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Abstract
A graph in which all minimal zero forcing sets are in fact minimum zero forcing sets is
called a well-forced graph. The main result of this paper is to characterize well-forced
trees and based on this characterization present an algorithm for determining which
trees are well-forced. As part of this characterization, certain subgraphs are identified
as being forbidden in a well-forced graph. Additionally it is shown whether some
common families of graphs are well-forced or not. Understanding well-forced graphs
turns out to be closely related to the question of which vertices of a graph are in a
minimal zero forcing set. A vertex of G that is in no minimal zero forcing set of G
is called an irrelevant vertex. For any graph, a sufficient condition for a vertex to be
irrelevant is established. In addition, it is proved that this condition is a characterization
of irrelevant vertices in trees.
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1 Introduction

Zero forcing is a topic that has received much recent attention in the mathematical
literature. In this paper, we add to the body of knowledge about zero forcing in trees
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in two distinct ways: we characterize trees with all minimal zero forcing sets the same
size, and we characterize vertices in trees that occur in no minimal zero forcing set.

Zero forcing was introduced in [9] in 2008 as a combinatorial technique for finding
an upper bound on themaximummultiplicity of the eigenvalues of symmetricmatrices
whose nonzero off-diagonal entries represent the edges of a graph with no restriction
on the diagonal entries. Since then, the zero forcing parameter and its variants have
been studied extensively; see [11] for more details.

Zero forcing can be seen as a game with a given “color change rule,” where the
goal of a player is to color all vertices blue. In this paper, we consider standard zero
forcing, which involves only two colors and one player. The standard color change
rule (CCR) is as follows: if a vertex v is blue has only one non-blue neighbor u, then
the color of vertex u is changed to blue. In this situation, we say that v forces u. The
game starts with some initial subset of vertices S colored blue and the rest white. At
any step, if a vertex can be colored blue by the CCR, then the player applies the rule.
The goal of the player is to find the minimum cardinality of S needed to color all of
the vertices of the graph blue.

An initial set of blue vertices that can result in all of the vertices of the graph being
colored blue is called a zero forcing set. A minimum zero forcing set of a graph G is
a zero forcing set of minimum cardinality, and the zero forcing number, Z(G), of G
is the cardinality of a minimum zero forcing set in G. It is known that a graph may
have several minimum zero forcing sets. For instance either of the degree-one vertices
of a path is a minimum zero forcing set. A minimal zero forcing set is a zero forcing
set such that the removal of any vertex from the set results in a set that is no longer a
zero forcing set. We note two facts about minimal zero forcing sets: first, there may
be multiple minimal zero forcing sets in one graph; second, they are not necessarily
minimum zero forcing sets. For example, any two adjacent vertices of degree two on
a path Pn for n ≥ 4 form a minimal zero forcing set. In this work, we study graphs
for which every minimal zero forcing set is also minimum. We refer to these graphs
as well-forced graphs.

Extensive research has been done characterizing graphs with the property that all
sets of some defined type that are minimal are also minimum. A graph is called well-
X for a parameter X if every minimal X set is also minimum, or in other words, if
every minimal set has the same cardinality. (Note that the same statements hold if we
replace “minimal” and “minimum” with “maximal” and “maximum” respectively).
For example, well-covered graphs are graphs in which every maximal independent
set is maximum [10, 12]; well-dominated graphs are graphs in which every minimal
dominating set is minimum [1, 7]; and well-indumatchable graphs are graphs in which
all maximal induced matchings are maximum [8]. Questions that are NP-Complete or
co-NP-Complete for certain graph parameters often become solvable in polynomial
time on these “well” graphs, making them important classes to understand. Here our
definition of well-forced graphs is an analog of this research. As in other well-X
graphs, an advantage of knowing that a graph is well-forced is that if we can find a
minimal zero forcing set, its cardinality will be the zero forcing number.

The main focus of this paper is to study well-forced graphs. A recent study of a
related problem is in [4], where the authors provide several families of graphs that
have exponentially many minimal zero forcing sets, and consider how a graph can
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have minimal zero forcing sets of different sizes. They do not address the question
of a structural description of well-forced graphs. We address that question in this
paper. In Sect. 1, we introduce the problem and provide basic terminology used in
this paper. Critical to our understanding of well-forced graphs is a characterization of
irrelevant vertices, which are those vertices that appear in no minimal zero forcing
sets. In Sect. 2 we build up results on paths, generalized stars and finally trees to give a
characterization of irrelevant vertices in trees. Finally, in Sect. 3, we begin the study of
well-forced graphs, culminating in a characterization of well-forced trees. In addition,
we provide an algorithm that determines if a tree is well-forced.

1.1 Preliminaries

All graphs in this paper are finite and simple. That is, G = (V , E), where V is a
finite set of vertices and there is at most one (undirected) edge between each pair of
distinct vertices. Vertices u, v ∈ V are adjacent or neighbors if the edge uv ∈ E .
The degree of a vertex is the number of neighbors it has. The set of neighbors of v is
denoted by N (v). A pendent vertex or pendant is a vertex with degree one. For other
standard graph theory terminology the reader may consult [5]. We proceed with some
specialized definitions.

Definition 1.1 We say that pendent vertices u, w in a graph G are double pendants
if N (u) = N (w) = {v}. We say that v has a double pendant if it is adjacent to two
pendent vertices.

A pendent path of G is an induced subgraph P of G such that P is a path with a
vertex of degree one in G, and any other vertices on P have degree two in G.

Definition 1.2 A vertex v ∈ V (G) is of high degree in G if degG(v) ≥ 3.

A generalized star is a tree with at most one vertex of high degree; if a generalized
star contains a vertex of high degree, it is referred to as the center of the generalized
star. The legs of a generalized star T with center v are the components of T \{v}.
Definition 1.3 A pendent generalized star with k legs of a graph G is an induced
subgraph R of G such that

1. there is exactly one vertex v of R that is of high degree in G.
2. G\{v} has k+1 components and exactly k of the components ofG\{v} are pendent

paths of v.
3. R is induced by the vertices of the k pendent paths and v.

In a generalized star T , the length of a leg is the number of edges on the path from
the center vertex of T to the pendent vertex on the leg (not just the length of the pendent
path). The same statement holds for a pendent generalized star R.

We now define B-vertices.

Definition 1.4 In a graph G, if v ∈ V (G) has a double pendant, then we say that
v ∈ B0. Remove from G all vertices in B0 and their pendent neighbors to create
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Fig. 1 A tree with B0, B1, and
B2 vertices shaded black, dark
gray, and light gray respectively

the graph G1. Then B1 is the set of vertices in G1 that each have a double pendant.
Continuing, for i ≥ 1, we construct Gi+1 by removing from Gi the set Bi and all
neighbors of Bi that have degree one in Gi . The vertices in B0, B1, B2, . . . are said to
be B-vertices of G. The pendent neighbors that are removed along with Bi are called
the pseudoleaves of Bi . If v ∈ Bi and u is a pendent neighbor in Gi of v, then we say
that u is a pseudoleaf of v.

A tree with B-vertices shaded is shown in Fig. 1.

Definition 1.5 A vertex v ∈ V (G) that has the property that v is in no minimal zero
forcing set of G is an irrelevant vertex.

In this paper we will show that in a tree, a vertex is irrelevant if and only if it is a B-
vertex, and that the reverse implication is true for general graphs. Irrelevant vertices
were first defined in [3], where they were so named because they are irrelevant in the
construction of the reconfiguration graph for zero forcing.

1.2 Basic Properties of Zero Forcing Sets

For a zero forcing set S of G, we can keep track of the forces in the order they were
performed, yielding an ordered list of forces of S. A forcing chain is a sequence of
vertices (v1, v2, . . . , vk), where k ≥ 1, such that vi forces vi+1 for each i , 1 ≤ i ≤
k − 1. Note that an ordered list of forces of a zero forcing set S of G produces a set of
forcing chains such that each vertex of G is in exactly one forcing chain. A maximal
forcing chain is a forcing chain that is not a proper subsequence of another chain
derived from the same ordered list of forces. Thus, if (v1, v2, . . . , vk) is a maximal
forcing chain, we observe that v1 ∈ S and that vk does not force any other vertex under
this ordered list of forces. Throughout this paper, when we refer to forcing chains, we
always assume that they are maximal.

It is important to note that a given zero forcing setmayhavemore thanone associated
ordered list of forces and also different sets of forcing chains. We call one particular
set of forcing chains under a zero forcing set S a realization of forcing chains.

A path cover of a tree T is a set of vertex-disjoint paths that are induced subgraphs
of T such that each vertex of T is in some path of the path cover. A minimum path
cover, denoted by P(T ), of a tree T is a path cover with the smallest possible number
of paths among all path covers of T . We use the following facts from [9] throughout
the paper: by taking an end vertex from every path in a minimum path cover of a tree,
we produce a minimum zero forcing set; also, the set of forcing chains produced from
a minimum zero forcing set in a tree is a minimum path cover. Throughout the paper,
we make use of the following related lemma, whose proof is similar to that of [9,
Proposition 4.2] and thus omitted here.
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Lemma 1.6 Given a path cover of a tree T , let S be a set of vertices of T consisting of
either an end vertex or a pair of adjacent internal vertices from each path in the path
cover. Then S is a zero forcing set of T .

Given a zero forcing set S and a realization of forcing chains of S, the reversal
of S is the set consisting of the last vertex in each forcing chain. In [2], the reversal
was shown to be a zero forcing set; since the reversal has the same cardinality as the
original zero forcing set, the reversal of a minimum zero forcing set is also a minimum
zero forcing set. The reversal of a minimal zero forcing set is not necessarily a minimal
zero forcing set, however.

2 Characterization of Irrelevant Vertices

In this section, we present results that culminate in a characterization of irrelevant
vertices in trees. Most results presented in this section apply only to trees, though
some apply to graphs in general. First, we note a simple condition that guarantees that
a vertex is irrelevant.

Proposition 2.1 Suppose u, w ∈ V (G) form a double pendant with N (u) = N (w) =
{v}. Then under any minimal zero forcing set S, there is a realization of forcing chains
such that one of {u, w} forces v. Consequently, at least one of {u, w} is in S, and v /∈ S.

Proof For any minimal zero forcing set S, at least one of u, w must be in S; otherwise
neither will be forced. Without loss of generality, suppose u ∈ S. Then u forces v;
hence v /∈ S. ��

2.1 Irrelevant Vertices in Paths and Generalized Stars

Next we establish some basic properties of minimal zero forcing sets and irrelevant
vertices in paths and generalized stars.

Lemma 2.2 If n �= 3, then every vertex in Pn is in a minimal zero forcing set.

Proof Either end vertex of the path forms a minimum zero forcing set. Let v be an
internal vertex in Pn, n ≥ 4. Then v has at least one neighbor u that is also an internal
vertex, and {u, v} forms a minimal zero forcing set. ��

If S is a zero forcing set of a generalized star T , then all legs but at most one must
contain a vertex from S. If all legs contain a vertex from S, then S is not minimal,
giving us the following observation.

Observation 2.3 If T is a generalized star with � legs and minimal zero forcing set S,
then exactly � − 1 legs of T contain a vertex from S.

Wenowpresent a condition underwhich a generalized star has no irrelevant vertices.
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Lemma 2.4 If T is a generalized star with at most one leg of length one, then every
vertex in T is in some minimal zero forcing set.

Proof By Lemma 2.2 we know that the result holds if T is a path, so we can assume
T has exactly one vertex c with deg(c) ≥ 3. Let � = deg(c). By Observation 2.3, for
any minimal zero forcing set S of T , exactly � − 1 legs of T have a vertex from S.
Also note that Z(T ) = � − 1.

Let v ∈ V (T ). If v is a leaf, take S to consist of v and � − 2 other leaves. Then S
is a minimum and hence minimal zero forcing set.

If v = c, take S to be v and � − 1 non-leaf neighbors of v. Then v forces the leg
with no vertices from S, and each other vertex in S forces its respective leg; we cannot
remove v from S because then each vertex in S has two white neighbors, and we
cannot remove any other vertex from S because then two legs of T contain no vertex
from S. Hence S is a minimal zero forcing set. This construction also applies if v is a
non-leaf neighbor of c.

The only remaining case is that v is a non-leaf vertex at distance at least two from
c. In this case, construct S as follows: add to S the vertex v and a neighbor u of v that
is not a leaf. On each of �− 2 remaining legs that are not of length one, add the vertex
that is adjacent to c. Since u, v force the full leg they are on and c, we see that S is a
zero forcing set. We show that S is minimal: if we remove u or v, no color changes
occur because every vertex in S has two white neighbors. If we remove another vertex
from S, then two legs have no vertices from S. Thus, S is a minimal zero forcing set.

��

2.2 Pendent Generalized Stars and Irrelevant Vertices

We now establish results related to pendent generalized stars that will be helpful in
characterizing irrelevant vertices in trees. The next lemma is similar to Observation
2.3, but applies to pendent generalized stars and does not requre the zero forcing set
to be minimal.

Lemma 2.5 Let G be a graph with pendent generalized star R, where R has � legs.
Any zero forcing set of G must contain a vertex from at least � − 1 legs of R.

Proof Suppose �1, �2 are two legs of R with no vertex from set S. The only neighbor
of a vertex on li that is not on li is the center vertex c, but c can never force l1 and l2
because it has at least two white neighbors, one on each of l1, l2. So S is not a zero
forcing set. ��

The next two lemmas and corollary focus on the case that the center of a pendent
generalized star is in a minimal zero forcing set.

Lemma 2.6 Let G be a graph with pendent generalized star R, where R has � legs and
center vertex c. If c ∈ S for some minimal zero forcing set S, then V (R) ∩ S consists
of c and either � − 1 or � neighbors of c, all of whom have degree two.

Proof Since c ∈ S, no leaves of R are in S, else minimality is contradicted. Conse-
quently, R has at most one leg of length one, since S has at least one vertex from at
least �−1 legs of R by Lemma 2.5, and in a length-one leg, the only vertex is the leaf.
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Suppose v ∈ S where v is a degree-two vertex in R that is not adjacent to c. Let
u be a neighbor of v. If u, v ∈ S, then u, v force the leg they are on, and will also
force c, contradicting minimality of S since then we could remove c from S and still
produce a zero forcing set. Thus, no neighbor of v is in S. If u is forced by v, then the
other neighbor of v must be forced at some point, which means that it could force v,
contradicting minimality of S since we could remove v. Similarly, if u is forced by its
other neighbor (if u is not a leaf), then u can force v, contradicting minimality of S.

The only remaining vertices on R that can be in S are the degree-two neighbors of
c. Since S must have a vertex from at least � − 1 legs of R by Lemma 2.5, and the
degree-two neighbors of c are our only candidates, the proof is complete. ��

By replacing the center vertex and one of its neighbors on a pendent generalized
star with the leaf on the same leg in Lemma 2.6 to produce a smaller zero forcing set,
we note the following corollary of Lemma 2.6.

Corollary 2.7 Let G be a graph with R a pendent generalized star and c the center of
R. If c ∈ S for some zero forcing set S, then S is not a minimum zero forcing set.

Another useful fact about pendent generalized stars and zero forcing sets is as
follows.

Lemma 2.8 Let G be a graph with pendent generalized star R. Let c be the center of R
and suppose c ∈ S′ for some minimal zero forcing set S′ of G. Then for all v ∈ V (R),
there exists a minimal zero forcing set S such that v ∈ S.

Proof Since c ∈ S′, the pendent generalized star R has at most one leg of length one
by Proposition 2.1, and by Lemma 2.6, we have that S′ ∩ V (R) must consist of c and
either � − 1 or � degree two neighbors of c on R, where R has � legs.

Note that we can construct a minimum zero forcing set containing any leaf in any
pendent generalized star, since if a minimum zero forcing set does not contain a leaf,
then its reversal does. Since S′ can contain any non-leaf neighbors of c, we need only
show the result for vertices in R that have degree two and are at least distance two
from c. Let v be such a vertex, and let u be a neighbor of v of degree two. Let w be the
vertex that is adjacent to c on the leg containing v. (Note it is possible that u = w).

If w ∈ S′, define S = (
S′\{c, w}) ∪ {u, v}. Since u, v force all vertices on their

leg and c as well, and S′ is a zero forcing set, we see S is also a zero forcing set. For
minimality, note that if we remove u or v, then c will not be forced. (By Lemma 2.6,
all other legs of R contain at most one vertex in S′ and hence in S. Moreover, if some
vertex in T \R could force c, then this would contradict the minimality of S′). Also
by minimality of S′, S\{x} is not a zero forcing set for any x ∈ S′ ∩ S. Hence, S is a
minimal zero forcing set containing v.

If w /∈ S′, by Lemma 2.6 there must exist w′ ∈ S′ such that w′ is a degree-two
neighbor of c in R. Note we can swapw withw′ in S′ and still produce a minimal zero
forcing set. We can proceed then with the construction in the case w ∈ S′ to complete
the proof. ��

We now show that under certain conditions, we can remove legs from a pendent
generalized star in a tree, and find that any minimal zero forcing set on the remaining
subtree is a subset of a minimal zero forcing set on the original tree.
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Lemma 2.9 Suppose T is a tree with pendent generalized star R where R has at most
one leg of length one. Let T ′ be the subtree of T with all legs of R removed except for
a shortest leg. Then for any minimal zero forcing set S′ of T ′, there exists a minimal
zero forcing set S of T with S ∩ V (T ′) = S′.

Proof In T , label the legs of R from 1 to � where leg � is a shortest leg. Denote
the respective leaves by u1, u2, . . . , u�. Denote the respective neighbors of c by
w1, w2, . . . , w�. Note that u� = w� is possible if R has a leg of length one, but
for i < �, ui �= wi .

Let S′ be a minimal zero forcing set of T ′. Note that degT ′(c) = 2. Let P denote
the path from u� to w�. Note that T ′ contains a pendent path from u� through x , the
neighbor of c not on R; the path P is a subpath of this pendent path, and it is possible
that |V (P)| = 1.

In T , let S1 = S′ ∪ {w1, w2, . . . , w�−1}. Let S2 = S1\{w1}. Note that if � = 2,
then S2 = S′. Also note that S2 ∩ V (T ′) = S1 ∩ V (T ′) = S′. We will show that one
of these two sets S1, S2 is a minimal zero forcing set of T , which will complete the
proof.

We have either: (1) v ∈ S′ for some v ∈ V (P), or (2) v /∈ S′ for any v ∈ V (P).
Case 1: Suppose v ∈ S′ for some v ∈ V (P). By minimality of S′, there are three

possibilities: (a) v = u�; (b) u, v ∈ S′ for some u ∈ V (P) with u, v �= u� where
uv ∈ E(T ); or (c) v = w� �= u�.

First consider (a). In T ′, we see that c /∈ S′ since that would contradict minimality
as u� will force P and then c. Also, c is not forced by its neighbor x not on P , since
then c would force P , and we need not have u� ∈ S′.

We claim that S1 or S2 is a minimal zero forcing set on T . First, note that S1 is a
zero forcing set of T . If S2 is a zero forcing set, then it must be minimal by Lemma
2.5 since only � − 1 legs of R have a vertex in S2, and if we remove a vertex y from
S2 ∩ V (T ′) and still produce a zero forcing set of T , then we could remove y from
S′ and produce a zero forcing set of T ′, contradicting minimality. If S2 is not a zero
forcing set, then we show that S1 must be a minimal zero forcing set. We know we
cannot remove wi from S1, 1 ≤ i ≤ � − 1, because S2 is not a zero forcing set. If we
remove u�, then c will not be forced because we know x does not force c under S′, and
S1∩V (T ′) = S′. Finally, if we can remove any other vertex y from V (T ′)∩S1 and still
produce a zero forcing set on T , then S′\{y} is a zero forcing set on T ′ contradicting
minimality of S′.

For (b), the same construction and arguments hold.
For (c), note first that the neighbor of w� on P is not in S′ because that case was

covered in (b). Somehow, c must be forced under S′. If x forces c, then c could force
v = w� violating minimality, so we must have that c ∈ S′. Also note that if x is in
S′ or forced by some vertex other than c, then c could force w�. Hence, c must be
required to force x under S′ in T ′. We claim that S1 is a minimal zero forcing set on
T . S1 is clearly a zero forcing set. For minimality, note that c must force its neighbor
x , and therefore can’t force any neighbors on R. Thus, removing wi for any i results
in a set that is not a zero forcing set. If we remove c, since we know that c is required
to force x , no color changes on R or to x will happen. Finally, by minimality of S′,
we cannot remove any vertex in V (T ′) ∩ S′ from S1, completing the proof of Case 1.
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Case 2: Suppose no vertex from P is in S′. Consider S1 on T . We can see that S1 is
a zero forcing set, since S′ will force all of T ′ including c, allowing wi to force leg i
for each i < �. The set S1 is also minimal. Only �−1 legs of R have a vertex from S1,
so none of these vertices may be removed by Lemma 2.5. If we can remove a vertex
from S1 ∩ V (T ′) and produce a zero forcing set of T , then we can remove the same
vertex from S′ to produce a zero forcing set of S′, contradicting minimality of S′ and
completing the proof. ��

2.3 Irrelevant Vertices in Trees

We now use the above results to establish through the following theorem that if a tree
has an irrelevant vertex, then it must have double pendants.

Theorem 2.10 Let T be a tree with no double pendants. Then every vertex in T is in
a minimal zero forcing set of T .

Proof We proceed by induction on k, the number of high-degree vertices in T . For
k = 0 and k = 1, the statement holds by Lemmas 2.2 and 2.4 respectively.

Let T be a tree with k + 1 high-degree vertices and no double pendants where
k ≥ 1. As noted in [6], the tree T must have a pendent generalized star R with center
c. Construct T ′ from T as in the statement of Lemma 2.9 using R. The tree T ′ has k
high-degree vertices (since degT (c) ≥ 3 but degT ′(c) = 2). Note that c has at most
one pendent neighbor in T ′ because T has at least two high-degree vertices, and there
are no double pendants in T ′. Thus, applying the induction hypothesis to T ′, every
vertex in T ′ is in some minimal zero forcing set S′ of T ′. By Lemma 2.9, then, every
vertex of T ′ is in some minimal zero forcing set S of T as well. It remains to show
that all vertices in T \T ′ are in some minimal zero forcing set of T . By Lemma 2.8,
since c is in some minimal zero forcing set of T , each vertex in R is in some minimal
zero forcing set of T , completing the proof. ��

We note the following observation that applies to disconnected graphs that we use
implicitly throughout.

Observation 2.11 The set S is a minimal zero forcing set of a graph G if and only if
S ∩ V (H) is a minimal zero forcing set of H for each connected component H of G.

We next establish that removal of a vertex with a double pendant along with all
pendent neighbors of the vertex leaves minimal zero forcing sets largely unchanged.

Theorem 2.12 Let T be a tree with vertex v that has leaf neighbors L = {l1, . . . , lk}
where k ≥ 2. Define T ′ = T \{v, l1, . . . , lk}. Then S is a minimal zero forcing set of
T if and only if one of the following holds.

1. S contains exactly k − 1 vertices of L, and S′ = S ∩ T ′ is a minimal zero forcing
set of T ′.

2. S = (
S′\{u}) ∪ L where uv ∈ E(T ′), and S′ is a minimal zero forcing set of T ′

with u ∈ S′.
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Proof We begin with the reverse direction. First, assume that Statement 2.12 holds.
That is, assume that S′ is a minimal zero forcing set of T ′. Then for any j , 1 ≤ j ≤ k,
under S = S′ ∪ L − {l j } in T , a vertex in L\{l j } forces v, and v forces l j , and since
S′ is a zero forcing set of T ′, we have that S is a zero forcing set of T . For minimality
of S, note that we cannot remove li from S for any i �= j , since then v will have two
leaf neighbors that will never be forced. If S\{x} is a zero forcing set of T for some
x ∈ S′, then S′\{x} is a zero forcing set of T ′, contradicting minimality of S′.

Next, assume that Statement 2.12 holds. That is, suppose S′ is a minimal zero
forcing set of T ′ such that u ∈ S′ for some u ∈ V (T ′) with uv ∈ E(T ′), and let
S = (

S′\{u}) ∪ L . We see that S is a zero forcing set of T , since without loss of
generality, l1 forces v, and since S′ restricted to any component of T ′ not containing
u is a minimal zero forcing set of that component, v forces u, after which S′ ∩ V (T ′)
is blue, and all of T ′ will be forced. For minimality of S, note that if we remove any
vertex of L from S, then v cannot force u, and by minimality of S′, T ′ will not be
forced. If S\{x} is a zero forcing set of T for some x ∈ S′\{u}, then S′\{x} is a zero
forcing set of T ′, contradicting minimality of S′ and completing the reverse direction.

For the forward direction, first note that if S is a minimal zero forcing set of T , then
S contains L or all but one vertex of L , and thus v /∈ S since � j forces v for some
1 ≤ j ≤ k.

First, suppose l j /∈ S for some j , so S = S′ ∪ L − {l j } where S′ ∈ S ∩ T ′. We can
see that S′ must be a zero forcing set on T ′, since v must force l j under S and cannot
force any vertices in T ′. If S′ is not minimal then there exists x ∈ V (T ′) such that
S′\{x} is a zero forcing set of T ′. But then S\{x} is a zero forcing set of T as well, a
contradiction of our assumption that S is minimal, completing the case that l j /∈ S for
some j .

Otherwise, S is a minimal zero forcing set of T that contains all vertices in L . In any
realization of forcing chains under S, all but one leaf neighbor of v must be a singleton
forcing chain. There exists a realization of forcing chains such that one chain starts
with the remaining leaf neighbor, goes through v and continues to (without loss of
generality) u ∈ T1 where T1, T2, . . . Tm are the m components of T ′, and m ≥ 1. That
is, without loss of generality l1vu... is the beginning of a forcing chain. Note that as
before, if m > 1 then for any i with 1 < i ≤ m, S ∩ Ti is a minimal zero forcing set
of Ti . By Lemma 1.6, the set S − l1 ∪ {v, u} is a zero forcing set of T . We must be
able to delete v since it is irrelevant by Proposition 2.1. Hence S∗ = S − l1 ∪ {u} is a
zero forcing set of T . To see that S∗ is minimal, note that if we can remove a vertex
x �= u from (S ∩ T1) ∪ {u} and still produce a zero forcing set of T1, then S\{x} is a
zero forcing set of T , which contradicts the minimality of S. We can apply the same
argument to S∗ that we used for the case that l j /∈ S to complete the proof. ��

Corollary 2.13 Let T be a tree with vertex v that has leaf neighbors {l1, . . . , lk}, where
k ≥ 2. Define T ′ = T \{v, l1, . . . , lk}. Then vertex u ∈ V (T ′) is irrelevant in T ′ if and
only if it is irrelevant in T .

Proof Suppose u ∈ S∩V (T ′) for a minimal zero forcing set S of T . Then by Theorem
2.12, u ∈ S′ for some minimal zero forcing set S′ of T ′, completing the forward
direction.
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Suppose u ∈ S′ for some minimal zero forcing set of T ′. By Theorem 2.12, S =
S′ ∪ L\{l1} is a minimal zero forcing set of T , and u ∈ S completing the proof. ��

Suppose G is a graph with a nonempty set VB of vertices with double pendants.
We call G ′ a star reduction of G if G ′ is obtained by removing VB along with all leaf
neighbors of VB . For example, in Fig. 1, the star reduction of T is the subforest with
two components obtained by deleting the three darkest green vertices and their seven
pendent neighbors from T .

Lemma 2.14 Under any minimal zero forcing set S in a graph G, there is a realization
of forcing chains so that each B-vertex is forced by one of its pseudoleaves.

Proof Let S be a minimal zero forcing set of G. For any nonnegative integer k, recall
that Bk is the set of B-vertices that have double pendants after k star reductions.

We proceed by induction on the number of star reductions that are performed. For
the basis case, k = 0 star reductions, we already know from Proposition 2.1 that
we have a realization of forcing chains with all vertices in B0 forced by one of their
pseudoleaves.

Consider Bk+1, the nonempty set of B-vertices that have double pendants after k+1
star reductions. Let L ⊆ N (Bk+1) be the set of pseudoleaves of Bk+1. In G, the only
neighbors of each vertex u ∈ L are its lone neighbor in Bk+1 and a set of B-vertices
that are removed in the first k + 1 star reductions. Let B = N (L)\{Bk+1}, that is the
neighbors of L in Bi for i ≤ k. By the induction hypothesis, there is a realization of
forcing chains of S such that each vertex in B is forced by one of its pseudoleaves.

In this realization of the forcing chains of S, each vertex v ∈ Bk+1 can force at
most one of its neighbors. Hence, for each v ∈ Bk+1 there exists a pseudoleaf u ∈ L
of v such that v cannot force u. For u to be forced, either u ∈ S, or u is forced by
some vertex in B. By the argument above about B, the only white neighbor of u is v;
hence u can force v. That is, there is a realization of the forcing chains such that each
vertex in Bi where i ≤ k + 1 is forced by its pseudoleaf, completing the proof. ��

Noting that any vertex that can be forced by another under a minimal zero forcing
set S cannot itself be in Swithout violatingminimality, we have the following corollary
of Lemma 2.14.

Corollary 2.15 In any graph G, all B-vertices are irrelevant vertices. That is, no B-
vertex is in any minimal zero forcing set of G.

Finally, this section ends with a characterization of irrelevant vertices in trees.
Corollary 2.15 establishes the reverse direction for all graphs; we prove the forward
direction restricted to trees to complete the characterization.

Theorem 2.16 In a tree T , the vertex v is an irrelevant vertex if and only if it is a
B-vertex.

Proof The reverse direction is simply Corollary 2.15 restricted to trees.
To prove the forward direction, suppose v is an irrelevant vertex of T . By Theorem

2.10, we know that T must have a double pendant. If v is the neighbor of the double
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pendant, then v is a B-vertex and we are done. Otherwise by Corollary 2.13, we can
remove the neighbor of the double pendant along with all of its leaf neighbors to
produce T ′, and v is also irrelevant in T ′. By Theorem 2.10, T ′ must have a double
pendant. If v is the neighbor of the double pendant, then we are done. Otherwise, we
can again apply Corollary 2.13.

Since T has a finite number of vertices, eventually, if we apply Theorem 2.10 and
Corollary 2.13 repeatedly, we must have that v is the neighbor of the double pendant,
and therefore a B-vertex. ��

One direction of our characterization holds for graphs in general, not just trees.
Also, all examples of irrelevant vertices in [3] are B-vertices. We end the section with
an open question.

Question 2.17 Does the characterization in Theorem 2.16 hold for any other classes
of graphs?

3 Well-Forced Graphs

We now turn our attention to characterizing well-forced graphs. In [4], the authors
investigated the maximum cardinality of a minimal zero forcing set. While they used
different terminology from ours and primarily focused on other aspects of minimal
zero forcing sets, we describe their results that directly relate to this paper in our
terminology here. First, they showed [4, Corollary 9] that if G is a cycle, empty graph,
star, wheel, or complete graph, thenG is well-forced. They also showed [4, Proposition
10] that for integers a, b ≥ 3 that Ka ∨ Kb is well-forced as is Ka ∨Cb, where G ∨ H
denotes the join of two graphs, that is, the graph formed from G and H by adding an
edge between every vertex in G and every vertex in H . By providing a construction,
they proved that there are infinitely many graphs G such that G is well-forced but
G ∨ K1 is not [4, Theorem 11]. We add the following graph families to the list of
well-forced graphs.

It is well known that Z(Pn) = 1. If Pn is a path with n ≥ 4, then any adjacent
pair of internal vertices form a minimal zero forcing set of order two, giving us the
following observation.

Observation 3.1 The path Pn is well-forced if and only if n ≤ 3.

We continue with more well-forced graphs.

Proposition 3.2 If G is one of the following graphs, then it is well-forced.

1. A complete multipartite graph with at least two partite sets.
2. A cycle on at least three vertices with an additional single pendant.

Proof First suppose G is a complete multipartite graph. If S is a zero forcing set, then
S omits at most two vertices from V (G), the two vertices must be in different partite
sets, and any set S with this property is a zero forcing set. Hence any set S that omits
exactly two vertices that are in two different partite sets is a minimal and minimum
zero forcing set.
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Now suppose G is a cycle with an additional pendant, and let v be the vertex on
the cycle with pendent neighbor u. To be a zero forcing set, S must contain either two
adjacent vertices on the cycle, or u and one other neighbor of v. To be minimal, S
must contain no other vertices. Thus G is well-forced. ��

Given a graph G, the corona of G with K1 denoted G ◦ K1 is the graph obtained
by taking one copy of G and |V (G)| isolated vertices, assigning each isolated vertex
a unique neighbor in G, and joining each of these pairs by an edge.

Proposition 3.3 For any connected graph G with |V (G)| ≥ 2, G ◦ K1 is not well-
forced.

Proof Let V (G) = {v1, . . . , vn}. Let the leaf vertices generated by the corona be
{v′

1, . . . , v
′
n}. Note that V (G) is a minimal zero forcing set, and that {v′

1, . . . , v
′
n−1} is

a zero forcing set with smaller cardinality than V (G). HenceG◦K1 is not well-forced.
��

3.1 Subgraphs that Imply a Graph is NotWell-Forced

In this section we show graphs fail to be well-forced if they contain certain induced
subgraphs. While these results help our characterization of well-forced trees, these
results apply to general graphs. Thus we obtain conditions that preclude any graph
from being well-forced.

Proposition 3.4 If G has a pendent path P of length four or more, then G is not
well-forced.

Proof Starting with the leaf, call the first three vertices of P in order y, x, v, and let
S be a minimum zero forcing set of G. We can assume without loss of generality that
y ∈ S by using reversals, and we have V (P) ∩ S = {y}.

Let S′ = S ∪ {v, x}\{y}. Note that |S′| = |S| + 1 and that S′ is a zero forcing
set. We show that S′ is minimal. Suppose we delete v or x from S′. Then y will not
be forced, because if it were, then we would have that S\{y} is a zero forcing set, a
contradiction. Also, if S′\{z} is a zero forcing set for some z ∈ S\V (P), then S\{z}
is a zero forcing set as well, a contradiction. Hence S′ is minimal, giving us that G is
not well-forced. ��
Proposition 3.5 Suppose G has a pendent generalized star R whose legs all have
length at least two. Then G is not well-forced.

Proof Let S be a minimum zero forcing set of G. By Corollary 2.7, the center vertex
v of R is not in S. Then v is forced by either by a vertex on R, or by the neighbor u of
v that is not on R. First assume u does not force v. Then since S is a minimum zero
forcing set, a leaf on some leg of R is in S, and all legs but at most one either have a
leaf in S, or the vertex adjacent to v in S. Let S′ consist of all vertices in S from G\R,
along with v and the vertex adjacent to v on each leg that has a vertex in S. Since each
leg has length at least two, no vertex in S′ ∩ R is a leaf. Then S′ is a minimal zero
forcing set with cardinality |S| + 1, and G is not well-forced.
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Next suppose u forces v under S. Then on each leg except one, either the leaf or the
vertex adjacent to v is in S. Since either choice will produce a minimum zero forcing
set, assume without loss of generality that the vertex adjacent to v on each of these
legs is in S. For the final leg L without a vertex from S, we must have that v forces its
neighbor on L , and the forcing process continues to the leaf of L . Consider the reversal
S̃ of S. Then S̃ contains all leaves of R, so we can construct S̃′ as we constructed S′
above, completing the proof that G is not well-forced. ��
Theorem 3.6 Let G be a generalized star with center vertex u of degree k ≥ 2. Then
G is well-forced if and only if G has at least two legs of length one and all legs of
length at most three.

Proof Recall that Z(G) = k − 1.
For the forward direction, note that if G has at most one leg of length one, we

can take the center vertex u and k − 1 of its degree-two neighbors to form a minimal
zero forcing set S with |S| = k. If G has a leg of length four or more, then G is not
well-forced by Proposition 3.4, completing the forward direction.

For the reverse direction, suppose G is a generalized star with at least two legs of
length one and all legs of length at most three. Let S be a minimal zero forcing set
of G. Note that there is at least one leg L of length one whose sole vertex lies in S.
This means that the center vertex u can be forced by this vertex. Thus, u /∈ S. By
Observation 2.3, there exist k − 1 legs L such that L ∩ S �= ∅. So |S| ≥ k − 1. Let L
be an arbitrary leg of G with L ∩ S �= ∅. If L is length one, it is clear that |L ∩ S| ≤ 1.
If L has length two or three, then either end vertex of L on its own is sufficient to
force the remaining vertices in L (since u will be forced by a length-one leg). Thus,
|L ∩ S| ≤ 1. Hence, |S| = Z(G) = k − 1, completing the proof. ��

3.2 A Characterization and Algorithm forWell-Forced Trees

In this section, we describe a decomposition process that preserves the property of
being well-forced, which allows us to characterize well-forced trees. For any v ∈
V (T ), let L(v) denote N (v) ∩ {u ∈ V (T ) : deg(u) = 1}. Let L[v] = L(v) ∪ {v}.
Proposition 3.7 Let T be a tree with |L(v)| ≥ 2 for some v ∈ V (T ). Then T is
well-forced if and only if each component of the graph induced by V (T )\L[v] is
well-forced.

Proof For the forward direction, we prove the contrapositive.
Let the components of the graph induced by V (T )\L[v] be T1, T2, . . . Tk, k ≥ 1.

Suppose that T1 is not well-forced. Let Si be a minimum zero forcing set of Ti for
each i , 1 ≤ i ≤ k. Since T1 is not well-forced, we can find a minimal zero forcing set
S′
1 such that S′

1 is a minimal zero forcing set of T1 and |S1| < |S′
1|.

Let L(v) = {�1, �2, . . . , � j } where j ≥ 2. Let S = S1 ∪ S2 ∪ · · · ∪ Sk ∪ L(v)\{� j }
and S′ = (S\S1)∪ S′

1. Then by Observation 2.11 and Theorem 2.12, S, S′ are minimal
zero forcing sets of T with |S| < |S′|, completing the forward direction.

For the reverse direction, suppose each component Ti of the graph T ′ induced by
V (T )\L[v] is well-forced. Let S be a minimal zero forcing set of T . Then by Theorem
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2.12, either S contains all vertices in L(v) and all but one vertex of a minimal zero
forcing set of T ′, or S contains all but one vertex in L(v), and all vertices of a minimal
zero forcing set of T ′. By Observation 2.11 and the assumption that all components
of T ′ are well-forced, we find that |S| is fixed and T is well-forced. ��
Theorem 3.8 If T is a tree with |V (T )| > 2 and no double pendants, then T is not
well-forced.

Proof If T is a path or a generalized star, then the result holds by Observation 3.1 or
Theorem 3.6 respectively.

Otherwise, T has one or more pendent generalized stars [6], each with at most one
leg of length one. If any pendent generalized star has a leg of length four or more, or
no legs of length one, then by Propositions 3.4 and 3.5, T is not well-forced.

Hence, the remaining case is that each pendent generalized star on T has one leg
of length one, and all other legs of length two or three. Pick any pendent generalized
star and call it R. Let its center vertex be called c, and let T ′ = T \R. We know that c
is in some minimal zero forcing set of T by Theorem 2.10. Let S be a minimal zero
forcing set with c ∈ S. By Lemma 2.6 and since R has a leg of length one, S ∩ R
consists of c and � − 1 neighbors of c on R where � is the number of legs of R.

Let S′ = (
S ∩ T ′)∪ L where L is the set of leaves on legs of R that have a vertex in

S. Then S′ is also a zero forcing set with |S′| = |S|−1, and hence T is not well-forced.
��

Finally, we present our characterization of well-forced trees. We perform a star
removal on T by identifying a vertex v with |L(v)| ≥ 2, and creating a new forest
T \L[v].
Theorem 3.9 A tree T is well-forced if any only if performing star removals on T until
no more star removals can be performed results in a possibly empty set of copies of
K2.

Proof Suppose T is a well-forced tree. Then T contains a vertex v with a double
pendant by Theorem 3.8. Let T1 = T \L[v]. By Proposition 3.7, T1 is well-forced.
Repeat this process on T1 and the graphs that follow until no more star removals can
be done. Call the resulting forest F . By Proposition 3.7, F is well-forced, and no
vertex has a double pendant (otherwise we would perform another star removal). By
Theorem 3.8, either |V (F)| = 0 or each component has at most two vertices. Note
that no component can be a singleton vertex u, since this implies the neighbors of u
were removed, and must have been vertices with double pendants, but then u would
have been a pendant after some star removals, and therefore removed as well. Thus if
|V (F)| �= 0, each component of F is isomorphic to K2.

Now suppose that T is a tree with the property that after performing star removals
until no more can be performed, all components of the resulting graph F are copies
of K2. Any minimal zero forcing set of K2 must contain exactly one vertex. Hence,
each component of F is well-forced. Therefore by Proposition 3.7, the original tree T
is also well-forced. ��

Theorem 3.9 leads to the following algorithm for determining whether or not a tree
is well-forced.
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Algorithm 1 Well-forced tree

Input: A tree T
Output: True/False variable WELL

1. While there exists v ∈ V (T ) with |L(v)| ≥ 2:

A. Choose a vertex v0 with |L(v0)| ≥ 2.
B. Let T = T \L[v0].

2. If T = ∅ or T is the union of copies of K2:
Then WELL=True;
ElseWELL=False.
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