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Materiality and risk in the age of pervasive AI 
sensors
 

Mona Sloane    1  , Emanuel Moss    2, Susan Kennedy    3, Matthew Stewart4, 
Pete Warden5, Brian Plancher    6 & Vijay Janapa Reddi4

Artificial intelligence (AI) systems connected to sensor-laden devices 
are becoming pervasive, which has notable implications for a range of AI 
risks, including to privacy, the environment, autonomy and more. There 
is therefore a growing need for increased accountability around the 
responsible development and deployment of these technologies. Here 
we highlight the dimensions of risk associated with AI systems that arise 
from the material affordances of sensors and their underlying calculative 
models. We propose a sensor-sensitive framework for diagnosing these 
risks, complementing existing approaches such as the US National Institute 
of Standards and Technology AI Risk Management Framework and the 
European Union AI Act, and discuss its implementation. We conclude 
by advocating for increased attention to the materiality of algorithmic 
systems, and of on-device AI sensors in particular, and highlight the need 
for development of a sensor design paradigm that empowers users and 
communities and leads to a future of increased fairness, accountability and 
transparency.

Over the past decade, several overlapping, multidisciplinary com-
munities of research and development have emerged to analyse and 
address the implications of AI systems operating across society, par-
ticularly through ethics, engineering, governance, critical academic 
and advocacy perspectives (see, in particular, the ACM Conference on 
Fairness, Accountability, and Transparency, the AAAI/ACM Conference 
on AI Ethics and Society , and the ACM Conference on Equity and Access 
in Algorithms, Mechanisms, and Optimization). This work has focused 
crucial attention on how datasets, algorithms and machine learning 
systems deployed at scale produce impacts for human rights, equity, 
already-disadvantaged populations and communities, and society at 
large1–8. Furthermore, this work has expanded the scope of investiga-
tions of these impacts beyond a relatively narrow focus on, for exam-
ple, bias in algorithms9,10 or datasets11,12 to the situated interactions of 
complex computational systems in society1,13. Only recently, this scope 
has also broadened to include the material dimensions of AI systems, 
particularly around the environmental impacts of computation in 
terms of carbon-intensive energy consumption and the geographic 
footprint of server infrastructure14–16, as well as e-waste17,18. However, 

relatively scant attention has been paid to the materiality of AI in terms 
of data collection devices and particularly sensors that interact with 
the physical environment (that is, the sensing of physical phenom-
ena to produce data) and enact algorithmic inferences (for example, 
AI-enabled Internet of Things (IoT) devices).

There are material dimensions to problems of AI fairness, account-
ability and transparency that can be addressed by understanding how 
ubiquitous, algorithmically enabled sensors produce risks around bias, 
equity, privacy, accountability, transparency and consent. Materiality 
is a complex term, constituted by both the physical existence of an 
object and the social treatment thereof. There are many things that 
concretely materialize in our social world without taking on physical 
properties: the perception (or atmosphere) of a space, the potential 
of an idea or our social status. Other things assert themselves clearly 
through the physical presence: bridges, buildings, heirloom objects 
or people. Because materiality is integrated into social practices and 
social institutions, it profoundly shapes sociotechnical systems, like 
AI19–22. This becomes obvious in the context of the pervasive data col-
lection that is facilitated by the material properties of the components 
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of energy for production and use, sensor size, supply chain consid-
erations of material components, as well as profit projections and 
pricing schemes)51,52. Calculative models directly affect sensor price, 
availability and ubiquity, making the concept particularly useful for 
understanding drivers behind the proliferation of sensors. As we will 
show, low production cost and particular calculative models of cam-
eras, microphones and other sensors make them increasingly common 
in a wide range of contexts.

The calculative models that drive the increased affordability and 
accessibility of sensors have led to positive developments. The inte-
gration of sensors in home appliances and other consumer goods can 
improve their utility and performance. For example, there is a small 
camera in the Keurig K-Supreme Plus Smart coffee maker that detects 
the type of pod being inserted to adjust the water temperature for opti-
mal brewing. Sensors have also enabled beneficial applications such 
as predictive maintenance for public infrastructure53 and industry54, 
providing support for safe driving practices55, and optimizing energy 
usage in offices and homes56. Most notably, sensors coupled with edge 
computing have opened up novel applications that can make progress 
towards the 17 Sustainable Development Goals outlined in the United 
Nations’ 2030 Agenda for Sustainable Development57,58. For example, 
sensors are being used to optimize agriculture59,60 and aid wildlife 
conservation efforts61–63.

However, sensors also give rise to significant concerns as their 
proliferation into the public, professional and intimate dimensions of 
our daily routines enables unprecedented data mining and commer-
cialization of once private or anonymous moments and behaviours64,65. 
The material affordances of sensors embedded in mobile devices (such 
as cameras, microphones, gyroscopes, GPS antennae and inertial 
measurement units) and home electronics are often opaque and unac-
countable in ways that make it difficult for anyone to understand when 
and what information they might be collecting and analysing. In addi-
tion, it is well known that sensor-driven surveillance technologies are 
more likely to be deployed in already over-surveilled communities and 
professions66–68, exacerbating disparate AI impacts and inequities69,70.

In this Perspective, we examine the materiality of AI risk produc-
tion by paying close attention to how sensors are incorporated into AI 
systems and vice versa. We suggest that the material affordances and 
calculative models of sensors contribute to the growing ubiquity of 
sensors and the general risks of AI systems. To do so, we first demon-
strate how the material affordances and calculative models of sensors 
co-evolved over the past half-century by laying out the ‘evolutionary 
history’ of sensors that culminates in today’s environment of pervasive 
AI-enabled sensing. Leading on from this analysis, we build on the two 
most prominent and widely adopted AI risk management frameworks 
in the USA and in Europe—the RMF developed by the US NIST27 and the 
EU AI Act71—to propose a sensor-sensitive AI risk identification frame-
work. In a third step, we raise a call for the development of a new sensor 
design paradigm that addresses the risks posed by the convergence of 
ubiquitous sensing and AI technologies, particularly in the context of 
tinyML. Overall, the key contribution of our work is to expand attention 
to the material affordances and calculative models of sensor-based AI 
systems when engaging in AI risk diagnostics.

Sensors everywhere
Sensors are devices that convert “a physical phenomenon into an electri-
cal signal” (page 1 in ref. 72) that can then be used to quantify environmen-
tal aspects such as light, heat and pressure. They are designed to monitor 
phenomena within and beyond our human perception, such as imagery, 
movement, sound or chemical composition. They transform physical 
phenomena into numerical representations, adding to the ‘avalanche’ 
of numbers73 that make it possible for the world—people, commodities, 
communities and nature—to be represented computationally, for behav-
iours to be analysed. Crucially, they are the foundation for many of the 
datasets that undergird powerful AI technologies. Digital cameras are 

of the many technological devices we use in our daily life: cameras, 
microphones, batteries and so on.

Today’s sensor technology has shrunk the material components 
needed to turn physical phenomena into data onto a very small foot-
print. Increasingly small devices are equipped with microphones, 
cameras and machine learning abilities, bringing AI to the materiality 
of the sensor (rather than communicating data with the cloud). At the 
smallest scale, and at the lowest power of operation, this is referred to as 
‘tinyML’23,24. The materiality of these new types of sensor is deeply impli-
cated in the pervasive data collection that underpins AI systems. In this 
Perspective, we follow Lievrouw in framing materiality as “the physical 
character and existence of objects and artifacts that makes them useful 
and usable for certain purposes under particular conditions” (page 25 
in ref. 25). We build on this definition to draw attention to the mate-
rial design of sensors and its impact on how physical phenomena are 
transformed into data. By doing so, we propose that there are certain 
risks associated with the designed materiality of sensors that common 
ethical approaches (for example, technomoral virtues26) or recent AI 
risk frameworks (for example, the Risk Management Framework (RMF) 
developed by the US National Institute of Standards and Technology 
(NIST)27 or the European Union (EU) AI Act28) do not sufficiently attend 
to. Similarly, past reviews on the impact of AI on sensing technology 
mostly focus on the technical challenges of model compression at the 
edge and large-scale IoT architectures. And, while some may mention 
privacy and security in passing, they pay little attention to the embod-
ied material challenges of such technological shifts29–38.

We stipulate that this blind spot in AI ethics and governance 
primarily stems from ignoring the material affordances of technical 
objects, and sensors specifically. Foundational texts in science and 
technologies studies define affordances as the properties of objects 
that “are compatible with and relevant for people’s interactions”39 (see 
also ref. 40). Here, we build on more recent work that positions the 
affordances of technologies as “mediating between a technology’s 
features and its outcomes”41 to focus our attention on the properties of 
sensors that are relevant for data collection (for example, sensitivity to 
physical phenomena, onboard processing, storage and transmission), 
noting that affordances can both enable and constrain interactions42. 
While originally framed as the way in which design features enable and 
constrain user engagement and social action41, we propose to under-
stand materiality as the material affordances of sensors that deeply 
affect data ontology (that is, considerations of what phenomena can 
and ought to be data-fied), data collection and data processing—all of 
which affect how the benefits and risks of AI systems unfold further 
downstream. We note that the benefits of such material affordances 
are often clearly identified by those who design and market sensors, 
but risks are less frequently identified by designers or articulated for 
customers or the broader public. Drawing on a growing body of work on 
AI risks, we define AI risks as concrete harms that can be experienced by 
individuals or communities or that can be afflicted on the environment 
through the deployment and use of AI systems43–46.

For illustration, we can consider the way physical properties 
change the performance of sensors for varying skin tones47–49. For 
example, the physical properties of the charge-coupled devices inside 
digital cameras, a paradigmatic sensor and the algorithms that process 
their outputs, contribute to how skin tones are rendered in digital 
files47, which in turn contribute to computer vision applications such 
as face detection and facial recognition50.

Adopting a material lens and an affordances approach also makes 
it possible to apprehend the risks that adhere not just to a single sen-
sor, device or AI system but instead emerge from their widespread 
adoption. We stipulate that adoption is driven by how material prop-
erties and functionalities combine with calculative behaviours and 
calculative models, that is, the collectively shared assumptions and 
practices about both usefulness and economic value that render sen-
sors commercially viable (these include, but are not limited to, cost 
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the sensors that produced the datasets that enabled image recognition74. 
Speech recognition would be impossible without the datasets gener-
ated using digital microphones75. And many more AI applications, from 
autonomous vehicles to personal athletic trackers, rely on sensor data as 
well. However, technical innovations do not gain widespread adoption 
merely because of their technical superiority or consumer demand. 
Rather, they shape and are shaped by a wide range of (often competing) 
social and commercial interests76. To develop a sensor-sensitive approach 
to AI risk diagnostics, it is key to unpack how the material affordances of 
sensor technology co-evolved over time in tandem with the calculative 
models that motivated their spread and uptake.

The ‘evolution’ of sensing
Sensors have distinct material characteristics that generally remain 
unchanged: sensitivity to the intensity of an input, dynamic ranges 
within which phenomena can be accurately transformed into meaning-
ful signals, and a propensity to produce noise alongside meaningful 
signals72. But sensors’ material affordances—the social actions they 
enable rather than their abstract characteristics77—have changed 
dramatically over the past few decades, with significant implications 
for how they are used, and for the overall AI risk landscape. As tech-
nology has advanced, sensors have become smaller, more efficient, 
more sensitive and more connected, allowing them to be embedded in 
various environments and objects, thus providing real-time data and 
insights that were previously unattainable. This ‘evolution’ has not only 
extended our ability to understand and interact with the world around 
us but also paved the way for innovations that continue to shape our 
future. Sensors have evolved from simple analogue devices into ‘intel-
ligent’ systems capable of analysing data and making decisions at the 
edge. The advent of wireless sensor networks in the late 1990s marked 
an important milestone, allowing remote collection and analysis of 
sensor data78. However, sensors were still reliant on external processing 
power. The subsequent rise of smartphones and IoT devices brought 
sensors out of isolation, interconnecting them through the internet79. 
For the first time, distributed networks of sensors could coordinate to 
achieve larger goals. However, even as billions of sensors flooded the 
environment with data, their capabilities remained confined to data 
collection rather than interpretation.

This changed with the emergence of edge AI sensors and tinyML 
sensors, which move machine learning out of data centres and closer 
to the sensor devices themselves. Edge AI sensors communicate with 
nearby processors—either separate components within the same 
device that contains the sensor, or a mobile phone or computer wire-
lessly connected to the sensor device—where machine learning models 
run locally29,30. TinyML sensors incorporate machine learning models 
directly on the sensors based on new advances in small but power-
ful models that can run directly on such devices—so-called tinyML 
models23,24. In particular, these models can run directly on the micro-
controllers commonly found on physical sensor hardware. This allows 
for real-time data processing and analysis at the sensor level, without 
needing to transmit data to a separate computing device. Further-
more, tinyML sensors usually limit the information shared from the 
sensor device to only application-specific instructions, for example, 
whether or not a person is standing in front of the device, rather than 
an entire video data stream that could then be put to many purposes 
off-device23,80. Rather than indiscriminately streaming all collected data 
to cloud servers, edge AI and tinyML sensors interpret their environ-
ment and surface insights, and make decisions not in distant server cen-
tres but at the edge, that is, on the device or a nearby connected device.

Below, we show how successive stages of sensor development, with 
their evolving material affordances and calculative models (which com-
bine considerations around sensor size, energy use, supply of material 
components and so on into profit projections, pricing schemes and 
sales strategies), shape the risk profiles of sensors as components of AI 
systems, providing common examples of each in Fig. 1, which we then 

discuss in the following section (‘A sensor-sensitive AI risk diagnostics 
framework’). We note that each of the stages of sensor development 
we identify build on earlier material affordances of sensors while add-
ing additional properties. Accordingly, when thinking about the risks 
sensors contribute to algorithmic systems, we see that many of those 
risks accumulate from one stage to the next.

•	 Traditional sensor72,81–83. A device that affords the ability to gener-
ate data from or about the physical world. The sensor itself may 
transmit analogue or digital signals, and signals produced by the 
sensor may need post-processing on- or off-device to be useful. 
Data may be stored on- or off-device, or may be entirely ephemeral. 
Traditional sensor devices do not require an internet connection 
to function and typically have no internet connection capabil-
ity. Data must be purposefully transferred off-device and stored 
using specific protocols such as Serial Peripheral Interface (SPI) or 
Inter-Integrated Circuit (I2C), both of which are common commu-
nication protocols used to transfer data between microcontrollers 
and peripherals. No statistical inferencing happens on-device.

•	 IoT sensor84–88. A device that affords the ability to generate data 
from or about the physical world, and to access that data in real 
time or near-real time using internet transfer protocols. IoT sen-
sors also afford the ability to collect data not directly related to 
the physical phenomena they are designed to sense like a list of 
connected devices, strength of WiFi signals, battery status of 
connected devices and other metadata related to the device’s 
performance. IoT sensors may be able to operate without an active 
internet connection, but most are designed with capabilities that 
require internet connectivity, particularly to generate or store 
data. No statistical inferencing happens on-device, and rarely 
even happens in the cloud. Data transmitted over the internet are 
(almost) always stored in a centralized location. This type of device 
acts primarily as an interface to cloud-based data storage systems.

•	 AIoT sensor29,31,32,34,36,89. A device that affords the ability to conduct 
cloud-based AI decision-making based on data from or about the 
physical world. This is done through real-time or near-real-time 
access to AIoT (AI of Things; that is, a combination of AI systems 
with Internet of Things infrastructure) sensor data using inter-
net transfer protocols, and integrated with AI/machine learn-
ing inferencing techniques in the cloud (and importantly not 
on or near the device). As such, this type of device requires an 
active internet connection to operate at full functionality. Impor-
tantly, full datastreams generated by the sensor are (temporarily) 
stored in centralized locations (that is, cloud or server device). 
This type of device acts primarily as an interface to cloud-based 
decision-making systems powered by AI.

•	 Edge AI sensor30,35–38,90–92. A device that affords the ability to con-
duct AI decision-making at the location of the device, based on 
data from or about the physical world. This is done by process-
ing sensor data using machine learning techniques through a 
combination of on-device and near-device edge processing (for 
example, the Apple Watch offloads some computations to a user’s 
cell phone). These data may afford remote access and data reuse 
instances where it is transmitted off-device, and possibly over 
the internet, in real time or near-real time, in its raw or processed 
form. Transmitted data may or may not be stored in a centralized 
location. This type of device extends the cloud-based intelligence 
of AIoT sensors to the edge.

•	 TinyML sensor80,93. A device that affords the ability to accomplish a 
predetermined task with only the minimal amount of information 
needed to accomplish that task. For example, a tinyML camera 
designed for person detection may only afford the ability to read a 
single bit from the sensor device (‘1’ if there is a person within view 
of the camera and ‘0’ if not). This is done by using machine learning 
inferencing techniques on data from or about the physical world 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | March 2025 | 334–345 337

Perspective https://doi.org/10.1038/s42256-025-01017-7

entirely on-device. Crucially, such sensors do not afford the ability 
to read the raw image data from the sensor device. These devices 
are typically self-contained and store minimal or no sensed data.

It is important to note that these successive stages are ‘evolution-
ary’ only in a descriptive sense; sensors of each stage remain in pro-
duction and use today and build on many of the characteristics of the 
sensors they were preceded by. But their material affordances are quite 
different from stage to stage. Where traditional sensors require direct 
access (physically, over wire, or through radio or infrared signals), IoT 
and AIoT sensors enable data access from anywhere in the world with 
an internet connection, data aggregation and real-time monitoring of 
many distant locations. Edge AI sensors can afford similar capabilities, 
but also afford autonomous operation of nearby devices connected 
to these sensors. TinyML sensors, in contrast, afford the ability to 
accomplish tasks without needing to support high-bandwidth data 
flows or process data off-device. Importantly for understanding the 
AI risks associated with different stages of sensors, each stage has dif-
ferent affordances for misuse (whether intentional or not); traditional 
sensors and TinyML sensors are more difficult for bad actors to gain 
unauthorized access to than IoT devices, and do not require the produc-
tion of datastreams that might make users and passersby vulnerable 
to privacy breaches or other malicious behaviour.

Calculative models and sensor development
The wide adoption and evolutionary transformation of sensors can 
be explained in part by their sheer utility for gathering data about the 
physical world, and its ascribed usefulness and commercial viability. In 
addition, each stage of sensor development adds capabilities that lead 
to new products and services. But the proliferation of sensors cannot 
be explained entirely by the technical needs they satisfy. Instead, the 
integration of sensors into consumer devices, industrial machinery 
and civil infrastructure—like any other product—is steered more by 
the dynamics of calculation for circulation and trade, rather than by 
technical features. Economic markets are not independent agential 
entities that are external to social and material life, but rather are col-
lectively organized tools that facilitate the calculation of the value of 
goods51,94. Calculation bridges quantitative and qualitative aspects in 
an effort to make goods tradable. The practices and cultures of cal-
culation95 differ by market, but always evolve around certain sets of 
calculative models, that is, repeatable ways of calculating an object 
or good. These calculative models combine cultural knowledges and 
assumptions about people and consumption (for example, about con-
venience in the home, stipulating that people will prefer to operate 
their light switch with voice commands over physically switching on 
lights) with determinations of the social and behavioural impact of the 
material affordances of an object or product, costs of manufacture, 
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actual and projected volume of sales, and cumulative profits in the 
context of the many possible additional factors that affect price, costs 
and earnings96,97.

There are three interrelated material aspects affecting the evolu-
tion of calculative models of sensor technology and their recently accel-
erated proliferation. The first is a reduction in cost for the production 
of sensors due to advancements in manufacturing technologies, the 
development of more affordable material components and the reduc-
tion in cost driven by production at scale98. The second, relatedly, is the 
miniaturization of sensors99–101, often considered an innovation and 
adoption driver102–105. The third one is, again relatedly, a measurable 
reduction in energy consumption in sensor deployment. Especially 
for large networks of sensors, vastly increased energy efficiency of 
sensors, even for edge AI and tinyML sensors that run machine learning 
models at the edge, enhance efficiency by removing the need for cloud 
services, making sensors capable of real-time data analysis for a wide 
range of applications where an internet connectivity is impractical or 
latency restrictions are severe58,106–111.

These three interrelated and material aspects have given rise 
to three distinct calculative models of sensor technology, with one 
emerging before the other. While in the 1970s, 1980s and 1990s, the 
calculable and tradable unit was the object of a traditional sensor 
itself (thermometer, microphone, charge-coupled device or inertial 
measurement unit), the calculative model changed with the arrival 
of IoT sensors and sensor networks, starting in the 1990s. Here, the 
calculable unit is not the sensor or sensor network itself, but the value 
of the data that it collects. Pricing emerges around the ability of collect-
ing and interpreting that data, for example, in the context of predictive 
maintenance, energy management and consumer-behaviour analysis. 
A third calculative model later emerged, spanning across all sensor 
types, focused on subscription-based and service-oriented models as 
calculative units. Companies are increasingly offering sensors as part 
of a service package, where the initial cost is low, but users pay a recur-
ring fee for data analysis, cloud storage and other associated services.

Today, even mundane appliances have increasing numbers of sen-
sors built into them. There has been an exponential growth in the mar-
ket size of deployed smart IoT devices, with a total 14.3 billion devices 
now in use globally in 2022 and a projected 29 billion devices by 2027112. 
This proliferation of AI-connected sensors brings new forms of risk: the 
likelihood, frequency and severity of a harm occurring to individuals, 
communities or the environment. As sensors variously proliferate, con-
nect to AI services and embed machine learning capabilities on-device, 
they shape and reshape how and when algorithmic harms may occur. 
This has important implications for how we should diagnose AI risk, 
given the many ways different sensors interact with social worlds and 
the physical environment, how data are shared between and across 
devices containing different types of sensor, and how the material 
affordances of sensors enable the activities that lead to harm.

A sensor-sensitive AI risk diagnostics framework
Increased attention to the harms and risks of AI systems has led to the 
development of several risk management frameworks for AI (see, for 
example, refs. 113,114) that are variously oriented towards specific busi-
ness purposes or regulatory conformity. In the USA, NIST has developed 
an AI RMF that is designed as a general purpose framework, applicable 
across many domains27. The EU has developed a risk framework for AI 
through the EU AI Act that identifies specific uses of AI as presenting 
different levels of risk, with some uses prohibited, others high risk 
enough to be ‘regulated’, and still others requiring varying safety fea-
tures and transparency mechanisms71. Additional frameworks have 
been produced by governmental organizations, such as the Organisa-
tion for Economic Co-operation and Development115, or consultancy 
groups, for example, refs. 116,117. The NIST AI RMF developed seven 
characteristics of what they refer to as ‘trustworthy AI systems’, and 
which are quickly becoming key elements of AI governance. Such 

systems are valid and reliable, safe, secure and resilient, accountable 
and transparent, explainable and interpretable, privacy enhanced, 
and fair. The NIST AI RMF points out the need for “balancing each of 
these characteristics based on the AI system’s context of use” (page 12 
in ref. 27). The EU AI Act similarly focuses on contexts of use, by draw-
ing attention to deployments that are explicitly prohibited, those that 
are regulated as ‘high-risk AI systems’, those that have ‘fundamental 
safety and transparency’ concerns, those that require transparency 
only, and those that are not in the scope of the act71. However, these risk 
management frameworks set out to provide comprehensive and often 
too broad guidance on AI risk identification, mitigation and manage-
ment, and do not adequately attend to the role that pervasive sensing 
has in contributing to the risks of AI systems. Therefore, we propose 
a sensor-sensitive AI risk diagnostics framework that attends to how 
the material affordances of sensors, and the calculative models that 
drive their features and deployment patterns, produce specific AI risks 
within wider AI systems.

Our approach proceeds from an analysis of the materiality of 
objects—here, the material affordances of sensors—in contrast to 
frameworks like NIST’s, which proceeds from impacts to users and 
communities and without attention to the impacts and dynamics of 
materiality and proliferation. Emerging from our preceding analy-
sis of material affordances and calculative models of sensors, our 
sensor-sensitive framework for AI risk diagnostics focuses on five 
key aspects that must be considered as part of assessing AI risk of 
sensors: (1) calibration, (2) documentation, (3) proprietary data pro-
fusion, (4) privacy and (5) waste. Each of these aspects are intended 
to be considered in addition to other characteristics of an AI sys-
tem. Overall, our diagnostic ought to be read as complementary to 
government-mandated AI risk management approaches as we suggest 
it be used specifically for sensor-intensive AI systems and applica-
tions. Our argument is that sensors contribute to the risks of AI sys-
tems through their material affordances and calculative models. This 
contribution is worthy of analysis separate from an analysis focused 
exclusively on how the data produced by sensors contribute to the 
risks of AI systems.

Calibration
All sensors must be properly calibrated to return validated, reliable, 
accurate, robust, comparable data about the physical world. But the 
challenge of both achieving and confirming these characteristics is 
different for various types of sensor118. Traditional sensors are often 
calibrated before they leave the factory and are engineered either to 
provide users a means of recalibrating the sensor to a known value 
(for example, using standardized weights to adjust a scale or boiling 
distilled water for a digital thermometer) or to include an adjustment 
curve to adjust observed measures to known measures. Calibration 
also has a sociotechnical dimension, in that a sensor is calibrated for 
an intended purpose and can be miscalibrated for other purposes. A 
thermometer designed for personal health use may need to be cali-
brated to be most accurate around normal human body temperature, 
whereas a thermometer designed for industrial use might need to be 
calibrated differently to be most accurate around the melting point of 
various substances (for example, iron, ammonia or copper). There are 
numerous instances where sensors have been miscalibrated for their 
social uses; colour film was long miscalibrated to lighter skin tones 
despite the fact that it was being used for photographing people of 
a wider range of skin tones, and digital photography was developed 
to emulate colour-film calibration curves48. In addition, sensors can 
become miscalibrated over time, as communities and the environment 
change; so-called shot-spotter technology requires on-site recalibra-
tion to function properly, particularly when urban geography changes 
in ways that affect acoustics119.

Networked sensors—IoT and AIoT sensors—do not always afford 
the direct physical access required to conduct or confirm recalibration, 
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so more sophisticated computational techniques may be needed to 
calibrate already-deployed sensors over a wide area without direct 
access to the device itself or a reliable reference measurement to 
calibrate sensor readings120. Edge AI and tinyML sensors also raise 
validity concerns, as their designed-in autonomy often means calibra-
tion cannot be remotely maintained once deployed. The calculative 
models that underwrite the development and pervasive deployment 
of sensors also affects their calibration to their environment; design-
ing calibration affordances into sensors adds to their cost, maintain-
ing calibration of a fleet of distributed sensors requires substantial 
organizational infrastructures and costs, and data collected from 
networked sensors may continue to hold commercial value even if it 
falls out of calibration.

Sensors’ material affordances shape the data they produce as a 
condition of its production. Unless they are properly designed for the 
phenomena they are deployed to sense, the data they produce will be 
inherently unreliable; oxygen-saturation sensors, for example, must 
be properly calibrated to an individual’s skin tone to work properly49. 
Furthermore, because pervasive sensing places sensors into contexts 
for which they may or may not have been properly calibrated, they are 
implicated in the reliability and safety of AI systems, as well as their abil-
ity to function fairly and manage bias appropriately. This risk is more 
acute in some use cases than in others, and so risks associated with the 
mis/calibration of sensors should be evaluated both in relation to the 
NIST characteristics of ‘trustworthy AI’ and the various levels of risk 
associated with use cases in the EU AI Act.

Documentation
Traditional sensors have long been developed and deployed through a 
commitment to safety engineering121, subject to safety testing, and—like 
other components—accompanied by standardized datasheets that 
layout their safe and unsafe use cases (for example, ref. 122). AIoT, 
edge AI and tinyML sensors are similarly accompanied by such data-
sheets; however, these types of sensor afford tight coupling to machine 
learning, either in the cloud, on-device or nearby. For these tightly 
coupled systems, datasheets do not provide adequate documenta-
tion for key trustworthiness characteristics such as interpretability 
and transparency. As these sensors become more pervasive, their 
under-documentation makes it increasingly difficult to manage their 
appropriate deployment, identify cases that require closer scrutiny 
and monitor their impacts for potential incidents of harm.

Existing proposals for documenting edge AI and tinyML sensors 
suggest including model cards for their machine learning models93,123. 
While this would help mitigate the risks associated with inadequate 
documentation, effectively managing these risks requires a compre-
hensive evaluation of whether AI systems—including the sensors that 
produce data for them—are adequately documented. As the use of 
sensors becomes more widespread, documentation is also crucial for 
understanding the material affordances of data production and the 
calculative models under which data may be collected, bundled and 
sold. While existing documentation might account for specific data 
production from a networked sensor, such sensors may afford the 
production of additional datastreams beyond that which is explicitly 
documented, producing unanticipated risks124. The production and 
leakage of undocumented data can cause considerable harms that may 
be magnified in specific use cases. Transparency is a key dimension of 
AI governance; however, inadequate documentation of the material 
affordances of pervasive sensor networks comprises a discrete risk to 
be identified and managed as well.

Proprietary data profusion
The calculative models that underlie a sensor-saturated world tend 
towards reducing the unit costs of sensors and ensures their omni-
presence. The material devices are becoming cheaper to produce and 
any excess unit costs are often rationalized by the calculative models 

discussed above. This has the result that the amount of data collected, 
which can be used for providing services (for free or on a subscription 
plan) as well as sold on a secondary market through data brokers125, is 
always maximized. Such a model leads observers to conclude that the 
scale of data collection and aggregation often exceeds individuals’ 
expectations or ability to control126,127. Given the shift in the calcula-
tive models attached to sensors, particularly the perceived need to 
recoup per-unit costs, there is increasing pressures for private- and 
public-sector organizations to keep data proprietary. This constitutes 
a risk that the material affordances and calculative models of sensors 
contributes to, which in turn makes AI systems more risky.

Data profusion brought by sensors has the potential to amplify the 
divergence between data quantity and quality and its associated risks. 
Calculative models are oriented towards the deployment of low-cost 
sensors which, unlike industry grade sensors, are more susceptible 
to factors that will result in incomplete or inaccurate data128. Sensor 
data quality can also suffer owing to variations in hardware manu-
facturing, sensor drift or the state of the battery—as sensor data tend 
to becomes less reliable as the battery nears the end of its lifespan129. 
Critiques of ‘big data’ practices underscore the failure of datasets to 
offer an objective, accurate and comprehensive portrayal of real-world 
phenomena130–132. Given that policy-making decisions and resource 
allocation often rely on quantifiable information, the invisibility or 
inaccurate portrayal of specific individuals or phenomena within 
datasets contributes to their marginalization. An increase in dirty data 
generated in a sensor-saturated world risks perpetuating these issues. 
Moreover, data profusion propelled by sensors might exacerbate the 
risks associated with poor data quality as it will create an overwhelm-
ing demand for data cleaning. This is a time-consuming process that 
requires a domain expert to be done effectively and cannot be easily 
scaled to meet demand133.

Privacy
The materiality of sensors and the scale of their deployment present 
a unique set of challenges with respect to privacy that are worthy of 
explicit attention. The physical characteristics of sensors in terms of 
their small size allows them to be inconspicuously integrated into one’s 
surroundings in novel and unexpected ways. This presents a formidable 
obstacle to safeguarding privacy through the mechanisms of notice and 
consent. Individuals who are unaware of sensors may be involuntarily 
subjected to data collection and algorithmic processing. But even if 
individuals were notified of sensors, the abundance of these devices 
would render the practice of consent untenable. The time and attention 
required to provide informed consent in every case would exceed an 
individual’s finite capacities134,135.

The NIST AI RMF notes how AI systems can present new privacy 
risks such as enabling inferences that jeopardize de-identification 
efforts. This risk will become especially salient in a sensor-saturated 
world, as an increase in the volume and breadth of data is positively cor-
related with the ability to draw such inferences. Moreover, the process 
of sensor fusion, where data from multiple sensors are combined, ena-
bles inferences that would otherwise not be possible from a single data 
stream136. Pervasive sensing, therefore, provides material affordances 
for expanding the potential to draw inferences and cross-reference data 
not only contribute to re-identification risks of de-identified data137 but 
also threaten an individual’s ability to exercise control over their data 
in at least two respects. First, the potential to draw inferences means 
that individuals may not fully understand either the fact of data collec-
tion (that is, the fact that data were being collected by a sensor at all) 
or the implications of data collection, casting doubt on the informed 
nature of their consent. Second, an individual’s decision to opt out 
of data collection may be rendered futile, as the decisions of others 
to permit data collection can enable inferences that inadvertently 
implicate those who seek to abstain, eroding the notion of individual 
agency in data sharing138,139.
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Waste
The environmental impact of AI is addressed in risk management 
frameworks such as the NIST AI RMF, which explicitly identifies risks 
of harm to the environment within its definition of ‘safe’ AI systems. 
This framework briefly references “conditions [under which] the envi-
ronment is endangered” (page 14 in ref. 27), although it lacks opera-
tional guidance for assessing these risks. While broader discussions 
about the environmental costs of computing technologies are more 
developed elsewhere140–143, these discussions predominantly focus 
on the operational activities associated with product use, such as the 
energy consumption required for training and running inference on a 
machine learning model. We contend that this framing does not fully 
capture the risks posed by the material production and disposal of 
sensors17,144,145. Below, we detail the unique environmental challenges 
associated with sensors to illustrate why waste is a distinct and critical 
aspect of risk for these devices.

First, the environmental risks of sensors differ significantly from 
other AI systems owing to their reduced carbon output associated 
with operational activities. The operation of battery-powered sensors, 
even at a massive scale, can be expected to consume significantly less 
energy than other computing technologies58. Instead, the environ-
mental impact of these devices lies primarily in the manufacturing and 
disposal phases, where carbon emissions and other risks are tied to the 
supply chain and end-of-life processing146. The biggest contributing 
factor to their embodied footprint is the batteries that power them58. 
Coin cell batteries, for example, pose significant challenges due to 
their small size, short lifespan and toxic components (for example, 
lithium, mercury, cadmium). As these batteries might not be easily 
recyclable or biodegradable, they may accumulate in landfills or, worse 
yet, contribute to pollution and environmental hazards as a result of 
their improper disposal. The second largest factor of sensors’ carbon 
footprint is the sensor components themselves, which often rely on 
rare earth elements and carry high extraction costs including habitat 
destruction, water pollution and other ecological impacts. Recent 
research has shown that significant improvements can be made with 
regards to reducing the waste impact of sensors by way of integrating 
sustainable materials into sensor design147.

Although these environmental risks may resemble those associ-
ated with other consumer electronics, the distributed nature of sensors 
nevertheless raises distinct concerns. Sensor deployments in agricul-
ture, wildlife or environmental monitoring can involve hundreds or 
even thousands of devices spread across large or remote areas. Unlike 
consumer electronics, which are typically consolidated in urban areas 
with access to recycling programmes and associated infrastructure, 
retrieving and responsibly disposing of sensors may be impractical. 
Thus, there is a risk that sensors will contribute to ‘stranded e-waste’ 
that accumulates in inaccessible or remote environments. Further-
more, sensor devices often operate invisibly or autonomously due to 
their miniaturization and edge computing design. This materiality of 
sensors contributes to the risk of ‘invisible pollution’, where discarded 
devices contribute to environmental harm in ways that may go unno-
ticed by regulators or consumers. Unlike centralized computing tech-
nologies, which are easier to oversee and optimize for sustainability, 
the decentralized and distributed nature of sensors presents novel 
challenges for managing the associated environmental risks.

In addition, sensor-based AI systems are often viewed as envi-
ronmentally friendly compared with other AI systems owing to their 
low energy requirements during operation. When deployed towards 
sustainable aims, their overall carbon footprint may even be net nega-
tive58. However, the energy efficiency of sensors can, counterintuitively, 
contribute to their broader environmental risk. When sensors are 
seen as energy efficient, this framing can obscure the environmen-
tal impact associated with their end-of-life processing and disposal. 
Moreover, when applied to sensors, a theory in economics known 
as Jevons’ paradox suggests that increased efficiency can lower the 

perceived environmental cost, encouraging widespread adoption and 
ultimately increasing resource consumption148.

Finally, the low cost and scalability of sensors further com-
pound these risks. While the affordability of sensors is often cel-
ebrated as an innovation that can enable their global adoption, it 
may inadvertently promote an overreliance on sensor-based solu-
tions. Given the low cost and accessibility of sensors, they may be 
preferred over non-technological alternatives such as policy reforms 
or community-based interventions, even when the latter have lower 
environmental costs. The calculative models and materiality of sensors 
leads to increased affordability, energy efficiency and smaller-size 
devices, spurring their widespread application and adoption. While 
sensors hold promise for supporting sustainability efforts, the dis-
tributed nature of their deployment and their potential to have a para-
doxical effect on resource consumption present distinct environmental 
risks that must not be overlooked.

Implementation
To implement the above risk diagnostics framework, efforts must be 
made to map, measure and mitigate the ways in which sensors con-
tribute to the overall risk of an AI system. Mapping risks consists of 
identifying how the specific sensors employed as part of that system 
might become miscalibrated or be poorly calibrated, how they might 
need to be documented, what data they produce, how they contribute 
to or undermine privacy, and what forms of waste their production and 
use represents. Particular attention ought to be paid to the material 
affordances of these sensors, to identify what features or components 
of the sensors are associated with each risk category. Measuring risks 
consists of identifying the severity and scope of each risk category. A 
privacy risk might be slight, with respect to any one user, but have wide-
spread implications for thousands or even millions of users. Conversely, 
it may be severe but occur rarely. Both dimensions must be evaluated 
to accurately assess the overall risks. Special attention should be given 
to the calculative models at play and how they shape the severity and 
scope of identified risks. Mitigating risks consists of identifying the 
roles that material affordances and calculative models play in each 
identified risk and exploring how these elements could be modified. 
For instance, if a particular privacy risk is given broader scope owing 
to a data retention policy that enables data brokers to buy and sell user 
data, implementing a data deletion policy could help reduce some of 
that risk. In addition, alternative designs may be developed to partially 
mitigate the risk of waste, and active monitoring of reference devices 
might be undertaken to mitigate the risk of miscalibration over time.

Discussion and future work
As sensors become interwoven into the fabric of everyday life, they 
may fade into the background of conscious experience. Neverthe-
less, these devices are capable of exerting powerful influences over 
individuals’ choices and behaviour. AI sensor-based systems can subtly 
or overtly exert power, whether through persuasion or coercion149. 
Activity trackers, for instance, employ a subtle approach by using 
data-driven feedback to encourage users to exercise more. In contrast, 
a seat-belt sensor that locks the car ignition until the driver buckles up 
represents a more coercive form of influence. The evolving material 
affordances of sensors—particularly their shrinking size and enhanced 
processing capabilities—will allow for their integration into devices 
that are ever more intimately linked to individuals’ daily routines150. 
This reality, combined with the calculative models driving the creation 
of a sensor-saturated world, suggests that individuals will probably be 
increasingly subjected to technological influences.

AI sensor-based systems can offer significant utility that make 
them attractive to consumers. For instance, despite users’ awareness 
of the privacy and security risks associated with IoT devices, research 
reveals a prevalent ‘I want it anyway’ attitude among users151. However, 
as AI sensor-based systems become more pervasive, users may reassess 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | March 2025 | 334–345 341

Perspective https://doi.org/10.1038/s42256-025-01017-7

their willingness to accept the associated risks. One study indicates that 
users are less inclined to embrace data collection if they perceive it as 
excessive within the broader context of their lives: “Smart home tech-
nology was often viewed as a further invasion of, or threat to, privacy 
in a society where already too much personal information is collected 
and stored” (page 369 in ref. 152). Notably, individuals’ attitudes are 
context sensitive; their perception of risk associated with a particular 
IoT application is intertwined with their views on the broader prolifera-
tion of AI sensor-based systems.

The proliferation of sensors gives rise to new dimensions of 
risk that are capable of being felt by the general public. Yet existing 
approaches to AI ethics and governance overlook these risks owing 
to their narrow focus on specific applications of AI. For example, the 
NIST RMF for Information Systems and Organizations—which per-
tains to information systems ranging from cloud-based systems to 
IoT devices—explicitly avoids considerations related to material affor-
dances of technological objects such as sensors153.

Similarly, the EU AI Act focuses on regulating AI systems deemed 
high risk owing to their use case, but overlooks broader risks associated 
with the proliferation of sensors that contribute to proprietary data 
profusion. The EU Data Act71 represents a notable effort to address this 
gap, aiming to promote equity by allowing individuals and businesses 
to access data generated by their use of AI sensor-based systems. This 
recent development in the EU regulatory landscape demonstrates that 
piecemeal progress is possible. However, a more unified approach 
to risk management can be achieved by adopting a lens of analysis 
grounded in both the material affordances and calculative models of 
sensors. This perspective allows for a comprehensive understanding 
of the risks associated with AI sensor-based systems by considering 
the roles that their technical and physical properties have in shaping 
their impacts.

Beyond risk management, further work is necessary to support 
efforts towards the responsible design, development and deploy-
ment of sensors. This includes technical teams developing sensors to 
incorporate interdisciplinary collaborations with social scientists and 
behaviourists154 into their work, and potentially leads to harnessing the 
potential benefits of sensors (in part through attention to their mate-
rial affordances)155, particularly for decentralizing power by widening 
access to tinyML. With sufficient sensor and AI literacy, individuals 
and communities may be able to build sensor-driven AI systems that 
genuinely benefit them, under terms they define themselves. These 
could include entirely private and closed health monitoring systems, 
weather and crop monitoring employed in farming communities, or 
sensor deployment for citizen research projects focused on environ-
mental justice or other community concerns.

To animate and harness these benefits alongside strengthened 
sensor governance through the proposed sensor-sensitive AI diag-
nostics framework, it is essential to meaningfully engage stakeholder 
communities to contribute to the creation of inclusive guidelines 
and best practices. This ensures that the deployment of sensor tech-
nologies considers a broad spectrum of perspectives and needs, 
balancing technological advancement with societal well-being156,157. 
The focus on material affordances of sensors demonstrated above 
is just as well suited to the exploration of how sensors might benefit 
such communities, on their terms, as it is to the enumeration and 
analysis of risks.

A range of different stakeholders, all of whom are experts in vari-
ous applied fields as well as dimensions of risk discussed above, should 
focus on collaborating to create a sensing paradigm that is aiming to 
alleviate the negative impacts stemming from the material affordances 
and calculative models prevalent in today’s sensor ecosystem, and 
developing community-driven approaches to sensor and data use. 
In addition, they should work on scoping transparency in ways that 
are relevant to the lived experience of interacting with sensors to pro-
mote the creation of transparent systems that make it easy for users 

to understand how their data are being used and for what purpose. 
Incorporating methodologies such as the machine learning technology 
readiness levels (MLTRL) framework can provide a structured approach 
to ensuring that these systems are robust, reliable and responsible from 
development through deployment158.

In addition, the machine learning sensor paradigm80 can provide 
a technical frame for risk-aware and community-driven sensor and 
data use. This approach suggests that sensors should process all 
data internally and transmit only abstracted, high-level data through 
a streamlined interface. This adheres to the principle of data mini-
mization, ensuring that raw data remain exclusively accessible to 
the onboard sensor processor. This architecture not only enhances 
system self-containment, thereby improving auditability and acces-
sibility, but also empowers users by maintaining control over their 
raw data, reducing the likelihood of unwarranted data exploitation 
by commercial and governmental entities. The proliferation of such 
a paradigm, or the development of alternatives, will be critical in 
ensuring that responsibility is a core design principle for future sen-
sor systems. While substantial additional work needs to be done to 
adequately address the risks posed by AI sensor-based systems159, this 
approach provides a strong starting point. Parallel efforts can also 
use the lens of calculative models to intervene in how sensor-focused 
AI is underwritten financially. Taxation and increased regulatory 
scrutiny of such devices can shift the development logics away from 
integrating sensors that facilitate unconstrained data collection in 
every device.

These efforts can be combined with a focus on interpreting the 
societal impact of these technologies, advocating for the rights of 
affected communities and helping to draft robust regulatory frame-
works that govern the ethical use of sensor data. Sociotechnical 
approaches like this can also have a vital role in AI design160,161, par-
ticularly in the public sector162,163, as well as fostering global public 
awareness and education164, ensuring that the implications of sensor 
technology are widely understood.

Conclusion
This Perspective highlights the dimensions of risk associated with AI 
systems that arise from the material affordances of sensors and their 
underlying calculative models. It proposes a sensor-sensitive frame-
work for diagnosing these risks, complementing existing approaches 
such as the NIST AI RMF and the EU AI Act. A key advantage of this frame-
work is its emphasis on a broader range of stakeholders involved in 
risk diagnostics and management. While guidelines like the NIST AI 
RMF focus primarily on actors throughout the AI lifecycle, and the 
EU AI Act primarily applies to providers and deployers of AI systems, 
the sensor-sensitive approach brings attention to often-overlooked 
stakeholders. For example, actors involved in the manufacturing, 
production and evaluation of sensors have a crucial role in mitigating 
risks related to calibration, documentation and waste management. 
In addition, the risk of proprietary data profusion illustrates how eco-
nomic policy and regulation can complement technical solutions. 
Thus, the sensor-sensitive approach fills a gap in the existing AI ethics 
and governance discourse by considering how sensors contribute to 
the risks of AI systems and implicate key actors beyond those directly 
involved in the AI lifecycle.

We call for urgent attention to be directed towards developing 
responsible sensor architectures and regulatory frameworks concern-
ing sensor development and associated data usage. While some recent 
work provides a commendable starting point, much remains to be done 
in this evolving field. Furthermore, engaging stakeholders and com-
munities is essential to fully harness the benefits of sensor technolo-
gies within a new sensing paradigm. This is particularly important as 
the risks identified are not exhaustive and may evolve due to changes 
in the material affordances of sensors, shifts in calculative models or 
ongoing AI innovations leading to new use cases.
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