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Abstract
In this paper, we examine parametric set-valued equilibrium problems. We begin by
introducing a quasiconvexity property for set-valued maps and exploring its relation-
ship with existing concepts. Next, we analyze the semicontinuity and continuity of
approximate solutionmaps for these problems,without assuming the solid condition of
the ordered cone and the compact values of the objective map. Finally, we demonstrate
an application of the main results to set optimization problems involving a possibly
less order relation.

Keywords Approximate solution · Equilibrium problems · Semicontinuity · Set
optimization problems
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1 Introduction

Optimization theory is one of the rapidly developing and promising fields of Math-
ematics, with numerous practical applications across nearly all aspects of life and
society (Mordukhovich 2018; Goeleven 2017; Kinderlehrer and Stampacchia 2000).
Vector optimization theory, in particular, has found numerous applications in decision-
making problems in physics, medicine, economics, engineering, transportation, and
chemistry (Geering 2007; Lenhart andWorkman 2007; Bigi et al. 2019). Furthermore,
many practical situations have led to the development of generalized models of vec-
tor optimization problems. One of the extended directions in this area is the study of
set-valued equilibrium problems (Kassay and Rădulescu 2018) and set optimization
problems (Khan et al. 2015).

Many important and interesting results have been achieved in various topics related
to these problems, including existence conditions (TN 2022; Alleche and Rădulescu
2017; Hernández and Rodríguez-Marín 2007), optimality conditions (Tung 2022;
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Hernández and Rodríguez-Marín 2007; Alonso and Rodríguez-Marín 2009), stability
(Xu and Li 2014, 2016; Li et al. 2016), solution methods (Shehu et al. 2023; Zhao
et al. 2025) and well-posedness (Gutiérrez et al. 2012; Khoshkhabar-amiranloo and
Khorram 2015). The semicontinuity of the solution maps to parametric equilibrium
problems and parametric set optimization problems has been extensively studied by
the authors. For the parametric equilibrium problems, we start with the paper (Anh
et al. 2020a), sufficient conditions for the Hausdorff continuity of approximate solu-
tions in two models associated with weakly set-valued equilibrium problems were
examined, with linear scalarization techniques for sets and the concavity of the objec-
tive maps being utilized. In a separate study (Anh et al. 2021), the authors investigated
the Hausdorff continuity of solution maps of twomodels related to strongly set-valued
equilibrium problems by applying relaxed concavity conditions. In Anh et al. (2024),
based on the scalarization method, along with generalized concavity of set-valued
maps, the authors achieved the Hausdorff continuity of the approximate solution maps
to set-valued equilibrium problems. For the parametric set optimization problems, Xu
and Li (2014) investigated upper semicontinuity, lower semicontinuity, and the closed-
ness of the solution maps based on the upper order relation using constraint conditions
named upper-property, converse upper-property, and the continuity of the set-valued
objective map. Subsequently, Xu and Li (2016) weakened and modified the assump-
tions in Xu and Li (2014), introducing a level map and removing the upper-property.
Then, Han and Huang (2017) used the strictly convexity of objective maps to study the
semicontinuity of the solution maps to the set optimization problem. Recently, in Anh
et al. (2020b), using scalarization methods and cone convexity (or concavity) assump-
tions, the authors achieve the Hausdorff continuity of the ideal solution maps to set
optimization problems. In Han and Yu (2022), the authors used the oriented distance
function to obtain the upper and lower semicontinuity of approximate weak minimal
solution maps to parametric set optimization problems. Very recently, the authors in
Anh et al. (2024) have used new nonlinear scalarization functions to study sufficient
conditions for the Hausdorff continuity of approximate solution maps to parametric
set optimization problems involving set less order relations.

The compactness assumption on the values of set-valued objective maps constitutes
an important condition in the study of the semicontinuity of solution maps (Han
and Yu 2022; Anh et al. 2024; Xu and Li 2016). Nevertheless, this assumption also
restricts the applicability of the corresponding results. Thus, it becomes necessary to
replace the compactness assumption with an alternative condition or a weaker form
of compactness. Fortunately, recent works (Durea and Florea 2024a, b) have explored
the possibility of obtaining a sequential characterization of the compactness of a set
with respect to a cone. In Durea and Florea (2024a), the authors have investigate the
potential for obtaining a sequential characterization of the compactness of a set relative
to a cone. Building on this foundation, they consider several set-valued equilibrium
problems and employ the previously established notion of generalized compactness to
analyze the existence of solutions to these problems. In Durea and Florea (2024b), the
authors study optimality conditions for a special kind of solution to set optimization
problems, with the most important one being the sequential compactness with respect
to a cone.
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Inspired by the observations mentioned above, this article aims to explore sufficient
conditions for the semicontinuity of approximate solution maps to set-valued equi-
librium problems, without assuming the solid condition of the ordered cone and the
compact values of the objective map. Subsequently, we investigate the continuity of
ideally approximate solution maps to set optimization problems.

The rest of the paper is structured as follows: Sect. 2 reviews essential concepts
and their properties that will be necessary for the subsequent discussions. Section 3
outlines sufficient conditions for the semicontinuity of solutionmaps to parametric set-
valued equilibrium problems. In Sect. 4, we concentrate on the continuity of solution
maps to set optimization problems.

2 Preliminaries

In this paper, let X, Y and W be normed spaces. Let C ⊂ Y be a nontrivial, pointed,
closed, convex conewith possibly empty interior.B stands for the unit ball in bothX and
Y. Let R+, R++ be the set of all nonnegative and positive real numbers, respectively.

The family of all nonempty subsets of Y is denoted by P(Y). Let � be a nonempty
convex subset of X, � be a nonempty subset of W. We consider the following para-
metric set-valued equilibrium problem.

(SEP): Find x̄ ∈ K (λ) such that

F(x̄, y, λ) ∩ C �= ∅ ∀y ∈ K (λ), (1)

where F : � × � × � ⇒ Y and K : � ⇒ � are set-valued maps with nonempty
values.

We now recall an approximate solution concept introduced in Anh et al. (2021),
under the assumption that the cone C has a nonempty interior, i.e., int C �= ∅. For
(ε, λ) ∈ R+ × � and e ∈ int C, the ε-approximate solution set with respect to e of
(SEP) is defined by

{x ∈ K (λ) | (F(x, y, λ) + εe) ∩ C �= ∅ ∀y ∈ K (λ)},

or equivalently,

{x ∈ K (λ) | 0 ∈ F(x, y, λ) + εe − C ∀y ∈ K (λ)}.

Obviously, the above concept depends on the choice of a vector e in the interior of
the ordering cone. From this observation, we introduce the ε-solutions to (SEP) as
follows:

Definition 1 Let (ε, λ) ∈ R+ × �. A vector x ∈ K (λ) is said to be ε-solution to
(SEP), written as x ∈ Sol+(SEP)(ε, λ) if

0 ∈ F(x, y, λ) + εB+ − C ∀y ∈ K (λ),

where B+ = B ∩ C.
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Remark 1 (a) It is evident that the set Sol+(SEP)(ε, λ) does not depend on the choice
of a vector e from the interior of the ordering cone. Moreover, we do not require
the cone to have an empty interior.

(b) Let S be the unit sphere and S+ := S ∩ C. Then, we have

εB+ − C = εS+ − C.

Indeed, we only present for εB+ − C ⊂ εS+ − C, as the reverse inclusion is trivial.
We first prove that B+ ⊂ S+ − C. For any b ∈ B+, there exists b′ ∈ (b + C) ∩ S+.
This means that, b′ ∈ S+ and b ∈ b′ − C ⊂ S+ − C, and hence B+ ⊂ S+ − C. Since
C is a cone, for all ε > 0, we have εB+ ⊂ εS+ − C. By the convexity of C, one has
εB+ − C ⊂ εS+ − C.

From Remark 1(b), we can equivalently represent the solution map Sol+(SEP) as
follows.

Sol+(SEP)(ε, λ) := {x ∈ K (λ) | 0 ∈ F(x, y, λ) + εS+ − C ∀y ∈ K (λ)}.

Remark 2 It is clear that, for each vector (ε, λ) ∈ R+ × �,

Sol+(SEP)(0, λ) ⊂ Sol+(SEP)(ε, λ).

We now recall some concepts used in what follows. Let Q be a set-valued map
from X to Y with nonempty values on X and x0 ∈ X.

Definition 2 (See (Göpfert et al. 2003, Definitions 2.5.1 and 2.5.16)) Q is said to be

(a) upper semicontinuous (usc) at x0 ∈ X if for any neighborhood V of Q(x0), there
exists some neighborhood U of x0 such that Q(U) ⊂ V;

(b) lower semicontinuous (lsc) at x0 ∈ X if for any open subset V of Y with Q(x0) ∩
V �= ∅, there exists some neighborhood U of x0 such that

Q(x) ∩ V �= ∅ ∀x ∈ U;

(c) continuous at x0 ∈ X if it is both usc and lsc at x0;
(d) C-upper semicontinuous (C-usc) at x0 ∈ X, if for any for any neighborhoodN of

Q(x0), there is a neighborhood U of x0 such that

Q(x) ⊂ N + C ∀x ∈ U;

(e) C-lower semicontinuous (C-lsc) at x0 ∈ X, if for any open subset N of Y with
Q(x0) ∩ N �= ∅ there is a neighborhood U of x0 such that

Q(x) ∩ (N − C) �= ∅ ∀x ∈ U;

(f) C-continuous at x0 ∈ X, if it is both C-usc and C-lsc at x0.
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Lemma 1 (See (Hu and Papageorgiou 1997, p. 37))

(a) Q is lsc at x0 if for all xn → x0 and y0 ∈ Q(x0), then there exists yn ∈ Q(xn)
such that yn → y0.

(b) Q is lsc at x0 if for all xn → x0, then one has Q(x0) ⊂ lim inf Q(xn), where

lim inf Q(xn) := {y0 ∈ Y | ∃{yn} with yn ∈ Q(xn), {yn} → y0}.

Lemma 2 (See (Hu and Papageorgiou 1997, p. 41)) If Q(x0) is compact, then Q is
usc at x0 if and only if for any sequence {xn} converging to x0 and yn ∈ Q(xn), there
is a subsequence {ynk } converging to some y0 ∈ Q(x0).

Definition 3 (See (Durea and Florea 2024a, Definition 2.4)). A setD ∈ P(Y) is called
C-sequentially compact if for any sequence {dn} ⊂ D, there is a sequence {cn} ⊂ C
such that the sequence {dn − cn} has a convergent subsequence towards an element of
D.

Remark 3 (See (Durea andFlorea 2024a, Theorem2.7)) IfD isC-compact, thenD isC-
sequentially compact. Conversely, it follows from (Durea and Florea 2024a, Theorem
2.11) that if D is C-sequentially compact and separable, then D is C-compact.

Lemma 3 (See (Han 2025, Theorem 3.1)) If Q is C-usc with C-sequentially compact
values at x0 ∈ X, then for any sequence {xn} ⊂ X converging to x0 and for any
yn ∈ Q (xn), there exist cn ∈ C and y0 ∈ Q (x0) such that the sequence {yn − cn} has
a subsequence

{
ynk − cnk

}
converging to y0.

Lemma 4 (See (Han2025,Theorem3.2)) If Q isC-lsc at x0 ∈ X, then for any sequence
{xn} ⊂ X converging to x0 and for any y0 ∈ Q (x0), there exists yn ∈ Q (xn) and
cn ∈ C such that the sequence {yn + cn} converges to y0.

Definition 4 (See (Kuroiwa et al. 1997, Definition 3.2)) Let � be a nonempty convex
subset of X. Q is said to be C-convex on � if for any x1, x2 ∈ � and t ∈ [0, 1],

t Q(x2) + (1 − t)Q(x1) ⊂ Q(t x2 + (1 − t)x1) + C.

Motivated by Anh et al. (2024), we propose generalized concepts related to Defi-
nition 4.

Definition 5 Let � and � be nonempty convex subsets of X and R, respectively. For
any (x1, r1), (x2, r2) ∈ � × �, we set (xt , rt ) := t(x2, r2) + (1 − t)(x1, r1) for all
t ∈]0, 1[. The map Q is said to be (C, �)-quasiconvex on � if

[
0 ∈ (Q(x1) + r1B+ − C) ∩ (Q(x2) + r2(intB+) − C)

]

�⇒ [
0 ∈ Q(xt ) + rt (intB+) − C]

.

The relationship of C-convexity and (C, �)-quasiconvexity is presented in the fol-
lowing result.
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Lemma 5 Let � be a nonempty convex subset of X. If the map Q is (−C)-convex on
�, then it is (C, �)-quasiconvex on � for any nonempty convex subset � of R+.

Proof For all (x1, r1), (x2, r2) ∈ � × �, we assume that

[
0 ∈ (Q(x1) + r1B+ − C) ∩ (Q(x2) + r2(intB+) − C)

]
,

or equivalently

(Q(x1) + r1B+) ∩ C �= ∅ and (Q(x2) + r2(intB+)) ∩ C �= ∅.

Let z1 ∈ Q(x1), b1 ∈ B+, b2 ∈ intB+ and z2 ∈ Q(x2) such that

z1 + r1b1 ∈ C and z2 + r2b2 ∈ C.

By the (−C)-convexity of Q, for any t ∈]0, 1[, there exist zt ∈ Q(t x2 + (1 − t)x1)
and c ∈ C such that

zt = t z2 + (1 − t)z1 + c.

Consequently,

zt + (1 − t)r1b1 + tr2b2 = (1 − t)(z1 + r1b1) + t(z2 + r2b2) + C ∈ C.

This leads to

[
Q(t x2 + (1 − t)x1) + (tr2 + (1 − t)r1) (intB+)

] ∩ C �= ∅ ∀t ∈]0, 1[,

that is,
0 ∈ Q(t x2 + (1 − t)x1) + (tr2 + (1 − t)r1) (intB+) − C.

Therefore, Q is (C, �)-quasiconvex on �. 
�
The following example illustrates that the converse statement of Lemma 5 are not

true.

Example 1 Let X = � = R, Y = R
2, C = [0,+∞[×{0} and B = {(u, v) ∈ R

2 |
u2 + v2 ≤ 1}. Then, B+ = [0, 1] × {0}. A map Q : X ⇒ Y is defined by

Q(x) =
{

{−2} × [−2, 0], if x = 0,

[ − 3 − x2,−2] × [0, 2], if x �= 0.

We show that Q is (C, R+)-quasiconvex on �. Indeed, let x1, x2 ∈ � and r1, r2 ∈
R+ such that

0 ∈ Q(x1) + r1B+ − C and 0 ∈ Q(x2) + r2(intB+) − C,
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then we have r1 ≥ 2 and r2 > 2. Consequently,

0 ∈ Q(xt ) + rt (intB+) − C ∀t ∈]0, 1[,

where (xt , rt ) := t(x2, r2) + (1 − t)(x1, r1).
However, Q is not −C-convex on �. To see this, let x1 = −1, x2 = 1 and t = 1

2 ,
we have

1

2
Q(−1)+1

2
Q(1) = [−4,−2]×[0, 2] � {−2}×[−2, 0]−C = Q

(
1

2
x1 + 1

2
x2

)
−C.

3 Semicontinuity of solutionmaps to parametric set-valued
equilibrium problems

To our knowledge, studies on the continuity and semicontinuity of solution maps to
(SEP) have typically employed assumptions related to convexity and compactness,
and required the ordering cone to have a nonempty interior, see e.g, Anh et al. (2021),
Ansari et al. (2024) and the references therein. Motivated by these studies, we will
investigate (semi)continuity for Sol+(SEP)(·, ·) without requiring the ordering cone
to have a nonempty interior, while also using weaker assumptions than those in Anh
et al. (2021) and Ansari et al. (2024).

Since the existence of solutions for equilibrium problems has been extensively
investigated (Eslamizadeh and Naraghirad 2020; Jafari et al. 2017; Alleche and
Rădulescu 2017; Durea 2007; Durea and Florea 2024a), we assume in this paper that
all types of solution sets for the reference problems are nonempty. We now present
the lower semicontinuity of Sol+(SEP)(·, ·).
Theorem 1 Assume that

(i) K is continuous with convex and compact values on �;
(ii) F is (−C)-lower semicontinuous on K (�) × K (�) × �;
(iii) for λ ∈ �, y ∈ K (λ), F(·, y, λ) is (C, R++)-quasiconvex on K (λ).

Then, Sol+(SEP)(·, ·) is lower semicontinuous on R++ × �.

Proof Let S : R++ × � ⇒ � be defined by

S(ε, λ) := {x ∈ K (λ) | 0 ∈ F(x, y, λ) + ε(intB+) − C ∀y ∈ K (λ)},

for all ε > 0 and λ ∈ �. Let (ε0, λ0) ∈ R++ × � be arbitrary. We now show that
S is lower semicontinuous at (ε0, λ0). If S is not lsc at (ε0, λ0), then we can find
x0 ∈ S(ε0, λ0) and a sequence {(εn, λn)} ⊂ R++ ×� converging to (ε0, λ0) such that
for all xn ∈ S(εn, λn), {xn}does not converge to x0. Thanks to the lower semicontinuity
of K at λ0 and Lemma 1(a), we can find x̄n ∈ K (λn) satisfying x̄n → x0. By the
above contradiction assumption, there is a subsequence {x̄nk } of {x̄n} such that for all
nk , x̄nk /∈ S(εnk , λnk ), i.e., there exists ynk ∈ K (λnk ),

0 /∈ F(xnk , ynk , λnk ) + εnk (intB+) − C.
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Consequently,

znk /∈ −εnk (intB+) + C ∀znk ∈ F(xnk , ynk , λnk ). (2)

Since K is upper semicontinuous with compact values at λ0 and ynk ∈ K (λnk ),
by Lemma 2, we assume that the sequence {ynk } converges to y0 ∈ K (λ0) (take a
subsequence if necessary). In view of x0 ∈ S(ε0, λ0), we have

0 ∈ F(x0, y0, λ0) + ε0(intB+) − C.

Then, we can find some z0 ∈ F(x0, y0, λ0) such that

z0 ∈ −ε0(intB+) + C.

By (ii) and Lemma 4, there exist ẑnk ∈ F(xnk , ynk , λnk ) and cnk ∈ (−C) such that

{ẑnk + cnk } → z0.

Suppose that ẑnk + cnk ∈ −εnk (intB+) + C, then we have

ẑnk ∈ −cnk − εnk (intB+) + C.

It follows from −cnk ∈ C that

ẑnk ∈ C − εnk (intB+) + C ⊂ −εnk (intB+) + C,

which contradicts (2). Thus, ẑnk +cnk /∈ −εnk (intB+)+C which together with εnk > 0
implies that

ẑnk + cnk
εnk

/∈ (− intB+) + C.

Since (− intB+) + C is open and
{
ẑnk+cnk

εnk

}
converges to z0

ε0
, we obtain

z0
ε0

/∈ (− intB+) + C, or equivalently z0 /∈ −ε0(intB+) + C.

This contradicts the fact that z0 ∈ −ε0(intB+) + C, and hence S is lsc at (ε0, λ0).
We next claim that

Sol+(SEP)(ε0, λ0) ⊂ clS(ε0, λ0), (3)

where “cl” is the closure. For x̄ ∈ Sol+(SEP)(ε0, λ0) and x1 ∈ S(ε0, λ0), one has

0 ∈ (F(x̄, y, λ0) + ε0B+ − C) ∩ (F(x1, y, λ0) + ε0(intB+) − C) ∀y ∈ K (λ0).
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Since F(·, y, λ0) is (C, R++)-quasiconvex on K (λ0), for any t ∈]0, 1[, one has

0 ∈ F(t x1 + (1 − t)x̄, y, λ0) + ε0(intB+) − C.

Thus, xt := t x1+(1−t)x̄ belongs to S(ε0, λ0).Because xt → x̄ when t → 0, we have
x̄ ∈ clS(ε0, λ0), and hence (3) follows. By Lemma 1(b), the lower semicontinuity of
S at (ε0, λ0) leads to

S(ε0, λ0) ⊂ lim inf S(εn, λn),

for all (εn, λn) → (ε0, λ0). Combining this with (3), we have

Sol+(SEP)(ε0, λ0) ⊂ clS(ε0, λ0) ⊂ cl lim inf S(εn, λn). (4)

In view of (Aubin and Frankowska 1990, Definition 1.4.6), one has

cl lim inf S(εn, λn) = lim inf S(εn, λn).

This together with (4) implies that

Sol+(SEP)(ε0, λ0) ⊂ lim inf Sol+(SEP)(εn, λn),

as S(εn, λn) ⊂ Sol+(SEP)(εn, λn). Consequently, Sol+(SEP)(·, ·) is lsc at (ε0, λ0).
Since (ε0, λ0) is an arbitrary element in R++ × �, the proof is complete. 
�

Passing the upper semicontinuity of the solution map Sol+(SEP)(·, ·), we have the
following result.

Theorem 2 Assume that

(i) K is continuous with compact values on �;
(ii) F is (−C)-usc with (−C)-sequentially compact values on K (�) × K (�) × �.

Then, Sol+(SEP)(·, ·) is upper semicontinuous on R++ × �.

Proof Suppose that Sol+(SEP) is not upper semicontinuous at some (ε0, λ0) ∈
R++ ×�. Then, we can find a neighborhoodN of Sol+(SEP)(ε0, λ0) and a sequence
{(εn, λn)} ⊂ R++ × � converging to (ε0, λ0) such that

Sol+(SEP)(εn, λn) �⊂ N .

Equivalently, there is xn ∈ Sol+(SEP)(εn, λn) \ N for all n. Since K is upper semi-
continuous with compact values at λ0 and xn ∈ K (λn), by Lemma 2, we can assume
that the sequence {xn} converges to x0 ∈ K (λ0). If x0 /∈ Sol+(SEP)(ε0, λ0), then
there is y0 ∈ K (λ0) such that

z /∈ −ε0B+ + C ∀z ∈ F(x0, y0, λ0). (5)
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In view of the lower semicontinuity of K and Lemma 1(a), we can find some sequence
{yn} with yn ∈ K (λn) converging to y0. Since xn ∈ Sol+(SEP)(εn, λn), there exists
zn ∈ F(xn, yn, λn) such that

zn ∈ −εnB+ + C. (6)

From zn ∈ F(xn, yn, λn) and (ii), by Lemma 3, there are the sequence {cn} ⊂ (−C)

and z0 ∈ F(x0, y0, λ0) such that the sequence {zn −cn} has a subsequence {znk −cnk }
converging to z0. Thanks to (6) and cnk ∈ (−C), we get

znk − cnk ∈ −εnkB+ + C, and consequently
znk − cnk

εnk
∈ −B+ + C,

as εnk > 0 for all nk . Since (−B+ + C) is a closed set, we get z0 ∈ −ε0B+ + C, a
contradiction as (5) holds. Hence,

x0 ∈ Sol+(SEP)(ε0, λ0) ⊂ N ,

which is impossible as xn /∈ N for all n. Therefore, the map Sol+(SEP)(·, ·) is upper
semicontinuous on R++ × �. 
�

To facilitate comparison with existing results, we combine Theorems 1 and 2 to
obtain the following result.

Theorem 3 Assume that

(i) K is continuous with compact values on �;
(ii) F is (−C)-continuous with (−C)-sequentially compact values on K (�) ×

K (�) × �.

(iii) for λ ∈ �, y ∈ K (λ), F(·, y, λ) is (C, R++)-quasiconvex on K (λ).

Then, Sol+(SEP)(·, ·) is continuous on R++ × �.

Remark 4 Most studies on the (semi)continuity of approximate solution maps to set-
valued equilibrium problems stipulate that the ordered cone must have a nonempty
interior (Anh et al. 2021; Han and Huang 2016). Recently, the authors of Anh et al.
(2024) have achieved an improved version of the results in Anh et al. (2021) without
the requirement of a nonempty interior for the ordered cone. However, in Anh et al.
(2024), the image space is required to be a reflexive Banach space. In (Anh et al.
2021, Theorem 3.2), the continuity with compact values of the objective map is key
assumptions, while our results given as in Theorem 3, explore sufficient conditions
for the continuity of approximate solution maps to set-valued equilibrium problems
without this requirement. Therefore, our results improve (Anh et al. 2021, Theorem
3.2).

As mentioned in Remark 4, the compact values of the objective map is one of the
essential assumptions used in previous studies when investigating sufficient conditions
for the continuity of the solution maps to equilibrium problems. In the following
example, we have relaxed this property but still achieve the result as in Theorem 3.
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Example 2 Let X = W = R, Y = R
2, C = R

2+, B = {u ∈ R
2 | ‖u‖∞ ≤ 1}, where

‖u‖∞ := max{|u1|, |u2|} for u = (u1, u2), � = [2, 4] , K (λ) = [2, λ] and

F(x, y, λ) = (y − x, y2 − x2) − R
2+.

Weonly focus onverifying the (C, R++)-quasiconvexity of F , as the other assumptions
are straightforward.

For each λ ∈ �, y ∈ K (λ), (x1, r1), (x2, r2) ∈ �×�, we set (xt , rt ) := t(x2, r2)+
(1 − t)(x1, r1) for all t ∈]0, 1[. Assume that

0 ∈ F(x1, y, λ) + r1B+ − C and 0 ∈ F(x2, y, λ) + r2 intB+ − C, (7)

we show that
0 ∈ F(xt , y, λ) + rt intB+ − C. (8)

By the definition of F and (7), we have

0 ∈ (y−x1, y
2−x21 )−R

2++r1B+−R
2+ and 0 ∈ (y−x2, y

2−x22 )−R
2++r2 intB+−R

2+.

Hence,

(x1 − y, x21 − y2) ∈ r1B+ − R
2+ and (x2 − y, x22 − y2) ∈ r2 intB+ − R

2+,

or equivalently, {
x1 − y ≤ r1
x21 − y2 ≤ r1

and

{
x2 − y < r2
x22 − y2 < r2.

Then, {
(1 − t)x1 − (1 − t)y ≤ (1 − t)r1
(1 − t)x21 − (1 − t)y2 ≤ (1 − t)r1

and

{
t x2 − t y < tr2
t x22 − t y2 < tr2,

which implies that

{
xt − y < rt
x2t − y2 < (1 − t)x21 + t x22 − y2 < rt .

Thus,
(xt − y, x2t − y2) ∈ rt intB+ − R

2+,

i.e., (8) follows.
It follows from direct computation that

Sol+(SEP)(ε, λ) =
[
−

√
ε + λ2,

√
ε + λ2

]
.

However, the result in (Anh et al. 2021, Theorems 3.2) is not applicable as the compact
values of F is violated.
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4 Application to set optimization problems

Let P(Y),�,�, and K be defined as in Sect. 2. We consider parametric set optimiza-
tion problems defined by for λ ∈ �,

(SOP) min Q(x, λ) subject to x ∈ K (λ),

where Q : � × � ⇒ Y is nonempty set-valued map with (−C)-convex values.
In Jahn and Ha (2011), the authors introduce several order relations on the sets, one

of which, the possibly less order relation is presented as follows.

Definition 6 (See (Jahn and Ha 2011, Definition 3.4)) Let A, B ∈ P(Y) be arbitrarily
chosen sets. Then, the possibly less order relation �p is defined by

A �p B :⇔ (∃a ∈ A ∃b ∈ B : a ≤ b).

It follows from (Jahn and Ha 2011, Proposition 3.3) that for arbitrary sets A, B ∈
P(Y), we have

A �p B ⇔ 0 ∈ B − A − C.

Motivated by the works (Han 2019; Anh et al. 2020b), we propose the concept of
an ideally approximate solution to parametric set optimization problem.

Definition 7 Let λ ∈ � and ε > 0. An element x̄ of K (λ) is called an ideally approx-
imate solution to (SOP), written as x̄ ∈ Sol+(SOP)(ε, λ) if

0 ∈ Q(y, λ) − Q(x̄, λ) + εB+ − C ∀y ∈ K (λ).

The focus of this section is primarily on examining the continuity of ideally approx-
imate solution maps to parametric set optimization problems.

Definition 8 (See (Seto et al. 2018,Definition 3.2))Let� be a nonempty convex subset
of X. A set-valued map G : X ⇒ Y is said to be C-quasiconvex on� if for any convex
subset A of Y, x1, x2 ∈ � and t ∈]0, 1[,

0 ∈ tG(x2) + (1 − t)G(x1) + A + C

implies
0 ∈ G((1 − t)x1 + t x2) + A + C.

Lemma 6 (See Seto et al. 2018) Every C-convex map is C-quasiconvex.
Next, we formulate sufficient conditions for the continuity of solution map

Sol+(SOP)(·, ·).
Corollary 1 Assume that

(i) K is continuous with convex and compact values on �;
(ii) Q is (±C)-continuous with (±C)-sequentially compact values on K (�) × �;
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(iii) for λ ∈ �, Q(·, λ) is C-quasiconvex on K (λ).

Then, Sol+(SOP)(·, ·) is continuous on R++ × �.

Proof For each (x, y, λ) ∈ � × � × �, we set

F(x, y, λ) = Q(y, λ) − Q(x, λ).

Thus, Sol+(SOP)(ε, λ) = Sol+(SEP)(ε, λ), and so we only check the validity of
Assumption (ii) and (iii) of Theorem 3.

� F is (C, R++)-quasiconvex in the first argument on K (λ): For any y ∈ K (λ),
(x1, r1), (x2, r2) ∈ K (λ) × R++ and t ∈]0, 1[ with

0 ∈ (F(x1, y, λ) + r1B+ − C) ∩ (F(x2, y, λ) + r2(intB+) − C) ,

we have

0 ∈ (Q(y, λ) − Q(x1, λ) + r1B+ − C) ∩ (Q(y, λ) − Q(x2, λ) + r2(intB+) − C) .

Consequently,

0 ∈ Q(y, λ) − (1 − t)Q(x1, λ) − t Q(x2, λ) + (1 − t)r1B+ + tr2(intB+) − C,

that is,

0 ∈ (1 − t)Q(x1, λ) + t Q(x2, λ) − Q(y, λ) − (1 − t)r1B+ − tr2(intB+) + C.

Combining this with (1− t)r1B+ + tr2(intB+) ⊂ (tr2 + (1− t)r1)(intB+), we have

0 ∈ (1 − t)Q(x1, λ) + t Q(x2, λ) − Q(y, λ) − (tr2 + (1 − t)r1)(intB+) + C.

Since Q(·, λ) is C-quasiconvex on K (λ),

0 ∈ Q((1 − t)x1 + t x2, λ) − Q(y, λ) − (tr2 + (1 − t)r1)(intB+) + C.

Equivalently,

0 ∈ F(t x2 + (1 − t)x1, y, λ) + (tr2 + (1 − t)r1)(intB+) − C.

� F is (−C)-continuouswith (−C)-sequentially compact values on K (�)×K (�)×
�: It is clear that if Q is (±C)-continuous on K (�) × �, then F is (−C)-continuous
on K (�) × K (�) × �.

For the sequential compactness of F , let {zn} ⊂ F(x, y, λ) = Q(y, λ) − Q(x, λ).
Then, we can find {un} ⊂ Q(y, λ) and {vn} ⊂ Q(x, λ) such that

zn = un − vn ∀n.
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Since Q(y, λ) is (−C)-sequentially compact, there exists cn ∈ (−C) such that the
sequence {un − cn} has a subsequence converging to an element u0 ∈ Q(y, λ). On
the other hand, the set Q(x, λ) is C-sequentially compact, there is dn ∈ C such that
{vn−dn} has a subsequence converging to v0 ∈ Q(x, λ). Thus, the sequence {un−cn−
vn+dn} has a subsequence converging to u0−v0 ∈ Q(y, λ)−Q(x, λ), or equivalently
{zn − (cn − dn)} has a subsequence converging to u0 − v0 with cn − dn ∈ (−C). It
means that F(x, y, λ) is (−C)-sequentially compact. 
�

We present the following example to showcase the application of Corollary 1.

Example 3 Let X = � = Y = R, C = R+ � = [0, 1] , K (λ) = [λ, 2], B = [−1, 1]
and

Q(x, λ) =
[
x2, x2 + λ

]
.

We only check the C-quasiconvexity of Q because the other are trivial. For each
λ ∈ R, t ∈]0, 1], let x1, x2 ∈ R such that for any convex A ⊂ R ,

0 ∈ t Q(x2) + (1 − t)Q(x1) + A + C.

We show that
0 ∈ Q(t x2 + (1 − t)x1) + A + C. (9)

Indeed, by definition of Q and (9), one has

0 ∈
[
t x22 + (1 − t)x21 , t x

2
2 + tλ + (1 − t)x22 + tλ

]
+ A + C,

or equivalently

0 ∈
[
(t x2 + (1 − t)x1)

2 , (t x1 + (1 − t)x1)
2 + λ

]
+ A + C.

This means that
0 ∈ Q(t x2 + (1 − t)x1) + A + C.

By some direct computation, we get

Sol+(SOP)(ε, λ) =
[

λ,
2 + √

λ2 + λ + ε − |2 − √
λ2 + λ + ε|

2

]

.

Remark 5 In (Anh et al. 2020b, Theorem 5.1), the authors investigated the Hausdorff
continuity of ideally approximate solution mappings to (SOP) under the framework of
upper and lower type set less order relations, relying on the convexity and compactness
of the objective maps. In Corollary 1, these assumptions have been further relaxed to
quasiconvexity and cone-sequential compactness. Consequently, by employing tech-
niques similar to those used in the proof of Corollary 1, we establish a new result that
refines and extends (Anh et al. 2020b, Theorem 5.1).
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