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Abstract
This paper presents the most current and innovative solutions applying modern digital image processing methods for the 
purpose of skin cancer diagnostics. Skin cancer is one of the most common types of cancers. It is said that in the USA only, 
one in five people will develop skin cancer and this trend is constantly increasing. Implementation of new, non-invasive 
methods plays a crucial role in both identification and prevention of skin cancer occurrence. Early diagnosis and treatment 
are needed in order to decrease the number of deaths due to this disease. This paper also contains some information regard-
ing the most common skin cancer types, mortality and epidemiological data for Poland, Europe, Canada and the USA. It 
also covers the most efficient and modern image recognition methods based on the artificial intelligence applied currently 
for diagnostics purposes. In this work, both professional, sophisticated as well as inexpensive solutions were presented. 
This paper is a review paper and covers the period of 2017 and 2022 when it comes to solutions and statistics. The authors 
decided to focus on the latest data, mostly due to the rapid technology development and increased number of new methods, 
which positively affects diagnosis and prognosis.
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Introduction

In this review paper, the most current and innovative solu-
tions using modern digital image processing methods 
applied for the purpose of skin cancer diagnostics were pre-
sented. The choice for this topic is the fact that skin cancer 
is one of the most common types of cancers [45, 83, 103, 
120], in particular in the white population [83, 84], mostly 
in women [51]. It is also one of the most expensive cancers 
in treatment [63, 137]. It is said that in the USA only, one 
in five people will develop skin cancer by the age of 70 [45, 
120, 137]; this trend is constantly increasing [56, 57, 137]. 
Also, early diagnosis and treatment are needed in order to 
decrease the number of deaths due to this disease.

This paper also contains some information regarding the 
most common skin cancer types, mortality and epidemiolog-
ical data for Poland, Europe, Canada and the USA [45, 84, 

137], therefore implementation of new, non-invasive meth-
ods plays a crucial role in both identification and prevention 
of skin cancer occurrence [85, 111, 140].

This work also covers the most efficient and modern 
image recognition methods based on the artificial intelli-
gence applied currently for the skin cancer diagnostics pur-
poses, covered in literature in particular after 2017 [22, 29, 
30, 103, 140]. The authors decided to focus on the latest 
data, mostly due to the rapid technology development and 
increased number of new methods, which positively affects 
diagnosis and prognosis. Also, skin cancer, as a result of 
environmental factors, is becoming more and more frequent 
[41, 64, 66, 136].

Skin cancer types

It is possible to differentiate the following types of skin can-
cer [3, 6, 25, 39, 62]:

•	 Skin cancer – basal cell carcinoma;
•	 Skin cancer – squamous cell carcinoma;
•	 Skin cancer – papillary cancer;
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•	 Merkel neuroendocrine carcinoma;
•	 Melanoma;
•	 Kaposi’s sarcoma;
•	 T type cutaneous lymphoma (mycosis fungoides);
•	 Paget’s disease (Paget’s skin cancer).

There is also a simplified, binary classification: as either 
melanoma or non-melanoma [8, 144]. Non-melanoma skin 
cancer (NMSC) is one of the most common malignancies 
among the white population and its occurrence increases 
annually. It includes basal cell carcinoma (BCC), squamous 
cell carcinoma (SCC), and many other rare cancers [32, 
54, 93]. It is caused by exposure to the UV radiation (both 
melanoma and non-melanoma) and can be treated with sur-
gery, physical destruction, chemical destruction, and immu-
nomodulatory therapy [54, 93, 144]. Despite the fact of its 
occurrence increase, the mortality rates were already signifi-
cantly dropping to 1 − −2% cases in nineties [26, 93], and 
are still dropping (BCC to 0.96% cases and SCC to 1.25% ) 
according to [14, 115].

As mentioned above—sunburn is one of the leading 
causes for skin cancer [55, 104, 123, 144].

Finding appropriate biomarkers as a reliable tool for both 
melanoma and non-melanoma skin cancer diagnosis plays 
a crucial role in the whole diagnostics process [39, 144]. It 
is because of the heterogeneity of skin cancer, which causes 
an unequal response to the therapy (including primary and 
acquired resistance to targeted therapies), which translates 
into the need to use advanced methods of motivating patients 
and searching for new, more effective and universal biomark-
ers. This requires an individual approach as part of person-
alized medicine. In skin cancer, especially in melanoma, 
biomarkers perform both diagnostic (early detection) and 
prognostic (in estimating a patient’s prognosis) functions. 
Promising biomarker is the droplet digital polymerase chain 
reaction (ddPCR) for the detection and quantification of low-
abundance nucleic acids in biopsies [39]. Another promising 
(rather predictive) skin cancer biomarker is the presence of 
the V600E mutation in the BRAF gene in neoplastic cells. 
Promising resistance factors (genetic and non-genetic) also 
include changes in the PI3K/AKT, MAPK, and RB signaling 
pathways [108].

The non-melanoma skin cancer (NMSC) is the most 
common form of skin cancer [8, 27, 34, 64]. Most cases of 
NMSC are basal cell carcinoma ( 70% ) and squamous cell 
carcinoma ( 25% ) [27]. Women and people between the age 
of 61 − 90 are at the greater risk, topographically the NMSC 
is most commonly found in the head and neck area [27]. 
Genetic and molecular changes, immunosuppression and 
ultraviolet radiation lead to NMSC [36]. The immunocom-
promised patients have a much higher risk of developing 
NMSC, but non-viral NMSC is usually associated with DNA 
damage from exposure to UV light. Correctly located cases 

are effectively treated surgically, and in the case of metas-
tases, drug therapies (pembrolizumab, avelumab, cemipli-
mab) are becoming more and more effective [12, 60]. For the 
above-mentioned reasons, early diagnosis and prompt thera-
peutic intervention are key. Today, drug and gene delivery is 
increasingly based on micro/nano-sized polymeric carriers 
and intelligent platforms [75]. Theranostic systems combin-
ing diagnostics with therapy are increasingly used.

The melanoma skin cancer (MSC) is known to be the 
most dangerous skin cancer and, therefore, its detection in 
the earliest possible stage plays a crucial role in the effi-
cient treatment process [8, 34, 98]. It is because it is more 
likely to spread to other body parts [8, 34]. The incidence of 
melanoma has been increasing over the past 50 years due to 
increased exposure to the sun and UV radiation. Risk fac-
tors for melanoma are European ancestry and old age, but 
also gender, UV exposure and anatomical location [46]. The 
prevalence of individual melanoma sub-types varies across 
racial groups [17, 18]. Novel 3D digital skin models can pro-
vide a better understanding of the complexity of melanoma 
and associated risk factors [46]. The past 3 decades brought 
high incidence rates of the melanoma skin cancer [8, 34, 75], 
however, the medicine development increased also survival 
rates [8, 13, 79]. The MSC can appear on any skin surface 
and is less common in people with dark skin [8, 119, 128].

Skin cancer can be categorized into the three below listed 
types [103] (Fig. 1): 

1.	 basal cell skin cancer,
2.	 squamous skin cancer,
3.	 malignant skin cancer.

The non-melanoma skin cancer (NMSC) are basal cancer 
cell (BCC) and squamous cancer cell (SCC) [97, 103].

The BCC is the least aggressive non-melanoma skin can-
cer, which appears in a form of a flesh-coloured pearl pump 
or a pink skin patch [43, 97]. It is caused with sun exposure, 
so it appears only on sun-exposed areas (e.g. head, neck, 
limbs), however, it can spread all over the body and grow 
also in nerves and bones [43, 103]. It is very common and 
affects 2 − 3 million of people each year, but fortunately, it 
has a very low death rate and does not require any complex 
treatments [103].

Fig. 1   Skin cancer classification
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The SCC is also a non-melanoma skin cancer, which 
can be found on outer skin surface and appears in a for of 
a red firm bumps scaly patches [103, 117]. Similarly to the 
BCC it is also caused due to the sun exposure and can be 
found on similar body locations. It has a higher death rate 
than the BCC, but lower than melanoma [103, 117]. Basal 
and squamous cell carcinomas are the two most common 
types of skin cancer in the world [97, 103, 117].

Statistics of skin cancer

One of the most common types of cancer is skin cancer. 
Skin cancer begins with abnormal cell growth mainly 
due to exposure to sunlight containing UV radiation. The 
UV radiation wavelength ranges from 100 to 400 nm. It 
causes genetic changes in DNA and it damages skin cells. 
At a later stage, the cancer can spread to other parts of 
the body. In melanoma, cancer cells arise from moles on 
the skin. The generation of free radicals as a result of the 
biochemical interaction of ultraviolet with melanin also 
causes mutations and genetic aberrations [31, 125].

In 2015, there were about 17.5 million cancer cases 
worldwide and 8.7 million of people died as a result of 
cancer. Most studies show that rates are increasing sig-
nificantly worldwide, generally thought to be a result of 
increased UV exposure [117]. Moreover, in 2017, only 
3.3 million people with non-melanoma skin cancer were 
treated, out of 5.4 million cases. This is due to deficits in 
health care and diagnostics [84, 103].

Cutaneous melanoma is now less common than NMSC. 
However, fair-skinned populations have been rising for 
the last few decades and melanoma is the most rapidly 
increasing cancer in white populations. Incidence rates 
are expected to double every 10 − 20 years. In Europe, 
highest increases of rates were observed in Scandinavian 
and Western European countries [45, 84]. Moreover, about 
2 − 4%cases are suffering from melanoma skin cancer in 
e.g. India [103]. In Malaysia, for example, skin cancer was 
ranked as the 10th most common cancer and accounted for 
2.6% of all cancer cases in this country [103].

In 2018, between two and 3 million non-melanoma 
skin cancers and 132,000 melanoma skin cancers happen 
globally every year. The fairer skinned people are at much 
higher risk of getting melanoma cancer [103]. In 2020, 
non-melanoma skin cancer was the third incidence cancer 
affecting males in the world [45].

Currently, mortality due to melanoma is not increas-
ing and has been stabilised. This can be seen in various 
countries in Europe. This is due to the fact that many inter-
vention strategies have been introduced and early disease 
detection is used [83, 84].

Image processing‑based diagnosis of skin 
cancer

Using image-based methods for diagnosing skin cancer is 
non-invasive and has been shown to provide positive results 
[2, 8]. Computer vision-based methods are increasingly used 
in various areas of medicine due to their non-invasive nature 
[8, 65]. These techniques also allow for automatic image 
analysis with accurate results [8, 95, 101, 129]. The first step 
is to collect images using dermoscopy [8, 103] which are 
then pre-processed using various image processing methods, 
such as Support Vector Machine (SVM) based on Principal 
Component Analysis (PCA) [8, 23, 127, 142].

The skin cancer diagnostic road-map and the principles 
and mechanisms of skin cancer detection are summarised 
in Figs. 2 and 3.

The basic methodology of the review carried out and its 
results are shown in Figs. 4 and 5. The significant increase 
in publications in the last 10 years is noteworthy: the number 
of articles published annually has doubled. In addition, 2957 
articles were published between 2013 and 2022, i.e. 63.43% 
of all articles published in this field. This demonstrates both 
the significant impact of modern technology and the rather 
rapid growth of new knowledge requiring mastery by its 
adepts.

Image processing-based diagnosis of skin cancer includes 
optical, photodynamic based, sonography, electrical bio-
impedance and thermal imaging techniques, which princi-
ples are described in the further part of this paper.

Optical technique

Optical methods use light that passes through the skin tis-
sue. When the light is scattered in the skin tissues, a change 
in the properties of the reflected light is used for diagnosis. 
Because the skin is the outer covering of the body, light has 
easy access and optical techniques can be used to diagnose 
skin cancer [116]. They are often used for early detection, 
or to improve other diagnostic tools such as dermoscopy. 
The optical method can be used to detect the disease with-
out a biopsy [7, 48]. They deliver both spatial and spectral 
data and other relevant information of skin tissue. Also, the 
optical methods provide a large amount of data that can be 
combined with machine learning algorithms to differentiate 
skin lesions and improve cancer diagnosis [114].

Fig. 2   Road-map of skin cancer diagnosis
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The most known optical diagnostic techniques are optical 
coherence tomography (OCT), fluorescence spectrometry, 
reflectance spectrometry, Raman spectroscopy, Multispectral 
(MS) imaging, 3D topography, Self-Mixing Interferometry 
(SMI), Polarised Imaging (PI), and confocal microscopy [20, 
103, 116].

Photodynamic‑based technique

Photodynamic diagnosis (PDD) is a minimally invasive 
and innovative technique to detect the presence of tumour 
cells, based on a photodynamic integrative method. A pho-
tochemical molecule known as a photosensitizer (PS), is 
administered to a patient. Then it is selectively absorbed 
intracellularly by tumour cells only, due to the enhanced 
permeability retention (EPR) effect. This photosensitive 
marker is visible under a resectoscope when blue light with 

a wavelength of 330–400 nm is applied. In such light, cancer 
cells are fluorescent. Skin lesions using photodynamic diag-
nosis are based on the fluorescent properties of an exogenous 
and endogenous compound in response to illumination. This 
method does not cause damage to cells or tissues, which 
allows for easy and early identification of a precancerous or 
cancerous lesion [33, 130].

Sonography technique

Sonography technique uses sound waves, where sound 
pulses are transmitted into the skin, then some of the sound 
waves are reflected back to the transmitter and some of them 
are reflected in other directions [28]. The reflected waves are 
sensed by the machine and the changes in the property of 
sound waves shows the structure of the skin. Sonography is 
mainly used to assess skin lesion depth and margins before 

Fig. 3   Principles and mecha-
nisms for skin cancer detection

Fig. 4   Results of the literature 
review

Fig. 5   Review methodology 
scheme
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doing the biopsy or to classify adjacent lymph nodes, when 
cancer is diagnosed [76]. It can also help to assess whether 
it is benign or malignant skin cancer. The main advantage 
is that it gives the accurate results of measuring skin can-
cer lesion thickness. Another advantage is the prevention of 
unnecessary removal of the lymph nodes when they are not 
affected by disease [103, 139].

Electrical bio‑impedance technique

Electrical impedance-based technique is a well-accepted 
non-invasive technique using electrical impedance [9]. The 
electrodes are topically applied to the skin and the innate 
electrical impedance of cells after malignancy is different 
from that of healthy cells. The stratum corneum has a high 
resistance so it must be bypassed to measure the living epi-
dermis and dermis. Identification of cancer using electrical 
impedance is straightforward, objective, fast, and economi-
cal [9, 113, 118].

Thermal imaging technique

Thermography or infrared thermal (IRT) imaging is a con-
tactless sensing method that uses a thermal camera to record 
the infrared radiation of the human skin [9]. There is no 
ionising radiation, so this method is safe for patient health. 
It is based on the electromagnetic radiation emitted by the 
human body. The temperature distribution, based on this 
radiation, is emitted in the infrared band and is displayed 
in a thermogram. Then, all temperature abnormalities are 
detected. For example, the temperature between the cancer 
tissue and the healthy tissue is different. Thermography can 
be applied dynamically. Then a thermal stimulus, like heat 
stress, is applied before the test to increase the temperature 
differences between the lesion and the surrounding skin, or 
in a steady state. Compared to other techniques which have 
false negative reports at a high probability, thermography 
provides high accuracy [9, 90, 106].

Methods

Medical imaging is a well-developed field of science, there-
fore there exist numerous methods for collecting data for 
subsequent medical analysis.

Images

Dengel et al. [35] made a significant discovery regarding 
the use of photography for skin cancer screening. However, 
the method is not widely used due to its time and cost impli-
cations. This technique involves capturing surface images 
of the skin to primarily identify suspicious and pigmented 

lesions in high-risk patients. The captured images are then 
processed using image processing algorithms to detect 
any abnormalities in the skin. The segmentation technique 
used to detect skin lesions is divided into two categories: 
region-based segmentation and neural edge detection. In the 
region-based segmentation method, an isodata algorithm is 
iteratively employed to determine the optimal threshold. In 
neural network edge detection, an approximate closed elastic 
curve is fitted between the recognized neural network edge 
patterns.

Computer-aided decision tools play a crucial role in med-
ical imaging for diagnosing and assessing various diseases. 
In [67] The high-resolution camera captures an image of the 
subject, which is pre-processed to eliminate any artefacts. 
To eliminate artefacts like hair in the image, mean, median, 
Gaussian, and anisotropic filters are utilised. The next step 
is lesion detection [40], which uses image segmentation 
techniques to partition the image into disjoint areas that are 
homogeneous with respect to a chosen property, such as 
luminance, colour, and texture. Feature extraction follows 
this step. The ABCD rule is used in the extraction process, 
which assesses the symmetry, border, colour, and diameter 
of the acquired image. Once the lesion is localised, differ-
ent chromatic and morphological features can be quantified 
and used for classification. In the classification process, the 
algorithm in the examination process integrates visual pro-
cessing with deep learning. In deep learning, the computer 
is trained to solve a problem rather than having the answers 
programmed into it.

In recent years, the field of computer-aided diagnosis has 
expanded to include the detection of skin cancer. Detecting 
melanoma skin cancer in its early stages is crucial for ensur-
ing proper treatment and saving lives. Abdul Jaleel, Sibi 
Salim, R. B. Aswin, and others have found that computer-
aided detection of skin cancer is based on imaging tech-
niques and artificial intelligence [68, 69]. Computer vision 
plays a critical role in medical image diagnosis. One paper 
discusses the use of computer-aided diagnosis for analysing 
skin lesions and detecting the presence of skin cancer by 
performing boundary detection and assessing the degree of 
symmetry. Another paper describes the use of wavelet and 
texture analysis to diagnose melanoma.

Texture features were derived from wavelet decomposi-
tion, and border features were collected from lesion borders 
using the gain-ratio method. This method was computation-
ally efficient for melanoma diagnosis. Recently, computer-
aided diagnosis has expanded to mobile technologies and 
cloud platforms, enabling the system to classify lesions by 
identifying moles in skin images and classifying them as 
melanoma, benign, or nevus lesions [49]. Computer diag-
nosis can also be used as a preventive tool for skin cancer 
detection through mobile phone applications. This tech-
nique can even separate melanocytes from histopathological 
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images [126]. In particular, these are the various colour 
models commonly used in computer graphics. The tools 
described earlier were based on an arbitrary division of the 
scene, which is an image of its luminance. Typically, such 
images were saved using a colour model storing only shades 
of gray. On the other hand, the use of colour models that, 
apart from luminance (brightness), also carry information 
about colour in medical imaging is quite rare.

In this field, one of the most important attempts to stand-
ardise the recording of information about colour was the 
initiative described in more detail in [11] which was initiated 
by the Food and Drug Administration (FDA) and the Inter-
national Color Consortium (ICC). The result of this initiative 
was the establishment of the ICC Medical Imaging Working 
Group. During the first work of the group in 2013, it was 
noticed that there is a lot to do in terms of colour reproduc-
tion in medical imaging. The most important issue was to 
establish standards for recording colour information in medi-
cal imaging. These were the days when the methods of col-
our reproduction in computer graphics were just beginning 
to be standardised. The greatest obstacle to the widespread 
introduction of colour-based medical imaging was the highly 
imperfect devices for acquisition and reproduction of colour 
images. Most colour computer monitors were unable to cor-
rectly display the RGB colour space with the sRGB profile, 
which was developed by Microsoft and Hewlett-Packard as 
early as 1996 [53]. It was the first attempt to standardise the 
display of colour images on colour computer monitors from 
various manufacturers. However, it was a spectrally narrow 
profile of the RGB colour model, as can be seen in Fig. 6.

Dermoscopy

Dermoscopy plays a crucial role in enabling dermatologists 
to observe epidermal structures, pigment and vascular pat-
terns in order to facilitate lesion examination and clinical 
decision-making. Research has demonstrated that providing 
dermatologists with access to dermoscopy images in addi-
tion to conventional telemedicine photographs significantly 
enhances their diagnostic confidence [50]. Moreover, the 
inclusion of dermoscopic images has been shown to improve 
effectiveness and cost-efficiency when utilized in skin can-
cer screening. Nevertheless, proper dermoscopy training 
is essential for its appropriate and consistent utilization. 
Diagnostic accuracy is enhanced through user expertise and 
training, whereas a lack of training can present significant 
obstacles for providers [153].

The use of handheld devices in dermoscopy enables 
visualisation of subsurface skin structures and reduces sur-
face reflection, whereas naked eye examination is limited 
due to the reflective properties of the stratum corneum. 
Dermoscopy is highly effective in diagnosing skin cancer 
and outperforms clinical analysis. A report written by [47] 

demonstrated that dermoscopy techniques have higher sen-
sitivity and specificity than clinical analysis. Dermoscopy 
is also useful in distinguishing melanoma cells from benign 
cells using various diagnostic tools, such as pattern analysis, 
the ABCD rule, Menzies method, and the 7-point checklist. 
Pattern analysis was found to be more accurate in analys-
ing 20 pigmented skin lesions. Dermoscopy is also used to 
analyse the vascular structure of melanocytic and non-mel-
anocytic tumours based on their morphological behaviour. 
In vivo dermoscopy techniques are useful in early diagnosis 
of malignant melanoma and differential diagnosis of pig-
mented skin lesions, but it requires a high-resolution camera 
for capturing images [96]. Dermoscopy training and exper-
tise are necessary for accurate and consistent use.

Ultrasound

Ultrasound can assess the morphology, orientation, internal 
structure and margins of lesions from multiple planes with 
high resolution both in predominantly fatty breasts and in 
dense glandular structures [135]. The application of ultra-
sound as a noninvasive imaging modality for breast cancer 
detection was already investigated in the seventies and eight-
ies, and led to the development of ray-based CT. Different 
categories for various elastographic techniques. Many dif-
ferent elastography techniques are available to measure and 
display elastography qualitatively or quantitatively, using 
the displayed modus and different forces. Commonly used 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x

y

D65

500

490

480

470
460 380

700

620

600

580

560

540

520

Fig. 6   The spectral width of the sRGB profile relative to the standard 
observer



Archives of Dermatological Research (2024) 316:99	 Page 7 of 17  99

techniques are strain elastography (SE), acoustic radiation 
force impulse (ARFI) imaging, transient elastography (TE), 
point shear wave elastography (pSWE) and shear wave elas-
tography (SWE). According to the property displays, there 
are three types: strain or strain rate, displacement and shear 
wave speed. Strain elastography calculates and displays tis-
sue strain. ARFI imaging detects and displays tissue dis-
placement. TE and pSWE record the shear wave propagation 
speed(without making an image). Strain elastography uses a 
hand-held probe with a slightly longitudinal pressing method 
or respiratory movement and obtains the hardness response 
information by estimating the deformation along the longi-
tudinal axis and the strain distribution of the internal tissue 
[156]. Strain elastography technology can be used to qualita-
tively and semiquantitative study the elastic strain rate ratio 
of a lesion compared with that of the surrounding normal tis-
sue. Compression technology is easy to implement, although 
it suffers from higher operator dependence and poor repro-
ducibility. Real-time elastography (RTE), which generates 
strain imaging by compression, assesses the relative elastic-
ity of the tissue in a specific area of interest, creating an elas-
togram, that is, a colour-coded map, that is superimposed 
on the ultrasound image. The relative elasticity may vary 
according to the tissue studied, the size of the RTE box and 
the pressure exerted. As tissue is mechanically non-linear, 
the strain from a given force decreases with increasing force, 
and the tissue becomes harder as more force is applied. The 
resolution of strain image changes with different contrast 
discrimination of the strain and with window size or dis-
placement, strain estimators and the smoothing window, pal-
pation speed and amplitude, persistence, and so forth. There 
are some artifacts that may influence strain images, such 
as friction between the transducer and skin, which could 
decrease the strain of surface tissue; a narrow compressor, 
which generates limited strain with poor homogeneity and 
decays rapidly with depth; the artifact of strain concentra-
tion, which might be seen when there is a hard inclusion in 
a soft background and which can explain the high strain at 
slip boundaries and edge enhancement; and the egg shell, 
which might occur when soft regions are buried in a stiff 
background, as stiff tissue prevents the generation of strain 
inside the egg. The features that help generate good strain 
images include closeness to the target and some distance to 
tissue boundaries, the anatomic plane and other structures 
[92, 150].

Confocal microscopy

Confocal microscopy is a technique that allows for the 
non-invasive examination of skin at a cellular level using a 
focused laser beam. This beam illuminates a specific point 
on the skin, and the reflected light is measured to construct 
a grayscale image [19, 21, 74]. The microscope contains a 

light source, condenser, objective lens, and detector, which 
use point illumination and a pinhole to avoid out-of-focus 
signals, giving it name confocal. The light source illuminates 
a small 3-D spot within the sample, and the reflected light 
is used to produce a pixel. The microscope then scans the 
illuminated spot horizontally across a 2-D grid to obtain a 
horizontal microscopic section, known as optical sectioning. 
This allows for the creation of an image pixel by pixel, with 
an axial thickness of 2–5 μm , enabling the visualisation of 
a slice in the body of a thick, semi-transparent sample. This 
is in contrast to conventional microscopes, which visualise 
all planes simultaneously. Confocal microscopy provides 
the capacity for direct, non-invasive, serial optical screen-
ing for thick, living specimens with least of sample prepa-
ration as well as a minimal improvement in lateral reso-
lution, commonly called reflectance confocal microscopy 
(RCM). In vivo RCM is a non-invasive technique that allows 
examination of the skin with cellular resolution. Resolution 
is almost comparable to conventional histology. It has the 
advantage of allowing the clinician to do a virtual biopsy 
of the skin and obtain diagnostic clues while minimising 
unnecessary skin biopsies.

It is clear that valuable information cannot be obtained 
from 2D cell cultures. In conventional uptake studies, drugs 
and nanomedicines are applied to cancer cells grown in flat 
monolayers, and the only obstacle they face in penetrating 
the intracellular compartment is the cell membrane [82]. On 
the other hand, 3D cell culture models are a better represen-
tation of the biological reality as they simulate the tumour 
and its microenvironment in vitro. Among these models, 
multicellular tumour spheroids (MCTS) have gained atten-
tion for their ability to imitate key characteristics of non-
vascularized tumours, including the close proximity between 
cells and their self-organisation in layers with varying rates 
of proliferation. Additionally, cells in spheroids secrete 
extracellular matrix (ECM) proteins, creating a microenvi-
ronment that acts as a biological barrier and can interfere 
with transport phenomena, blocking the diffusion of drugs 
and nanoparticles.

Spectroscopy

Depending on the source of equipment, spectroscopy can 
be checked on: confocal microscopy, Raman spectroscopy 
and fluorescence spectroscopy [9]. Confocal microscopy is 
a method that enables the examination of skin with a res-
olution at the cellular level, without causing any harm. It 
employs a focused laser beam to illuminate a precise point 
within the skin and records the light reflected from that point 
[42, 87, 122]. The technique involves scanning multiple 
points across an area parallel to the skin surface to generate 
a grayscale image. The microscope comprises a light source, 
a condenser, an objective lens, and a detector. By utilising 
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point illumination and a pinhole in an optically conjugate 
plane before the detector, the confocal microscope can filter 
out-of-focus signals and collect light from only the single 
in-focus plane. A small 3-D spot within a sample, such as 
skin, is illuminated by the light source, and the reflected 
light is collected to produce a pixel. The spot is then moved 
horizontally over a 2-D grid to obtain a horizontal micro-
scopic section. This technique is known as optical section-
ing, and it produces a series of horizontal planes stacked 
vertically, forming an image pixel by pixel, with an axial 
thickness of 2 − 5μ m. This unique feature enables the con-
focal microscope to examine a slice in the body of a thick, 
semi-transparent sample, whereas conventional microscopes 
visualise all the planes simultaneously [107, 112].

Confocal microscopy is a powerful imaging technique 
that enables direct, non-invasive examination of thick, living 
specimens with minimal sample preparation, and offers high 
resolution imaging, known as reflectance confocal micros-
copy (RCM). [10, 109] In vivo RCM allows for cellular-level 
examination of skin lesions, almost comparable to conven-
tional histology, with the added benefit of enabling a virtual 
biopsy of the skin to obtain diagnostic clues while minimis-
ing unnecessary skin biopsies.

Confocal microscopy can detect various skin disorders, 
including hyper-pigmentary and hypo-pigmentary lesions, 
and can be combined with Raman spectroscopy at different 
wavelengths to enhance cellular detail. Recent studies have 
utilised an extended version of the vivascope, offering better 
imaging capabilities with a laser source ranging from 488 
to 700 nm to non-invasively illuminate tissues and identify 
their depth and properties. Combining multispectral polar-
ised light imaging (MSPLI) with confocal microscopy can 
provide even greater accuracy and detail in results compared 
to either system alone.

Raman spectroscopy is a powerful method that detects 
various modes in a system, including rotational, vibrational, 
and other low-frequency modes. The technique utilises the 
phenomenon of Raman scattering, which involves inelastic 
collisions between photons of a laser beam and molecules 
in the sample or tissue being studied. Raman spectroscopy 
is performed using monochromatic radiations typically from 
a laser in the visible, near infrared, or near UV range. The 
obtained spectra can be processed and analysed to provide 
real-time feedback during measurement. This technique 
offers high sensitivity and accuracy in differentiating tis-
sues [5, 70, 89].

The classification model used for Raman spectroscopy 
is probabilistic and automated, relying on feature extraction 
and a fully adaptive robust feed-forward neural classifier. 
In vivo Raman microspectroscopy is a non-invasive and real-
time diagnostic tool for non-melanoma skin cancer, such as 
basal cell carcinoma (BCC) and squamous cell carcinoma 
(SCC). Sample calibration can be achieved in less than one 

second. Skin lesions can be distinguished using distinctive 
bands corresponding to specific Raman spectra of lipids and 
proteins. Partial least regression and discriminant analysis 
can be used to analyse Raman spectra of various compounds 
[77, 81]. Raman spectroscopy is useful for studying the 
static and dynamic properties of biologically significant 
molecules in living cells, cell cultures, and solutions. Linear 
least square fitting models can estimate the contribution of 
various bio-compounds, such as lipids and proteins, in tissue 
regions affected by skin cancer. By shifting the excitation 
energy of Raman spectroscopy to the near-infrared region, 
fluorescence components present within normal cells can be 
minimised, making it a valuable tool in medical diagnosis.

Fluorescence spectroscopy is a type of electromagnetic 
spectroscopy that is also referred to as spectrofluorometry 
or fluorometry. It involves the analysis of fluorescence emit-
ted from a sample after excitation by a light source, which 
causes the electrons in the molecules to become excited. 
This technique has been widely used in various fields, 
including biology, biochemistry, and environmental science. 
In the medical field, in vivo laser-induced fluorescence spec-
troscopy has been utilised to detect skin cancer [4, 78].

Multispectral imaging technique

In multi-modal spectroscopy (MMS) or multispectral imag-
ing, various linear polarizers of different wavelengths are 
used [59, 146]. The spectral and spatial information of the 
samples are simultaneously recorded by the multispectral 
image spectrometer, in which the acquired images from a 
monochrome camera is processed using spectral and polari-
sation filtering that provides high contrasting images which 
is useful in identifying the pathological and morphological 
features of the suspicious skin lesions. The report was made 
by Hagen Nathan, Kudenov Michael on multispectral imag-
ing based on spectral bands. In this, the image analysis is 
done automatically and pattern recognition is used to iden-
tify lesions which in turns help in further biopsy. It plays an 
important role in the diagnosis of skin cancer by considering 
the parameters such as texture, asymmetry, border irregu-
larities etc. [58]. The images are obtained from the affected 
regions of the skin using the charge coupled camera along 
with eight narrow band filters ranging from 450 to 800 nm 
at the interval of 50 nm. The features are extracted from the 
image using the principal components analysis. The charac-
terizations of malignant and benign tumours are separated 
by spatial grey level co-occurrence matrix.

The multispectral imaging technique involves in vivo 
methods in which images are examined at equal wavelength 
intervals between 483 nm and 950 nm. The technique uti-
lises a neural network classifier for automated skin cancer 
diagnosis, achieving a sensitivity of 80.4% in distinguish-
ing between malignant and benign tumours. To separate 
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pigmented skin lesions, an automatic segmentation algo-
rithm is employed. Typically, images of skin lesions are 
analysed in both 2D and 3D within the visible to infrared 
spectrum. The technique allows for the analysis of skin 
lesions, subcellular pigmentations, and vascular depth, uti-
lising radiometric measurements for tumour analysis. A mul-
tispectral camera captures images of skin lesions, which are 
then analysed in spectral ranges between 450 and 950 nm, 
allowing for the discrimination of melanoma from nevus 
cells. Non-contact skin chromophore analysis is performed 
using self-developed software. The technique can assist 
in the detection of melanoma skin cancer by considering 
the melanin index and erythema index [110]. Multispec-
tral imaging also helps in determining whether a biopsy is 
required from the pigmented lesion using the multispectral 
digital skin lesion analysis (MSDSLA) device. Analysis of 
vascular depth in the skin lesion enhances diagnosis and can 
be interpreted using 6-layered skin models. A combination 
of multispectral imaging and a 3D imaging sensor has been 
reported to detect skin cancer [102]. software. The technique 
can assist in the detection of melanoma skin cancer by con-
sidering the melanin index and erythema index [110]. Multi-
spectral imaging also helps in determining whether a biopsy 
is required from the pigmented lesion using the multispectral 
digital skin lesion analysis (MSDSLA) device. Analysis of 
vascular depth in the skin lesion enhances diagnosis and can 
be interpreted using 6-layered skin models. A combination 
of multispectral imaging and a 3D imaging sensor has been 
reported to detect skin cancer [102].

Multi‑photon scanning

Multi-photon scanning, also known as two-photon excita-
tion microscopy or non-linear laser scanning microscopy, is 
a method of three-dimensional imaging that offers several 
advantages over confocal and deconvolution microscopy. 
This technique relies on the nonlinear interactions between 
photons and matter, specifically the interaction of two pho-
tons with the same molecule at the same time, which leads 
to two-photon excitation and subsequent fluorescence [80, 
86, 100]. Unlike traditional single photon excitation, two-
photon excitation occurs only within the focal spot of the 
microscope, where photon density is high enough to cause 
two-photon absorption. Multiphoton scanning is particularly 
useful for imaging living cells within intact tissues, such as 
brain slices, embryos, whole organs, and even entire ani-
mals. This technique allows for dynamic imaging of living 
cells in thick specimens, which is not possible with conven-
tional imaging methods. In this way, multiphoton scanning 
enables many experiments that would otherwise be impos-
sible with other imaging techniques.

Autofluorescence (AF) imaging, which detects endog-
enous fluorescence, has potential applications as an optical 

biopsy tool for distinguishing between healthy and diseased 
tissue based on their inherent fluorescent properties [141]. 
Unlike exogenous contrast agents, AF imaging is minimally 
invasive and eliminates the risk of toxicity or reactions to 
dyes. However, the relatively low signal-to-noise ratio pro-
duced by AF imaging can lead to a high false-positive rate, 
which can be addressed through careful characterization of 
AF properties. Multiphoton microscopy (MPM) is a prom-
ising tool for high-resolution and contrast quantification 
of tissue AF. Two-photon excited fluorescence (2PEF) is a 
technique that generates image contrast in MPM by using an 
endogenous fluorophore that absorbs two photons to create 
fluorescence emission. This technique is effective in imaging 
deeper into tissue samples due to the inverse relationship 
between wavelength and light scattering. Second-harmonic 
generation (SHG) is another popular method of creating 
MPM contrast, predominantly for collagen in tissue sam-
ples. The use of excitation light of longer wavelengths in 
MPM reduces the chance of tissue damage and photobleach-
ing during image acquisition while maintaining high image 
quality [157]. MPM is a powerful imaging modality for 
accurately assessing the molecular features of tissue speci-
mens, and developing models of DGAST multiphoton fluo-
rescence is a step towards in vivo label-free measurements 
of these lesions for screening, diagnosis, and staging.

Thermography

Infrared radiation is emitted by every object which possesses 
the temperature absolute zero point. The thermal imager 
determines the temperature of the object’s surface based on 
the intensity of infrared radiation making it visible to the 
human eye with the thermal image. This process is referred 
to as thermography. Thermal imager translates the wave-
length from the infrared to the wavelength which is visible to 
the human eye. This is the principle which is used to detect 
skin cancer using thermography. Thermography has been 
employed in medicine for various applications. However, 
thermography overcomes all the shortcomings that other 
methods had [91, 148].

The medical infrared thermography is utilised in can-
cer detection because of its advantages such as radiation-
free, non-invasive and painless nature. When there is an 
unexpected increase in temperature, it is an indication of a 
problem [16, 44, 133, 147]. For example, increased friction 
causes wear and generates heat, potentially leading to mate-
rial failure. Similarly, human heat is linked to various con-
ditions such as inflammation and infection, and physicians 
have used thermo biological diagnostics since the time of 
Hippocrates. As a living organism, the human body strives 
to maintain homeostasis, which results in dynamic changes 
in heat emission. The combination of central and local 
regulatory systems is reflected in the surface temperature 
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of an extremity. Biomedical infrared thermography detects 
the emitted radiation on the human body surface and shows 
the heterogeneous skin and superficial tissue temperature. 
Infrared emissions from human skin at 27 ◦C are in the wave-
length range of 2–20 μm , and peaks at 10 μm . Body infrared 
rays, a narrow wavelength range of 8–12 μm , are used for 
medical applications. The use of infrared thermography for 
skin cancer is optimal because of its noninvasiveness and 
ability to detect temperature changes and distribution. Mela-
noma skin lesions are detected through infrared imaging by 
identifying new blood vessels and chemical changes associ-
ated with tumour growth. For other skin tumour types, such 
as basal cell carcinoma, an encapsulating layer of involved 
cells acts as a thermal insulator, causing a delayed ther-
moregulatory process.

Artificial intelligence techniques for cancer 
detection

In [15, 61, 94, 99, 105, 121, 124, 143] authors describe the 
use of AI techniques approaches that are utilised to produce 
and develop computer software programs. AI is an applica-
tion that can recreate human perception. This application 
normally requires obtaining input to endow AI with analy-
sis or dilemma solving, as well as the ability to categorise 
and identify objects. This paper describes various AI tech-
niques, such as support vector machine (SVM) neural net-
work, fuzzy models, artificial neural network (ANN), and 
K-nearest neighbour (K-NN) used in cancer detection.

The desire to improve the efficacy and efficiency of clini-
cal care continues to drive multiple innovations into practice, 
including AI. With the ever increasing demand for health 
care services and the large volumes of data generated daily 
from parallel streams, the optimization and streamlining of 
clinical workflows have become increasingly critical. AI 
excels at recognizing complex patterns in images and thus 
offers the opportunity to transform image interpretation 
from a purely qualitative and subjective task to one that is 
quantifiable and effortlessly reproducible. In addition, AI 
may quantify information from images that is not detect-
able by humans and thereby complement clinical decision 
making. AI also can enable the aggregation of multiple data 
streams into powerful integrated diagnostic systems span-
ning radiographic images, genomics, pathology, electronic 
health records, and social networks.

During skin cancer detection, a dermoscope examination 
is performed as a standard procedure. Dermoscopic images 
are the basis for the diagnosis of skin lesions that may be 
cancerous. Diagnostics may have been aided by Genetic 
Programming (GP) based feature selection from dermo-
scopic images [132, 140, 145]. Extracted features can be 
high-level domain specific features recommended by the 

dermatologists and low-level Local Binary Pattern (LBP) 
features. GP helps in selecting the most significant features 
from the raw data. Then, it can be determined whether the 
lesion is cancerous or whether it is malignant or not.

When detecting melanoma at an early stage of the dis-
ease, a dermoscopy image analysis system can be used [1]. 
The system analysing the shape, colour, and texture of the 
skin lesion can help detect cancerous changes. Detection of 
them at the initial stage of the disease improves the patient’s 
prognosis. The proposed system achieved classification of 
the benign, atypical, and melanoma images with accuracy 
of 96.3% , 95.7% , and 97.5% , respectively [1].

For dermoscopy images classification, neural networks 
are also used [140, 152]. In [152], a self-generating neu-
ral network (SGNN) is used for classifying melanocytic 
tumours as benign or malignant. Classification is based on 
features descriptive of tumour colour, texture and border. 
Then a neural network ensemble model combining back 
propagation (BP) neural networks with fuzzy neural net-
works is used. Classification can be done for whole and 
incomplete lesions when the dermatoscope is unable to pre-
pare an image of the entire lesion [152].

To construct an AI-based diagnostic system, we used 
a deep neural network architecture called the Single Shot 
MultiBox Detector (SSD) [88], without altering its algo-
rithm. An SSD is a deep CNN that consists of 16 layers or 
more. The Caffe deep learning framework, which is one of 
the most popular and widely used frameworks originally 
developed at the Berkeley Vision and Learning Center, was 
then used to train, validate, and test the CNN.

All CNN layers were fine-tuned using stochastic gradient 
descent with a global learning rate of 0.0001. Each image 
was resized to 300 × 300 pixels, and the bounding box was 
also resized accordingly to make CNN analyse optimally. 
These values were set up by trial and error to ensure all data 
were compatible with SSD [88].

After constructing the CNN using the training image 
set, we evaluated the performance through the test image 
set. When the CNN detected a lesion of gastric cancer from 
the input data of test images, the CNN outputted a disease 
name (early or advanced gastric cancer) and its position. 
A detected lesion was displayed with a yellow rectangular 
frame on the endoscopic images.

Jones et al. proposed a methodological checklist for the 
development of AI/ML systems for skin cancer detection. 
This will facilitate the design, evaluation and implemen-
tation of such systems in the future. This is because their 
review showed a variety of studies and systems imple-
mented to analyze AI/ML-based skin cancer data. In par-
ticular, attention is drawn to the large number of incom-
plete reports in the field of data collection methods, patient 
demographic data or health economics, as well as small 
samples of patients. Nevertheless, the AI/ML systems for 
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detecting skin cancer have already achieved good diagnos-
tic accuracy: for melanoma mean 89% (range 59 − 100% ), 
squamous cell carcinoma: mean 85% (range 71 − 97% ), and 
basal cell carcinoma mean 87% (range 70 − 99% ) [71, 72]. 
Cochrane meta-analysis showed the advantage of CAD in 
selected patient populations, however in the case of poor 
databases the sensitivity of CAD systems is not so high any-
more. Pooled data from 22 studies showed the sensitivity of 
Derm-CAD in detecting melanoma to be 90.1% and specific-
ity to be 74.3% . These results for the 8 multispectral CAD 
imaging studies (MSI-CAD) were 92.9% and 43.6% , respec-
tively [121, 131]. Among the four classification algorithms 
(Naive Bayes, Bayes Net, LMT tree and MLP), the highest 
accuracy in recognizing the image of one of the five types 
of cancer (actinic-keratosis, benign, solar-lentigo, malignant, 
and nevus) was achieved by MLP: 97.13% [155]. A study 
by Gouda et al. using the ISIC2018 dataset Inception V3 
algorithm achieved the highest accuracy ( 85.8% ) compared 
to the Inception Resnet ( 84% ), Resnet50 ( 83.7% ) and CNN 
( 83.2% ) models [52].

Key identified barriers include the lack of large compara-
tive studies showing evidence of the effectiveness of AL/ML 
solutions as second opinion systems, including based on data 
from primary care, and the cost-effectiveness of implemen-
tation across countries and healthcare systems [52, 72, 151, 
155]. In the case of auxiliary use of AI, there is currently no 
evidence confirming the effectiveness of such support in der-
matoscopic diagnostics [38]. Apart from diagnostics, artifi-
cial intelligence systems can also help clinicians make better 
clinical decisions about skin cancer and perform predictive 
functions, which will translate into greater effectiveness of 
therapy [71]. But direct comparison between AI-based sec-
ond opinion systems in skin cancer diagnosis and prediction 
is unavailable due to the use of different assessment metrics 
and image types, the size of datasets or diagnostic classes 
[138].

On the other hand, the tendency of patients to accept diag-
nostics and AI-assisted therapy is also important. Patients 
prefer human doctors and experience more negative emo-
tions because of the use of AI in their therapy [158]. In addi-
tion, despite the efforts of engineers and interdisciplinary 
teams, AI systems can be perceived as a threat to medical 
students and medical specialists [73]. Nonetheless, accord-
ing to [30], in 2018, the Food and Drug Administration of 
the United States (FDA) accepted [22] the applications of 
artificial intelligence for clinical uses, including devices and 
software designed to help diagnosing skin cancer.

Optical coherence tomography has shown promising 
results in the assessment of deep margins of skin tumours 
and inflammatory skin diseases, but differentiating prema-
lignant from malignant lesions proved to be less effective. 
Fluorescence spectroscopy proved to be effective in reveal-
ing the biochemical composition of tissue; early detection 

of malignant melanoma was reliable only with stepwise 
two-photon excitation of melanin, while tumoral margin 
assessment and differential diagnosis between malignant 
and non-malignant lesions showed some conflicting results. 
Characterization of the structural properties of tissue can be 
made using diffuse reflectance spectrometry, and the values 
of the specificity and sensitivity of this method are rang-
ing between 72 − 92% and 64 − 92% , respectively. Raman 
spectroscopy proved to have better results both in carcinoma 
and melanoma diagnosis with sensitivities and specifici-
ties above 90% and high above 50% , respectively. Confocal 
microscopy is the closest technique to pathological examina-
tion and has gained the most clinical acceptance, despite the 
need for a standardisation of the interpretation algorithm.

The specifics of the rater study have been described 
in detail by Sinz et al. [134]. In a web-based study of 95 
human raters ( 51.6% , female; mean age, 43.4 years; 95% , CI, 
41.0 − 45.7 years), participants were divided into 3 groups 
(according to years of experience with dermoscopy): begin-
ner raters ( < 3 years), intermediate raters ( 3 − 10 years), or 
expert raters ( > 10 years). All participants rated 50 cases 
drawn randomly from the entire test set of 2072 nonpig-
mented lesions. The random sample was stratified according 
to the diagnostic category to prevent overrepresentation of 
common diagnoses. The raters were asked to differentiate 
between benign and malignant lesions, to make a specific 
diagnosis, and to suggest therapeutic management. The 
clinical close-up image was always shown before the der-
matoscopic image, and the final evaluation was based on the 
combination of both imaging modalities.

Summary

The Table 1 summarises the AI methods used to detect skin 
cancer in publications from recent years and presents their 
degree of effectiveness. Based on that, the best results from 
the given ones were provided by the MLP method [155].

Further directions in skin cancer diagnosis

The direction of further research is primarily prospective 
comparative studies of CAD systems as a diagnostic aid in 
comparison with, for example, dermoscopy. This is espe-
cially true of all studies in real participant populations where 
the test would be used in practice, e.g. in primary care [121]. 
There is a need to place special emphasis on the formation 
and cooperation of interdisciplinary teams (including with 
the participation of engineers and medical specialists) in 
the area of AI applications in the diagnosis, therapy and 
care of skin cancer [73]. By analysing various AI methods 
(including those based on Deep Learning DL) to support 
diagnostics, monitoring treatment progress and predicting 
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changes in skin cancer patients, we can see that there is 
an interest in a structured, light / mobile and multimodal 
approach. The popularity of DL is growing, but the number 
of problems to be solved and opportunities for future use 
is still high [151]. The introduction of advanced immuno-
therapy, targeted therapies, combination therapies and small 
molecule vaccines could trigger another revolution in skin 
cancer therapy that will be reflected in both diagnosis and 
AI-based data analysis [149].

Conclusions

The current difficult times of pandemic and global crisis 
are an increasing challenge for healthcare systems, includ-
ing in the field of diagnosis and treatment of patients with 
skin cancer. Skin cancers are common all over the world, 
and the type of cancer and the early stage of the disease 
at diagnosis are key to good prognosis and the burden of 
the disease in the patient. Skin cancer causes physical and 
psychological impacts related to diagnosis and treatment. 
Despite the increasing use of second opinions and multi-
disciplinary consultations, traditional skin cancer diagnosis, 
including histopathology, is limited by the subjectivity of 
specialists. The genetic susceptibility and progression of 
cancer is causing new features and multi-criteria analysis to 
gain importance. A future solution is the use of automated 
systems based on artificial intelligence to support the daily 
practice of pathologists and oncologists. They allow infor-
mation to be shared and circulated more quickly through-
out the healthcare system, thereby responding to changes 
without delay. With the aforementioned reasons, modern AI/
ML-based image processing methods that enable the early 
diagnosis (including screening, as part of regular periodic 
examinations) of skin cancer, are key to further improving 
the effectiveness of the therapy. Solutions based on AI/ML 
are already effective and accurate, but they are still at the 

threshold of their development and require verification on 
large groups of patients and further dissemination in clini-
cal practice. All skin cancer stakeholders are involved in 
analysing and confirming existing knowledge, new data and 
informing future research [24, 37, 154].
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