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Abstract

This paper develops two parameter-free methods for solving convex and strongly
convex hybrid composite universal problems, namely, a composite subgradient type
method and a proximal bundle type method. Functional complexity bounds for the
two methods are established in terms of the unknown strong convexity parameter. The
two proposed methods are universal with respect to all problem parameters, including
the strong convexity one, and require no knowledge of the optimal value. Moreover,
in contrast to previous works, they do not restart nor use multiple threads.
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1 Introduction
This paper considers convex hybrid composite optimization (HCO) problem

¢« == min {$p(x) := f(x) + h(x) : x € R"}, (€]

where f,h : R" — R U {400} are proper lower semi-continuous convex functions
such that dom/s < dom f and the following conditions hold: there exist scalars
My > 0and Ly > 0 and a first-order oracle ' : domh — R” (i.e., f'(x) € 8 f(x)
forevery x € dom h) satisfying the (M s, L )-hybrid condition that 1= <
2M ¢ + L¢|lx — y| for every x, y € dom h.

The intrinsic convexity parameter py of a convex function v is defined as the
largest scalar u such that ¥ (-) — || - [|>/2 is convex. A method for solving (1) is
called parameter-free if it does not require knowledge of any parameter associated
with the instance (f, i), such as (M ¢, L r), or the intrinsic convexity parameters i r,
tn,and fg.

Parameter-free methods whose complexities are expressed in terms of (M ¢, L ) are
called universal methods. Moreover, parameter-free methods whose complexities are
expressed in terms of (M ¢, Ly, ug), (Mg, Ly, juy), and (Mg, L ¢, j1p), are referred
to as ug-universal, u g-universal, and 1j-universal, respectively. It is worth noting
that 1y can be substantially larger than u ¢ + up (e.g., fora > 0, f(x) = aexp(x),
and i (x) = aexp(—x), we have iy =2a > 0= s + pp).

The main goal of this paper is to develop methods for solving (1) that:

(1) are pg-universal for any instance (f, h) of (1) with arbitrary parameter pair
(Mg, Ly); )

(2) for any given positive scalars M and [, are optimal for the class of instances of
(I)suchthat Ly =0, My < M and gy > 1.

It is worth noting that a j,-universal (resp., i p-universal) method that is optimal for
the class of instances of (1) suchthat Ly =0, My < M and pp > i (resp., iy > i)
is not necessarily optimal for the above class, as the first one (i.e., with gy > 1) is
larger than the latter one (i.e., with up > L or g > ).

Related literature. We divide our discussion here into universal and p-universal
methods.

Universal methods: The first universal methods for solving (1) under the condition
that V f is Holder continuous have been presented in [26] and [11]. Specifically,
the first paper develops universal variants of the primal and dual gradient methods,
and an optimal universal accelerated gradient method, while the second one develops
accelerated universal variants of the bundle-level and the prox-level methods which
achieve optimal complexity. Additional universal methods for solving (1) have been
studied in [17, 19, 22, 31] under the condition that f is smooth, and in [14, 18, 20]
for the case where f is either smooth or nonsmooth. The methods in [18, 20] (resp.,
[22, 31]) are also shown to be j-universal (resp., i -universal under the condition
that 2 = 0). The papers [17, 19] present universal accelerated composite gradients
methods for solving (1) under the more general condition that f is a smooth m-weakly
convex function. Since any convex function is m-weakly convex for any m > 0, the
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results of [17, 19] also apply to the convex case and yield complexity bounds similar
to the ones of [22, 31].

g-Universal methods: Under the assumption that f is a smooth function (i.e.,
My = 0), various works [1-6, 8, 13, 25, 29] have developed pg-universal (or w f-
universal) methods for (1) with @(, /Ly/pg) (or (5(, /L ¢/ r)) iteration complexity
bound. For the sake of our discussion, we refer to a convex (resp., strongly convex)
version of an accelerated gradient method as ACG (resp., S-ACG). Among papers con-
cerned with finding an e-solution of (1), [25] proposes the first 1 -universal method
based on a restart S-ACG scheme where each iteration adaptively updates an estimate
of u s and calls S-FISTA (see also [8] for a 4-universal variant along this venue);
moreover, under the assumption that ¢, and L  are known, [5] develops a ug-universal
method that performs only one call to an ACG variant (for convex CO).

Finally, motivated by previous works such as [10, 12, 21, 24, 25, 28, 30], u¢-
universal restart schemes, including accelerated ones, were developed in [29] (see
also related paper [9]) for both when ¢ is smooth or nonsmooth. Specifically, [29]
develops a pg-universal method under the assumption that ¢, is known; and, also
an alternative one for when ¢, is unknown', which solves the original problem for
multiple initial points and tolerances in parallel.

Our contribution. We present two j14-universal methods for solving (1) that fulfill
the two requirements (1) and (2) above, namely: a composite subgradient (U-CS) type
method and a proximal bundle (U-PB) type method. In contrast to [9, 29], they are
non-restart methods that do not require ¢, to be known. Moreover, U-CS and U-PB do
not need the use of multiple threads as the parallel version of the restart subgradient
universal method of [29] does.

U-CS is a variant of the universal primal gradient method of [26] (see also Appendix
C.2 of [20]), which is not known to be pg-universal. U-PB is a variant of the generic
proximal bundle (GPB) method of [20] that bounds the number of consecutive null
iterations and adaptively chooses the prox stepsize under this policy. Both methods
are analyzed in a unified manner using a general framework for strongly convex
optimization problems (1) (referred to as FSCO) which specifies minimal conditions
for its instances to be j-universal. A functional complexity bound in terms of 114 is
established for any FSCO instance which is then used to derive complexities for both
U-CS and U-PB.

Organization of the paper. Subsection 1.1 presents basic definitions and notation
used throughout the paper. Section 2 presents two (ie-universal methods, namely U-
CS and U-PB, for solving problem (1) and establishes their corresponding complexity
bounds. Section 3 formally describes FSCO, which is the framework that include U-CS
and U-PB as special instances, and provides the oracle complexity of FSCO. Section 4
is devoted to the proofs of the main results for U-CS and U-PB. Section 5 presents some
concluding remarks and possible extensions. Finally, Appendix A provides technical
results of FSCO and U-PB.

! For this algorithm, it is assumed that the number of threads is O(log 871) and, it is shown that its
complexity is better than the usual one by a logarithmic factor. However, if a single thread is used, Corollary
5 of [29] implies that the complexity for its nonsmooth approach (without smoothing) applied to strongly
convex instances of (1) reduces to the usual convex complexity (i.e., with ;g = 0), and hence is not ¢~
universal (see the last paragraph of Subsection 2.1 for more details about this method and its complexity).
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1.1 Basic definitions and notation

Let R denote the set of real numbers. Let R (resp., R ) denote the set of non-negative
real numbers (resp., the set of positive real numbers). Let R” denote the standard n-
dimensional Euclidean space equipped with inner product and norm denoted by (-, -)
and || - ||, respectively. Let log(-) denote the natural logarithm.

For given ® : R" — (—o00, +00], letdom ® := {x € R" : &(x) < 0o} denote the
effective domain of ® and  is proper if dom ® # . A proper function ¢ : R" —
(—o0, 400] is p-convex for some p > 0 if

Clax + (I —a)y) =a®(x) + 1A -a)P(y) - Mllx -yI?

for every x,y € dom® and o € [0, 1]. Let Conv, (R") denote the set of all
proper lower semicontinuous p-convex functions. We simply denote Conv,, (R") by
Conv (R") when u = 0. For ¢ > 0, the e-subdifferential of ® at x € dom & is denoted
by

0:D(x) := {s eER": DY) > d(x)+(s,y —x)—¢&,Vy e R”}.

We denote the subdifferential of ® at x € dom ® by d®(x), which is the set dgP (x)
by definition. For a given subgradient ®'(x) € d®(x), we denote the linearization of
convex function ® at x by £¢ (-, x), which is defined as

Lo, x) = @(x) + (P (x), - —x). (@)

2 Universal Composite Subgradient and Proximal Bundle Methods

This section presents two completely universal methods for solving (1), namely, U-CS
in Subsection 2.1 and U-PB in Subsection 2.2. Their iteration-complexity guarantees
are described in this section but their proofs are postponed to Section 4, after the pre-
sentation of a general framework for (not necessarily composite) convex optimization
problems in Section 3. Viewing U-CS and U-PB as special cases of this framework
will enable us to prove the main complexity results of this section in a unified manner
in Section 4.
We assume that

(A1) f,h e Conv (R") are such that dom 4 C dom f, and a subgradient oracle, i.e.,
a function f’ : domh — R” satisfying f’(x) € 9 f(x) for every x € dom £, is
available;

(A2) there exists (M, Ly) € Ri such that for every x, y € dom £,

If') = Il <2Myp 4 Lygllx = yli;
(A3) the set of optimal solutions X, of problem (1) is nonempty.

@ Springer



Journal of Optimization Theory and Applications (2026) 208:112 Page50f33 112

It is known that that (A2) implies that for every x, y € dom £,

Ly 2
f(x)—ﬁf(x;y)§2Mf||x—y||+7llx—yll : 3)

When My = 0, (A2) implies that f is L s-smooth, and when L y = 0, (A2) implies
that f is M p-Lipschitz continuous. Hence, our analysis applies to both smooth and
nonsmooth, as well as hybrid, instances of (1), where both L ; and My are positive.
Recall that for a given function ¢ € Conv (R"), the intrinsic convex parameter (i
of ¢ is defined as the largest scalar p such that ¢ (1) — u] - 2/2 is convex. Clearly,
ng > 0 for any ¢ € Conv (R"). Even though, for the sake of completeness, the
complexity results developed in this paper apply to any ¢ € Conv (R"), our main
interest in this paper is to develop ptg-universal methods for instances of (1) such that

L ,u¢>0.

Our goal in this section is to describe two completely universal methods for solving
(1) and describe their iteration-complexity guarantees for finding a &-solution x of (1),
i.e., a point X such that ¢(x) — ¢4 < €, interms of (M, Ly, j1¢), €, and do, where
dy is the distance of the initial iterate xo with respect to X, i.e.,

do := min{|lx — X[ : x € X,}. 4)

For any given positive scalars M and /i, we consider two classes of instances ( f, /)
of problem (1), namely: 1) Ly =0, My < M, and He = psand2) Ly =0, My < M
and wj, > 1. The following remarks about them hold: i) the second class is a subset of
the first one; and, ii) the lower bound §2 (M?> /(f1€)) has been established for the second
class in [18] using an instance where f is piece-wise linear and h(x) = jt||x||>/2 (see
(73) and (74) of [16], which is an extended version of [18]). These two observations
imply that Q(M?/(f18)) is also a lower bound for the first class. Both the adaptive
subgradient method and the proximal bundle method studied in Appendix C.2 and
Section 3 of [20], respectively, are shown to have the following properties: i) they
are jup-universal for any instance (f, k) of (1) with arbitrary (M ¢, L r); and ii) they
achieve near optimal complexity (7)(1\71 2 /(jug)) for the second class mentioned above.

2.1 A Universal Composite Subgradient Method

This subsection presents the first of two aforementioned universal methods for solving
(1). Specifically, it states a variant of the universal primal gradient method of [26] for
solving (1), referred to as the U-CS method, and establishes its complete universality.
Moreover, it is shown that its j14-universality does not require any line search on the
intrinsic convex parameter /L.

We start by stating U-CS.
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U_CS(XAO’ X )‘407 é)

Input: (X9, x, *20,&) € domh x [0, 1) x Ry x Ryy.
0. Set A = Apand k = 1;
1. Compute

. . 1 .
X = argmin {Cf(u; Xe—1) +h(u) + ——llu — Xg—1 |I2} ; Q)
uelR” 22

if ¢ (x) — ¢« < &, then stop;
2. If the inequality

1—x
24

(I —xe

A 2
X = Xp—1]" =
I I 5

f) —€p(x; Xk—1) —

does not hold, then set A = A/2 and go to step 1; else, set Ay = A, Xx = x,
k <k + 1, and go to step 1.

We now make some remarks about U-CS. First, U-CS does not require any knowl-
edge about the parameter pair (M ¢, L y) or the intrinsic convex parameter /1. Second,
the U-CS method with x = 0 is exactly the universal primal gradient method analyzed
in [26], which establishes its universality with respect to the parameters of a Holder
condition on f but not with respect to ;. The subsequent paper [20] establishes the
wp-universality of the U-CS method with y = 0 (see Proposition C.2 of [20]), but left
its ptp-universality as an open question. Third, Theorem 2.2 below shows that U-CS,
with x € (0, 1) and x not too close to 1, is pj-universal, and also p1g-universal if in
addition x is not close to 0. The latter extra condition on x is because its iteration
complexity bound, in terms of 114 only, depends on x ~1, and hence does not apply to
the universal primal gradient method of [26] (i.e., U-CS with x = 0).

We now make some comments about the universality of the U-CS method. First,
it performs a line search on A on step 2 due to the fact that (M 7, L ) is not assumed
to be known. Lemma 2.1 below shows that when (M z, L ¢) is known then a constant
prox stepsize, which provably satisfies the inequality in step 2 for every k, can be used
throughout the method. Thus, the line search on step 2 is only performed so as to make
the U-CS method (M, L y)-parameter-free. Second, the p-universality of the U-CS
method will be established in Theorem 2.2 regardless of whether the line search is
performed (i.e., when (M ¢, L ) is not known) or is not needed (i.e., when (M ¢, L r)

is known).
Lemma 2.1 If A satisfies
(1-x)% ©
T AMG +ELy

then the point x = xi(A) computed in (5) satisfies the inequality in step 2. As a
consequence, if the initial prox stepsize Ao is chosen to be the right hand side of (6),
then A remains constant throughout the method.

@ Springer



Journal of Optimization Theory and Applications (2026) 208:112 Page70f33 112

Proof Assume that X satisfies (6). Using 3) with (M, L, u,v) = (M, L ¢, x, Xk—1)
and the inequality 2M s A — aA* < M7 /a with A = |x — %1l anda = (1 — x —
ALy)/2), we have

x —1

FOO) = (s Fimn) + Sl = & |2
3) . Ly . oo x—1 .
<2M — Xp— —||x — Xf— — Xk—
= 2Myllx — xk—1ll + > X — Xe—1 11" + o llx — Xe—1l
. l—x—AL .

= 2Mllx = &l =~ e = S

2AM?2 6 — v)7
- ¥ (<) (1 X)s’
T 1l—x—ALy — 2

where the last inequality is due to (6). Hence, the lemma is proved. O

The main result of this subsection, whose proof is postponed until Subsection 4.1,
is stated next. Its goal is to establish the complete universality of U-CS.

Theorem 2.2 U-CS terminates in at most

€ P 2 2 =
min {min [l (1 + Q(8)> 4 9(8)}105; (1 + “"’éd°> , doQ(s)}

X ElLg ELn g2
N _
+ [2 log —09(8)1 )
g
iterations and
e P (rl D ) ®)
&)= —~ _1+¢ —_— .
(1—x)? O =02
We now make some remarks about Theorem 2.2. First, if A, 1= O(Ly) and
x € [0, 1) is such that (1 — x)~! = O(1), then Q(§)/¢ = @) (szc/é + Lf), and
hence (7) in terms of wy, is
2
~ L
o (.—f + —f) : ©)
EMn  Mn

which is the same well-known bound established for the U-CS method with x = 0
(e.g., see Proposition C.2 of [20]).

Second, if in addition to the assumptions on the pair (), 1¢) made in the first remark,
the parameter x is also assumed to be not close to zero (i.e., x~ 1 = O(1)), then the
complexity bound (7) is also

N Z _ [ M2
O(Q(8)>=O(_—f+L—f>, (10)

XElg Uy Mg

which is considerably smaller than (9) when g > 1.
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Third, in view of the lower complexity remarks made in the paragraph following
(4), bound (10) with (114, M r) replaced by (11, M)is optimal, up to logarithmic terms,
for the class of instances ( f, #) of problem (1) where Ly = 0, My < M, and Mo = L.

Fourth, algorithms with optimal complexity for the class of instances (f, &) such
that L < L, My < M, and e > [t have been studied in [11, 26] for the case where
=0, and in [1-6, 8, 13, 25, 29] for the case where M = 0 and > 0.

Finally, we end this subsection with a comparison of the complexity bound of
Theorem 2.2 with the one derived in Corollary 5 of [29] for its subgradient variant
under the assumption that f has quadratic growth. Specifically, under the assumption
that My is known and L y = 0, Corollary 5 of [29] shows that their subgradient variant
has (parallel) iteration complexity bound

M3 Mrdy\?
o<—_ / +N+< g_O)) an
Euf 2Ve

where N is the number of threads. As a consequence, they conclude that the above
bound reduces to

M3 1
o (— L tlog - + M}dg)
EMf &

when N = O(loge~"). For sufficiently small & > 0, the above bound and Theorem
3.2.1 of [27] show that their subgradient variant is exactly optimal for the class of
instances (f, h) of problem (1) where Ly = 0, My < M, and uy > . However,
bound (11) with N = 1 reduces to O(M%dg /&%), and hence does not imply that their
single-thread subgradient variant is optimal for the aforementioned class.

2.2 A Universal Proximal Bundle Method

This subsection describes the U-PB method and states a result that ensures its complete
universality.
Conditions (A1)-(A3) are assumed to hold in this subsection. We also assume

(A4) the diameter of the domain of /& given by max{||x — y| : x,y € dom#h} is
bounded by D < +o0.

The U-PB method is an extension of the GPB method of [20]. In contrast to GPB,
we use an adaptive stepsize and introduce a maximal number N (which can be as
small as 2) of iterations for all cycles. Similarly to U-CS, U-PB is another instance of
FSCO and we establish functional complexity for U-PB using the results of Section 3.
Compared with the complexity results in [20], those obtained in this paper are sharper,
since they are expressed in terms of (14 instead of wy,.

U-PB is based on the following bundle update (BU) blackbox which builds a model
m}' + h for f + h on the basis of a previous model m ¢ of f and of a new linearization
Ly(-, x) of f. This blackbox BU(x¢, x, m, 1) is given below and takes as inputs a
prox-center x¢, a current approximate solution x, an initial model m ; for f, and a
stepsize A > 0.
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BUMXC, x,my, )

Imputs: A € Ry and (x°, x,m¢(-)) € R" x R" x Conv(R") such thatm ¢ (-) < f(-)
and

1
X = argmin {mf(u) + h(u) + allu —x6||2} .

ueR”

Find function m}L(-) € Conv(R") such that
max{my(-), {y(; x)} < m}L(-) < f0), (12)
where £ ¢(-; -) is asin (2) and 2 7 (-) is such that

my(-) < f(), my(x) =my(x), x=argmin {mf(u) + h(u) + —IIM —x I|2}

ueR”
(13)
Output: m}’

In the following, we give two examples of BU, namely two-cuts and multiple-cuts
schemes. The proofs for the two schemes belonging to BU can be provided similarly
to Appendix D of [20].

(E1) two-cuts scheme: We assume thatm 7 is of the formm y = max{A s, £7(-; x7)}
where Ay is an affine function satisfying Ay < f. The scheme then
sets A}f(.) = 0As() + (1 — 0)€s(-;x7) and updates m}_ as m'}'(~) =

max{AJfr(o), €7 (5 x)}, where 6 € [0, 1] satisfies

%(x —x)+oh(x)+6VAr+(1—-6)f(x7)20,
OAr(x)+ (1 =) yp(x;x7) =max{Ar(x), £r(x;x7)}

(E2) multiple-cuts scheme: We assume that m  has the formm y = m ¢ (-; B) where
B C R" is the current bundle set and m ¢(-; B) is defined as m¢(-; B) :
max{ls(-;b) : b € B}. This scheme selects the next bundle set BT so that
B(x)U{x} C BT c BU{x}where B(x) :={b e B : Ly(x;b) =my(x)}, and
then outputs m‘; =mys(:; BY).

Before giving the motivation of U-PB, we briefly review the GPB method of [20].
GPB is an inexact proximal point method (PPM, with fixed stepsize) in that, given a
prox-center X;—; € R" and a prox stepsize A > 0, it computes the next prox-center
X) as a suitable approximate solution of the prox subproblem

ueR”

1
Xy A argmin {(f + h)(u) + ﬁllu — )?k_1||2} . (14)
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More specifically, a sequence of prox bundle subproblems of the form

1
xj = argmin {(fj—l—h)(u)—}-ﬁllu—)?k_lnz}, (15)

ueR”

where f; < f is a bundle approximation of f, is solved until for the first time an
iterate x; as in (15) approximately solves (14), and such x; is then set to be Xi. The
bundle approximation f; is sequentially updated, for example, according to either one
of the schemes (E1) and (E2) described above.

U-PB is also an inexact PPM but with variable prox stepsizes (i.e., with A in (14)
replaced by Xx) instead of a constant one as in GPB. Given iteration upper limit
N > 1 and prox-center X;_1, it adaptively computes A > 0 as follows: starting with
A = Ag_1, it solves at most N prox subproblems of the form (15) in an attempt to
obtain an approximate solution of (14) and, if it fails, repeats this procedure with A
divided by 2; otherwise, it sets Ax to be the first successful A and % as described in
the previous paragraph.

We are now ready to state U-PB.

U-PB(%o, X, A0, &, N)

Input: (%9, Ao, x, &, N) edomh x Ryp x[0,1) x Ry x Ny,

0. SetA = Ag, yo = X0, N =0, j = 1,and k = 1. Find f; € Conv(R") such that
Lr(5%0) < fi() < f()
1. Compute x; as in (15); if ¢ (x;) — ¢x < & stop;

2. Compute
X A 2 .
_ d(xj) + - llxj — Xe—1ll%, itN =0,
= 2 X o (16)
min {q&j_l s O(xj) + ﬁ”xj — X1l } , otherwise,
set N =N + 1 and
_ 1 . 5
tj=¢j_<(fj+h)(xj)+ﬁ||xj_xkl|| >; (17)
3.Iftj > (1— x)/2and N < N then
3.a. perform a null update, i.e.: set f; 1 = BU(Xr—1, X}, f}, A);
else
iftj > (1—x)&/2and N =N
3.b. perform a reset update, i.e., set A < A/2;
else (i.e., t; < (1 — x)g/2and N < N)
3.c. perform a serious update, i.e., set X = x;, Iy = fi+h 3k =yj
A = A
k<—k+1;
end if

3.d. set N =0and find f;j;; € Conv(R") such that Zf(ﬁfk,]) <finn=fs
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end if
4. Set j < j+ 1 and go to step 1.

We now give further explanation about U-PB. U-PB performs three types of itera-
tions, namely, null, reset, and serious, corresponding to the types of updates performed
at the end. A reset (resp., serious) cycle of U-PB consists of a reset (resp., serious)
iteration and all the consecutive null iterations preceding it. The index j counts the
total number of iterations including null, reset, and serious ones. The index k counts
the serious cycles which, together with the quantities X, yx, and f‘k computed at the
end of cycle k, is used to cast U-PB as an instance of FSCO. All iterations within a
cycle are referred to as inner iterations. The quantity N counts the number of inner
iterations performed in the current cycle. Each cycle of U-PB performs at most N
iterations. A serious cycle successfully finds #; < (1 — x)&/2 within N iterations,
while a reset cycle fails to do so. In both cases, U-PB resets the counter N to 0 and
starts a new cycle. The differences between the two cases are: 1) the stepsize X is
halved at the end of a reset cycle, while it is kept as is at the end of a serious cycle;
and 2) the prox-center is kept the same at the end of a reset cycle, but it is updated to
the latest x; at the end of a serious cycle.

We now make three remarks about U-PB. First, U-CS is a special case of U-PB with
N = land fir1=4L5(s Xr—1) in step 3.d. Second, it follows from the fact that fisf
and the definition of 7; in (17) that the primal gap of the prox subproblem in (14) at the
iterate y; isupper bounded by #;4+(1— ) [ly; —Xk—1 I%2/(21). Hence, ift; < (1-x)e/2,
then y; is an ¢ j-solution of (14) wheree; = (1 —x)[E/2+|ly; —Xk—1 1>/(2A)]. Third,
the iterate y; computed in step 2 of U-PB satisfies

y; € Argmin {¢(x) n ;‘7||x &l x e {x,-,...,x,»}], (18)

where i denotes the first iteration index of the cycle containing j. In other words, y;
is the best point in terms of ¢ () + x || - —%x—1[/%/(21) among all the points obtained
in the course of solving (15) and the point y;_; obtained at the end of the previous
cycle.

We now state the first main result of this subsection where the functional iteration
complexity of U-PB is established.

Theorem 2.3 Assuming that dom h has a finite diameter D > 0. Let

L?Dzﬁ
B =8+ 12log 1+—2 (19)
16M3
and define U (g) by
AM%2+EL)B Nz
U@E) = —t 7 N (20)

(1= x)? Ao
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The total number of inner iterations (i.e., the ones indexed by j) performed by U-PB
is bounded by

l J— U g _ U o d2 dZU -
min{min[— (N+ _(8)),N+ﬁ}1og(l+ﬂ"’_°> : 0_2(8)}
X ElLg Eh g 3

+N [2 log )LO%@)—‘ .

2n

&

The complexity result of Theorem 2.3, under the mild conditions that y is neither
close to one nor zero (i.e., max{x ', (1 — x) '} = O(1)),

_ M2 + &L
N =0 ("L min {1, 20up} ) .
Elg

and (g > p, reduces to

2
o (ﬂ T ﬂ) , 22)
ey Mo
which is similar to the functional complexity bound (10) obtained for U-CS. Moreover,
similar to U-CS, bound (22) with (uy, M r) replaced by (i, M) is nearly optimal for
the class of instances (f, h) of problem (1) where Ly =0, My < M, and Mo = [,

because of the lower complexity remarks made in the paragraph following (4).

3 A Functional Framework for Strongly Convex Optimization

This section presents a general framework, namely FSCO, for (strongly) convex opti-
mization problems and establishes an oracle-complexity bound for it.
FSCO is presented in the context of the convex optimization problem

¢4 := min {d)(x) 1x € R"} , (23)

where ¢ € Conv (R"). It will be shown in this section that any instance of FSCO is Mo
universal. Moreover, its oracle-complexity bound will be used in Subsections 4.1 and
4.2 to establish the iteration-complexities of two important instances, namely, the U-
CS method described in Subsection 2.1, and the U-PB method described in Subsection
2.2. It is worth mentioning, though, that FSCO is only used to establish universality
relative to pg. Complete universality of the two specific instances mentioned above,
and hence relative to the parameter pair (M ¢, L ), is established by performing line
searches on the prox stepsize Ak, as described in step 2 of U-CS and in step 3 of U-PB.

Given a prox-center x~ € dom ¢, every iteration of FSCO approximately solves a
prox subproblem of the form

) 1 )
min {¢(u)+ﬁllu—x I } (24
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for some A > 0, to obtain an inexact solution y whose primal gap size is used to ter-
minate FSCO. The black-box below, which is repeatedly invoked by FSCO, describes
how the above subproblem is approximately solved.

Black-box (BB) (x7, x, &)

Input: (x7, x, &) edome¢ x [0, 1) x Ry.
Output: (x, y, ', 1) € dom ¢ x dom ¢ x Conv (R") x Ry satisfying I" < ¢,

X —2 . 1 )
=y — — r —|ju — 2
d(y) + o ly —x"ll ;211@131{ () + 7 llu — x|l } <e, (25)
and |
X = argmin {F(u) + —|lu —x||2} . (26)
WERN 2\

We now make some remarks about BB. First, x ™~ is the current prox center and (x, €)
are tolerances used to quantify the inexactness of y as a solution of (24). Second, (25)
quantifies the inexactness of y in terms of a functional certificate I, which is a bundle
for ¢p. More precisely, y is a £-solution of (24), where € = e+ (1 — )|y —x~ 12/(20).
Indeed, this follows from (25) and the fact that I' < ¢. Finally, even though the next
prox-center x is viewed as an output of BB, it is uniquely determined by I" as in (26),
and hence could alternatively be removed from the BB output. In other words, the
relevant output produced by BB is (1, y, I').

The following result describes a key contraction inequality that holds for the two
prox-centers x ~ and x of BB. Its proof is postponed to Subsection 3.1 and uses a key
result stated in Appendix A.1.

Proposition 3.1 Assume that ¢ € Conv (R") and let @ = pgy. Assume also that
(x,y,T,A) = BB(x™, x,¢&) for some (x—, x,e) € dom¢ x [0,1) x R’Lr, and
I' € Conv, (R") for some v € [0, w]. Then, for every u € R", we have

2
1—€X e = A+ o —ul @)

20[9p(y) = @)] <

where
A+ pr) + x(n—v)]

o= oY) = e A — )

We now motivate the assumption made by Proposition 3.1 on I" by considering the
special case (1) of problem (23) where ¢ = f + h and f and & are as in (A1)-(A3).
In this setting, many algorithms (see e.g., U-CS and U-PB in Section 2) generate
I functions of the form I'y + h where I'y is a convex (possibly, affine) function
underneath f. Clearly, letting v = uy, it follows that bundles I' generated in this form
are v-convex, since so is /. In conclusion, the v-convexity of I" is inherited from the
v-convexity assumption on the composite component z of ¢, i.e., the part of ¢ that
is not approximated by simpler functions in the prox subproblems generated while
solving (1).

(28)
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We make some remarks about Proposition 3.1. If o in (28) is such that o = ® (L),
then it will be shown in Theorem 3.2 that an algorithm that repeatedly calls BB
finds an &-solution of (23) in O((Aw) ™! log(¢~")) calls. We mention two cases where
o = O(\u). The first case is when v & p and x is arbitrary, but this case does not
hold for many instances of (23). In particular, the “contraction" formula (27) for the
pair (v, x) = (i, 0) is well-known (e.g., see Lemma 4.1(a) of [20]). The second case
is when x~! = O(1) and v € [0, u]. Indeed, it follows from the first inequality in
Lemma A.3(a) that 0 = ©(Au) when x ~' = O(1). Finally, even though x chosen
very close to one satisfies the condition in the second case, such choice of x is not
desirable as it makes the term 2A¢/(1 — x) in (27) too large. Thus, in view of the
previous remarks, a good choice of yx is one such that max{x !, (1—x)"1} = O().

We now describe FSCO.

FSCO(%o, x, &)

0. Let (X9, x, &) € dom¢ x [0, 1) x Ry be given and set k = 1;

1. Compute (%, Yk, [k, Ak) = BB(Xk—1, x, (1 — x)&/2);

2. Check whether ¢ (3x) — ¢« < € and if so stop; else set k < k + 1 and go to step
1.

We now make some comments about FSCO.

First, FSCO generates two sequences, i.e., {x;} and {7%}. If FSCO stops, then the
last iterate of the second one is guaranteed to be a g-solution of (23) due to step 2
of FSCO. Hence, the second sequence ensures that FSCO stops, while the first one
should be viewed as the sequence of prox-centers generated by the bundle sequence
{Tx}.

Second, since BB does not provide a specific recipe for computing (Xx, , f‘k, M)
in step 1, FSCO is not a completely specified algorithm but rather a framework built
with the sole purpose of studying j14-universality of its instances. Specifically, FSCO
provides minimal conditions on its generated sequence (X, Yk, f‘k, Mx) (i.e., only that
is generated by iteratively calling BB) to ensure j4-universality of its instances.

Finally, for some instances of FSCO, such as U-CS and U-PB, A is computed by
performing a line search on A within specific implementations of BB, because some
parameters associated with ¢ (e.g., L y and M ¢ in the setting of Section 2) are assumed
to be unknown. When these parameters are known, the line search can be avoided by
choosing Aj in terms of these parameters.

The main complexity result for FSCO is relative to the instances that satisfy the
following condition:

(F1) there exists A > 0 such that Ay > A for every k > 0.

Theorem 3.2 The number of iterations performed by any instance of FSCO that sat-
isfies condition (F1) is bounded by

. T1 1 1 pdg\ d?
minimin|—{1+— ), 1+ —|log|1+—),—=¢, (29)
X A Av € A€
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where the scalars x and € are input to FSCO, dy is as in (4), and
=g, v :i=min {qu . inf m)} : (30)

(By convention, (29) should be understood as being equal to dg /(L&) when u = 0.)

Proof 1t is straightforward to see from Lemma A.3(b) that (L) > o := o (A) for
A > A, where o (1) denotes the o defined in (28), considered as a function of A. Note
that we invoke the oracle (X, Y, [, A) = BB(Fe_1, x, (1— x)€/2) in step 1. Using
(27), assumption (F1), and the observation that o (A;) > o, we have

20 [0 P1) — )] < M + | Fx-1 — M||2 — (L + o) 1% —ull?, 3D

where
A1+ pd) + x (e —v)]
o= , (32)
I+ pud+ x2(v—u)
and p and v are as in (30). It is easy to see that (31) with u = x,, where x, denotes
the closest solution of (23) to the initial point X, satisfies

Yk < og—1 — (1 +0)og + yié

with

Ve =2hks Mk =dGk) — bsr k= IFk —xill?, 8=

N | ™

where )4 satisfies yx > V-
Using Lemma A.2(b) with the above parameters, Lemma A.3(c), and the definition
of o in (32) that the complexity to find a £-solution is

1+ odg dg
=1 1+=2), 2L
mm{ - og( + 2 PV
< mi in | 1+1 1+1 1 l+gd§ 4 (34)
min { min | — — 1, —|lo — ], —=-
h X A Av g AE | AE

Moreover, we note that ¢ < Au in view of the second inequality in Lemma A.3(a).
Finally, this observation and (34) immediately imply the complexity in (29). O

We now comment on the complexity bound obtained in Theorem 3.2. First, under
the assumption that & > 0, the bound

(1 1 1 nd3
miny—(14+— ), 1+ —¢tlog| 1+ — 35)
X Ap Av €
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implied by (29) is meaningful only when either x > 0 or v > 0 (otherwise, it should
be understood as being infinity). Second, the validity of the second bound in (35) has
been established for some composite subgradient and proximal bundle methods (see
for example [7, 18]). Third, if u > v and x is sufficiently bounded away from zero,
the smallest term in (35) is the first one, in which case (29) reduces to

1 1 d? _ (1
—<1+—>10g<1+u> :O(_)_
X Au g Au

Fourth, since the second bound dg /(A€) does not depend on v, u and Y, it holds for
any parameters 4 > v > 0 and x € [0, 1).

3.1 Proof of Proposition 3.1

We need the following technical result before proving Proposition 3.1.

Lemma 3.3 Define

5= , (36)

n=¢(y) —T'kx) —{s,y—x). 37

Then, the following statements hold:
a) s € 0T (x), i.e, for every u € R",
C(u) > T(x) + (s, u — x); (38)

b) s € 9,¢(y) and

0.<2hn < 2he — |y —x|> + 1 = 0)lly —x"II%. (39)
Proof (a) The optimality condition of (26) yields 0 € 9T (x) + (x — x7)/A, which
together with the definition of s in (36) implies that the inclusion in a) holds. Relation
(38) immediately follows from the inclusion in a) and the definition of the subdiffer-
ential.

(b) The relation ¢ > T (see step 1 of FSCO), (38), the definition of » in (37) imply
that for every u € dom ¢,

(38) 37)
du) =Tw) = T'x)+(s,u—x) = o)+ (s,u—y)—n,

which yields the inclusion in b). Taking ¥ = y in the above inequality gives n > 0,
and hence the first inequality in (39) holds. Using the definitions of s and n in (36)
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and (37), respectively, and (25) and (26), we have

37
no= ¢ -—Tk —(s,y—x)
LM e~ Ly —x P = x| = sy =)
——lly—x —lx —x —(s,y—x
= 2" 21 Y
G X, oo Lo s [x—xT
= e ly—x T+ llx—x +< Y x>
1—yx _ 9 1 2
= e+ —=ly—x "= 5ly—xI"
Hence, the second inequality in (39) holds. O

Using a technical result, Lemma A.1 from Appendix A.1, we are able to partially
recover the intrinsic convexity pgs, even though it is not assumed to be known from
either the objective ¢ or the model I'.

Lemma3.4 Let u = gy and assume that I' € Conv, (R") for some v € [0, u]. For
any ¢ € [0, 1) and every u € dom ¢, we have

{(uw—v) ¢
$W) = ¢+, u=y)+=——llu=yl* == : +1— = lly—x? +—||u x|,

(40)
where s and 1 are as in (36) and (37), respectively.

Proof Define

~ _ ~ v 2 ~ v —2 ~ Vv 2
s=stvx—x), n=n—3ly—xlI, ¢=¢—Zl-—x"II°, T =T—|-—x"|".
2 2 2

3 G
It follows from Lemma 3.3(a) and the above definitions of § and I" that § € 9" (x). In
view of (41) and the assumptlon that ' € Conv, (R") for some v € [0, ], we observe
that I is convex and ¢ > T". Hence, following a similar argument as in Lemma 3.3(b),
we conclude that 5 € 9; ¢>(y). Using this inclusion, the fact that & is (u — v)-convex,
and Lemma A.1 with (¢, &, y,v,n, Q) = (qS, w—v,y,5,1,1), we have for any
T € (0, o] and every u € dom ¢,

uw—

— — _1~
20+ )Ilu yI> = (1 + 7 Hi.

- (66) ~ .
o) = ¢(y) +(S,u—y)+

Taking 7 = (1 — ¢)/¢ for ¢ € [0, 1) in the above inequality, we obtain

¢(u—v) 2 7
eI -

d) > () + (5, u —y) +

Finally, (40) follows from using the definitions of $,5,and 7 in (41), and rearranging
the terms in the above inequality. O
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Noting that in the proof of Lemma 3.4, we apply Lemma A.1 to ¢ in (41). If we
instead apply Lemma A.1 to ¢ directly, we obtain for every u € dom ¢,

n

T (42)

D) 2 ) + (5,1 — v+ B llu =y =

This inequality is weaker than the one in (40). Indeed, applying the Cauchy-Schwarz
inequality, we have

1—
(T{ + 1) (iﬁ%”y I+ 2 - x||2) > 2y =l + = xl? 2 2= I,
where the last inequality is due to the triangle inequality. Hence, we have

¢ v 2, VY 2 _ SV 2
-2 _ _ — _ > 2 _
1—§2l|y x| +2||M x| = 2||M yiIs,
and thus (40) implies (42).

If ¢ is chosen to be 0, then (42) becomes

¢u) = ¢(y)+ (s,u—y)—n VYu e dome,

which is equivalent to the inclusion in Lemma 3.3(b). This means that if we use (42),
then we cannot recover the intrinsic convex parameter ©y when ¢ = 0. However,
even if ¢ = 0, (40) still preserves a v-strongly convex lower approximation to ¢. This
justifies the necessity of the assumption that I' € Conv, (R").

Now we are ready to present the proof of Proposition 3.1.

Proof of Proposition 3.1. It follows from the definition of s in (36) and Lemma 3.4 with
&=x,

™ =l =l =l = (Ix™ = ¥12 = I = ¥1%) = =245, = )

(40) 2X A
= 20(60) = G+ xe = vl = I = 7+ Sy =l v )
(43)
Rearranging the terms in (43) and using Lemma 3.3(b), we have

_ 2

|2~ = = A+ vi)lx — ul® =24 [ (») — )]
@3 XVA 2An
> Il =yl + (1 " 1) I = Y12+ X G = Al =y =
(39  2xe x (1 +vd)
> - + I = yI* + x (i — v)Au — y|*. (44)

1—x 1—-
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Rearranging the terms in the above inequality, we have

2)\,8 _ 2 2
2010() = 0] =7+ |~ =l = (1 vl =l
1 A
—x ( i ||x—y||2+<u—v>x||u—y||2). (45)

Using the triangle inequality and the fact that (a1 +a2)? < (b ' +b5 ") (a?b1 +a3ba)
with (a1, a2) = (lx — yll, llu — yl) and (b1, b2) = (1 +vA)/(1 — x), (u —V)A) we
have

1—x 1 1+va
2 < o2 Dl — v
lx = ul _(l+vk+(u—v)k><l—x||x VI + (= vl y||>.

(46)
Plugging the above inequality into (45), we have
218 _ 2
2[p0) = $@] = 7=+ |57 —ul
1—x 1 ! 5
-1 A - )
|: +v +X<1+vk+ (M—v)k) :|||x ul|
which is the same as (27) after simplification. ]

4 Proofs of Theorems 2.2 and 2.3
4.1 Proof of Theorem 2.2

The following result shows that U-CS is an instance of FSCO and that assumption
(F1) of Section 3 is satisfied.

Proposition 4.1 The following statements hold for U-CS:

a) {Ai} is a non-increasing sequence;
b) forevery k > 1, we have

. . . 1 )
% = argmin {efm; Reo1) + () + ——lu — R ||2} : (47)
uclkn 2)‘*/{
. A x—1 . . 1-x)e
F@E) — LpEe; 1) + % — Rt l® < —25, (48)
2k 2

(49)

— v)25
AkZmin{ (= x)e A}.

P Y
8M7 +28L
c) U-CS is a special case of FSCO where:
i) Y% = X and T () = Ly (- X—1) + () for every k > 1;
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ii) assumption (F1) is satisfied with A given by (49).

Proof a) This statement directly follows from the description of U-CS.

b) Relations (47) and (48) directly follow from the description of U-CS. Next, we
prove (49). Supposing Ax—1 < (1 — X)zé/(4M% + &L ), then it follows from Lemma
2.1 that (48) holds with A replaced by Ax_1. This indicates that if A is small enough,
then it will remain unchanged. Therefore, following from the update scheme of X in
step 2 of U-CS, there is a lower bound as in (49).

c) Relations (47) and (48) are the analogues of relations (25) and (26) of FSCO
with y; = X and [k as in (i). Inequality (49) shows that Assumption (F1) is satisfied.

O

Proof of Theorem 2.2. Define

_ { HAO(SM}+25L,~) H
k = | 2log max —., 1. (50)

(1-x)%

Observe that 1g/2% < A for k > k where A is given by the right-hand side of (49), and
from Proposition 4.1 that we cannot halve A more than k iterations. It follows from
(50) and the definition of Q(#) in (8) that

k< ’7210g @—‘ )

Therefore, the second term on the right-hand side of (7) gives an upper bound on the
number of iterations with backtracking of A. We now provide a bound on the number
of remaining iterations to obtain a £-solution with U-CS. In the k-th iteration of U-CS,
the model [ for ¢ = f+hissimply £¢(-, Xk—1) + h(-) where £ is the linearization
of f asin (2), hence /L(f‘k) = up < g and v = py in (30). Since Proposition 4.1
shows that U-CS is a special case of FSCO, Theorem 3.2 immediately gives for U-CS
the upper bound (29) with A given by (49) on the number of the remaining iterations
(where X is not halved) required to find a g-solution of (1). Using the inequality

(1= "o

(1= )% +)»_0 (1))

[> ] —

49) {8M}+25Lf 1} 8M7 +25L; |
= max|{———5— < —

and the definition of Q(€) in (8), we conclude that 1/A < Q(g)/&. This observation
and (29) with A given by (49) thus imply that the first term in (7) is an upper bound
on the number of the remaining iterations (where A is not halved). This completes the
proof. O

4.2 Proof of Theorem 2.3

We begin with a technical result, i.e., Lemma 4.2, uses arguments similar to ones
used in Subsection 4.2 of [20]. For the sake of completeness, its proof is given in
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Appendix A.2. These two results together will be used in the proof of Lemma 4.4 to
show that if stepsize X in a cycle is sufficiently small, then the cycle must be a serious
one.

Lemma 4.2 If j is an iteration of a cycle such that t; > (1 — x)&/2, then

. 4t

where ) is the prox stepsize for the cycle, i is the first iteration of the cycle, t; is as in
(17), and
4A[2M,% + (1 — x)EL ]
uy = : - . (53)
(I =xe
Noting that the right-hand side of (52) depends on ¢;, the next result provides two
upper bounds on this quantity, one that does not require (A4) but only holds for A
sufficiently small, and one that requires (A4) and holds for an arbitrary A > 0. The
proof of the first one is well-known for x = 0 (e.g., Lemma 5.5 in [15]) but not for
the second one. The proofs for both of them are given in Appendix A.2.

Lemma 4.3 Leti denote the first iteration of a cycle of U-PB. The following statements
about the quantity t; hold:

a) if » < (1 —x)/Q2Ly), then

4AM]%
t < ; (54)
1—x

b) if (A4) holds, then

x(16MJ% + szDz)
4 < :
I =
4(1 - x)

Recall that U-PB once in a while performs reset cycles, i.e., cycles which perform
exactly N inner iterations and terminate without any of their iterates satisfying the
condition ¢; < (1 — x)&/2.

If the parameter pair (M, L) is known, then the result below shows that, if A
is chosen sufficiently small, then no reset cycle is performed. On the other hand, if
(Mg, L) is not known, then U-PB performs a line search on A and may generate
reset cycles. Reset cycles are thrown away by U-PB, but they signal that the current A
is too large and hence should be decreased (see step 3.b of U-PB).

As already observed in the first remark in the second paragraph following U-PB,
U-CS is a special case of U-PB in which N = 1. In this regard, the following technical
result is a generalization of Lemma 2.1 to the context of U-PB.

(55)

Lemma 4.4 Assume that assumption (A4) holds. If for some cycle of U-PB, the prox
stepsize ) satisfies
1— x)*N&
)»S—(2X)_ £ ) (56)
2(My +€Ly)B
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where B is as in (19), then the cycle must be a serious one. As a consequence, if the
initial prox stepsize Lq is chosen less than or equal to the right-hand side of (56), then
U-PB has the following properties: a) it keeps L constant throughout its execution;
and b) it never performs a reset update.

Proof Assume for contradiction that the cycle is not a serious one and its stepsize A
satisfies (56). Then, this cycle is a reset cycle and hence performs exactly N iterations.
Leti denote the firstiteration of the cycle. In this proof, to alleviate notation, we denote
e = (1 — x)&/2. Then by inequality (52) in Lemma 4.2 written for j =i + N — 1,
we musthave N — 1 < (1 + u;) log(2t; /¢) where u, is as in (53). Hence, to obtain a
contradiction and prove the lemma, it suffices to show that

2t; —
(1+u)log = <N —1. (57)
&

To show the above inequality, we consider the following two cases: a) 8N < B and
b) 8N > B.
a) Assume that 8N < B. The assumption (56) and the fact that ¢ = (1 — x)&/2
then imply that
(l—pe  _1-x
- 8(M% +8Lf) - 8Lf

and hence that the assumption of Lemma 4.3(a) holds. Thus, statement (a) of this same
lemma implies that

2 54 SAMZ: (56  8MAN M2
~ = s <1 <1, (58)
€ (I—=xe (M} +eLf)B ~ M;+eLy

where the second last inequality follows from the case assumption 8N < B. Since the
above inequality implies that log(2t; /¢) < 0, inequality (57) immediately holds for
case a).

b) Assume now that 8N > B. To show (57), we first bound 1 + u, from above as
follows:

+—=—, (59)

where we also use the fact that ¢ = (1 — x)&/2 in the first line and the second last
inequality is due to the case assumption 8N > B. Now observe that condition (56) on
A implies
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e - (I—=x)e - (I—=x)e (M}+8Lf)B
(M7 + L% D*/16)N L3 D*N
=T e =t o

Mf +eLy 16Mf

where the second last inequality follows from the fact that B > 8. The above inequality
and the definition of B in (19) then imply that

L2D’N B—-8 B—-B/N BWN-1
f )(g) - / _ ( ) 60)

5 —
16Mf

log 2 <10g (14
0B =708 12 12 2N

where the last inequality follows from the case assumption 8N > B. Finally, combin-
ing (59) and (60), we conclude that (57) also holds in case b). ]

The next result, which is the analogue of Proposition 4.1, shows that the sequence
of stepsizes Ay is bounded below by some positive constant and provides an upper
bound on the number of reset cycles.

Proposition 4.5 The following statements hold for U-PB:

a) every cycle in U-PB has at most N inner iterations;
b) each stepsize Ay generated by U-PB satisfies

Né
A > ——, 61
206 (61)
where U (g) is as in (20);

¢) the number of reset cycles is upper bounded by

U (5)—‘
2log — . 62
[ g (62)

Proof a) This statement immediately follows from the description of U-PB (see its
step 3).
b) It follows from Lemma 4.4 and the update rule for A in U-PB (see its step 3) that
1 — x)°Né
Ak = min (2)(4, Ao
4M F+ELp)B

and hence that

(1—x)2Ng Ao

1 4(M§+5Lf)3 1 <4(M]%+5Lf)3 1
(1 — x)?N& Ao
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Thus, using the definition of U (g) in (20), we conclude that

Ni AM;+ELp)B  Ng

ST a—r T Ve

and hence that statement b) holds.
c¢) This statement immediately follows from b) and the update rule of A in U-PB. O

The following result shows that serious iterations of U-PB generate sequences {xz},
{3}, {Ak}, and {T';} satisfying the requirements of FSCO.

Proposition 4.6 U-PB is a special case of FSCO in the sense that:

a) the quadruple Ry, $i, Tk, Ax) satisfies relations (25) and (26) with x~ = %¢_1;
b) condition (F1) used in the analysis of FSCO is satisfied.

Proof a) For a serious cycle, the pair (X, yx) of U-PB satisfies

. [ a 1 .
£ = argmin {Fk(u) + ——lu — xk_1||2} , (63)
20k

ueR”

. X n s 2 A I . s (I-xe
29k = Zet P = | T — R = B P | = —22. (64
o) + e Ve — Xk—1ll [ & (Xk) + T IXk — Xk—1ll } < 5 (64)

Indeed, relations (63) and (64) (which are (26) and (25) in FSCO, respectively) follow
from (15) and ¢; < (1 — x)&/2 with X} = x;, I = fi+h, Y =yj,and Ay = A (see
the serious update in step 3.c of U-PB).

b) Condition (F1) is satisfied with A = NE /U (&), in view of Proposition 4.5(b). O

Proof of Theorem 2.3 To alleviate notation, denote ¢ = (1 — x)&/2 and (u,v) =
(g, pr). In view of step 3.c of U-PB, we have y,(f‘k) = u, = v and hence it is
the same as the v in (30). Noting that, by Proposition 4.6, the sequences indexed by
k is a special implementation of FSCO, and that, by the proof of Proposition 4.5(b),
(F1) holds with A = N&/U (&), it follows from Theorem 3.2 that the total number of
serious cycles generated by U-PB is bounded by

1 U U a2\ dUG
min min[— <1+ _(8_)>,1+ _(8_):|10g 1—}—@ , 0_ E) .
X WeN VEN 3 2N

The conclusion of the theorem follows from the above bound and statements (a) and
(c) of Proposition 4.5. O

5 Concluding Remarks
In this paper, we presented two pg-universal methods, namely U-CS and U-PB, to

solve HCO (1). We propose FSCO to analyze both methods in a unified manner and
establish functional complexity bounds. We then prove that both U-CS and U-PB
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are instances of FSCO and apply the complexity bounds for FSCO to obtain iteration
complexities for the two methods. The two proposed methods are completely universal
with respect to all problem parameters, in particular, the strong convexity. Moreover,
they do not require knowledge of the optimal value, and do not rely on any restart or
parallelization schemes (such as the ones used in [29]).

Some papers about universal methods (see for example [11, 26]) assume that, for
some « € [0, 1], f in (1) has ¢-Holder continuous gradient, i.e., there exists Ly, > 0
such that ||V f(x) — V(W) < Lyllx — y||* for every x, y € dom A. It is shown in
[26] that the universal primal gradient method proposed on it (i.e., the U-CS method
with x = 0) finds a &-solution of (1) in

2
5 d2Lr+l
oL
& [ 4ok (65)

ga+l

iterations. This result also follows as a consequence of our results in this paper. Indeed,
first note that the dominant term in the iteration complexity (7) for the U-CS method
is @(dg(M]% +é&Ly)/ £2). Second, Proposition 2.1 of [20] implies that there exists a
pair (M ¢, L r) satisfying (A2) and the inequality

2

20
M7+ &Ly <281 LG

Hence, it follows from these two observations that (7) is sharper than the bound (65)
obtained in [26].

We finally discuss some possible extensions of our analysis in this paper. First, it is
shown in Theorem 2.2 (resp., Theorem 2.3) that U-CS (resp., U-PB) is uy-universal
if x > 0 and is pp-universal if x = 0. It would be interesting to investigate whether
they are also pg-universal for y = 0. Note that this question is related to whether
the universal primal gradient of [26] (which is the same as U-CS with x = 0) is
Mg-universal. Second, it would also be interesting to study whether the general results
obtained for the FSCO framework can also be used to show that other methods for
solving the HCO problem (1) are pp-universal. Third, a more challenging question is
whether a j14-universal method for solving (1) with a checkable termination condition
(and hence which does not depend on ¢,) can be developed. Finally, this work has only
dealt with unaccelerated methods for solving (1). It would be interesting to develop
accelerated methods such as those for when u = 0 (e.g., in [11, 26]), which are
Hg-universal in the hybrid setting of this paper.

Data Availability There is no data related to this publication.

A Technical Results
This appendix contains two subsections. Subsection A.l presents some technical

results used in the analysis of FSCO while Subsection A.2 proves Lemmas 4.2 and
4.3.
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A.1 Miscellaneous Technical Results

The following technical result is used in the proof of Lemma 3.4.

Lemma A.1 Assume that & > 0,4 € Conv (R") and Q € S, are such that —
E/2)| - ||2Q is convex and let (y,v,n) € R" x R" x Rybe such that v € 3, (y).
Then, for any T > 0,

_ (1+7)7'¢
Y = Y0+ u—y) = (1477 ) n+ = lu— I} VueR". (66)
Proof The proof of this result can be found in Lemma A.1 in [23]. m]

The next technical result is used in the proof of Theorem 3.2.

Lemma A.2 Assume that sequences{y;}, {n;}, and{a} satisfyforevery j > 1,y; > y
and
yjnjfozj_l—(1+0)aj+yj8 67)

for some o > 0,5 > 0and Yy > 0. Then, the following statements hold:

a) foreveryk > 1,

min n; g — (1 + a)kak
1<j<k = Z’J‘.:l(l +o)i-ly

b) if the sequence {o;} is nonnegative, then mini<;<x nj < 28 for every k > 1 such

that
1
k > min +Olog %—i—l ,@
o Z(S Z(S

with the convention that the first term is equal to the second term when o = 0.
(Note that the first term converges to the second term as o |, 0.)

+4; (68)

Proof a) Multiplying (67) by (1 + o)/ —1and summing the resulting inequality from
j = 1tok, we have

k k

i—1 . i—1
Z}(l +0) 7y, Lgljlgknj] < Zl(l +0) " yin;
J= J=

k
<Y (+0) " ajo1 = (1 +0)aj +¥,8)
j=1

k
=ap— (I +o)fa+) (1+0) 'y (69
j=1

Inequality (68) follows immediately from the above inequality.
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b) It follows from (68), and the facts that oy > 0 and y; > Y that

<00]

min < Z — + 6
Y2 i (l+o0)/~

1<j<k

nj (70

Using the fact that 1 + o > e?/(1+0) for every o > 0, we have

o o

k k _ k/(14+0) _
. 1 1 o 1
> (1 +0) ! = max {& k} > max {e— k} .
j=1
Plugging the above inequality into (70), we have for every k > 1,

. % . o 1 P
e = M ek e T

which can be easily seen to imply (b). O
The following technical result is used in the analysis of Section 3.

LemmaA.3 For every x € [0,1), A > 0, u > 0, and v € [0, u], the quantity

o = o (U, v; A) defined in (28) satisfies the following statements:

a) AMlxu+ (1 — x)v]l <o < iu, and hence o > Lv;
b) the function .. > 0+ o (i, v; A) is non-decreasing;
c) there holds

1+o0

< mi ! 1+ ! 1+ !
min { — — ), —0.
o X AL Av

Proof a) It follows from (28) and the fact that v < p that

ot — Ap—=v)A+ruw)(x — 1) - Ap=—v)A+r)(x = 1)
S R I Y R R 1+ p

= Au—v)(x—=1),

and hence that o > A[xu + (1 — x)v]. Moreover, the second inequality of (a) imme-
diately follows from the first identity above and the facts that x < 1l and v < p.
b) Viewing o = o (A) in (28) as a function of A, one can verify that

v(l + pur) + x(u —v)

o= Al pu+xw—p

is a non-decreasing function of A.
c) It follows from the definition of ¢ in (28) that

l+o A +vHd + p2)

o Av(+pr) + x(w =01
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Hence, it suffices to prove that

A+ vA) A+ pd) <min{l<1+i) 1+i} (72)
Av(d + pr) + x(n —v)] ~ X aw) o wfl

Since x € [0, 1), it is easy to verify that

1+vi 1

< 9
vl +pd) + x(n—v) ~ xu

and hence that

(1 +vA)(1 + pd) <1+‘“\=l<1+L)
AMv(d+pr) +x(w =1~ xie  x /)

Moreover, noting that x € [0, 1) and & > v, we also have

(I +vA)(A + pd) L
Av(L 4+ pr) + x(w—v)] — AV

Combining the above two inequalities, we conclude that (72) holds. O

A.2 Proofs of Lemmas 4.2 and 4.3

Before presenting the proof of Lemma 4.2, we present and prove three technical results.
The first one summarizes some basic properties of U-PB.

Lemma A.4 Assume that A is the prox stepsize and X_1 is the prox-center of a cycle
of U-PB. Then, the following statements about this cycle hold:

a) for every null iteration j of the cycle, there exists a function f () such that

t(f;+h)+ =D x) +h] < fir1+h <o, (73)
fj+heConv, RY), f;(x))= fi(x)), (74)
' aremin 17 L a 2
xXj = arugergin {fj(u) + h(u) + 7 lu — Xe—1l } (75)
where "
. (76)
1+u;\

and uy, is as in (53);
b) for every iteration j of the cycle and u € R", we have

_ 1 1
f,~<u)+h(u)+ﬁ||u—£k_1||2zm,-+5||u—x,»||2, (77)
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where |
mj = ([ 4 + 5l = Sl (78)

Proof a) Since j is a null iteration of the k-th serious cycle, it follows from step 3.a
of U-PB that fj 1 = BU(x—1, xj, fj, A). Using the properties of the BU blackbox,
this implies the existence of ? j satisfying (74), (75) and

max{fj +h, Ls(;x)) +h} < fip1+h < ¢. (79)
The statement now follows from the fact that (79) immediately implies (73).

b) Since the objective function in the last identity of (75) is A~ !-strongly convex,
we have

_ 1 . — 1 . 1
T +h@)+ lu=2 1?2 F 50 +h0e) + 5l =B P4 -l =511,

2
(80)
which immediately implies (77) in view of the identity in (74) and the definition of
m  in (78). O

The second technical result provides a recursive bound on the quantity m ; defined
in (78).

Lemma A.5 If j is a null iteration of a cycle, then

1 . (1—-1)e
mjp —tm; > (1 —1) |:¢(xj+l) + ﬁ”xﬁrl —Xklllz} - (81)
where t is defined in (76) and ¢ = (1 — x)&/2.
Proof Using the definitions of t and u, in (76) and (53), respectively, we have
4AM> 2M%2 L. 2M3
_ T wnhD s —f_:2Lf+_fZ_f+_f, (82)
2A(1 — 1) 2A (1—yx)e 3 2 £

where the last identity is due to the relation ¢ = (1 — x)&/2. Using the definition of
m  in (78), and relations (73) and (77) with u = x 41, we have

(78) 1 R
mist = S+ W) + I — S I
(73) 1 .
> (=1 | lr(xjqrs xj) +h(xjp1) + ﬁ”ijrl — Xk
_ 1 .
+T ((fj +h)(xj1) + ﬁ”xj+l —Xk1||2>
an 1 R
> (1 —1) | €r(xjpr; xj) +h(xjp1) + ﬁ”-xj-i-l — X1l

1 2
+7 (mj + Z”x‘i-H —x;ll ) .
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This inequality and (82) then imply

mijyl —tTm;

1 .o Ly 2MG 2
>(1—-1) ef(xj+l§xj)+h(xj+l)+ﬁ”xﬁrl_xkﬁ” + 7+T llxj41 — x;017 | -

2
(83)
Using (3) with (x, y) = (xj41, x;) and the fact that ¢ = f + h, we have
L
Cp(xjt1; xj) + h(xjyr) + 7f||xj+l — %517 = ¢ (xju1) — 2Mpllxjp1 — x5l (84)
Using this inequality and relation (83), we conclude that

mijy1 —tm;

(83).(84) 1 o
= (A= (90) + 57 e —fieil?)
2(1 — 1)
+ = (M xp1 = = Mpslijin = ;1)
> (1= )9 + 5l — Sl - T
-7 X — X1 — Xp— -
= Jj+1 0 Jj+1 k—1 )

where the last inequality follows the inequality a®> —2ab > —b* witha = M Fllxjs1—
Xjlland b = ¢&/2. m]

The next technical result establishes an important recursive formula for the sequence
{t;} defined in (17).

Lemma A.6 Let j be an iteration of a cycle with step size A and first iteration i. Then

A=xE ., (1—x)&
zj—Tsr/ <t,-—T>, (85)

where t is defined in (76).

Proof If j = i, (85) trivially holds. We next show that (85) holds for j > i + 1. It
suffices to show that forany ¢ € {i,..., j — 1},

1—x)e 1 — x)&
fé+l—#ff<l‘z—%>- (86)
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Let ¢ € {i,..., j — 1} be given and note that £ is a null iteration of the cycle. Using
the definition of #; in (17) and Lemma A.5 with j = ¢, we have

tgp1 — Tl (1——7)¢_>£+1 —mep1 — Tlpe — mel = [Peg1 — Tde]l — [meg1 — ]
(81) 1
<¢u4—f@—%l—ﬂ[¢@uw+zxwu4—@—m1
n (I-7)(1 - x)e - (I-7)(1 - x)e
4 = 4

b

where the last inequality follows from (16) and the fact that 7 € (0, 1). We have thus
shown that (86) holds for any ¢ € {i, ..., j — 1}. O

We are now ready to give the proof of the first main result of this subsection.

Proof of Lemma 4.2 By (85), we obtain

4l‘j 4

— < iy, (87)
(I—x)e (1=yx)&

Using relation (76), we then have

4t; @87 4ri—ig; At
0 < log <—J_ — 1) < log (t—’_) % log <—’_)
I -xe I=xe I —xe
j*l‘ 4t T
+ log [ " :| Slog( : _)—] l,
14 u; (1—yx)e 1+ uy

where for the last inequality we have used the log(x) < x — 1 which holds for x > 0.
This completes the proof of (52). O

We next prove the second main result of this subsection.

Proof of Lemma 4.3. We first show that the inequality

— X ~
m|m—mAV (88)

< OMollx — % Lrve s 2 _
i <2Myllx; — Xp—1l + > llxi — Xg—1ll

holds without making the assumptions of either case a) or case b). Indeed, using the
definition of #; in (17) for j =i and relation (16), we have

(78) 1
— (fi +h)(x;) — IIx, — X2

1
= ¢(xl) + ”xl _xk 1” —(fi +h)(xi) — ||x1 _xk 1”

= f(xi) ﬁ(xl)+

IIXz — &l
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where the last equality follows from the fact that ¢ = f +h. Since i is the first iteration
of the cycle, it follows from step 3.d of U-PB that f;(-) > £ ¢(-; Xx—1). Combining this
inequality with the above one, and using (3) with (x, y) = (x;, Xx—1), we conclude
that

R x—1 R
ti < f(xi) = Lp(xis Xk—1) + o llx; — %112
(3) . L R x —1 .
< OMyllx; — R |l + Tfnxl- —fe P Tl =Sl (89)
R 1—x—AL R
=2M|lxi — Rl — — 22y — # )

21

and hence that (88) holds.

We next prove that a) holds. Assume that A > 0is such that A < (1 — x)/(2L ).
Note that this implies that 1 — x > 2ALy > 0, and hence 1 — x — ALy > O.
Maximizing the right-hand side of (88) with respect to ||x; — Xx—1 ||, we conclude that
t < (ZAM})/(l — X — AL ), and hence that (54) due to the inequality (1 — x)/2 >
ALy.

We next show that b) holds. Assume that (A4) holds. Using (88), we obtain

N LyD R 1—x . 5
ti < 2Mygllxi — X1l + 2 lxi — xg—11l — 7 llxi — xg—1l
L¢D . 1—x .
= <2Mf + fT> lxi — X1l — 5 llx; — Fe—1 1%
L/D\? & A4M3 + L2 D?/4)
<|(2My+ ! < f f i
‘ 2 2(1 =) 1—x

where the second last inequality is due to the inequality that —agx? + box < b§ /(4ap)
for ap > 0, and the last inequality is due to the fact that (a + b)2 < 2(a2 +b°). 0O

References

1. Alamo, T., Krupa, P.,, Limon, D.: Gradient based restart FISTA. In 2019 IEEE 58th Conference on
Decision and Control (CDC), pp. 3936-3941. IEEE (2019)

2. Alamo, T., Krupa, P., Limon, D.: Restart of accelerated first-order methods with linear convergence
under a quadratic functional growth condition. IEEE Trans. Autom. Control 68(1), 612-619 (2022)

3. Alamo, T., Limon, D., Krupa, P.: Restart FISTA with global linear convergence. In 2019 18th European
Control Conference (ECC), pp. 1969-1974. IEEE (2019)

4. Aujol, J.-F,, Calatroni, L., Dossal, C., Labarri¢re, H., Rondepierre, A.: Parameter-free FISTA by adap-
tive restart and backtracking. STAM J. Optim. 34(4), 3259-3285 (2024)

5. Aujol, J.-F.,, Dossal, C., Rondepierre, A.: FISTA is an automatic geometrically optimized algorithm
for strongly convex functions. Math. Program. 204(1), 449-491 (2024)

6. Aujol,J.-F,, Dossal, C.H., Labarriére, H., Rondepierre, A.: FISTA restart using an automatic estimation
of the growth parameter. J. Optim. Theory Appl. 206(2), 51 (2025)

7. Du, Y., Ruszczyniski, A.: Rate of convergence of the bundle method. J. Optim. Theory Appl. 173(3),
908-922 (2017)

8. Fercoq, O., Qu, Z.: Adaptive restart of accelerated gradient methods under local quadratic growth
condition. IMA J. Numer. Anal. 39(4), 2069-2095 (2019)

@ Springer



Journal of Optimization Theory and Applications (2026) 208:112 Page330f33 112

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

Grimmer, B.: On optimal universal first-order methods for minimizing heterogeneous sums. Optim.
Lett. 18(2), 427-445 (2024)

ITouditski, A., Nesterov, Y.: Primal-dual subgradient methods for minimizing uniformly convex func-
tions. arXiv (2014)

Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization.
Math. Program. 149(1), 1-45 (2015)

Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order penalty methods for convex program-
ming. Math. Program. 138(1), 115-139 (2013)

Lan, G., Ouyang, Y., Zhang, Z.: Optimal and parameter-free gradient minimization methods for convex
and nonconvex optimization. arXiv:2310.12139 (2023)

Li, T., Lan, G.: A simple uniformly optimal method without line search for convex optimization. Math.
Programm. 1-38 (2025)

Liang, J., Guigues, V., Monteiro, R.D.C.: A single cut proximal bundle method for stochastic convex
composite optimization. Math. Program. 208(1), 173-208 (2024)

Liang, J., Monteiro, R.D.C.: A proximal bundle variant with optimal iteration-complexity for a large
range of prox stepsizes. Extended version available on arXiv:2003.11457 (2020)

Liang, J., Monteiro, R.D.C.: An average curvature accelerated composite gradient method for noncon-
vex smooth composite optimization problems. SIAM J. Optim. 31(1), 217-243 (2021)

Liang, J., Monteiro, R.D.C.: A proximal bundle variant with optimal iteration-complexity for a large
range of prox stepsizes. SIAM J. Optim. 31(4), 2955-2986 (2021)

Liang, J., Monteiro, R.D.C.: Average curvature fista for nonconvex smooth composite optimization
problems. Comput. Optim. Appl. 86(1), 275-302 (2023)

Liang, J., Monteiro, R.D.C.: A unified analysis of a class of proximal bundle methods for solving
hybrid convex composite optimization problems. Math. Oper. Res. 49(2), 832-855 (2024)

Lin, Q., Xiao, L.: An adaptive accelerated proximal gradient method and its homotopy continuation
for sparse optimization. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
73-81, Bejing, China, 22-24 Jun (2014). PMLR

Malitsky, Y., Mishchenko, K.: Adaptive gradient descent without descent. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 6702—-6712. PMLR, 13-18 Jul (2020)

Melo, J.G., Monteiro, R.D.C., Wang, H.: A proximal augmented lagrangian method for linearly con-
strained nonconvex composite optimization problems. J. Optim. Theory Appl. 202(1), 388—420 (2024)
Nemirovskii, A., Nesterov, Y.: Optimal methods of smooth convex minimization. Comput. Math. Math.
Phys. 2, 21-30 (1985)

Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125-161
(2013)

Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152(1),
381-404 (2015)

Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer (2018)

O’donoghue, B., Candes, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math.
15, 715-732 (2015)

Renegar, J., Grimmer, B.: A simple nearly optimal restart scheme for speeding up first-order methods.
Found. Comput. Math. 22(1), 211-256 (2022)

Roulet, V., d’Aspremont, A.: Sharpness, restart and acceleration. SIAM J. Optim. 30(1), 262-289
(2020)

Zhou, D.,Ma, S., Yang, J.: AdaBB: Adaptive Barzilai-Borwein method for convex optimization. Math.
Oper. Res. (2025)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer


http://arxiv.org/abs/2310.12139
http://arxiv.org/abs/2003.11457

	Universal Subgradient and Proximal Bundle Methods for Convex and Strongly Convex Hybrid Composite Optimization
	Abstract
	1 Introduction
	1.1 Basic definitions and notation
	2 Universal Composite Subgradient and Proximal Bundle Methods
	2.1 A Universal Composite Subgradient Method
	2.2 A Universal Proximal Bundle Method

	3 A Functional Framework for Strongly Convex Optimization
	3.1 Proof of Proposition 3.1


	4 Proofs of Theorems 2.2 and 2.3
	4.1 Proof of Theorem 2.2
	4.2 Proof of Theorem 2.3

	5 Concluding Remarks
	A Technical Results
	A.1 Miscellaneous Technical Results
	A.2 Proofs of Lemmas 4.2 and 4.3
	References



