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Abstract

The existence and non-existence of stationary solutions of multicomponent coagulation equa-
tions with a constant flux of mass towards large sizes is investigated. The flux may be induced
by a source of small clusters or by a flux boundary condition at the origin of the composi-
tion space, and the coagulation kernel can be very general, merely satisfying certain power
law asymptotic bounds in terms of the total number of monomers in a cluster. Our set-up,
including an appropriate definition of multicomponent flux, allows a sharp classification of
the existence of stationary solutions. In particular, this analysis extends previous results for
one-component systems to a larger class of kernels.

Keywords Multicomponent Smoluchowski’s equation - Non-equilibrium dynamics -
Source term - Stationary injection solutions - Constant flux solutions - Mass flux

1 Introduction

Smoluchowski’s coagulation equation is a classical model for binary aggregation extensively

used in the study of aerosol growth, polymerization, drop formation in rain and several other
situations [11, 21, 22]. These systems are made of a large number of particles (clusters) with
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different sizes and compositions. The particle growth is due to the coalescence of particles
with smaller sizes and this process determines the size and composition of the clusters.
A specific example where particle composition influences the growth of the particles is
found in atmospheric science, where multicomponent aerosol particles grow by coagulating
with distinct chemical species such as sulfuric acid and either ammonia or dimethylamine
molecules (cf. for instance [21]).

The particle clusters are made of aggregates of different types of coagulating molecules,
which are called monomers. We denote by n, the concentrations of multicomponent clus-
ters, with composition « = (o1, 02, ..., 0q) € Ng where o; € Ny denotes the number of
monomers of type i. Notice that Ng = {0, 1,2, 3, ...} and we denote O = (0,0, ..., 0).
The multicomponent Smoluchowski’s coagulation equation, which describes the evolution
of the clusters concentrations {ny}, eNd\(O) is given by

1
Ong = EZK“_ﬁ‘ﬁna_ﬂnﬂ _”“ZK“’ﬂ”ﬂ + Sy, (1.1)
B<a B>0

where o = (a1, a2, ...,0q) and B = (B1, B2, ..., Ba). The coefficients K, g describe the
coagulation rate between clusters with compositions « and . We use the notation 8 < « to
indicate that 8y < o forall k = 1,2,...,d, and in addition @ # B. We denote as s, the
source of small particles characterized by the composition o. We will allow source terms sy
which are supported on a finite set of values «.

The coefficients K g yield the coagulation rate between clusters o and 8 to produce
clusters (o + B) . The form of these coefficients depends on the specific mechanism which
is responsible for the aggregation of the clusters. These coefficients have been computed
using the method of kinetic theory under different assumptions on the particle sizes and the
processes describing the motion of the clusters.

Relevant examples of coagulation kernels have been described in the literature, see e.g.
the textbook [11]. Typical ones are given by the free molecular regime coagulation kernel

Kesm (-t L) (Veot s v 9) (12)
a,ﬁ—(v(a) V(ﬁ)) (Vs +wens) . .

and the diffusive coagulation or Brownian kernel

1 1
Kap = ( r+ ) (V@s+wvent). (1.3)
(V@)s (V)3

Here V (@) is the volume of the cluster characterized by the composition «. More details
on the physical properties and the derivation of the kernels can be found in [6, 7]. In these
formulas we will assume that the volume scales linearly with the number of monomers in
the cluster. More precisely,

kile| <V(x) <k |a| with 0 <k <k <o0, (1.4)

where | - | denotes the ¢'-norm, i.e.,
d
lal =) e, aeNj\{O). (1.5)
j=I

The inequalities (1.4) hold, for instance, if we assume V («) = Z?:l ajv; where v; > 0

represents the volume of the monomer of type j foreach j =1,2,...,d

@ Springer



Non-equilibrium Stationary Solutions for Multicomponent... Page3of35 98

We also consider the continuous version of (1.1) which is given by

1
a,f<x)=5/{0 KGO =8 ©)

/R" \{

+

O}dEK xE f)fE+nx), xeRL\{0} (1.6)

where f denotes the density of clusters with composition x € R‘i \ {O}. In the same way
as in the discrete case, given x = (x1,x2,...,Xq), ¥ = (J1, Y2, - - -, Y4) we would say that
x < y whenever x < y componentwise, and x # y. In particular,

f ds=/1d51/2dfz---fddsd.
{0<&<x} 0 0 0

‘We notice that the discrete model (1.1) can be thought as a particular case of the continuous
one if we assume that f is the sum of Dirac measures supported at points with integer
coordinates.

In this paper we will consider the stationary solutions to the problems (1.1) and (1.6). In
order to obtain nontrivial solutions we will require that ) gSp > 0 in (1.1). In the case of
(1.6) we will assume that n is a Radon measure with 0 < f n (dx) < oo.

We will restrict our attention to the class of coagulation kernels satisfying

lor| o] d
c |a|+||y¢(7)§Ka, <c |06|+||”<I><7>,a, e Ng\ {0
1( BD @l + 1] B =c2( B 2l + 1A] B €Ny \ {0}
1.7
¢ (|x|+|y|)w< al )sK(x,y)5c2<|x|+|y|>yq>< al >,x,yeRi\{0}
x| + 1yl lx| + 1yl
(1.8)
where |-] denotes the £! norm as in (1.5) and
1
D) =d(A—s) for0<s <1, d>(s):7p forO<s <1, peR(1.9)

sP (1 —y5)

where 0 < ¢; < ¢y < oo. This class of kernels includes the physically relevant kernels (1.2)
and (1.3). We stress that even though the estimates (1.7), (1.8) are isotropic, i.e., invariant
under permutation of components, the kernels are not necessarily isotropic. For example, this
general class includes kernels such as K (x, y) = x1 + y1 4+ 2(x2 + y2).

The existence of steady states to the problems (1.1), (1.6) in the case d = 1 has been
considered in [6] for a less general class of kernels than the one covered by the assumptions
(1.7)—(1.9). Indeed, the conditions assumed in [6] (with d = 1) are

e (@B + B aTr) < Kop < o (@M + BT TRaH) (1.10)
e (VTR yTR Ay TR < K (x,y) < o (xR y TR 7 R (1.11)

for some y, 1 € R. It is readily seen that the kernels satisfying (1.10), (1.11) satisfy also
(1.7 )=(1.9) with p = max {A, — (¥ + 1)} (assuming d = 1). On the other hand, for any
p € Rwith p > —% there exists at least one value A € R such that max {A, — (y + A1)} = p.
In fact, we can take by definiteness A = p, since then —(y + 1) < 2p — A = A, and
therefore, max {A, — (y +A)} = A = p. If p < —L, it is not possible to choose A such
that p = max {X, — (y + 1)} . Therefore, the class of kernels satisfying (1.7)—(1.9) is strictly
larger than the class satisfying (1.10), (1.11).
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In this paper we will prove that in the multicomponent case and under the assumptions
(1.7)—(1.9), there exists a stationary solution to (1.1), (1.6) if and only if

y+2p<l1. (1.12)

We note that for p = max {A, — (¥ + A1)}, condition (1.12) implies the condition |y +2A| < 1
obtained in [6] for the kernels satisfying (1.10), (1.11). Indeed, if A > — (y + A), we have
y+2X1 > 0and, since p = A, (1.12)isequivalentto y +2A < 1. Otherwise,if . < — (y + ),
we have y + 21 < 0, p = — (y + A), and thus (1.12) is equivalent to y + 21 > —1.
Therefore, (1.12) holds if and only if |y 4+ 2A| < 1, whenever the two cases can be compared.

Notice that these steady states yield a transfer of monomers from small clusters to large
clusters in the space of clusters sizes. Their existence express the balance between the injection
of small clusters (e.g. monomers) and the transport of these monomers towards clusters of
infinite size due to the coagulation mechanism. The non-existence of these steady states is
due to the fact that the transport of monomers towards large clusters is too fast and cannot
be balanced by any monomers injection, and therefore no stationary regime is possible. We
emphasize that the steady states of (1.1), (1.6) are stationary non-equilibrium solutions for
an open system.

Itis worth to mention that in the case of discrete kernels with the form Ko g = ¥ 474+
a~*BY** and source terms supported at the monomers, the stationary solutions of (1.1) in
dimension d = 1 have been computed formally in [13] assuming the non gelling condition
max{y +A, —A} < 1.Itturns out that these solutions are well defined, non-negative, densities
of clusters distributions if and only if |y + 2A| < 1 holds.

It is interesting to note that the existence or nonexistence of stationary solutions to (1.1),
(1.6) is independent of the number of components d here. Both cases are also already rep-
resented by the two example kernels discussed above. In the case of kernels with the form
(1.2), we have y = % and p = % Thus the inequality (1.12) is not satisfied, and there are no
stationary solutions. On the other hand, in the case of kernels with the form (1.3) we have
y =0and p = % Then the inequality (1.12) holds, and there exists at least one stationary
solution.

In this paper we will prove the existence of steady states to (1.1), (1.6) under the assumption
(1.12) and nonexistence of steady states if y + 2p > 1. The key idea of the proofs consists
in choosing an appropriate definition of flux in the multidimensional composition space (cf.
Sect. 2.1) which allows to make use of the results developed for one-component systems
in [6]. More precisely, in the multicomponent setting, the mass flows from small to large
sizes through a (d-1)-dimensional surface rather than a point, as in the one-dimensional
case. This allows for more possibilities in the choice of the definition of flux and some care is
needed in choosing an appropriate definition (cf. Sect. 2.1). Moreover, in the multicomponent
setting, the proofs require more refined geometrical arguments than the ones used in the
one-component case.

In the physical literature, explicit stationary solutions to the multicomponent equation
(1.1) have been obtained in [16] in the case of the constant kernel K (x, y) = 1 and additive
kernel K (x, y) = x + y and with a source term supported on the monomers.

For non-solving kernels, most of the mathematical analysis of coagulation equations has
been made for one-component systems only, i.e., d = 1. On the other hand, there are only
a few papers addressing the problem of the coagulation equations with injection terms like
{sa}o Or n (cf. [3, 4, 6, 17]). This issue has been discussed in [6] and we refer to that paper
for additional references.
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An interesting property of the steady states to (1.1), (1.6) specific to the multicomponent
coagulation system, that does not have a counterpart in the case d = 1, is the so-called local-
ization property. It consists in the fact that the concentrations ny localize along a particular
line in the space Ng as || — oo. A similar property holds in the continuous case, namely the
density f concentrates along a specific direction of the cone Ri as [x| — oo. The precise
formulation is the following. If n, and f are stationary solutions to (1.1), (1.6) respectively
then there is a ¢ > 0 such that, for any ¢ > 0,

‘ Z{R5|a|§;R}m{ ‘gﬁ—e‘q] N
lim =1 or
R—00 2 (R<lal<cR) e
) f{Rﬁlxls;R}ﬂ{ ‘;—‘—0‘«3} fdx)
lim =1. (1.13)
k=00 Jirzii=ery £ (@)

where the direction 6 is defined by the normalized mass vector of the source s, or  such
that |8| = 1. The proof of this result is given in [7] for the class of kernels satistying (1.7)—
(1.9). Moreover, we emphasize that asymptotic localization appears to be a very generic
feature of multicomponent coagulation, including time-dependent problems. Indeed, we have
preliminary evidence that a similar localization property holds for mass conserving solutions
of the coagulation equation (i.e. with n = 0 or sg = 0), asymptotically for long times (see
the forthcoming paper [8]).

Structure of the Paper

The plan of the paper is the following. In Sect. 2.1 we informally discuss the different types
of stationary solutions considered in this paper (constant injection solutions, constant flux
solutions, ...). In Sect. 2.2 we introduce rigorously the definitions of solutions studied in this
paper. In Sect. 3 we formulate the main results that we prove in this paper, namely, existence
or nonexistence of stationary injection solutions or constant flux solutions for several classes
of kernels. Section 4 contains two technical results which are repeatedly used in the rest of the
paper. The proof of the existence of steady states for some classes of kernels is the content
of Sect. 5. The non-existence results for a different class of kernels are given in Sect. 6.
Section 7 provides some estimates for the stationary solutions, whenever they exist.

Notations

We will denote by R := [0, co) and Ny := {0, 1, 2, ...} the non-negative real numbers
and integers respectively. We also use a subindex “x” to denote restriction of real-component
vectors x to those which satisfy x > 0, or equivalently max; (x;) > 0. More precisely, we
denote R, := R, \ {0}, ]Rf,f = R’i \ {O} and Nf,f = Ng \ {O}. Given a locally compact
Hausdorff space X (for instance X = R‘,f) we denote by C. (X) the space of compactly
supported continuous functions from X to C, and by Co(X) its completion in the standard
supremum norm. The collection of non-negative Radon measures on X, not necessarily
bounded, will be denoted by .#, (X) and its subspace consisting of bounded measures by
M+ p(X). Due to the Riesz—Markov—Kakutani theorem, we can identify ., (X) with the
space of positive linear functionals on C.(X).

Both the notation 1 (x)dx and n(dx) will be used to denote elements of the above measure
spaces. We will use the symbol 7(dx) when performing integrations or when we want to
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emphasize that the measure might not be absolutely continuous with respect to the Lebesgue
measure. We will often drop the differential “dx” from the first notation, typically when the
measure eventually turns out to be absolutely continuous. We will use the symbol 1P to
denote the characteristic function of a condition P: 1 P = 1 if the condition P is true, and
1P = 0if P is false.

2 Different Types of Stationary Solutions for Multicomponent
Coagulation Equations

We now introduce different types of stationary solutions of (1.1), (1.6) which will be consid-
ered in this paper. These classes of solutions have been discussed in [6] in the case d = 1. We
will examine here what the convenient definitions in the multicomponent case are. We recall
that in all the cases discussed in this Section, the solutions are stationary, nonequilibrium
solutions yielding a constant flux of monomers towards large clusters. We discuss shortly
these classes of solutions as well as their physical meaning.

2.1 Heuristic Description of Flux and Constant Flux Solutions

In this section, we first introduce different concepts of stationary solutions used in this paper.
The rigorous, more detailed, definitions are collected in Sect. 2.2.

Stationary Injection Solutions

The stationary solutions of (1.1), (1.6) satisfy respectively the equations

1 d
0= 5 Z Ko—p pna—png — ng Z Koupng +5sq , € N%, 2.1)
B<a B>0
1
027/ K(x—y,y)f(x—y,t)f(y,t)dy—/ K, y) fe,0) f(y,0dy
2 {0<y<x} R‘i
+n(x), xeRd 2.2)

We will assume that the sequence s, is supported in a finite set of values of «. On the other
hand, we will assume that n € .Z, (R‘j) is a Radon measure compactly supported in the set
x>1,wherel=(1,1,...,1) € R’j (for examples of how to relax the assumptions about
the source, we refer to a recent preprint [17] where compact support is not required assuming
that the solution f is absolutely continuous with respect to the Lebesgue measure). In this
paper we are mostly interested in the solutions of the equations (2.1), (2.2) which we call
stationary injection solutions. Their detailed definition will be given in Sect. 2.2.

Constant Flux Solutions

In addition to the above injection solutions, in the one-component case (d = 1) we have
considered in [6] a family of solutions of (2.2) with = 0 that we have termed as constant flux
solutions. The terminology and motivation arise from the fact that the coagulation equation
without a source, at least formally, conserves “total mass”, the function f xf(x,t)dx. This
conservation law leads to a continuity equation, which may be written as
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O (xf(x, 1)+ 0xJ(x; f) =0,
where the flux can be defined by

J(x;f)=/0 dy/ dzK (y,2)yf (y) f (@) .
X—=y

In this case, we find that f is a stationary solution if and only if for all x > 0
oxJ (x; /) =0, (2.3)

i.e., if and only if the flux is constant in x. Therefore, if there is Jo > 0 and a measure
f € 44+ (R,) such that

Jx; )=, forallx > 0, 2.4)

we say that f is a constant flux solution. We say that the solution has a non-trivial flux if
Jo > 0. In this case, clearly also f # 0.

In the above one-dimensional case, any sufficiently regular constant flux solution f also
has the property that

1 1 [*
0=—faﬂﬂﬂ=f/1Ku—LWf&—%Of@JMy
X 2 0

—A K (c.y) f (1) f (v, 1) dy. 2.3)

Comparing the result with (2.2) shows that these are stationary solutions to the original
evolution equation without source, albeit with a slightly non-standard physical interpretation
as solutions with non-trivial source of “particles” located at x = 0. Indeed, one practical
use for the constant flux solutions comes from the observation that they can provide the
asymptotics of stationary injection solutions. It has been proven in [6] that the stationary
injection solutions both of the discrete and the continuous model (cf. (2.1), (2.2)) behave
for large values of o or x as a constant flux solution. More precisely, rescaling ny or f in a
suitable manner we obtain some measures that converge for large values to a measure which
satisfies (2.4). We refer to [6] for the detailed results.

In the multicomponent case without source, the total mass of each of the particle species
is conserved, so there are now d mass continuity equations, as derived below. In addition,
the analogue of (2.3) is a vectorial divergence equation. Therefore, it is not possible to
characterize the fluxes at a given point just by one number. In order to define a suitable
concept of constant flux solutions in the multicomponent case we must take into account
that,if d > 1, we cannot expect the solutions of (2.5) to be uniquely characterized by the flux
of particles across all the surfaces {|x| = R} for arbitrary values of R > 0, where the norm |- |
is as in (1.5). Let us introduce the change of variables x — (|x|, 6) where 6 = I%I e A1

where we denote by A9~! the simplex
d— d .
A 1:{961&*.|9|:1}. 2.6)

Then, the detailed distribution of the measure f in the variable 6 in each surface {|x| = R}
must be obtained from the generalization of equation (2.3) to the multicomponent case and
it cannot be determined just from the values of the fluxes across these surfaces.

We now rewrite equation (2.2) in the form of divergences of fluxes. To this end, we
choose a component j € {1, 2, ..., d} and multiply (2.2) by x;. Expanding in the first term
xj = (x —§&); +&; and using the symmetry £ < (x — &), we obtain
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0= ‘/[.0 ) }dEK(X —EH @ —-8); f&x—-8fE) - /RddEK(x,E)xjf(X)f@)+xj77(x) .
<§<X *

We then multiply this equation by a test function ¢ € C.(R%). The support of ¢ is a compact

subset of Ri \ {0} and thus it is bounded and separated by a finite distance from the origin.

Thus we can find a, b > 0 with a < b such that the support of ¢ is contained in the set

{x : |x| € [a, b]}. Then, using Fubini’s Theorem and assuming that all the integrals appearing
in the computations are finite, we obtain

0= [ e [ aviow+6 -0 @IK woxf 007 @+ [ xmwewadx
RY R R
2.7

Here

so(x+s>—<p(x)=/ols-vx¢<x+rs>dt
and thus
OZ/OIdt/RidS/RidX[S-wa(x+tc§)]K(x,S)x/‘f(X)f(S)+/R¥xm(X)<p(X)dx

Using the change of variables y = x + t£ in the first integral we obtain
1
0=/ drf de [ dy[E-Vyo WK 5 — 16,6 (v —18), F (v —18) £ (€)
0 RY {te<y}

+fdxjn(x)¢(x)dx.
R

Applying Fubini’s Theorem we obtain
1
02/ dyVye (y) - |:/ dt/ dSS(y—tE)jK(y—té,%‘)f(y—té)f(%‘)}
]R;] 0 {0<§<¥}

+Atlxjn(x)¢(x)dx.

The final result can be interpreted in the sense of distributions as a vector equation

1
divy (/0 dt/{o ‘ x}déc;*@(x—té)l((x—té,n?.)f(x—té)f(é.)) = xn (x)
or in a more detailed manner for each of the coordinates
div(J; ) =xnx), j=12,....d, (2.8)
where each J; itself is a vector-valued distribution with
1
(Jj)i(x)=/0 dl/{o ; x}dSEi (5 —tE))K(x—16,8) f(x—1§) f &) , j=1,2,..., d.
2.9)

In the case of constant flux solutions, i.e., in the absence of the source term 1, equation (2.8)
becomes

div(J; 1)) =0, j=1,2,....d. (2.10)
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Note that the equations (2.8), (2.10) indeed correspond to the conservation laws associated
with the transport of each of the components of the clusters of the system.

In order to quantify the fluxes of different monomer types which characterize the solutions
of (2.10) we introduce the following notation. We will write

Ygp= {x ERZ : lezR} foreach R > 0.

Note that then £z = RA%~!. The outward-pointing unit vector n, with respect to the simplex
{x e ]Ri : 0 < |x| < R}, is given at any point of X g by
: 1,1 1)
NZ]

Let us for simplicity assume that each J;(x) is a regular function which satisfies (2.10)
and is zero if x; < 0 for any component i. We integrate (2.10) over the set {x € Ri TR <
[x] < Ry}, for arbitrary 0 < R; < R and use Stokes’ theorem. This shows that there is
A € R? such that

/ [J; (x)-n]dSy =Aj, forallj=1,2,...,d, R>0 2.11)
TR

where d S is the surface area element. It readily follows from (2.9) that A; > O for each
jel{l,2,...,d},ie, A€ Ri. In particular, we find that the flux of monomers of type j is
constant across all the surfaces Xg.

In contrast to the case d = 1, finding f for which equations (2.11) hold does not imply
that f satisfies (2.10). This is due to the fact that in the case d = 1 the set X is just a point
foreach R > 0. If d > 1 the relation (2.11) does not specify the distribution of the fluxes
Jj (x) in each surface X and this distribution must be obtained from the equations (2.10).

We prove in [7] that the solutions of (2.9), (2.10) are Dirac-like measures f supported
along a line {x = Ab : 1 > 0} for some vector b € IRflF with |p| = 1. Let us point out that
indeed there exist solutions with that form. To this end it is convenient to reformulate (2.10)
in weak form and to change to the coordinate system (|x|, #) indicated above.

Taking into account (2.7), it is natural to define a weak solution of (2.10) as a measure
f € # (RY) satisfying

0= /Rd “* /R dxlp(x+8§) =g WIK (. §)x;f ) [ &) 2.12)

foreach j = 1,2,...,d and every test function ¢ € CC] (Rﬂ) (see Section 2.2 for a precise
definition of weak solutions).

Reformulation of the Problem (2.12) Using a Suitable Change of Variables

It is convenient to rewrite (2.12) using the new coordinates (r, 9) with r = |x| > 0 and
0 = ﬁx e A1 for x € RY. The inverse map R, x A"l — R? is given by

x=r0, r>0, A (2.13)

We compute the Jacobian of the mapping x — (r, #). We use the variables 01, 6>, ...,0;7_1
to parametrize the simplex and set then

d—1
0a=1-> 0,
j=1
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Thus, the change of variablesis x — (r, 01, 65, ..., 684—1). Therefore, with the above implicit
definition of 6,
0L 6 063 041 64
r 0 0 —r
d (x1, X2, ..., Xg) 0 r 0 0 —r
= =Dg(r;61,62,...,64) .
d(r,01,62,...,04-1) R &
0 0 O —r

0O o0 O 0 r —r
We can iterate, developing the determinant by columns. Then
Dy(r:01,0,....00) = (=D r¥70 —rDy_y (r:65. 65, ..., 04)
Iterating, we arrive to
Dy (ri61. 62, ....00) = (=D @ 02+ 0 = (=)
Then

9 (x1,x2,...,%4)
dx =
0(r,01,02,...,04-1)

We can write d01d6, .. .d0;_; in terms of the area element of the simplex. We just use

dS (0) =+ 1+ (Voh)>d61db; . ..doy_ .

with 4 = h (61,62, ..., 04-1) where h (01,62, ..., 04-1) = 1 — Y971 6;. We will denote
the element of area of the simplex as dt (6). Explicitly,

dt (0) = /dd6db, . ..d6;_,

drd®do, ...d0_1 = r* 'drd6,do, ...d6,_,.

Thus,

J rd-1
X =
Vd

We can now rewrite (2.12) using the above results. Suppose that x = r6 and £ = po. We
then have |x + &| = r + p. On the other hand,

s _ T o+ - o,
lx+& r+p r+p

We now rewrite the coagulation kernel in this set of variables as

drdt (6) . (2.14)

G(r,p;0,0) =K (0, po) . (2.15)
We also rewrite the measure f in terms of the measure F € .Z4 (R, X A=) which is
defined as
d—1

v(r, G)rﬁF(r, 0)drdzt (0) = f Y(xl, x/|x]) f(x)dx, (2.16)

for a given test function ¥ € C.(R, x A4~1). Notice that if f is absolutely continuous with
a smooth density, both sides of (2.16) are the same as it can be seen using an elementary
change of variables. Then (2.12) can be equivalently written as

o0 o0
/ rddr/ pdfldp/ dt (9)/ dt (6)G (r, p; 0,0)
0 0 Ad—l Ad—l
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x [1// <r+p, LA S a> —I/J(r,Q)]QjF(r,G)F(,O,G) =0, (17
r+op r+op
forall j =1,2,...,dand ¢ € Ccl. Ry x Ad’l). Notice that in any open bounded set of Ri
the change of variables (2.13) defines a diffeomorphism.

We observe that the change of variables (2.16) can be understood rigorously via the
Riesz—Markov—Kakutani theorem applied to the linear functional

d
@ /Rd |x]{_l<.0(|x|,x/le)f(x)dx, 0 € Co(R, x A%

which allows to define a measure F. Furthermore, if f satisfies the assumptions in
Definition 2.1, we have that F is supported in [1, 00) x A4~! and

/ rd= Y P F(r, 0)drdT () < 0o.
Ry xAd-1

A Family of Weighted Dirac-8 Solutions
Suppose that K is continuous and homogeneous with homogeneity y. If the kernel K satisfies

(1.8), (1.9) with y +2p < 1, we claim that we then have a family of solutions of (2.17) given
by the following weighted Dirac §-measures

F(r,0)=

8 ©®—6y, Co>0, (2.18)
r z

where 6 € A91 s fixed but arbitrary. To see this, first note that
thus then (2.17) is equivalent to

——0y + L0609 = 6y, and

r+p r+p

G ; 60, 6
(90),/ / 4 (r G000 1y 1 4 p, ) — ¥ (. 60)] = 0. (2.19)
+dp +d

Notice that the integral in (2.19) is well defined for ¥ € C!(Ry, x A"y andy +2p < 1.

We now rewrite (2.19) in a more convenient form. First, since 6y € A9 there is at least
one j such that (6p); > 0. Thus the factor (6p) ; may be dropped from (2.19). Then for any
¥ € CH(R, x AY~1) we may employ inside the integrand the identity

r+ b
1//(r+,0,90)—1//(r,90)=/ p%(l‘,@o)dlZ/ ]lt>r]lt<l‘+,08w (t,60)dt.

where 0 < a < b are such that the support of ¥ lies in [a, b] x A?~!. Therefore, applying
Fubini’s Theorem, (2.19) is seen to be equivalent with

G(V p; 60, 60)
/ df* (t, 90)/ ddr/ “la v+1 [ZSU
p +d y L+

Integrating by parts we obtain

00 9 ! * a1, G(r,p;60,00)
/ dt ¥ (t, 00)— /rddr/ pldp—7——"—]=0. (2.20)
0 ot \ Jo t—r pirtd
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Since this needs to hold for all allowed v, we find that it is valid if and only if there is
Jo > 0 such that

,G 0. 6
Jo = / ddr/ 1y, G P00 00) 0. 2.21)

V*‘+dp”‘+d

This equation is indeed satisfied if K is ahomogeneous kernel, since then G (Ar, Ap; g, 6p) =
A G (r, p; 8o, 6p) for each A > 0, and thus

G(V )
d -1y
/ dr/ V+1+d Hya

P
124! a-1,, G r,1p; 60, 60)
T orHled 1,,'0 p It g Pt
_/ / -1 G(l’ ; 60, 60)
0 I—r y+l+dp v+l +d

is constant.

Using the same procedure to simplify the general case (2.17) yields an alternative way of
prescribing the fluxes through the surfaces {|x| = R}. This will be made precise in Section 2.2
(cf. Definitions 2.3).

Stationary Solutions with a Prescribed Concentration of Monomers

As a third possibility used in the literature to obtain stationarity of solutions to coagulation
equation, let us briefly mention using, instead of sources, boundary conditions to fix the
concentration of monomers to some given value in (2.1). The one-component case has already
been considered in [6], but the definition becomes more involved here due to the fact that we
have a multicomponent system.

Explicitly, we would then be interested in solutions of

1
= > Kappnapng —na Y Kapnpg . lal ¢{0,1} (2.22)
B<a B>0

We will say that {”a}aeN;’\{O} is a stationary solution of (2.22) with a prescribed
concentration of monomers, if it solves (2.22) and in addition it satisfies

> ng=c; foreach j=1,2.3,....d (2.23)
{oraj=1}

for a given set of concentrations {c; }d eRd.

The existence of solutions of the problem (2 22), (2.23) for a given set of concentrations
{c g };{:1 is not evident at all. If we have an injection solution to (2.1) for a set of sources
{Sa}{jaj=1} » then we have a solution of (2.22), (2.23) for the corresponding values of c;
obtained by means of the sum (2.23). However, there is not any reason to expect that any
set of concentrations {c J}j=1 could be obtained by means of a suitable choice of sources
{Sa}{jaj=1} - It has been seen in [6] that in the case d = 1 the problem (2.22)—(2.23) can be
solved if |y + 2A| < 1 and kernels with the form (1.10), (1.11).
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2.2 Rigorous Definition of the Classes of Steady State Solutions
We define now in a precise mathematical way the solutions that we will consider in this paper.

Definition 2.1 Let n € .#4 (R?) with support contained in {x € RY |1 < |x| < L} for
some L > 1. Suppose that the coagulation kernel K is continuous and satisfies (1.8), (1.9).
We say that f € #4 (RZ) is a stationary injection solution to (2.2) if the support of f is
contained in {x € RY | [x| > 1} and f satisfies

/d |x[Y*P f(dx) < oo, (2.24)

*

as well as

1
0=5/ / K(x,y)[w(ery)—go(x)—w(y)]f(dx)f(dy)Jr/ o (1) 7 (dx)
R JRY R{
(2.25)

for any test function ¢ € C! (RY).

We recall the notation Rfﬁ = R‘i \ {O} and that |x| = ) j |x ;| denotes the £{-norm in
RY.
Stationary injection solutions for the discrete equation (2.1) can be considered as solutions
f of (2.2) with f supported on the elements of N‘,f = Ng \ {O} by using Dirac-6 measures

as explained next. Let the sequence {nq}, eNd be a solution of (2.1), i.e., it satisfies

1
0=> > Ko-ppna—png —na Y Kapng+se., oeN, (2.26)
B<a B>0

where the source satisfies s, = 0 whenever |«| > L for some L > 1. We then define

f) =) ndx—a 2.27)
otEN;]
as well as
N =Y sad(x—a). (2.28)
aeNﬁ

Then 7 satisfies the assumptions of Definition 2.1 with the same parameter L and we can
define a solution of (2.26) as follows.

Definition 2.2 Suppose that {ss}, nd Is a non-negative sequence supported in a finite col-

lection of values a. A sequence {nq}, eNd» with ng, > 0 fora € fo , is a stationary injection
solution of (2.26) if

D |l Pny < o0,

aeNi

and the measure f € .#; (R?) defined as in (2.27) solves (2.2) in the sense of Definition
2.1.
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Thanks to the assumptions on n, the measure f has its support in {x eRY||x| > 1} and
satisfies (2.24).

We now provide a rigorous definition of the constant flux to the equation (2.2) with n = 0,
namely

1

0=§/ K(x—y,y)f(x—y,t)f(y,t)dy—/ K @x,y) fe,0)f(y,t)dy.
{0<y<x} R‘i

(2.29)

Definition 2.3 Suppose that the coagulation kernel K is continuous and satisfies (1.8), (1.9).
We say that f € .# (RY) is a stationary solution to (2.29) if

/ 7 ) + [ X177 f(dx) < o0
{xeR¢| x|>1} {xeRd| |x|<1}
is satisfied and (2.25) holds with # = 0, for every test function ¢ € C} (RY).
We define the fotal flux across the surface {|x| = R} as the vector-valued function A(R) €
Ri, R > 0, defined by means of

1
Aj(R) = f/ drdt (0)
d J0,R1xAd-!
f dpdt (o) r'p?~ F (r,0) F (p,0)0;G (r, p;0,0) ,  (2.30)
(R—r,00)x Ad—1

where the function G is as in (2.15) and the measure F has been defined using (2.16). We say
that f is a non-trivial constant flux solution of (2.29) if it is a stationary solution and there is
Jo > O such that A(R) = Jo forall R > 0.

Remark 2.4 The above definition of flux, (2.30), is obtained by a similar computation as
leading to the special case in (2.21) with the additional assumption that the test-function is
constant in the simplex-variable 0; the details of this argument may be found in the proof of
Theorem 3.1. Note that in the one-component case to impose that the fluxes are constant, i.e.
(2.30), implies that f is a solution to the coagulation equation. This does not automatically
happen in the multicomponent case and this explains why we need to further assume (2.25)
here.

3 Main Theorems

We state in this Section the main results proven in this paper on the existence and non-
existence of stationary injection solutions to (2.2) and (2.26), as well as of the constant flux
solutions to (2.29), which have been considered in [6] for the one-component case.

We first describe the existence results for the injection solutions:

Theorem 3.1 Suppose that the coagulation kernel K is a continuous symmetric function that
satisfies (1.8), (1.9) withy +2p < 1. Suppose that n € 4+ p (Rff) has its support in the set
{x € Rfﬁ [1 < x| < L} for some L > 1. Then, there exists a stationary injection solution
f ey (Rf‘f) to (2.2) in the sense of Definition 2.1.

The following theorem is a corollary of the previous result assuming that f is supported
on the set Nfi . However, since the discrete coagulation equation has an independent interest
and it is relevant for applications, we formulate the result as a separate theorem.
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Theorem 3.2 Suppose that the coagulation kernel K is symmetric and satisfies (1.7), (1.9)
withy +2p < 1. Let {54}, eNd be a non-negative sequence supported on a finite number of
values o. Then, there exists a stationary injection solution {ny},, end 10 (2.26) in the sense of
Definition 2.2.

Remark 3.3 Notice that the assumptions on the kernels K in Theorems 3.1, 3.2 are more
general than those in [6], since the assumptions on the kernels (1.10), (1.11) were used there.
Therefore, the results in this paper provide an improvement of the earlier results even in the
case of one component, d = 1.

Remark 3.4 Let us point out that no uniqueness of the solutions is claimed in Theo-
rems 3.1, 3.2. The issue of uniqueness of stationary injection solutions is an interesting
open problem.

The restrictions for the values of y an p in Theorems 3.1, 3.2 are not only sufficient to
have stationary injection solutions, but they are also necessary. Indeed, we have the following
non-existence results, which are analogous to Theorems 2.4, 5.3. in [6].

Theorem 3.5 The following results hold:

(1) Supposethat K is a continuous symmetric function that satisfies (1.8), (1.9) withy +2p >
1. Suppose that n € M4 p (R‘,f) is supported inside the set {x € R‘,f [T < x| < L} for
some L > 1. Then there are no solutions to (2.2) in the sense of Definition 2.1.

(ii) Suppose that K is symmetric and satisfies (1.7), (1.9) with y + 2p > 1. Let {Sa}aeNi
be a nonnegative sequence supported on a finite number of values . Then there are no
solutions to (2.20) in the sense of Definition 2.2.

Concerning the constant flux solutions to (2.29) we have already seen in Section 2 that
(2.18) defines a constant flux solution to (2.29) in the sense of Definition 2.3 if y +2p < 1,
at least when K is a homogeneous kernel function. If y 4+ 2p > 1, such solutions do not
exist. This is the content of the following Theorem.

Theorem 3.6 Suppose that K satisfies (1.8), (1.9) with y +2p > 1. There are no non-trivial
constant flux solutions to (2.29), in the sense of Definition 2.3.

Remark 3.7 We observe that we did not require the kernel K to be homogeneous in Theo-
rems 3.1, 3.2, nor in Theorems 3.5, 3.6, for which the upper and lower estimates (1.7), (1.8),
(1.9) suffice. Notice that, if the kernel K is homogeneous, there are constant flux solutions
to (2.29) with H (r) = r_yT+3 (cf. (2.18)). However, not all constant flux solutions to the
one-component equation are necessarily power-laws, even if one assumes homogeneity of
the kernel. Examples of non-power law solutions for certain one-dimensional coagulation
kernels are given in [9].

4 Some Auxiliary Results
4.1 A Convenient Reformulation of the Problem

The kernels K satisfying (1.7)—(1.9) are characterized by the two parameters y, p. It turns
out that, using a suitable change of variable, we can reformulate the problems described in
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Sect. 2 with kernels K into similar problems with new kernels K characterized by parameters
7=y +2pand p=0.

To see this, we will use an idea used in [2] (see also [1] and the recent paper [17]). Before
formulating the precise results, we explain the idea in the case of the continuous coagulation
equation (2.2). Suppose that f € ., (RZ ) solves (2.2). We can rewrite this equation as

i fG-8F©
0= - dE[K (x — £, &) |x — &P g)p] 5= %)
2/{0<g<x} R UL e
£ £ ©
—/Rﬁds [K 5, &) e 1617 D28 .

Therefore, if we multiply the measure f by the strictly positive continuous function x +—
|x|7P,i.e., if wedefineh (x) dx = |x|~” f(x)dx,we find that it solves the following equation

1 % ~
osz{o : }dEK(x—S,S)h(x—S)h(é)—/ddéK(x,E)h(x)h(s)+n(xI4.l)

2 RY

K (x,y) =K (x,y) x| [y|”. (4.2)

Notice that (4.1) has the same form as (2.2). However, the bounds for the kernel K are
simpler than those for K. Namely, we recall that K satisfies (1.8), (1.9), and thus obtain the
bounds

|x|

e (Ixl + [yD” 1xI7 |y|P @ (7
x| + [yl

= | x|
) <K @x,y) <c2 (x| +1yD¥ 1x]? [y]P © (* .
x|+ [yl

Denoting s = we then obtain

1 (x| + D" s? (1= )P d(s) < K (x,y) < (x| + [y T2 5P (1 = 5)P @ (s) .
By (1.9), this implies
e (x4 D™ < K (x,y) <o (x| + [yD?™,  x,yeRL. 4.3)

Therefore, h solves (4.1) which is the same equation as (2.2) with a kernel K satisfying
(4.3). The new kernel thus satisfies (1.8) after replacing y by y =y +2p and p by p = 0.
In addition, the supports of & and f are the same, and the moment bound (2.24) is true for f,
y, and p, if and only if it is true for &, 7, and p. Notice that exactly the same argument can
be made in the weak formulation of (2.2), as well as in the discrete problem (2.1). Therefore
we can reduce the discrete problem considered in this paper to an analogous problem with
kernel

K (o, B) = K (a, B) l|? |BI? (4.4)
which satisfies an estimate
e (al + 18D P < K (a, B) < 2 (Ja| + 1827 4.5)

These observations can be summarized as follows.

Lemma 4.1 The following statements hold:
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() Letne #iyp (R’i) with the support in the set {x € Ri [1<|x|] < L}for some L > 1.
Let us assume that K is continuous and satisfies (1.8), (1.9). Then, the Radon measure
f et (]R‘j) is a stationary injection solution to (2.2) in the sense of Definition 2.1 if
fx)

|x|?
with kernel K defined as in (4.2). Moreover; (4.3) holds.

(i) Suppose that {s.},, eNd\(0) is a sequence supported in a finite number of values «. Let us
assume that the kernel K satisfies (1.7), (1.9). Then the sequence {ny},, eNd is a stationary
injection solution to (2.26) in the sense of Definition 2.2 if and only if the sequence
{|oc|_p na}aem is a stationary injection solution to (2.26) with kernel K defined as in
(4.4). Moreover; (4.5) is satisfied.

(iii) Let us assume that K is continuous and satisfies (1.8), (1.9). The Radon measure f €
M (Ri) is a constant flux solution to (2.29) in the sense of Definition 2.3 if and only if
the Radon measure h (x) = {x();) is a constant flux solution to (2.29) with the kernel K
defined as in (4.2). Moreover, (4.3) is satisfied.

and only if the Radon measure h (x) = is a stationary injection solution to (2.2)

Therefore, it is sufficient to consider kernels satisfying (1.7)-(1.9) with p = 0.
Equivalently, we need to examine kernels satisfying (4.3), (4.5).

4.2 An Auxiliary Lemma

The following result which will be extensively used in the rest of the paper has been proven
as Lemma 2.10 in [6]. It allows to transform estimates of averaged integrals into estimates
on the whole line.

Lemma 4.2 Suppose a > 0 and b € (0, 1), and assume that R € (0, oo] is such that R > a.
Consider some f € M+ (Ry) and ¢ € C(Ry), with ¢ > 0.

1. Suppose R < oo, and assume that there is g € L'([a, R)) such that g > 0 and

Z

1
*/ p(x)f(dx) <g(z), forzela, R]. (4.6)
[bz,z]

Then

Jia. k1 8@z

nb| + Rg(R). 4.7

/ @(x) f(dx) <

[a,R]

2. Consider some r € (0, 1), and assume that a/r < R < 0o. Suppose that (4.6) holds for
g(2) = coz4, with q € R and cy > 0. Then there is a constant C > 0, which depends
only onr, b and q, such that

| ewransca | . (4.8)
[a,R] [a,R]
3. If R = oo and there is g € L' ([a, 00)) such that g > 0 and
1
*/ p(x)fdx) =g@), forzz=a, (4.9)
Z Jlbz.z]

then

f[a,oo) g(2)dz

4.10
|Inb | ( )

/[ )<p(x)f(dx) <
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5 Proof of the Existence of Stationary Injection Solutions

In this Section we prove Theorems 3.1, 3.2.

5.1 Continuous Coagulation Equation

We first prove Theorem 3.1. Notice that due to Lemma 4.1 it is enough to prove the Theorem
under the additional assumptions ¥ < 1, p = 0. In particular, then the coagulation kernel
satisfies (4.3) with p = 0.

We will follow a strategy that has been used in the literature to show existence results for
some classes of unbounded coagulation kernels (cf. [1]). This consists in proving first the
existence of stationary injection solutions for a truncated version of the problem in which
the kernel K is replaced by a compactly supported kernel. We will then derive estimates for
the solutions of these truncated problems that are uniform in the truncation parameter and
we can then take the limit in the truncated problem and derive a solution to (2.2).

‘We first define the truncated kernel. We will make two truncations, the first one to obtain a
bounded kernel and the second one to obtain a kernel with compact support. Before describing
these truncations in detail we prove that there exists a stationary injection solution for a large
class of coagulation equations with bounded, compactly supported kernels. This result will
be used later as an auxiliary tool.

We will use the following Assumptions to characterize a class of solutions in a simplified
setup where M is a cutoff parameter, K = Ky is a suitably bounded kernel, and we addi-
tionally cut off the “gain term” for large values of |x|. This will result in unique solvability
of the coagulation evolution equation, and imply existence of stationary solutions.

Assumption 5.1 (Cutoff model) We will make the following assumptions on the fixed source
term 7, on the kernel K s and on the cutoff function ¢y,

(i) Consider a source term n € 44 ) (Rff ). There exists a real number L > 1 such that
supp () C {x : 1 < |x| < L}.

(ii) The kernel K : RY x RY — R is a continuous, nonnegative, symmetric function.
Suppose that M, aj, ap are constants such that M > 2L, with L as in item (i), and
0 < a; < ap. Assume that the kernel K, satisfies

Ku(x,y) <ar forall (x,y)e (Rﬁf)z.
We assume also
Ku(x,y) € lar, a2l for (|x|,|y]) € [1, M]?
and
Ku(x,y) =0 if (x|, [y ¢ (0,2M)7.

(iii) We assume that £y is a fixed cutoff function such that £y € C (R?),
1
O0<ty =<1, ty(x)=1 for 0 < |x| < EM’ and ¢y (x) =0 for |x| > M.

The cutoff function ¢); will be used to inactivate the “gain term” for large cluster sizes.
Explicitly, in the simplified problem we study solutions to the evolution equations
{m (x)

8zf(x,t)=T o }KM(x—y,y)f(x—y,t)f(y,t)dy
<y<x
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— [, Ko 5,0 £ G0y + 0000, 5.1)

where the kernel K 7, the source 7, and the function ¢y are as in Assumption 5.1. In particular
we are interested in the steady states associated to (5.1). These satisfy

0 = ;M2<x> Knt(x — y. ) f G — 3.0 f (v, D)y
{0<y<x}
— [, Kwte. ) 7070 0dy + o). 52)

We will restrict our attention to solutions of (5.2) which vanish for small and very large
cluster sizes. More precisely, we will use the following concept of solution to (5.2).

Definition 5.2 Suppose that Assumption 5.1 holds. We will say that f € ./, (R%), satisfying
f ({x € ]Rf x| < lor |x| > M}) = 0, is a stationary injection solution to (5.1) if the
following identity holds for any test function ¢ € C. (RY):

1
o=5/ f KM<x,y)[<p<x+y);M(x+y>—¢(x>—w(y)]f(dx)f(dywrf ¢ (¥) 1 (dx).
RY JRE R
5.3)

In order to prove the existence of a stationary injection solution to (5.1) in the sense of
Definition 5.2 we will obtain these solutions as a fixed point for the corresponding evolution
problem. We first prove the following result.

Proposition 5.3 Suppose that Assumption 5.1 holds. Then, for any initial condition fy sat-
isfying fo ({x € ij x|l < lor |x| > M}) = 0 and for any T > 0, there exists a unique
time-dependent solution f € clqo, 11, ,//l_i_,b(Ril)) to (5.1) which solves it in the classical
sense. Moreover, we have

f({xeRi:|x|<1or|x|>M},t)=0, for0<t<T, (5.4)

and the following estimate holds
/ fldx,1) 5/ fodx)+Ct, t>0, (5.5)
R4 RY

for C = ng n(dx) > 0 which is independent of fo, t, and T.

The proof of Proposition 5.3 reduces to the reformulation of (5.1) as an integral equation
by means of an application of the Duhamel principle. The well-posedness result then follows
by means of a standard fixed point argument. The estimate (5.5) is a consequence of the
inequality 9, (fR‘l fdx, t)) < ng n(dx) which follows by integration of (5.1). Given that
the argument is just a small adaptation of the similar one in [6, Proposition 3.6] we will skip
the details of the proof.

The solution f obtained in Proposition 5.3 has a number of useful properties needed later:

Proposition 5.4 Suppose that Assumption 5.1 holds. Let fy € M+ ,(RY) be as in the state-

ment of Proposition 5.3 and let f € C'([0, T], e//lJr,b(Ri)) be the solution to (5.1) which
has been obtained in Proposition 5.3. Then, the following properties hold.
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(1) Thefunction f is aweak solutionto (5.1), i.e., for a test function ¢ € clqo, 11, C. (R‘j))
and any T > 0 the following identity holds

d
G Lewnrann- [ apensany

dt RY

1
_ 5/ / Kot (o) [0 e+ 3.0 n (e 3) — 9 (a0 — 9 (O] f (. 1) f (dy. 1)
RY JRY
+ /d ¢ x,t)n(dx), foreveryt e[0,T]. (5.6)
RS

(ii) The following inequality is satisfied

2
3;(/Mf(dx,t)>§—azl(A;if(dx,t)) +/Rzn(dx). 3.7

(iii) For each M > 1 we define a topological vector space
Py = [f € Mipy®RY:f ({x eRY: x| < lor |x| > M}) :o}

endowed with the weak topology of measures, i.e., the x-weak topology inherited as a
closed subspace of Co(]Rfi)*. If R > O, the subset Ur = {f € Zu ’fR‘i fldx) < R]
is compact and metrizable in this topology. For each t > 0 we define an operator
S@): Zy — Zy by means of S (t) fo = f (-, 1), with f (-, t) as in Proposition 5.3.
Then the family of operators {S ()}, define a continuous semigroup in 2. More
precisely, we have

SO)y=1, St +1n)==S()S() foreacht;,t» € Ry, (5.8)

the mapping f +— S (t) f with f € %) is continuous in Zy for each t > 0. Moreover,
the mapping t — S (t) f from Ry to 2y is continuous for each f € Zy.

Proof The proof of (i) is a consequence of the fact that f is a classical solution to (5.1). We
then compute % ( fR‘i ¢ (x,t) f(dx, t)) and write it in terms of the coagulation kernel using

(5.1). Using the regularity properties of ¢ and f, and applying Fubini’s theorem to rewrite
the term containing convolution in (5.1), we obtain (5.6).

Inequality (5.7) in item (i7) follows using a test function ¢ (x, ) which takes the value 1
for 1 < |x] < M, combined with the fact that £)y < 1 and that K (x,y) > a; > 0 in the
support of the measure f (dx,t) f (dy,1).

The statements in item (ii) about the space 2, and its intersections with norm-topology
balls, g, follow from standard results in functional analysis, in particular, by using the
Banach—Alaoglu theorem; more details may be found in [6]. The properties of S (¢) in (5.8)
follow from the definition of S () and the uniqueness result in Proposition (5.3). The only
nontrivial results to be proven are the continuity properties of S (z) . The continuity of ¢
S (t) f follows from the differentiability of f in the ¢ variable, yielding even Lipschitz-type
estimates for the dependence, cf. Eq. (3.20) in [6].

The continuity of f +— S (¢) f in the weak topology of measures is the most involved
part of the results but it can also be proven as in [6]. The basic idea is to prove that the map-
pings fo — fR‘l ¢ (x) f (dx, t) change continuously for every test function ¢ € C. (Rff ) .
Considering the evolution of ¢ in terms of the adjoint equation from the time # to the time 0
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we obtain a new function, denoted as ¢y € C, (R?), such that
[ewraxn=[ mwpa.
RY RY

Therefore, fRi ¢ (x) f (dx, t) changes continuously if fR;’ @o (x) fo (dx) does. This gives
the desired continuity in the weak topology of measures and the result follows. O

We can now prove the existence of stationary injection solutions to (5.1) in the sense
of Definition 5.2. We observe that, to prove the existence of stationary solutions, finding
fixed points for the corresponding evolution semigroup has often been used in the study of
coagulation equations. We refer for instance to [5, 10, 18-20]. Similar ideas have been used
also to construct stationary solutions of more general classes of kinetic equations. See for
instance [12, 14, 15].

Proposition 5.5 Under the assumptions of Proposition 5.3, there exists a stationary injection
solution f € //_hb(]Rff) to (5.1) as in Definition 5.2.

Proof The argument is made along the same lines as the one developed in [6], and we just
provide a sketch of the main details. The key idea is to construct an invariant region in the
space 2 under the evolution semigroup S (¢) . To this end, notice that (5.7) implies that for

2 [rd n(dx)
R >4/ R*T the set

%R={fe%M:/ f(dx)gR} (5.9)
RY

is invariant under the evolution semigroup S (¢) , i.e., S (¢) (Zr) C %r. By Proposition 5.4,
the set %k is convex and compact in the weak topology of measures. Since the operator
S (8) : #r — g is continuous in the same topology, it follows from Schauder’s fixed point
theorem that there exists a fixed point ﬁ; for each § > 0. Since % is metrizable and hence
sequentially compact, we can use Theorem 1.2 of [5], and conclude that that there is f such
that S(r) f = f for all ¢. Thus f is a stationary injection solution to (5.1). O

We can now prove Theorem 3.1.

Proof of Theorem 3.1 Due to Lemma 4.1, item (i), it is enough to prove the result for p = 0
and y < 1. Therefore, we will restrict our attention to kernels of the form

K (x,y)=(x]+1yD" @ (x,y) (5.10)
where @ is continuous, symmetric, and
0<Ci<®(x,y)<Cy<oo, for x,yeRe (5.11)

We recall that we do not assume that the kernels K (x, y) are homogeneous for this result.
We define a class of truncated kernels by means of

K. (x,y):min{(|x|+|y|)7,§}<I>(x,y)—|—8 , €>0 (5.12)

The kernels K, are bounded in R x RY for each ¢ > 0. Moreover, they satisfy also
K. (x,y) > e > 0forany (x,y) € Rﬁf X Rfﬁ. We will assume in the following that ¢ < 1,
and add further restrictions to its upper bound later on. Note that if y < 0, the truncation by
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the minimum in (5.12) will not have any effect since we are interested in solutions supported
in|x| > 1and|y| > 1.

We now introduce another truncation to obtain compactly supported kernels. To this end
we choose a symmetric function oy € C.(Ry x Ry) such that for x, y € RZ, r,s >0,

1, ifl<r,s<M
,y) = , , ) =1" - Ch e 5.13
oy (x,y) = oy (x|, |y]) oy (r,s) 0. ifr=2Mors > 2M. (5.13)

Note that then wy; € C, (]Rff X Rﬁf) and it is symmetric. We then define truncated kernels
K¢,y by means of

Kem (x,9) = Ko (x, oy (x,y),  x,yeRY, (5.14)

Each of these kernels satisfies the requirements of Kjs in Assumption 5.1.

We finally choose a function py € C(R,) satisfying Assumption 5.1 for d = 1. Then
defining ¢y (x) = puy (|x|) satisfies Assumption 5.1 for general d. The hypothesis of
Theorem 3.1 imply that n satisfies the requirements for this function in Assumption 5.1.
Therefore, the above choices result in a system which satisfies all conditions required in
Assumption 5.1, and thus Proposition 5.5 implies the existence of a stationary injection
solution f¢ pr € ///.;.ﬁ(Rf) satisfying fe m ({x € RZ clx] < lor |x]| > M}) =0and

1
5 /d /d Kem (x, ) [9 (6 +3) (6 +3) = ¢ () =@ (D] fe.m (@x) fem (dy)
RY JRY

+/ px)n(dx)=0 (5.15)
RY

for any test function ¢ € C, (Rfkl).

We now derive uniform estimates for the family of solutions f; s in order to take the
limits M — oo and then ¢ — 0. To this end, it will be convenient to use the coordinates
(r, 0) introduced in (2.13) and defined as r = |x]|, 0 = % We write also p = |y|, 0 = ﬁ
aswellas ¢ (x) = ¢ (r,0), Kem (x,9) = Gem (r, 030, 0), and fe m (x) = Fem (r, 0),
as defined in (2.16). Then (5.15) becomes

1

— rd_ldr/ p"‘ld,o/ dr(Q)/ dt (0) Gem (r, 030,0) Forr (r,0) Fem (p,0) X
2d Ry Ry Ad—1 Ad—1

o+
r+p r+p

x [PM(ML/)W (r+p, 0)—w(rﬁ)—lﬁ(p,a)]+/Rd<ﬂ(X)n(dX)=0-

(5.16)

Given z, § > 0, we introduce a function s € C°(R,) such that 0 < x5 < 1, x5(s) =1
for 1 < |s] < z, and x5(s) = O for |s| > z + §. We then take the radial test function
o(x) = |x]| x5 (|x]) for x € ]Rff. Then v (r,0) = rxs (r) . Plugging this test function into
(5.16), and using ppy < 1, we obtain

/ 4y / P ldp / dt 6) / dt (&) et (s 3 0,0) Foopg (2 0) Fo (0 @)
" " Ad*l Ad*l

X [(r+p)xs (r +p) =rxs (r) — pxs (,0)]+2d/Rd x| xs (IxD) n (dx) = 0.
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Taking the limit § — 0 and using arguments analogous to the ones in the proof of Lemma
2.7 in [6], yields

1
,/ rddr/ pdfldp/ dr (9)/ dt () Gem (r, p;0,0) Feom (r, 0) Feom (0, 0)
d Jo.3) (z—r,00) Ad—1 Ad—1

< / x| n@dx) , forany z > 0. (5.17)
{0<|x|=<z}

We can now derive uniform estimates for the measures Fgp. We have
df{\xlfz} x| n (dx) < df{lx\fL} |x| 7 (dx) =: c. On the other hand (5.12), (5.14) imply

that Kg a1 (x,y) = Ge,m (v, p;0,0) > ¢ > 0 for (r, p) € [1, M1? . Thus we may use the
information about the support of f; ys to conclude that for any z > 0

sf r“dr/ p"‘ldpf dr(e)/ dt (o) Fer (r,0) Fey (p,0) <c.
0,z] (z—r,00) Ad—1 Ad—1

Assumenextz € [1,M].Then[2z/3,z]2 C {(x,y) S Ri_ 0<x<z,z—x<y< M},

and we obtain
2
azz‘Hf dr/ dt (0) Fepr (r,0) ] <C.
(5.7 Jusm

Therefore,

1 C
7/ dr/ dt (0) Fey (r,0) < —15 for0<z<M
Z [%,Z] Ad—1 772

2

where C; is a numerical constant depending on ¢ but independent of M. Then, Lemma 4.2
implies

/ foom (dx) = / foom (dx) = / ri=tar / dt (0) Fom (r,0) < Ce.
RY {1<|x|<M} (1,M] Ad—1
(5.18)

with C, independent on M.

By the earlier mentioned sequential compactness, this bound implies that for each ¢ > 0
there exists a sequence {M,},cy With lim,—,oo M, = oo and f; € .44 5 (R?) such that
fe.m, — fe in the weak topology of measures. Moreover, we have

/ £ (dx) < Co
RY

andalso f; ({x e RY : x| < 1}) =0.

We now notice that ¢y, (x +y) — 1 asn — oo if |[x +y| > 0. Using this, as well
as (5.18), we can now take the limit n — oo in (5.15) with M replaced by M, (more
details about these estimates can be found from the proof of Theorem 2.3 in [6]). Since

Ke(x,y) = limpy— o0 K¢, m(x, y), and using that K, is bounded for each ¢ > 0, we then
obtain

1
5/ / Kg(x,y)[sa(x+y)—qo(x)—w(y)]fs(dx)fs(dy)-i-/ @ xX)n(dx)=0
RY JRY RY
(5.19)
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for any test function ¢ € C, (R‘j). We now argue again as in the derivation of (5.17),
using the test function ¢(x) = |x| xs (|x|) , or equivalently ¥ (r, 8) = r s (r) . We define
F. (r,0) = f: (x) and K, (x, y) = G (r, p; 0, 0) . Then, taking the limit § — 0 we arrive
at

1
—/ rddrf pd—ldpf dr(9>/ dt (0) Ge (., p3 0. 0) Fi (. 0) Fs (p, o)
d 0,z] (z—r,00) Ad-1 Ad—1

:/ |x|n(dx) , forany z > 0.
{0<|x|<z}

Using (5.11) and (5.12) we have K,(x,y) > & + Comin{z”, 1} for |x|,|y| € [5.z]
with Co > 0. Using then that [2z/3,z]* C {(r,p) e R3 : 0 <r <z, z—x <y < 00} we
obtain

1 2
(;; + min{z”, f}) z (/ rdfldr/ F. (r,0)dt (9)) < c/ |x|n(dx) forallz > 0,
g [2z/3.z] Ad-1 RY

where c is independent of ¢ and 5. Thus

1

1 C 2
ff rdfldr/ F. (r,0)dt () < 1 (/ |x|r](dx)>
2 J[2z/3,2] Ad—1 1 }) 27 \JRY

3 .
z2 (8 + min{z?, <

c 3
YT </d |XIn(dX)> (5.20)
z2 (min{z7, 1})? VR

with C independent of ¢ and n, for z > 0. If z > 1, we have min{z?, é} > z¥- where
y— :=min(0, y) < 0. Thus we can conclude that

A

IA

1

1

C 2
,/ rd—ldr/ F. (r,0)dt (6) < — (/ len(dX)> , forallz>1.
z Joeaa Ad-1 22t JRe
(5.21)

This implies the existence of a subsequence {&,}, cny With lim,_, « &, = 0 such that we have
|x|"~ fe, (dx) — |x|"~ f(dx) in the weak measure topology of .#4 j (Rff). Clearly, then
fedy (Rfﬁ) and also f ({x € RY : |x| < 1}) =o0.

It only remains to check that we can take the limit n — oo in (5.19) with ¢ = ¢, for
any test function ¢ € C (RY). We can readily take the limit n — oo, using (5.20), in the
term ng ng Ke, (x,y) @ (x +y) fs, (dx) fe, (dy) because ¢ is compactly supported and
hence the integration may be restricted to a compact subset of R? x R<. It only remains to
examine the terms of (5.19) which contain the functions ¢ (x), ¢ (y) . These contributions
are identical, as it can be seen exchanging the variables x and y. Therefore, it is enough to
consider only one of them, say ng fR‘l Ke, (x,y) ¢ (x) fe, (dx) fs, (dy) . Since ¢ is com-
pactly supported we only need to obtain uniform boundedness of ng K, (x,) fe, (dy) for
x bounded and for |y| large. Due to (5.12), (5.20), as well as Lemma 4.2, it is enough to
estimate

1

/°° min {p”, 3} +¢
1

p? (e +min{p?, %})%

dp.
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It is readily seen that this integral can be bounded (up to a multiplicative constant) by the
sum
1

/°° min {p”, 7}
1

* g
rdp +/ ——dr. (5.22)
)2 1 p2 (g)z

The second integral in (5.22) is given by 2 (8)% and thus it tends to zero as ¢ — 0. On the
other hand, the first integral in (5.22) can be bounded as

1
° (min{p”, 1})? dp > dp
[l il <
1 p2 1

3 . 1
p2 (min{p?, 1}

P2
since y < 1. This gives the desired uniform estimate. We can then take the limit #» — oo in
(5.19).

It remains to check that also fR;[ |x]¥ f(dx) < oo which is obvious from the construction,
ify <0.If0 < y < 1, this follows by first taking ¢ — 01in (5.20) and then using Lemma 4.2.
Therefore, f is a solution to (2.2) in the sense of Definition 2.1. This concludes the proof of
Theorem 3.1. O

5.2 Discrete Coagulation Equation

We now prove Theorem 3.2. Given that the proof is very similar to the one for the continuous
case (cf. Sect. 5.1) we just sketch the main ideas.

Proof of Theorem 3.2 Due to item (ii) of Lemma 4.1 it is enough to prove the result for
p =0, y < 1. By assumption the kernel K can be written as in (5.10) with ® satisfying
(5.11) forallx, y € N‘,f. We truncate the kernel K as in the proof of Theorem 3.1 (cf. (5.12),
(5.13) and (5.14)) with ¢)s chosen as explained in the paragraph after (5.14). Then ¢y satisfies
Assumption 5.1.

We then consider the following time dependent truncated problem, where M > 2L,

Sm ()
2

Ong =

> Kem(@—B.B)na—png —na »_ Ko (@ f)ng +sa. €N
B<a B>0
(5.23)

We can construct solutions of (5.23) satisfying n, = 0 for |«| > 2M for any nonnegative
initial distribution ng , satisfying the same property. Local existence follows from classical
ODE theory. Global existence follows from the estimate

2
e
3 (Z na> -3 (Z na) + Y S (5.24)
o o o
that implies

Zna < Znoya—l—tZsa.
o o o

Due to (5.24) there exists an invariant convex set defined by means of

12
ina:Znaf %, naZO}.
o
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Therefore, the existence of a stationary solution is a consequence of Schauder’s Fixed

Point Theorem, arguing as in the proof of Proposition 5.5. This solution will be denoted
e,M

as {n }aeNg\{O} :

We can now take the limit M — oo and then ¢ — 0 in order to obtain a stationary injection

solution to (2.26). To this end, we derive uniform estimates for the sequence {ng™} N -

More precisely, we have already proved the estimate neM </ 22“ = . Since the right-
hand side is independent of M, there exists a sequence {M ben such that M, — oo as

&M,

n — oo and ng"" — n;, as n — oo, where the sequence {”a}aeNd solves

1
EZKS(a—,B,ﬂ)ni_ﬁn%—nZZKg(a,ﬁ)ngﬂ—l—sa:O, aeN!. (525
B<a p>0

In order to estimate the sequence { ng}a end We use the fact that the measure f, =
D o 58 (- — o) solves a stationary continuous equation. More precisely, f; satisfies (5.19)
for any test function ¢ € C,. (]R ) where K is any continuous extension of the discrete ker-
nel. We can then derive, arguing as in the proof of Theorem 3.1 that f; satisfies the estimate
(5.20) with f; (x) = F¢ (r, 0) . We can then show that there exists a sequence {&,},cn With
limy,— o0 &n = O such that nY" — n, as n — oo for each o € N‘i. Moreover, using (5.20)
we can also pass to the limit in the weak form of (5.25) to show that {ng}, eNd is a stationary
injection solution to (2.26). Hence the Theorem follows. ]

6 Nonexistence Results

In this Section we prove the non-existence of stationary injection solutions for the continuous
and discrete model as well as the non-existence of constant flux solutions.

We first prove Theorem 3.5. Due to Lemma 4.1, item (i), it is enough to prove the result
for y > 1, p = 0. We first recall the following auxiliary Lemma that is a particular case of
Lemma 4.1 in [6] witha > 1, b = 0.

Lemma 6.1 Leta > 1 be a constant. Let W : R, — R be a right-continuous non-increasing
Sunction satisfying W(R) > O, forall R > 0. Assume thath € .4+ (R,) satisfies h([1, 00)) >
0 and
/ x%h(dx) < 0. 6.1)
[1,00)
Suppose that there exists § such that 0 < § < 1 and the following inequality holds
C
—/ (W(R—y)=WR)]h(dy) < ———=5. for R= Ro, (6.2)
[1,6R] R
for some Ry > 1/8 and C > 0.
Then there are two constants R(’) > Ro and B > 0 which depend only on a, h, §, Ry, and
C, such that
B
W(R)> —, forR > RO, (6.3)

The proof of Lemma 6.1 relies on a comparison argument and on the construction of a
suitable subsolution for the problem (6.2).
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Proof of Theorem 3.5 We start proving item (i) which refers to the continuous case. To
this end we follow the same strategy as in the proof of Theorem 2.4 in [6] for the one-
component case. To get a contradiction, let us assume f is a stationary injection solution.
Let F be the corresponding measure in the simplex coordinates, as explained after Def-
inition 2.1. In particular, then the support of F lies in [1,00) x AY~! and F satisfies
f]R* < Ad—1 pd=l+y F(r,0)drdt () < co. Wedefine G as before from K . Then, after rewriting
(2.25) in the simplex coordinate system, we find that

il rd_ldr/ pd_ldp/ dr (9)/ dt (@) G (. p3 60,0) F (+.0) F (p, )
2d R, R, Ad—1 Ad—1
x[¢<r+p,Le+ a)—w(r,9>—w(p,o)}+/ ¢ () (dx) =0
r+p r+p R

6.4)

for every ¢ € Cg(R* x Ad-1y,

We now choose test functions of the form y (r, 8) = r xg,s (r) to derive a formula for the
fluxes.Let R > § > 0. We assume that xz s € C°(R,) is a “bump function”, more precisely,
it is monotone increasing on (0, R] monotone decreasing on [R, co). We also assume that
Xrs(s)=1ford <s <R, xgs(s) =0fors > R+ 6. We then have

w(+ 4P
r+p,
P Tree

=@ +p)xrs(r+p)—rxrs @) —pxrs(p)
=—r[Xrs (") = Xrs "+ P)] = o [XR5 (0) — XRS5 (" + )] .

U)_W(he)_lﬁ(ﬂ»(’)

Plugging this identity in (6.4) and assuming that R > L we obtain

|J|d:/ rdfldr/ pd”dp/ dt (9)/ dt ()G (r,p;0,0)F (r,0) F (p, o)
Ry " Ad—1 Ad—1
xr[xrs () — xrs (r +p)] . (6.5)

where J = ng xn(dx) € R‘i. Taking the limit § — O we may then conclude that for all

R>1L
/ rd_ldr/ pd_ldp/. dt (0)
(0,R] (R—r,00) Ad-l

/ dt (0)G (r,p,0,0) F(r,0) F(p,o)r =|J|d. (6.6)
Ad—1
By the earlier mentioned known properties of F,
/ pd_1+ydp/ dt (o) F(p,0) < . (6.7)
[1,00) Ad-1

We estimate first the contribution to the integral in (6.6) due to the region {p > §r} where
0<é< % Using the upper estimate in (1.8) (see also (4.3)) we obtain

/ rd_lpd_ldrdpf dt (0)
{(r,p):re(0,R], r+p>R, p>dr} Ad-1

/ dt (0)G (r,p;0,0)F (r,0) F (p,0)r
Ad—l
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< Cg/ rd—1+1dr/ pd_ldp/ dt (9)/ dt (o) p" F (r,0) F (p, o)
[1,R] [Laoo) Ad-1 Ad—1

I

< Cjs </ rd*1+ydr/ F (r,0)dt (9))/
[1,R] Ad-1 [”

T+5°

o dp / F(p,0)dt (o)
) Ad—1

(6.8)

where y > 1, p = 0. It then follows from (6.7) that the right-hand side of (6.8) tends to zero
as R — oo.

Therefore, we can now conclude from (6.6) that for every 6 € (0, 1) thereis Rs > L, §1
such that, if R > Rj, then

/ o lardp [ dr @) [ dr@) G 0.0 Fe0)F (00
{(r,p):re(0,R], r+p>R, p<dr} Ad—1 Ad-1

|J1d
> .
-2
Using again the upper estimate in (1.8) (or (4.3)) as well as the fact that in the domain of
integration r is close to R we obtain

c
f dpf dr/ F(p,0)p®ldt (a)/ rVF (r,0)dt (0) = 11
[1,6R] (R—p,R] Ad—1 Ad—1 RY+

where C; > 0 depends on J but is independent of R and §. We then consider the measure

h(r) :rd*/ F(r,0)dt (0),
Ad—]

which belongs to .Z (R,), by Fubini’s theorem. We can conclude that for all R > R;

Ci
h(p)dp |:/ h(r)dr]z .
/mm (R—p.R] Ry

The support of 4 lies in [1, o) and /2 # 0. Since fR*xAd*I rd= 1YY F(r, 0)drdt(9) < oo,
we have fR* rYh(r)dr < oo. Here y > 1, and we may conclude that also fR* h(r)dr < oc.

Therefore, we can define a right-continuous, non-negative and non-increasing function W
by

W(R):/ h(r)dr, R>0,
(R,00)

and rewrite the earlier bound as

h(p)[W (R —p)— W (R)]d !
/UMJ (o) [W ( 0) (R)] 'OZRy+1

for R > R;s. Applying Lemma 6.1, we obtain

WR>B
®=%

for all R large enough and with a constant B > 0. Then, for any R sufficiently large we have
/ p”h(p)dp = RYW(R) = B > 0,
[R,00)

but this contradicts (6.7) and the result follows. This concludes the proof of item (7).
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We now prove item (ii) concerning the non-existence of stationary injection solutions
for the discrete model. We observe that the result is a direct corollary of item (/). Namely,
if {na},cne solves (2.26), then f (1) = Yanad(-—a)and n(-) = >, 548 (- — ) solves
(2.2) which leads to a contradiction. ]

Finally we show the non-existence of nontrivial constant flux solutions stated in Theorem
3.6.

Proof of Theorem 3.6 The proof is similar to that of Theorem 3.5, except that here we do not
even need to assume that f solves (2.25).

We begin with the assumption that f is a nontrivial constant flux solution, and hence A
defined by (2.30) satisfies A ;(R) = (Jo);, for all R > 0. Summing over j in (2.30), we find
that forall R > 0

1
|Jol = f/ drdt (9) dpdt (o) r o™ F (r,0) F (p,0) G (r, p; 6, 0) .
d Jo,Rjxad-1 (R—r,00)x Ad-1

(6.9)

Since we assume that the measure f is nontrivial, here |Jy| > 0. Therefore, the previous
equality in (6.6) is satisfied (the value of L > 0 can now be chosen arbitrarily), and we can
follow the remaining steps in the proof of Theorem 3.5 to obtain a contradiction using the
moment bound (2.24) and the assumption y > 1.

7 Upper and Lower Estimates for the Solutions

Until now, we have focused on the question of existence of stationary solutions in the
three cases of interest. We now consider those kernels which can have a stationary solu-
tion. Although no uniqueness of these solutions is claimed here, we prove in this subsection
that all such solutions satisfy certain powerlaw growth bounds. We collect the statement for
the continuous stationary injection solutions in Proposition 7.1 and the corresponding results
for the discrete coagulation equation in Proposition 7.4. These results generalize similar
upper and lower estimates proven in [6] to the multicomponent case and the larger class of
kernels.

Proposition 7.1 Let us assume that K is a continuous symmetric function satisfying (1.8),
(1.9) with y 4+ 2p < 1. Assume also that n € My (R‘j) has its support in the set
{x € Rg{ [1<|x| < L} for some L > 1. We denote by |Jo| the total mass injection rate,
where Jy = ng xn(dx) € Ri‘ Let f € My (R‘j) be a stationary injection solution to (2.2)
in the sense of Definition 2.1. There exist constants C1,Cy > 0 and b € (0, 1) depending
only gn ¥, p, d and the constants c1, ¢z in (1.8) such that the following estimates hold with
§=3%

1 C1VTT
f/ f(dx)g%y"' forallz >0, (7.1)
T Ji<|x|=z [
1 Co T,
f/ £ (dx) > %y“' forallz > E. (7.2)
Z Jbz<|x|<z s

Alternatively, let us assume that f is a nontrivial constant flux solution (cf. Definition 2.3)
with flux Jo. Then there exist constants C1, Co > 0and b € (0, 1) depending onlyony, p, d
and the constants c, cp in (1.8) such that (7.1) and (7.2) hold with & = 0.
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Remark 7.2 We observe that | Jy| is the total injection rate which means that it includes all of
the possible monomer types.

Proof Due to Lemma 4.1 as well as the fact that the estimates (7.1), (7.2) are invariant

under the transformation (f (x), y, p) — ({x(ﬁ,), y +2p, 0), it is sufficient to prove the

Proposition for p =0 and y < 1.

Suppose first that f is an appropriate stationary injection solution, in particular, it satisfies
(2.25). We define F by means of (2.16) and G by means of (2.15). Then, arguing as in the
derivation of (5.17) in the proof of Theorem 3.1 (i.e. using the test function ¢ (x) = |x|xs (|x])
and taking the limit § — 0), we obtain

1
f/ rddr/ pd_ldpf dt (9)/ dt ()G (r,p;0,0) F(r,0) F (p, o)
d (0,7] (z—r,00) Ad-1 Ad—1

= / [x|n(dx), foranyz > 0. (7.3)
{0<|x|=<z}

The (r, p)-integration can also be rearranged using Fubini’s theorem to occur over the set
QZ:={(r,p)eR3_:O<r§z,p>z—r}, z> 0. (7.4)

In particular, we find for z larger than the support of the source that

1
f/ drdpr“p"”/ dr(e>/ dt ()G (r,p;0,0) F (r,0) F (p,0) = |Jo|, 2> L.
d Ja, Ad—1 Ad—1

(7.5)

In the second case, if f is a nontrivial constant flux solution as in Definition 2.3, by
summing over j in (2.30) we find that (7.5) holds for any choice of L > 0. In particular, we
may now conclude that, for all z > 0 and for either of two cases of a solution f, we have an
upper bound

1
ff drdprip®! / dr (9)/ dt (0)G (r.p:0,0) F (r.0) F (p.0) < |Jol.
d Qz’ Ad—1 Ad—1
(7.6)
First, let us recall that, since p = 0, we have
cir+p)Y <G@r,p,0,0)<cr(r+p) . (7.7

The integration goes over 2, which contains the set [2z/3, z]%. By positivity of the integrand
and using the lower bound in (7.7), we thus obtain an estimate

5 - 2
ezt (/ drr?! / dt 0) F(r, 0)) <|Jo|, foranyz>0. (7.8)
3d [21/3&] Ad—1

Since [z/2, z] = [z/2, 3z/4] U [2z/3, z], we find that (7.1) holds with a choice of C; > 0
which depends only on ¢y, ¥, and p. This concludes the proof of the upper estimate, for both
of the types of solutions f.

For the lower bound, we recall that (7.5) holds for either of the types of solutions f, using
an arbitrary L > 0 if f is a flux solution. We now prove that the main contribution to the
integral in (7.5) is due to the regions where r and p are comparable. To this end, for each
6 € (0, 1) we partition (0, 00)2 = £1(8) U T1(8) U =3(8) where

1) = {(r, p) € (0,00)% : p > 1/8},
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(8) = {(r, p) € (0,00)* : 8r < p <1/8},
3(8) = {(r, p) € (0,00)* : p < &r},
(7.9)

We define also the related functions

Jj(z,8) = é/ drdp/ dv (9)/ dr (0)r'p™'G (r, p;0,0) F (r,0) F (p, 0)
QN (8) Ad—1 Ad—1
(7.10)

forz > 0,8 € (0,1) and j = 1, 2, 3. We now claim that for each ¢ > 0 there exists §;
depending only on ¢, as well as on ¥, p, d and the constants cy, ¢, such that, if § < §; we
have

sup J1(z, 8) < ¢|Jol (7.11)
z>0
and
1
— J3(z,8)dz < e|Jy| foreachR > 0. (7.12)

R Jir 2R

We prove first (7.11). By (7.7),if § < 1 and (r, p) € £1(8), we have G (r, p;0,0) <
2171¢y pY, and, therefore,

Lol
Ji(z,8) < 32)’ )

drdp/ dt (9)/ dt (@) r¢p Y F(r,0) F (p, o) .
QN (6) Ad—1 Ad—1

We have already proven a powerlaw upper bound in (7.1), and this allows further bounding
similar integrals via Lemma 4.2. In particular, we may conclude that for any g € R there is a
constant C, which depends only on ¢, v, d, and Cy, such thatif a > 0 and R > 2a, we have

R
/ dr/ dt @) ri~ "M F @G, 0) < C\/|J0|/ r=13 g (7.13)
[a,R] Ad-1 a

Now €2, N X1(8) is contained in {(r, p):0<r<gz, p>%, %}, and we first use the above
powerlaw bound to estimate the p-integral. Setting ¢ = y and taking R — oo, we find that
foranya > 0

/ )dp/ dt (o) p~ Y F (p, C7)<C\/|JO/ yfidp_iy“uola s
[a,00 d-

We employ the estimate with a = max(g, 5’), and conclude that

-y
2

1z, 8) < CJ/ 1o dr/ dr 6) rd max( ) F(r.0).
(OZJ Atll 8 2

where the constant C has been adjusted. We can then apply the first item of Lemma 4.2
1—
to the interval [a’, z] with a weight o(r) =r min(%, %)Ty and a bound function g(r) =

Cy «/leolr’HTy min(z‘3 2) 2. Taking then @’ — 0 shows that there is a constant C, which
depends only on Vanables allowed in the Proposition and for which

_ car [ 1 87 1y
112, 8) < CalJol Comin | 487 ) (7.14)
0 r—=2 7272 rz
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We use the change of variables r = z£ in the remaining integral which thus becomes equal
1 1— 1—
to /01 dé& S_% min (1, STyé_Ty) The integral is independent of z, well defined for any

8 > 0, and it converges to zero as § — 0 due to Lebesgue’s dominated convergence theorem.
Thus (7.14) implies that (7.11) holds for all small enough §.

We next prove (7.12) and now assume that 0 < § < i and choose an arbitrary R > 0.
Integrating J3(z, §) overz € [R, 2R]andusingthat Q,N33 C {(r,p) : 0 < p <68z, z—p <
r < z} as well as (7.7), we obtain

/ J3(z, 8)dz
[R.2R]
< C3/ dzf d,o/ rV'Hdr/ r=VF (r,0) dT (9)/ p=VF (p, o) dt (0)
[R.2R] 0,52] [z—p,z] Ad-1 Ad-1

< @RV“f dz/ dp/ dr/ r=VE (r,0) dT (9)/ P47 F (p,0)dt (o)
[R,2R] (0,28R] [z—p,z] Ad-l Ad-1

where we use that (0, 6z] C (0,28R]. Here {(r,z) : z—p <r <z, R <7 <2R} C
{(r,z) : R/2 <r <2R, r <z <r+p}if 0 < p < R/2, and thus employing Fubini’s
theorem we obtain

/ J3(z,8)dz

[R.2R]

sézRV“f dp/ dr/ dzf rd*'F<r,9>dr(9>/ P~ F (p.0)dr (0)
(0,26R] %R [r.r+p] Ad-1 Ad=1

=C3RV“[ ,od,o/ dr/ i VF (r,0) dt (9)/ p7VF (p,0)dt (0).
(0,26R) [%.R] Ad=1 Ad-l

Using here the estimate (7.13) to bound the remaining - and p-integrals separately, we find
that

d dr -
/ ’3<z,5)dzscuo|Ry“/ p3f§/ o < CaRIJols
[R.2R] (0,25R] p™2

R
This implies (7.12) for all sufficiently small §.

In particular, we can now conclude that for any ¢ > 0 there is a §, € (0, %] such that for
all 0 < 6 < 8, both (7.11) and (7.12) hold. In order to prove (7.2), we first note that (7.5)
and (7.10) imply (using an arbitrary L > 0 if f is a flux solution)

3
lJol =) Jj(z.8) forallz > L. (7.15)
j=1

We fix e sothat 0 < ¢ < i and choose some § € (0, §.). We then integrate (7.15) over
z € [R,2R] with R > L, and use (7.11) and (7.12) to conclude that

|Jo|R
2

< |JolR (1 - 2¢) 5/ 1. 8)dz.
[R.2R]

A simple geometrical argument shows that there exists a constant b,0 < b < 1, depending

only on the choice of § suchthat | J (22, N X2(8)) C (vbR, R//b]?. (For a fixed z and
z€[R,2R]

(r, p) € 2, N X7(8) one finds "+ 'z <r, p <8 1z thus for example b = % would
2
suffice.) Moreover, we then have G (r, p; 0,0) < CsRY for all (r, p) € (ﬁR, R/«/l;]
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where Cs depends only on b, y and c,. Thus using the definition of J5(z, §) given in (7.10)
we obtain

2
olR _ s 42 / fdx)| forR>L.
2 [VBR=Ix1<R/ VD]

Therefore,

Civ1
—/ f(dx)z% for R> L,
R J{vbr=iv1<r/vB) RT"
and (7.2) follows, after replacing R/\/B by z (note thatif z > L /b, then bz > L/«/E > L).
If f is a constant flux solution, then the result holds for any L > 0, and thus we may also set

£ =0in(7.2). O

Remark 7.3 Notice that for y > —1, combining Proposition 7.1 with Lemma 4.2 we obtain
that the number of clusters associated to the stationary injection solutions fR* f(dx) is finite.
Moreover, the following estimates hold:

CIVITIl _ /Tl

ROOE = [ T4 = R forR> L

where |Jy| = ng |x|n(dx) and 0 < C{ < C}. (The lower bound follows by setting z =
R/b > L/b in the Proposition.)

We can now conclude a result similar to Proposition 7.1 for the solutions of the discrete
problem (2.26). Although a fairly direct corollary of the previous result, it is worth recording
separately in detail, due to the relevance of discrete coagulation equation in applications.

Proposition 7.4 Suppose that K is symmetric and satisfies (1.7), (1.9) with y +2p < 1. Let
{5ty eNd be a nonnegative sequence supported on a finite number of values o, and suppose
Ls > 1 is such that s, = 0 if |a| > L. Suppose that {”W}aeN‘l is a stationary injection
solution to (2.26) in the sense of Definition 2.2. We denote as |Jo| the total injection rate
of monomers given by |Jo| = Y, || sq. Then, there exist positive constants Cy, C» and
b € (0, 1) depending only on v, p, d and the constants cy, ¢ in (1.7) such that

1 Ci1V1T

=Y nes 13+|y° forallz > 1, (7.16)
i<lal<z z 2

1 Co/170] L

-y naz% forallz= 2. (7.17)
bz<|a|<z 77

Proof This result is just a Corollary of Proposition 7.1 since f (-) = ), nq8 (- — o) and
n() =Y, 58 (- — ) satisfy all the assumptions in Proposition 7.1, and (7.1), (7.2) imply
(7.16), (7.17) respectively. O
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