
ISSN 0097-8078, Water Resources, 2024, Vol. 51, No. 6, pp. 960–967. © Pleiades Publishing, Ltd., 2024.

HYDROLOGICAL PROBLEMS 
OF WATER-SCARCE REGIONS
Forecasting Catastrophic Floods in Crimean Territory
A. S. Lubkova, E. V. Vyshkvarkovaa, *, E. N. Voskresenskayaa, and A. E. Shchodroa

a Institute of Natural and Technical Systems, Sevastopol, 299011 Russia
*e-mail: aveiro_7@mail.ru

Received March 15, 2024; revised March 15, 2024; accepted April 10, 2024

Abstract—The catastrophic situations of recent years—in June 2021 near Yalta and in January 2024 in Sevas-
topol—associated with abundant precipitation, water level rise in rivers, and the formation of mudflows—
once again showed the need for advance forecasting of events with extreme precipitation in Crimean territory
for prompt response and minimization of economic losses. The region of the mountain Crimea with its com-
plicated relief and considerable slopes is especially susceptible to the formation of dangerous situations after
heavy (often multi-day) rains. Daily data on precipitation from the Ai-Petri weather station were used to cal-
culate and analyze the cases with total precipitation ≥40 mm within three consecutive days. Such conditions
were used in the analysis as a threshold of extreme precipitation leading to channel erosion in mountainous
Crimea rivers and the formation of debris f lows. The catastrophic f lood on the Chernaya River in January
2024, which was due to three days of extreme precipitation in the Sevastopol region, is considered. This situ-
ation was analyzed to determine the possibility to forecast it up to 3 months in advance with the use of the
developed artificial neural network model. The obtained results showed that the quality of the developed neu-
ral network is satisfactory to forecast with a lead time of 3 months 2–3-day long extreme precipitation, which
intensifies the erosion processes in the mountainous Crimea.
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INTRODUCTION
An important problem of Crimea has long been

and remains now the water problem associated with
the uneven distribution of runoff due to the physical–
geographic features of the peninsula [4]. The runoff of
Crimean rivers differs significantly from that of conti-
nental rivers. They belong to a specific category of riv-
ers with a f lood regime of a Crimean subtype [10].
Floods in Crimea occur mostly in winter and spring
and account for up to 80% of the surface runoff [3]. At
the same time, a deficiency in runoff forms in sum-
mer, and some rivers dry up [9]. Such a regime forms
due to irregularity of precipitation and the geomor-
phological structure of river basins. Clearly, the geo-
logical conditions remain practically unchanged;
therefore, the formation of both the regime of precip-
itation and its climatic anomalies become the focus of
the study. No doubt, both f loods and water shortages
cause important environmental and economic effects,
which have aggravated in recent decades.

In making managerial decisions, of great practical
importance is the analysis of extreme precipitation
values, which lead to some adverse effects, such as
floods and underflooding [6, 12]. During heavy rains,
mudflows often form in rivers and ravines. They cause
considerable damage: they destroy bridges, erode
roads, wash out fertile soil layer or deposit thick sedi-

ments in gardens, vineyards, etc. Mudflows can
form in almost any river or ravine in the mountainous
Crimea [12].

Illustrative catastrophic situations in the recent
years include the following. The first formed in June
2021, when 2–3 monthly amounts of precipitation fell
onto Yalta and Ai-Petry within two days. As a result,
the Vodopadnaya and Derekoika rivers overflowed
their banks, f looding many streets, houses, and pas-
sages; power lines were cut off. Several towns near
Bolshaya Yalta and segments of roads on the Southern
Coast of Crimea suffered from large mudflows, which
caused considerable damage to the recreational struc-
ture of the region.

Mudflows and discharge of considerable amounts
of sedimentary material occurred in many regions of
Greater Yalta, which inflicted considerable damage to
the recreational infrastructure. At the same time,
mudflows and multiple collapses of slopes with export
of collapse products into the Baidarskaya and Cher-
norechenskaya valleys caused underflooding of many
households (almost 70) in this part of Crimea. A dif-
ferent situation formed in January 2024. Then, after
three days with extreme precipitation, a technogenic
catastrophe occurred in the Chernaya River basin,
resulting in an interruption of municipal water supply
to Sevastopol City for a week. Rains caused a rapid rise
960
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in water level in rivers, resulting in underflooding of
almost 70 households; water intake structures were
out of order.

The described critical situations were caused by
heavy rains. Such rains are the main formation factor
of erosion processes, which, along with steep slopes
and small drainage areas of Crimean mountain rivers,
contribute to a rapid concentration of water f low in
river channels [6].

Note that the southern part of Crimean Peninsula
is characterized by the highest heterogeneity of precip-
itation events over time and the extreme precipitation
volumes [26]. According to the most recent IPCC
report, the frequency of extreme precipitation events
tendв to increase in many regions of the Earth against
the background of surface air temperature rise [17].
Positive trends in the frequency and intensity of
extreme precipitation were also found in the Russian
territory, including Crimean Peninsula [1, 27]. Fore-
casting such situations is an important task in hydro-
meteorology, both from a scientific point of view and
in the applied aspect for minimizing the adverse
effects of such situations. To prevent and minimize
such effects, a reliable and early precipitation forecast
is required.

One of the modern methods for precipitation fore-
cast is the use of artificial neural networks (ANN).
Studies in the recent decade apply models for such
forecasts at a monthly and seasonal scale in individual
regions of the Earth. In particular, various NNs were
used for forecasting monsoon precipitation in India
[24, 25] and Sri Lanka [23], forecasting precipitation
in Australia [14, 15, 21], Jordan [13], China [19], and
Greece [22]. Studies [15, 19, 24, 25, 29] were made
using several NN structures. In this case, a unidirec-
tional heteroassociative NN with one or more hidden
layers (such an NN scheme is often called a multilayer
perceptron) showed competitive results.

The models for forecasting monthly and seasonally
averaged precipitation based on NN can be conven-
tionally divided into two groups by their input data:
(1) using regional meteorological characteristics over
some previous period (precipitation, minimal and
maximal temperature, moisture content, various pre-
cipitation indices); (2) using global climate signals
(El Niño Southern Oscillation (ENSO), Pacific
Decadal Oscillation (PDO), Atlantic Multidecadal
Oscillation (AMO), Indian Ocean Dipole (IOD),
etc.). In these cases, acceptable simulation quality was
obtained obtained both in the first, e.g., in [13, 14, 24],
and the second case [15, 21, 24].

In this study, long-term observation data and arti-
ficial NN are used to study the potential of forecasting
extreme atmospheric precipitation events as causes of
river channel erosion and slope collapses.
WATER RESOURCES  Vol. 51  No. 6  2024
MATERIALS AND METHODS
The study used daily data on precipitation from Ai-

Petri weather station over 1950–2020 and data on Sev-
astopol over 1950–2024. The Ai-Petri weather station
was chosen for analysis since both the Chernaya River
and the rivers of Yalta originate from the slopes and
foot of the Ai-Petri Yaila.

The criterion of a hazardous phenomenon was
taken to be a precipitation threshold of 40 mm within
3 consecutive days. Each such phenomenon was
regarded as an independent hydrological situation,
and the artificial intelligence system was trained based
on recording such phenomena.

The NN-based model from [8, 20] was used; it is
schematized in Fig. 1. The first step (Fig. 1, stage 1) in
the proposed model was decomposing the forecasted
series into a low-frequency and a high-frequency com-
ponent. The decomposition was made with the use of
9-year running-average filter. The series smoothed by
the filter was taken as the low-frequency component,
and the series of the difference between the source and
smoothed values, as the high-frequency component.
Since the low-frequency component in different
months explains, on the average, 10% of the variance,
it was simulated by the simplest multiple linear regres-
sion.

At the next stage, the predictors to be used in mod-
eling were chosen and sorted (Fig. 1, stage 2). The
domains in which the predictors were calculated are
similar to those presented in [8, 20]; however, some
changes were made in the set of predictors for the geo-
potential field on the isobaric surface of 500 mbar. All
domains chosen for this study are given in Fig. 2.

The main difference from the earlier configuration
of model [8] at this stage is the use of Hoeffding’s non-
linear nonparametric method for the search for statis-
tical relationships (Hoeffding’s D correlation) [16].
The Hoeffding method partly reproduces the Kendall
rank correlation [18], where agreement/disagreement
between two observations is considered. A distinctive
feature is the use of not only a pair of observations, but
also two isolated series of this pair. If there exists a
relationship between the series, the obtained joint dis-
tribution will differ from that for independent series,
indicating that the ranks in one series are systemati-
cally related with the ranks in the other series. In
essence, the Hoeffding method determines, whether
the observed joint distribution of ranks differs from
that corresponding to independent series.

The core of the model (Fig. 1, stage 3) uses a uni-
directional heteroassociative multilayer NN, repre-
sented by a perceptron with one hidden layer (also
called a multilayer perceptron). The output layer is
represented by one neuron. The activation function of
NN neurons is sigmoidal bipolar f(x) = tanh(βx). The
proposed scheme of the model implies a learning
(38 years—1950–1987), test (19 years—1988–2006),
and check (14 years—2007–2020) samples. Four years
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Fig. 1. Scheme of the proposed model: (a) decomposition of the simulated series; (b) data preprocessing; (c) modeling; (d) mod-
eling results and verification.
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more (2021–2024) were simulated without compari-
son with the actual series.

The simulation was implemented by multiple enu-

meration of input signal combinations, resulting in the

formation of a vector of solutions with different NN

designs. The test sample was used to choose the best

20 NN structures. The further analysis of the calcula-

tion data was made with the use of the mean calculated

values for 20 best NN constructions, represented by

block diagrams.

The predictive ability of the model was evaluated in

comparison with a control sample (2007–2020) with

the use of the following parameters:

— Pearson correlation coefficient:

where σx and σy are root mean square deviations of the

samples x and y, representing the simulation results

and the observed values. A result of calculation will be

considered statistically significant if r > 0.5 (for 14 val-

ues of the check period, at a level α = 0.001).

— the ratio of the root mean square error of the

model relative to the observed values (RMSE) to the

standard deviation of the observed series (SD or σ):

where n is the length of the test sample series, xi is the

model, yi is the observed value,  is the mean of the

observed series, i is the year of the check sample. The

result is significant if RMSE/σ < 1 (i.e., RMSE > σ).

RESULTS AND DISCUSSION

An increase in surface air temperature in the

Crimean Peninsula contributes to changes in the

regime of average precipitation and its extreme char-

acteristics [5]. The precipitation regime in the moun-

tainous Crimea shows pronounced seasonality; the

largest amount of precipitation falls in winter [12]. The

Ai-Petri area is a part of the southwestern subregion

with a precipitation peak in winter; the weather station

lies at an elevation of 1180 m above sea level. In the

period 1950–2020, the mean annual precipitation

depth at the Ai-Petri weather station was 1009 mm.

The series shows a negative trend (19 mm/10 years),

though not statistically significant. The months with

maximum precipitation amount were January and

December (139 and 148 mm, respectively), and mini-

mums of precipitation were recorded in July and

August (52 and 55 mm, respectively). The largest sums

=
σ σ

 cov(   )
,i i

x y

x yr

 −
−  −σ = =
 − −

−

2

2

22

( )

( 1) ( )
RMSE   ,

( )( )

1

i i

i i

ii

x y
n x yn

n y yy y
n

y

WATER RESOURCES  Vol. 51  No. 6  2024
of extreme precipitation were recorded at weather sta-

tions of the mountainous Crimea; for example, the

95% percentile value for winter at Ai-Petri weather

station was 29 mm, and the 99% percentile was 64 mm

[2]. A typical feature of the mountainous Crimea is the

highest irregularity in the precipitation distribution

over time, when periods of long droughts give place to

intensive precipitation events [28]. The formation of

extreme hydrological/ecological phenomena is due to

a combination of several processes: heavy rainfall over

several days (at least three); snowfall and its intensive

melting at the end of a period of heavy precipitation;

washout of sediments from the surface of slopes; the

formation of mountain creeks merging into larger

streams; sediment transport by these streams; the for-

mation of mudflows and the transport of large

amounts of sediment by them.

The formation of the catastrophe in January 2024

was preceded by the following conditions. The two

previous months (November and December), were

characterized by rains lasting for many days, which

resulted in soil oversaturation with moisture. The

snow that fell on January 12–13 at a negative air tem-

perature in the drainage areas of Sevastopol rivers,

melted rapidly during the following warmer period.

Since January 14 to 19, 37 mm of precipitation fell in

Sevastopol (13 mm on January 14, 11 mm on

January 16, and 13 mm on January 19). Note that the

average precipitation rate in January in Sevastopol

over the recent climatic period (1991–2020) was

38.3 mm.

Note that the situations described above are not

unique, as can be seen from the plot of monthly pre-

cipitation for January over period 1950–2024 by data

of Sevastopol weather station (Fig. 3). To identify sim-

ilar situations over the historical period, the RX5day

index was used, which is calculated as the maximal

amount of precipitation over 5 consecutive days (mm)

in the period of interest (in this case, one month) [30].

An analysis of the series of total monthly precipita-

tion in January in Sevastopol in different years shows

that such cases have been observed before. In 1951,

43 mm of precipitation fell from January 20 to 23; in

1953 and 1957, >60 mm fell in January; in 1959,

~80 mm fell; in 1960, >48 mm fell from January 9 to

12; in January 1968, >117 mm fell, in that period,

25 days in January were rainy. As can be seen from

Fig. 3, the situations when the amount of precipitation

over several days in January was near the norm or

more are not rare, and should be forecasted.

Mean monthly forecasts in the Black Sea region,

including Crimea, have been already made with the

use of a unidirectional heteroassociative NN with one

hidden layer [8, 20]. Predictors for the model were sets
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Fig. 3. Long-term variations of (gray columns) precipitation totals and (full black line) RX5day index in January by weather data
on Sevastopol over 1950–2024. The dashed line shows the mean annual precipitation over periods 1961–1990 and 1991–2020.
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Fig. 5. Block diagrams for 20 best simulation results with a forecast lead time of 3 months on a test smple of 2007–2024. The cases
with precipitation above 40 mm over three consecutive days are given by black dots (for 2020).
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of indices of global climate signals of the ocean–

atmosphere system. Maslova et al. [20] used such a

model to forecast the frequency of intense cyclones in

the Black Sea region with a lead time of up to

6 months, and Lubkov et al. [8] used it to forecast pre-

cipitation in Ai-Petri area. In this study, we will apply

the architecture of a model based on NN from studies

[8, 20] with changes in configuration described below.

Figure 4 gives estimates of the model’s ability to

forecast cases with precipitation >40 mm over three

consecutive days with a lead time of up to 9 months

over a reference period 2007–2020. As can be seen

from Figs. 4a, 4b, only for December, the modeling

results are not statistically significant with any lead

time. A regular feedback can be seen on the plot of the

dependence of the correlation coefficient on the fore-

cast lead time (Fig. 4c). It is also worth mentioning

that the coefficient of correlation decreases and
WATER RESOURCES  Vol. 51  No. 6  2024
RMSE/σ increases (Fig. 4d, 4e) with the distance

from the test sample (1988–2006), which was involved

in the simulation process for determining the moment

of maximum learning (the procedure is described in

detail in [8]). Therefore, we note that the model is

non-stationary and, therefore, requires recalculation

every 5 years.

Figure 5 gives the results of simulation of cases with
precipitation >40 mm over three successive days in the
form of block diagrams over period 2007–2024,
including the check sample, which have been con-
structed based on 20 best NN structures. In most
cases, the model finds extreme months, when there
were not less than 2 cases of excess of 40-mm precipi-
tation threshold over 3 consecutive days. Thus, in
November 2007, 4 cases were recorded, while the aver-
age model estimation is 3; in December 2010, 4 cases
were recorded, and the model showed 3; in July 2018,
3 cases were recorded, and the model showed variation
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from 1 to 2 (at the long-term mean of 0.3 cases); in
January 2019, 3 cases were recorded, and the model
showed scatter from 1 to 3. At the same time, in 2007–
2024, there were 14 months in which 2 cases of excess
over the threshold of 40 mm were recorded in 3 con-
secutive days. For 10 out of 14 months, the model ade-
quately reproduces the case of exceeding of the precip-
itation threshold. For four months, the number of
simulated cases was underestimated.

An event that occurred in the Sevastopol region in
January 2024 attracted special attention of the authors
of the study. The proposed model could forecast the
emerged climate anomaly. An advance model forecast
showed the occurrence in January 2024 of two cases of
exceedance of the threshold of 40 mm of precipitation
over 3 consecutive days. In the described cases,
extreme precipitation that fell over a short time period
led to the rapid filling of mountain river beds, water
level rise, and, as a consequence, intensification of
erosion processes. As the river channels of the moun-
tainous Crimea have considerable slopes, their f lows
have a high eroding capacity and can transport large
amounts of sediments of different sizes [6, 11].

CONCLUSIONS

The complex orographic conditions in the
Crimean Peninsula, the observed rise of air tempera-
ture and the characteristics of extreme precipitation in
the Mountainous Crimea form favorable conditions
for the formation of f loods having a catastrophic char-
acter.

The catastrophic hydrological–environmental sit-
uation that formed in January 2024 in the Sevastopol
Region as a result of three days of abundant precipita-
tion preceding the formation of strong erosion pro-
cesses is not unique. Such conditions recur on an
interannual–interdecadal scale and require high-
quality forecasting.

A study of the possibility to forecast extreme pre-
cipitation in the Mountainous Crimea with the use of
an artificial NN model showed the following: all
anomalous months with ≥3 cases of exceedance of a
40-mm precipitation threshold in 3 consecutive days
were correctly forecasted with a ≥3 months lead time
on the test sample. Ten out of the fourteen months,
when two cases of exceedance of 40-mm precipitation
threshold within 3 consecutive days were recorded,
were successfully forecasted with a 3 months lead time.
The correlation coefficient and the forecast lead time
are inversely correlated. The coefficient of correlation
decreases and RMSE/σ increases on the control sam-
ple as its difference from the test sample increases,
which indicates the non-stationarity of the model.
This implies the need to update the data of the training
control sample by recalculation for the next 5 years.

The results of studying the model on a check sam-
ple suggest the conclusion that it can be used for con-

trol and prevention of hazardous natural phenomena
(floods, mudflows), caused by extreme precipitation
falling within 2–3 successive days, with a need to
recalculate the computation block every 5 years.
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