (Xα(u))u∈R as t → ∞

in the J1-topology on D(R) follows as a consequence, which in turn completes the
proof of Theorem 2.1.

5.3 Proof of Theorem 2.6

By the properties of stochastic integrals with respect to white noise, Yα is a stationary
centered Gaussian process, and its covariance function equals

Cov (Yα(u),Yα(v))

=
∫

R

∫

[0, 1]
(1{y≤�α(aαu+x)} −�α(aαu + x))(1{y≤�α(aαv+x)} −�α(aαv + x)) dx dy

=
∫

R

(�α(aα(u ∧ v) + x) − �α(aα(u ∧ v) + x)�α(aα(u ∨ v) + x)) dx

for u, v ∈ R, where the last line follows with the help of the formula

∫ 1

0
(1{y≤a} −a)(1{y<b} −b) dy = a ∧ b − ab,

valid for all a, b ∈ [0, 1]. By finally integrating with respect to x , we obtain

Cov (Yα(u),Yα(v))

=
∫

R

(�α(aα(u ∧ v) + x) − �α(aα(u ∧ v) + x)�α(aα(u ∨ v) + x)) dx

=
∫

R

P{Sα(1) ≤ aα(u ∧ v) + x}P{Sα(1) > aα(u ∨ v) + x)} dx = Cov (Xα(u), Xα(v)).

By showing next thatE(Yα(u)−Yα(0))2 ∼ aα|u| as u → 0, the claim about Hölder
continuity of the paths follows from the Kolmogorov–Chentsov theorem. Assume that
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u > 0. We recall from Theorem 1 in [20] that the law of Sα(1) is unimodal and has a
continuous density gα , say. With this at hand, we infer with the help of the monotone
convergence theorem, for some θ(y, u) ∈ [y, aαu + y],

E(Yα(u) − Yα(0))2 = 2
∫

R

(P{Sα(1) > y} − P{Sα(1) > aαu + y})P{Sα(1) ≤ y} dy

= 2aαu
∫

R

gα(θ(y, u))P{Sα(1) ≤ y} dy for some θ(y, u) ∈ [y, aαu + y]
u↘0−−→ 2aαu

∫

R

gα(y)P{Sα(1) ≤ y} dy = aαu.

For aesthetic reasons we write u ↘ 0 in place of u → 0+. The case u < 0 can be
treated similarly.

6 Proofs for Sect. 3

In order to prove Theorem 3.1, we need the following lemma.

Lemma 6.1 Assume that the law of ξ belongs to the domain of attraction of an α-stable
law for some α ∈ (1, 2]. Then μ = Eξ < ∞ and

− log
∏

n≥�t/μ�+1

P{Sn > t} = O(t) as t → ∞

Proof The proof mimics the one given on pp. 123–124 in [13] for the particular case
where ξ has an exponential law. In order to simplify the subsequent presentation, we
omit the use of integer parts and write, for example, t/μ instead of �t/μ�. This does
not affect the asymptotics.

By assumption, limt→∞ P{St/μ > t} = P{Xα > 0} =: cα > 0, where Xα is an
α-stable random variable. As a consequence, P{St/μ > t} ≥ cα/2 for all sufficiently
large t and therefore

2t/μ∏

n=t/μ+1

P{Sn > t} ≥
2t/μ∏

n=t/μ+1

P{St/μ > t} ≥ (cα/2)t/μ.

This proves − log
∏2t/μ

n=t/μ+1 P{Sn > t} = O(t) as t → ∞.
For large t and all n ≥ 2t/μ, we further have P{Sn ≤ t} ≤ 1− cα/2. As − log(1−

x) ≤ (2/cα)x for all x ∈ [0, 1 − cα/2], it follows

− log
∏

n≥2t/μ

P{Sn > t} ≤ (2/cα)
∑

n≥2t/μ

P{Sn ≤ t} ≤ (2/cα)
∑

n≥2t/μ

P{Sn ≤ μn/2},

and since limu→0+ u−1(− logE exp(−uξ)) = μ, we conclude that c := μ/2 +
u−1
0 logE exp(−u0ξ) ∈ (−∞, 0) for some u0 > 0.With the help ofMarkov’s inequal-
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ity, this yields

∑

n≥2t/μ

P{Sn ≤ μn/2} ≤
∑

n≥2t/μ

exp(u0μn/2)E exp(−u0Sn)

=
∑

n≥2t/μ

exp(cn) = o(1) as t → ∞

and thus − log
∏

n≥2t/μ P{Sn > t} = o(1) as t → ∞, which completes the proof. ��
Proof of Theorem 3.1 The assumptions of the theorem obviously ensure that ξ is
square-integrable, which in turn implies that its law belongs to the normal domain
of attraction of a normal law. By Lemma 6.1, it is therefore enough to examine the
logarithmic asymptotics of the product

∏�t/μ�
n=1 P{Sn > t}.

(a) We start by showing that
∫ 1/μ
0 y I (1/y)dy < ∞. By Markov’s inequality,

− logP{Sn > t} ≥ n(u(t/n) − logE exp(uξ))

for all n ∈ N and t, u > 0, giving

− logP{Sn > t} ≥ nI (t/n) (30)

for all n, t . In particular, 0 ≤ I (1/y) ≤ − logP{ξ > 1/y} for y ∈ (0, 1/μ). Hence,
the claim is secured by (11).

For any a ∈ (0, 1/μ) and t > 1/a,

−t2 log
t/μ∏

n=1

P{Sn > t} = t2
∫ t/μ

1
− logP{S�y� > t} dy

=
∫ 1/μ

1/t

−x logP{S�t x� > t}
t x

dx

=
[ ∫ a

1/t
+

∫ 1/μ

a

]−x logP{S�t x� > t}
t x

dx .

By Cramér’s theorem (see, for instance, Thm. I.4 in [12]),

lim
t→∞

− logP{S�t x� > t}
t x

= I (1/x) for any x ∈ [a, 1/μ].

By Polya’s theorem (see, for instance, p. 113 in [4]), the convergence is uniform in x ∈
[a, 1/μ] because x �→ I (1/x) is continuous (I is convex) and x �→ − logP{S�t x� >

t}/(t x) non-increasing for each t . Consequently,

lim
t→∞

∫ 1/μ

a

−x logP{S�t x� > t}
t x

dx =
∫ 1/μ

a
x I (1/x)dx
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for any a ∈ (0, 1/μ). To complete the proof of (a), it is therefore enough to prove

lim
a↘0

lim sup
t→∞

∫ a

1/t

− logP{S�t x� > t}
t

dx = 0.

By using

P{Sn > t} ≥ P

{
min
1≤k≤n

ξk > t/n
}

= (
P{ξ > t/n})n, t ≥ 0, n ∈ N (31)

and neglecting for simplicity integer parts, we infer

∫ a

1/t

− logP{S�t x� > t}
t

dx ≤
∫ a

0
−x logP{ξ > 1/x} dx,

and thus arrive at the desired conclusion because (11) ensures that the right-hand
integral vanishes as a ↘ 0.

(b) Assuming (12), Kasahara’s Tauberian theorem (Thm.4.12.7 in [3]) provides,
for all n ∈ N and some c > 0,

lim
t→∞

− logP{Sn > t}
tα	(t)

= cn1−α,

hence

lim
t→∞

− log
∏n

k=1 P{Sk > t}
tα	(t)

= c
n∑

k=1

k1−α. (32)

(b1) We first note that limt→∞ 	∗(t) = ∞ is equivalent to
∫ 1
0 −y logP{ξ >

1/y}dy = ∞. Further, by Prop. 1.5.9(a) in [3], limt→∞(	∗(t)/	(t)) = ∞. Now,
for t > 0 and any fixed n ∈ N,

− log
�t/μ�∏

k=n

P{Sk > t} =
∫ �t/μ�

n
− logP{S�y� > t} dy

= t
∫ �t/μ�/t

n/t
− logP{S�t x� > t} dx

≤ t2
∫ �t/μ�/t

n/t

(�t x�/t)(− logP{ξ > t/�t x�}) dx

≤ t2
∫ 1/μ

n/t
−x logP{ξ > t/�t x�} dx

having utilized (31) for the penultimate inequality. Given ε ∈ (0, 1), there exists
n0 ∈ N such that (1 − ε)�x� ≤ x ≤ (1 + ε)�x� whenever x ≥ n0 (the left-hand
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inequality will be used later). Since x �→ − logP{ξ > x} is nondecreasing, the right-
hand inequality provides

− logP{ξ > (t x/�t x�)(1/x)} ≤ − logP{ξ > (1 + ε)/x}

for all x ≥ n0/t . By combining these facts, we obtain

− log
�t/μ�∏

k=n0

P{Sk > t} ≤ t2
∫ 1/μ
n0/t

−x logP{ξ > (1 + ε)/x}dx ∼ (1 + ε)2ct2	∗(t)

as t → ∞.

If α = 2, Eq. (32) tells us that the contribution of
∏n0−1

k=1 P{Sk > t} is negligible in
comparison to that of

∏�t/μ�
k=n0

P{Sk > t} as t → ∞. Hence,

lim sup
t→∞

− log
∏�t/μ�

k=1 P{Sk > t}
t2	∗(t)

≤ (1 + ε)2c

for all ε ∈ (0, 1), that is

lim sup
t→∞

− log
∏�t/μ�

n=1 P{Sn > t}
t2	∗(t)

≤ c.

It remains to prove the reverse inequality for the lower limit. Using (30), we obtain,
for n0 ∈ N as above and t ≤ μn0,

− log
�t/μ�∏

k=n0

P{Sk > t} = t
∫ �t/μ�/t

n0/t
(− logP{S�t x� > t}) dx

≥ t2
∫ �t/μ�/t

n0/t
(�t x�/t)I (t/�t x�)dx

≥ (1 − ε)t2
∫ μ−1(1−ε)

n0/t
x I ((1 − ε)/x) dx,

where the last inequality holds because x �→ I (1/x) is non-increasing on (0, μ−1(1−
ε)).

The following lemma provides the asymptotic behavior of the Legendre transform
I .

Lemma 6.2 Assume

− logP{ξ > t} ∼ ct2	(t) as t → ∞
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for some c > 0 and a slowly varying function 	 satisfying (13). Then

I (t) ∼ − logP{ξ > t} ∼ ct2	(t) as t → ∞.

Proof By Theorem 2.3.3 in [3], relation (13) entails limt→∞(	(t(	(t))β)/	(t)) = 1
for all β ∈ R. Using this with β = 2 and β = 1/2, we infer with the help of Cor. 2.3.4
in [3] and Kasahara’s Tauberian theorem (Thm.4.12.7 in [3])

logE exp(sξ) ∼ cs2

4	(s)
∼ cs2	#(s)

4
as s → ∞,

where 	# denotes the de Bruijn conjugate of 	, see p. 29 in [3] for the definition. We
now arrive at the claim by an appeal to Thm.1.8.10 in [3]. ��

A combination of the previous lemma with (32) provides

lim inf
t→∞

− log
∏�t/μ�

n=1 P{Sn > t}
t2	∗(t)

≥ (1 − ε)3c

for all ε ∈ (0, 1) and then

lim inf
t→∞

− log
∏�t/μ�

n=1 P{Sn > t}
t2	∗(t)

≥ c.

(b2) In view of (32), it suffices to show that

lim
n→∞ lim sup

t→∞
− log

∏�t/μ�
k=n P{Sk > t}
tα	(t)

= 0. (33)

Using again (31) while ignoring integer parts, we conclude that

− log
t/μ∏

k=n

P{Sk > t} = t
∫ 1/μ

n/t
− logP{S�t y� > t} dy

≤ t2
∫ 1/μ

n/t
−y logP{ξ > 1/y}dy

= t2
∫ t/n

μ

−y−3 logP{ξ > y}dy

∼ (α − 2)−1(t/n)α	(t) as t → ∞,

and this obviously shows (33). The asymptotic relation is ensured by Karamata’s
theorem (Prop. 1.5.8 in [3]). ��
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Proof of Theorem 3.5 (a) Put c(t) := P{ξ > t} and recall that τ(t) = inf{k ∈ N :
Sk > t} for t ≥ 0. For any positive a and b, a < b, and all sufficiently large t ,

∫ ∞

1
− logP{S�x� > t} dx = (c(t))−1

∫ ∞

c(t)
− logP{S�x/c(t)� > t} dx

= (c(t))−1
∫ ∞

c(t)
− logP{τ(t) ≤ �x/c(t)�} dx

= (c(t))−1
( ∫ a

c(t)
+

∫ b

a
+

∫ ∞

b

)

. . .

Under the assumption of part (a), c(t)τ (t) converges in distribution to W←
α (1) as

t → ∞ (see, for instance, Thm.7 in [8]), and the convergence

lim
t→∞ logP{τ(t) ≤ �x/c(t)�} = logP{W←

α (1) ≤ x} (34)

is uniform in x ∈ [a, b] by Polyà’s theorem (the law of the limit is continuous). This
entails

∫ b

a
− logP{τ(t) ≤ �x/c(t)�} dx =

∫ b

a
− logP{W←

α (1) ≤ x} dx .

Fix any p ∈ (0, 1) such that − log(1 − y) ≤ 2y for all y ∈ [0, p]. A simple
tightness argument provides supx≥b P{c(t)τ (t) > x} ≤ p when choosing b and t
sufficiently large. It follows that

∫ ∞

b
− logP{c(t)τ (t) ≤ x} dx ≤ 2

∫ ∞

b
P{c(t)τ (t) > x} dx

≤ 2 sup
t≥1

E(c(t)τ (t))2
∫ ∞

b
x−2 dx,

where integer parts have again been omitted.As supt≥1 E(c(t)τ (t))2 < ∞ byThm.1.5
in [15], we see that

lim
b→∞ lim sup

t→∞

∫ ∞

b
− logP{τ(t) ≤ �x/c(t)�} dx = 0.

Turning to
∫ a
c(t) − logP{τ(t) ≤ �x/c(t)�} dx , note first that 1 − e−y ≥ (1 − a)y

for all a < 1 sufficiently small and y ∈ [0, 2a]. For any such a, choose t so large that
c(t) < a. For x ∈ [c(t), a], it then follows

P{S�x/c(t)� > t} ≥ P{ max
1≤k≤�x/c(t)� ξk > t} = 1 − exp(�x/c(t)� logP{ξ ≤ t})

≥ 1 − exp(−�x/c(t)�c(t)) ≥ (1 − a)�x/c(t)�c(t) (35)
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and thereupon

∫ a

c(t)
− logP{τ(t) ≤ �x/c(t)�} dx =

∫ a

c(t)
− logP{S�x/c(t)� > t} dx

≤ −(a − c(t)) log(1 − a) −
�a/c(t)�∑

k=1

∫ (k+1)c(t)

kc(t)
log

(�x/c(t)�c(t)) dx

≤ − log(1 − a) − c(t)
�a/c(t)�∑

k=1

log(kc(t)).

This in combination with limt→∞ c(t)
∑�a/c(t)�

k=1 log(kc(t)) = ∫ a
0 log y dy allows us

to conclude

lim
a↘0

lim sup
t→∞

∫ a

c(t)

( − logP{τ(t) ≤ �x/c(t)�})dx = 0,

which completes the proof of part (a).
(b) We first argue that the law of ξ belongs to the domain of attraction of a suitable

stable law under the given tail assumption with α > 1. In fact, if α ∈ (1, 2), or α ≥ 2
and Var ξ < ∞ (automatically fulfilled if α > 2), then this has already been pointed
out at the beginning of Sect. 2, the stable law having indexα∧2. For the remaining case
α = 2 and Var ξ = ∞, our assumption P{ξ > t} ∼ t−2	(t) as t → ∞ ensures that
μ2(t) := ∫

[0, t] y
2
P{ξ ∈ dy} belongs to the de Haan class � with auxiliary function

	, that is

lim
t→∞

μ2(ht) − μ2(t)

	(t)
= log h for all h > 0,

and it is known that any such function is slowly varying at ∞. But this is indeed a
necessary and sufficient condition for the law of ξ to be in the non-normal domain
of attraction of a normal law. Having thus verified that the law of ξ is attracted by a
stable law, Lemma 6.1 tells us that it suffices to prove

lim
t→∞

− log
∏�t/μ�

n=1 P{Sn > t}
t log t

= α − 1

μ
.

To this end, we make use of the following large deviation result that follows directly
from Thm.1 in [18] or Thm.3.3 in [6], namely

lim
n→∞ sup

t≥δn

∣
∣
∣
P{Sn − nμ > t}

nP{ξ > t} − 1
∣
∣
∣ = 0 for all δ > 0. (36)
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For any fixed δ, it entails

�t/(μ+δ)�∑

n=1

logP{Sn − μn > t − μn} ∼
�t/(μ+δ)�∑

n=1

(
log n + logP{ξ > t − μn})

as t → ∞. Observing

�t/(μ+δ)�∑

n=1

log n ∼ t log t

μ + δ
as t → ∞

and that, by the given tail assumption on the law of ξ ,

lim
t→∞

− logP{ξ > t}
log t

= α,

we infer, for any ε ∈ (0, α), all sufficiently large t , and all positive integers n ≤
�t/(μ + δ)�, the inequality

(α − ε) log(t − μn) ≤ − logP{ξ > t − μn} ≤ (α + ε) log(t − μn).

Since

�t/(μ+δ)�∑

n=1

log(t − μn) = �t/(μ + δ)� log t +
�t/(μ+δ)�∑

n=1

log(1 − μn/t)

= (t/(μ + δ)) log t + t
∫ 1/(μ+δ)

0
log(1 − μx)dx + o(t) as t → ∞,

we arrive at the conclusion

lim
t→∞

1

t log t

�t/(μ+δ�)∑

n=1

(− logP{Sn − μn > t − μn}) = α − 1

μ + δ
.

To complete the proof of part (b), we still need to verify that

lim
δ↘0

lim sup
t→∞

1

t log t

�t/μ�∑

n=�t/(μ+δ�)+1

(− logP{Sn > t}) = 0.
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We can argue as in (35) to infer

− logP{S�t/(μ+δ)� > t} ≤ − logP{ max
1≤k≤�t/(μ+δ)� ξk > t}

= − log(1 − exp(�t/(μ + δ)� logP{ξ ≤ t}))
∼ − log t − logP{ξ > t}
∼ (α − 1) log t

as t → ∞, which in combination with

�t/μ�∑

n=�t/(μ+δ)�+1

(− logP{Sn > t}) ≤ (�t/μ� − �t/(μ + δ)�)(− logP{S�t/(μ+δ)� > t})

provides the desired result. ��
Proof of Theorem 3.6 Since, obviously, Eξ p < ∞ for all p > 0, the law of ξ belongs
to the normal domain of attraction of a normal law. Again by Lemma 6.1, it suffices
to prove

lim
t→∞

− log
∏�t/μ�

n=1 P{Sn ≤ t}
tα	(t)

= 1

μ(α + 1)
.

We are going to apply Theorem 2.1 in [5] and note as a preparation that our α is β

in the notation there. Let L1 be the slowly varying part of the function σ1 appearing in
formula (1.9) of [5], whichmeans that σ1(n) = n1/(2−α)L1(n). Let f denote a positive
function satisfying limn→∞ f (n) = ∞ and let s1 appearing in Theorem 2.1 of [5] be
chosen in such a way that s1 = s1(n) ≥ f (n) for all n. Finally, we note the relation
limn→∞ G1(s1(n)) = 1, see Lemma 2.1(a) in [5]. An application of the theorem now
yields

lim
n→∞ sup

t≥n1/(2−α)L1(n) f (n)

∣
∣
∣
∣
logP{Sn − μn > t}

logP{ξ > t} − 1

∣
∣
∣
∣ = 0.

By choosing a divergent f satisfying n1/(2−α)L1(n) f (n) = o(n) as n → ∞, we have
that supn≤�t/μ�(μn+n1/(2−α)L1(n) f (n))≤ t for all sufficiently large t . Consequently,

�t/μ�∑

n=1

( − logP{Sn − μn > t − μn}) ∼
�t/μ�∑

n=1

(t − μn)α	(t − μn)

∼
∫ t/μ

0
(t − μx)α	(t − μx)dx = 1

μ

∫ t

0
xα	(x) dx ∼ tα+1	(t)

μ(α + 1)

as t → ∞ and thus the above limit assertion holds. ��
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7 Proof of Theorem 4.1

The obvious duality relation

Mτ̂ (t)−1

τ̂ (t)
<

t

τ̂ (t)
≤ Mτ̂ (t)

τ̂ (t)
a.s., (37)

valid for all t ≥ 0, shows that any law of large numbers-type result for the decou-
pled maxima Mn also yields a limit result for τ̂ (t) without further ado. Our proof of
Theorem 4.1 therefore only deals with the assertions for the maxima. The following
one-sided version of the Hsu–Robbins–Erdös theorem (see, for instance, Thm.6.11.2
in [11]) and two subsequent lemmata serve as auxiliary results.

Proposition 7.1 Let (Sn)n≥1 be a standard random walk with drift μ = 0. Then

�(ε) :=
∑

n≥1

P{Sn ≥ εn} < ∞ for some/all ε > 0

holds if, and only if, E(ξ+)2 < ∞.

Proof Putting Sn(ε) := εn − Sn , we see that �(ε) = ∑
n≥1 P{Sn(ε) ≤ 0} equals the

renewal function at 0 of the random walk (Sn(ε))n≥1. It is a well-known fact from
renewal theory (see, for instance, p. 94 in [10]) that under the assumption that μ is
finite, this function is finite if, and only if, E(S1(ε)−)2 = E((ξ − ε)+)2 < ∞. ��

We put F = 1 − F for a distribution function F .

Lemma 7.2 Let ξ be a nonnegative random variable with distribution function F that
satisfies

lim
t→∞

t2F(t)

log log t
= 0. (38)

Then there exists a distribution function G ≤ F that satisfies (38) as well and is such
that t2G(t) is slowly varying at infinity. The function G may further be chosen subject
to

∫ ∞
0 G(x) dx ≤ μ + 1

n for arbitrary n ∈ N, where μ = Eξ .

Proof Define

a0 := inf{t ≥ e : t−2 log log t is decreasing}

and recursively

an := inf

{

t ≥ nan−1 : s2 F(s)

log log s
≤ 1

n
for all s ≥ t

}

for n ∈ N. Then

G(t) = 1 − 1[0,a0)(t) − log log t

t2
∑

n≥1

1

n
1[an−1,an)(t), t ≥ 0
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is a distribution function on [0,∞) that satisfies the tail condition (38) and is also
bounded by F . Moreover, it can be verified by using an ≥ nan−1 that t2G(t) is slowly
varying at infinity. Defining

Gm(t) = G(m)

F(m)
F(t)1[0,m)(t) + G(t) 1[m,∞)(t)

for m ∈ N, one can further readily check that the Gm are distribution functions that
also have the properties asserted for G and that limm→∞

∫ ∞
0 Gm(x) dx = μ. ��

Lemma 7.3 Suppose that

t2 P{ξ > t} is slowly varying at infinity (39)

and

lim
t→∞

t2 P{ξ > t}
log log t

= 0. (40)

Put ln = n log n for n ∈ N. Then

∑

n≥1

P{Mbln > cbln+1} < ∞

for any c > 0 and integer b ≥ 2, and

∑

n≥1

P

{

max
bln<k≤bln+1

Ŝk ≤ cbln+1

}

= ∞

for any c > μ and integer b ≥ 2, where μ = Eξ < ∞.

Proof Fixing an arbitrary c > 0 and ε ∈ (0, 1), we have for all sufficiently large n

P{Mbln > 2cbln+1} ≤
∑

1≤k≤bln

P{Sk > 2cbln+1} ≤ bln P{Sbln > 2cbln+1}

≤ bln P{Sbln − μbln > cbln+1} ≤ (1 + ε)b2ln P{ξ > cbln+1}
≤ c−1(1 + ε)2 b2(ln−ln+1) log log cbln+1 ,

where (36) has been utilized for the fourth inequality. The first assertion now follows
because

b2(ln−ln+1) log log cbln+1 ∼ b−2n−2 log b log n as n → ∞
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for any c > 0 and integer b ≥ 2. For the second assertion, we fix an arbitrary c > μ
and put c′ = c − μ. Then we obtain

P

{

max
bln<k≤bln+1

Ŝk ≤ cbln+1

}

= exp

( ∑

bln<k≤bln+1

log
(
1 − P

{
Ŝk > cbln+1

})
)

≥ exp
(

− (1 + ε)(bln+1 − bln )P
{
Ŝbln+1 > cbln+1

})

= exp
(

− (1 + ε)(bln+1 − bln )P
{
Ŝbln+1 − μbln+1 > c′bln+1

})

≥ exp
(

− (1 + ε)2(bln+1 − bln )bln+1 P
{
ξ > c′bln+1

})

≥ exp
(

− (1 + ε)2b2ln+1 P
{
ξ > c′bln+1

})

≥ exp
(

− (1 + ε)2εn log log c′bln+1
)

for all sufficiently large n and suitable εn → 0. Hence, using log log c′bln+1 ∼ log n,
we see that

exp
(

− (1 + ε)2εn log log c′bln+1
)

� n−εn(1+ε)2 ,

which gives the desired result. Here, an � bn means that an/bn is bounded and
bounded away from 0. ��
Proof of Theorem 4.1 In view of the duality relation (37), it suffices to prove the asser-
tions for (Mn)n≥1 as already mentioned.

(a) For all ε ∈ (0, μ),

{|Mn − μn| > εn i.o.} ⊆ {|Ŝn − μn| > εn i.o.},

where “i.o.” is the usual abbreviation for “infinitely often”. SinceEξ2 < ∞, Prop. 7.1
implies

∑

n≥1

P{|Ŝn − μn| > εn} =
∑

n≥1

P{|Sn − μn| > εn} < ∞

and thus P{|Mn − μn| > εn i.o.} = P{|Ŝn − μn| > εn i.o.} = 0. This proves the first
limit relation in (16).

(b) Assume next that Eξ2 = ∞, thus E((ξ − μ)−)2 < ∞ = E((ξ − μ)+)2, for ξ

is nonnegative. Then, by another appeal to Prop. 7.1,

∑

n≥1

P{Ŝn > (μ + ε)n} =
∑

n≥1

P{Sn > (μ + ε)n} = ∞ for all ε > 0,

whereas

∑

n≥1

P{Ŝn < (μ − ε)n} =
∑

n≥1

P{Sn < (μ − ε)n} < ∞ for all ε > 0.
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Consequently, lim supn→∞ n−1Mn = lim supn→∞ n−1 Ŝn = ∞ a.s. by the converse
part of the Borel–Cantelli lemma and

lim inf
n→∞ n−1Mn ≥ lim inf

n→∞ n−1 Ŝn ≥ μ a.s. (41)

by the direct part of the Borel–Cantelli lemma (relation (41) will be used later).
In order to show limn→∞ n−1Mn = ∞ a.s. under the additional assumption

lim
t→∞

t2 P{ξ > t}
log log t

= ∞, (42)

we first note that

lim inf
n→∞

P{Sn > cn}
n P{ξ > cn} ≥ 1 (43)

for any c > 0. The latter follows from

P{Sn > cn} ≥ P{ max
1≤k≤n

ξk > cn} = 1 − F(cn)n ∼ n P{ξ > cn} as n → ∞,

where the limit relation is a consequence of limn→∞ n P{ξ > cn} = 0 (as μ = Eξ <

∞).
Fixing any ε ∈ (0, 1) and c > 0, (43) provides us with

P{Sn > cn} ≥ (1 − ε)n P{ξ > cn}
for all sufficiently large n. Consequently, putting Mn(b) := maxbn−1≤k<bn k

−1 Ŝk ,

P
{
Mn(b) ≤ c

} = exp

( ∑

bn−1≤k<bn

log
(
1 − P{Sk > ck})

)

≤ exp

(

−
∑

bn−1≤k<bn

P{Sk > ck}
)

≤ exp

(

− (1 − ε)
∑

bn−1≤k<bn

k P{ξ > ck}
)

≤ exp
( − (1 − ε)(b − 1)b2n−2

P{ξ > cbn}).

for any integer b > 1 and sufficiently large n. Now use (42), giving limn→∞ b2n P{ξ >

cbn}/ log n = ∞, to infer

∑

n≥1

P
{
Mn(b) ≤ c

}
< ∞

and thus P
{
Mn(b) ≤ c i.o.

} = 0 for any integer b > 1 and c > 0 by another appeal
to the Borel–Cantelli lemma. We arrive at the desired conclusion (first half of (17))
because
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lim
n→∞

Mn

n
= lim

n→∞ Mn(b) = ∞ a.s.

In view of (41) it remains to show lim infn→∞ n−1Mn ≤ μ a.s. if Eξ2 = ∞ and
(40) holds. W.l.o.g. we make the additional assumption that the law of ξ also satisfies
(39). Otherwise, Lemma 7.2 provides the existence of a coupling (ξn,k, ξ

′
n,k)n,k≥1 of

i.i.d. random pairs with generic copy (ξ, ξ ′) such that ξ ′ ≥ ξ a.s., Eξ ′ ∈ (μ,μ + ε)

for arbitrarily fixed ε > 0, and t2 P{ξ ′ > t} satisfies both (39) and (40). Putting
Ŝn = ∑n

k=1 ξn,k, Ŝ′
n = ∑n

k=1 ξ ′
n,k and M ′

n = max1≤k≤n Ŝ′
k , we then obviously have

Mn ≤ M ′
n a.s. Hence, by proving the assertion for the M

′
n , i.e., lim infn→∞ n−1M ′

n ≤
Eξ ′ ≤ μ + ε a.s., we also get the result for Mn .

If the law of ξ satisfies (39) and (40), we can invoke Lemma 7.3 and the Borel–
Cantelli lemma to infer

P

{
Mbln > cbln+1 i.o.

}
= 0

and

P

{

max
bln<k≤bln+1

Ŝk ≤ cbln+1 i.o.

}

= 1

for any c > μ. When combined, this yields

P {Mn ≤ cn i.o.} = P

{
Mbln ≤ cbln i.o.

}
= 1

for any c > μ and thus the desired result.
(c) If Eξ = ∞, a simple truncation argument provides limn→∞ n−1Mn = ∞ a.s.

Namely, let again Ŝn = ∑n
k=1 ξn,k for n ∈ N and consider the decoupled random

walk (Ŝn(b))n≥1 with increments ξn,k ∧ b for b > 0 and associated maxima Mn(b) =
max1≤k≤n Ŝk(b). Plainly, Mn ≥ Mn(b) a.s. for all n ∈ N and b > 0, and since
E(ξ ∧ b)2 < ∞, we infer with the help of part (a)

lim inf
n→∞

Mn

n
≥ lim

n→∞
Mn(b)

n
= E(ξ ∧ b) a.s.

for any b > 0 and thereupon the assertion because limb→∞ E(ξ ∧ b) = ∞.
(d) Let τ(t) = inf{n ≥ 1 : Sn > t} be the level-t first passage time for (Sn)n≥1. It

is well-known from standard renewal theory (see, for instance, the proof of Theorem
2.5.1 on p.58 in [10]) that the family {t−1τ(t) : t ≥ t0} is uniformly integrable for
any t0 > 0. Furthermore,

P{̂τ(t) > n} =
n∏

k=1

P{Sk ≤ t} ≤ P{Sn ≤ t} = P{τ(t) > n}

for all n ∈ N and t ≥ 0. This shows that the distribution tails of τ̂ (t) are dominated
by the distribution tails of τ(t) for each t , and this implies the uniform integrability of
the family {t−1τ̂ (t) : t ≥ t0}. ��
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