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Sensing technologies for silent  
speech interfaces
 

Chenyu Tang    1, Liang Qi2, Shuo Gao    2,3  , Zibo Zhang    1, Wentian Yi    1, 
Muzi Xu    1, Edoardo Occhipinti4, Yu Pan5 & Luigi G. Occhipinti    1 

Silent speech interfaces decode speech intent without audible sound, 
enabling communication in settings where voice is inaccessible, or for 
individuals with speech impairments. Here we examine how sensing 
technologies shape the capabilities of silent speech interfaces. We compare 
off-, on- and in-body sensing modalities, identifying how proximity, 
coupling stability and invasiveness govern signal fidelity, robustness 
and user comfort. We highlight key trends, including the rise of flexible 
bioelectronics, multimodal sensor fusion for artefact resilience, and 
the growing role of edge artificial intelligence in real-time, low-power 
decoding. We show that on-body systems currently offer the best balance 
between accuracy and deployability, whereas in-body approaches provide 
unmatched neural access for individuals with complete loss of articulation. 
Looking ahead, advances in multimodal sensing, embedded intelligence and 
closed-loop architectures are poised to expand silent communication across 
rehabilitation, daily interaction and human–machine interfaces.

Silent speech interfaces (SSIs) aim to unlock a new dimension of human 
communication by decoding speech-related intent without relying 
on vocalized sound1,2. Rather than viewing speech solely as an audi-
ble output, these systems conceptualize it as a complex neuromotor 
process that originates in the brain, propagates through articulatory 
musculature and can be sensed and reconstructed through a variety 
of physiological pathways3. This transformative class of technologies 
redefines how individuals interact with machines and with each other, 
offering fundamentally new modes of expression in contexts where 
acoustic speech is inaccessible, impractical or undesired. From ena-
bling silent interaction in noise-sensitive or privacy-critical environ-
ments to restoring communication for individuals affected by stroke, 
neurodegenerative disease or laryngectomy, SSIs address both every-
day and medically underserved needs across society2,4.

At the core of any SSI lies the sensing interface, which governs 
which signal can be accessed, how reliably it can be recorded and under 
which constraints it can be deployed. Sensing strategies fall into three 
major categories—off body, on body and in body—defined not solely 

by physical placement, but also by the nature and stability of coupling 
between the sensor and the physiological source of speech-related 
information (Fig. 1a). Off-body interfaces, such as optical and acoustic 
sensors, prioritize user comfort and deployability through non-contact 
or loosely coupled approaches, but are limited by indirect or distal cou-
pling to the articulatory system5,6. On-body sensors, including electro-
myography (EMG), strain and inertial modules, offer a closer and more 
stable connection to neuromuscular activity through tight skin contact, 
but introduce wearability considerations7–9. In-body neural interfaces, 
such as electrocorticography (ECoG) or intracortical microelectrodes, 
provide direct access to the brain’s speech-generating regions and ena-
ble decoding even in the complete absence of peripheral muscle control. 
However, this advantage comes at the cost of invasiveness and a need for 
custom-designed solutions or intervention procedures due to patient 
diversity in their anatomical structure, pathological conditions, bio-
logical responses and functional goals, alongside ethical constraints10,11.

These sensing modalities present diverse form factors tailored to 
different user contexts (Fig. 1b). Off-body sensing has been integrated 
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and error resilience under realistic use. These gradients also map 
onto application domains: off-body sensors support general-purpose 
interaction (such as silent command input or privacy-preserving com-
munication); on-body sensors enable early-stage restoration of speech 
in patients with residual motor function; and in-body systems remain 
the only current method for decoding continuous, near-real-time 
speech in completely locked-in individuals.

The timeline of the development of SSI technologies mirrors 
this stratification (Fig. 2). Early studies explored both camera-based 
lipreading and surface EMG12,13, with intracortical recording of speech-
related brain activity also beginning to show feasibility in the late 
1990s14. Since 2020, the field has witnessed the proliferation of flex-
ible sensing materials, integration with consumer electronics, and 
initial clinical deployments of wearable and implanted systems. 
Across modalities, advances in spatial and temporal resolution, signal 

into earbuds, mobile phones and smart glasses, offering non-contact 
solutions with high comfort but lower signal specificity. On-body 
approaches, leveraging biomechanical and bioelectrical sensors, 
are implemented in smart chokers, facial patches, masks and head-
mounted wearables, balancing wearability with stable neuromuscular 
access. In-body strategies are represented by invasive brain–computer 
interfaces, such as ECoG grids and intracortical electrodes, some of 
which have already been applied in clinical speech decoding trials.

Overall, these categories delineate trade-offs among comfort, 
invasiveness and system complexity. Signal fidelity introduces a fur-
ther dimension: while not dictated by proximity alone, it depends on 
modality, device properties (for example, impedance and bandwidth), 
placement stability and downstream processing. Yet, a broad trend 
remains—closer interfaces to articulatory or neural sources generally 
yield higher fidelity, manifested as greater information throughput 

O�-body device interfaces
• Optical
• Acoustic

Smart glasses
• Optical
• Acoustic

Earbuds
• Acoustic

On-body sensor interfaces
• EMG
• Strain
• EEG
• IMU

Facial patch/tattoo
• EMG
• Strain

Choker/throat patch*
• EMG
• Strain

In-body neural interfaces
• ECoG
• sEEG
• MEA

Brain–computer 
interfaces*
• EEG

Brain–computer 
interfaces*
• ECoG
• sEEG
• MEA

Mask
• TENG
• Strain

Smartphone
• Optical
• Acoustic

Patient specificGeneral audience

Reduced comfortHigh comfort

a

b

Fig. 1 | Sensor-based classification of SSIs and their deployment form factors. 
a, Sensor modalities in SSIs can be categorized, by the proximity of signal 
acquisition to the human body, as either off-body device interfaces (for example, 
optical cameras or ultrasound probes), on-body sensor interfaces (for example, 
surface EMG, strain sensors, EEG and IMUs) or in-body neural interfaces (for 
example, ECoG, sEEG or MEAs). These categories represent a continuum between 

user comfort and signal specificity, ranging from general-purpose wearable 
devices to highly personalized clinical systems. b, Representative deployment 
examples for each category, aligned with the same taxonomy: off body 
(smartphones, earbuds and smart glasses), on body (facial patch/tattoo, choker/
throat patch, mask and EEG hat) and in body (ECoG, sEEG and MEA implants). The 
asterisks denote technologies with clinical validation.
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robustness and integration with learning algorithms are reshaping 
what is feasible (Table 1).

As silent speech technologies approach a translational inflection 
point, a sensing-led perspective becomes essential to reframe system 
capability, usability and societal reach. The field is rapidly expanding 
with the introduction of novel sensor modalities, advances in flex-
ible bioelectronics, and early-stage clinical studies. However, it still 
lacks a comprehensive framework that integrates these developments 
through the lens of sensing. By positioning sensing as both a constraint 
and a catalyst, this Review redefines the foundations of silent speech 
systems. Trade-offs in comfort, fidelity and invasiveness are not just 
technical considerations but strategic levers that shape adoption 
and impact.

We classify existing approaches into off-, on- and in-body sensing 
strategies, each presenting distinct trade-offs in signal fidelity, comfort 
and clinical relevance. We compare sensor modalities across spatial 
and temporal resolution, invasiveness and integration potential and 
trace their development from early vision-based systems to recent 
advances in flexible bioelectronics and neural interfaces. Finally, we 
outline emerging directions in sensor–artificial intelligence (AI) inte-
gration, real-time decoding and closed-loop systems that are poised 
to transform communication, rehabilitation and human–machine 
interaction at scale.

SSIs using off-body sensors
Off-body sensors enable non-intrusive SSIs by capturing articulatory 
and physiological signals without direct skin contact. These systems 
typically rely on optical and acoustic modalities integrated into exter-
nal devices such as cameras, smartphones, glasses or headsets. Their 
appeal lies in high user comfort, ease of deployment and compatibility 
with commodity hardware, making them attractive for scalable and 
low-burden interaction. However, signal quality in off-body sensing is 
often susceptible to environmental conditions, such as lighting vari-
ation or acoustic interference, and may suffer from indirect coupling 
to the user’s intent.

Recent advances have broadened the landscape of off-body 
silent speech systems, transitioning from laboratory-grade setups 
to increasingly wearable and context-aware platforms. For instance, 

optical systems have evolved from static RGB cameras to mobile and 
multi-angle vision modules, whereas acoustic approaches have moved 
beyond medical ultrasound towards integrated earbud and headphone 
solutions that leverage subtle biomechanical cues. These innovations 
mark an important step towards accessible, privacy-preserving and 
device-integrated SSIs, but challenges remain in achieving consist-
ent performance across diverse real-world settings and user profiles.

Optical sensing
Optical sensing enables silent speech input by visually capturing articu-
latory movements, including lip and facial dynamics, through off-body 
modalities. The most straightforward approach involves RGB cameras, 
which offer high-resolution visual data for articulator tracking5,15,16. 
However, this method is inherently sensitive to occlusion, head pose 
variation and lighting conditions and typically requires a fixed setup, 
limiting portability and real-world applicability.

To improve deployment flexibility, optical sensing has been inte-
grated into mobile platforms. Front-facing smartphone cameras enable 
real-time interaction without auxiliary hardware (Fig. 3a)17–19, whereas 
depth-sensing modules enhance robustness against environmental 
variation by capturing three-dimensional motion profiles, achieving 
91.3% within-user accuracy and 74.9% cross-user accuracy on a 30-com-
mand vocabulary20. Nevertheless, both solutions remain constrained 
by frontal positioning and the instability of handheld use.

To overcome these limitations, alternative camera placements 
have been explored. Side-21 and chin-mounted22 optical systems provide 
more stable tracking and allow for more natural user movements during 
interaction, with reported performance exceeding 90% accuracy on 
vocabularies of approximately 50 words. Although challenges remain 
in ensuring consistent performance across diverse usage scenarios, 
optical sensing remains a user-friendly and hardware-light strategy 
that is particularly suited for applications prioritizing convenience 
and accessibility.

Acoustic sensing
Acoustic sensing has gained marked traction in SSIs due to its off-
body implementation, strong resilience to occlusion and poor light-
ing, and inherent advantages for preserving user privacy. Although 
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Fig. 2 | Timeline of sensor-driven innovations in SSIs. Presented is a timeline 
of SSI innovations, from the earliest to the latest: EMG-based vowel recognition 
(1985)12, camera-based lipreading (1985)13, EEG word decoding (1997)14, 
intracortical microelectrodes (1998)81, ECoG speech decoding (2004)52, 
ultrasound imaging (2004)82, depth cameras (2012)83, ultra-wideband (UWB) 
radar (2016)84, camera SSIs for mobile devices (2018)85, full-sentence decoding 
via ECoG (2019)86, flexible EMG sensors (2020)7, wearable strain sensors (2021)87, 

TENG-based lipreading (2022)33, flexible strain sensors (2022)8, IMU-based 
decoding (2023)30 and magnetoelastic silent speech sensors (2024)88. Each 
milestone is categorized as off body (red), on body (yellow) or in body (blue) 
based on the specific sensing implementation used in the corresponding silent 
speech study, rather than the full spectrum of technological variants. The 
asterisks denote technologies with clinical validation.
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conventional speech decoding relies on external microphones 
to capture audible voice signals, such methods fall outside the 
scope of SSIs, which aim to decode speech intent in the absence of  
vocalized sound. One early-studied silent approach utilizes ultra-
sound imaging, wherein probes placed beneath the jaw capture fine-
grained tongue kinematics with high spatial fidelity (Fig. 3b)23. This 
approach achieves a 3.6-s decoding speed with ~33% word error rate 
(WER) on vocabularies of several dozen commands, but its depend-
ence on specialized imaging hardware restricts its practicality for 
daily use.

To circumvent such hardware constraints, several strategies 
have turned to commodity devices. Smartphone-based methods, 
for instance, emit inaudible acoustic signals via built-in speakers and 
analyse their reflections using onboard microphones24–26. The reflected 
echoes encode articulatory movements of the lips and tongue, allowing 
the systems to reach >90% word-level accuracy and <10% sentence-
level WER across vocabularies spanning from simple commands to 
short conversational sentences. These systems offer a hardware-
light solution, yet often face performance degradation in noisy or 
dynamic environments.

To enhance robustness and integrate seamlessly into everyday 
settings, researchers have embedded acoustic sensors into wearable 
devices. Glasses-mounted systems detect perioral skin deformation27, 

earbuds capture air-pressure variations within the ear canal6,28 and 
headphones monitor temporomandibular joint motion29. Each con-
figuration taps into distinct biomechanical cues, collectively enabling 
silent command recognition with minimal user effort and improved 
tolerance to ambient noise. Reported implementations have repeat-
edly achieved >90% accuracy on vocabularies of more than 100 words, 
delivering performance comparable to smartphone-based methods 
while offering substantially greater portability. Together, these diverse 
implementations underscore the versatility of acoustic sensing and 
highlight its growing relevance as a scalable, non-intrusive pathway 
for silent speech decoding.

Developmental trends and outlook
Off-body sensing has evolved from static, laboratory-bound cameras 
and ultrasound probes to wearable and device-integrated platforms 
such as smartphones, glasses and earbuds. Reported accuracies above 
90% demonstrate feasibility, yet performance remains fragile under 
real-world lighting, acoustic noise and inter-user variability. Future 
progress hinges on environmental robustness, cross-user adaptation 
and edge AI integration, and socially acceptable and privacy-preserving 
form factors are likely to define scalability. Together, these directions 
frame off-body systems as the most accessible entry point for wide-
spread SSI adoption.

Table 1 | Comparison of sensing modalities used in SSIs

Family Modality Sensing principle Spatial resolution Temporal 
resolution

Signal 
fidelity

Strengths Limitations

Off body 
(non-contact 
or loose 
coupling; high 
comfort, lower 
specificity

Optical Visible or infrared Sub-millimetre (lips) 
or millimetre scale 
(face)

30–60 Hz Medium Non-contact; 
commodity 
hardware

Lighting variability; 
occlusion; camera 
angle sensitivity

Ultrasound Air-coupled acoustic 
time-of-flight

Millimetre scale 30–100 Hz  
(frame based)

Medium Access to deep 
vocal-tract 
geometry; robust 
to lighting

Bulky probe 
placement; needs 
calibration; airflow 
noise

On body 
(stable skin 
contact; 
balanced 
wearability and 
fidelity)

IMU MEMS Motion scale 100–200 Hz Low to 
medium

Captures micro-
motions; low 
cost and small 
size

Motion artefacts; 
head movement 
coupling; signal 
drift

Strain Piezoresistive or 
capacitive deformation

Millimetre scale 1–1,000 Hz 
(material 
dependent)

High Skin conformal; 
comfortable

Thermal or 
mechanical drift; 
nonlinear response

EMG Surface myopotential Millimetre scale 1–2 kHz 
(physiological 
band: 20–450 Hz)

Medium to 
high

Mature 
technology; 
direct muscle 
intent

Electrode 
impedance 
drift; motion/
sweat artefacts; 
placement 
sensitivity

TENG Triboelectric charge 
transfer

Millimetre scale Event-triggered 
pulses (roughly 
microsecond 
scale)

Medium to 
high

No external 
power; high SNR 
pulses

Session-to-session 
variability; long-
term stability

EEG Scalp neural potentials Centimetre scale 1–2 kHz 
(physiological 
band: 0.5–100 Hz)

Low to 
medium

Non-invasive 
brain intent

Low SNR; 
setup time; hair 
interference

In body 
(implanted; 
highest fidelity 
with surgical 
invasiveness)

ECoG Subdural cortical LFP Millimetre scale 1–5 kHz (LFP band: 
1–500 Hz)

High High bandwidth; 
low noise

Requires 
craniotomy; patient 
specific

sEEG Depth-electrode sEEG Millimetre scale 1–5 kHz (LFP band: 
1–500 Hz)

High 3D access to 
speech network

Haemorrhage or 
infection risk

MEA Intracortical spikes Cellular scale 30 kHz 
(spike band: 
300–5,000 Hz)

Very high Highest 
information rate; 
single-neuron 
decoding

Foreign-body 
response; long-term 
signal loss; most 
invasive

The reported values represent typical ranges across SSI studies and may vary depending on sensor configuration, body location, signal processing pipeline and application scenario. Modality 
classification (off body, on body or in body) reflects typical implementations within the SSI literature. 3D, three dimensional; LFP, local field potential; MEMS, micro-electro-mechanical 
systems; SNR, signal-to-noise ratio.
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SSIs using on-body sensors
Although off-body sensors offer high user comfort and ease of integra-
tion, their indirect coupling to physiological signals and sensitivity to 
environmental noise often limit decoding accuracy in unconstrained 
scenarios. To address these limitations, on-body sensing has emerged 
as a compelling alternative, providing closer physical proximity to 
the articulatory system and enabling more direct access to neuro-
muscular or biomechanical activity. By attaching directly to the body 
surface through either flexible materials or compact rigid modules, 
on-body sensors can achieve motion-resolved and often higher-fidelity 
capture of speech-related signals, even under motion, occlusion or 
low-light conditions.

This improvement in signal quality comes with trade-offs. Com-
pared with off-body methods, on-body systems require physical con-
tact, which introduces considerations around comfort, attachment 
stability and long-term usability. Nevertheless, these challenges are 
often outweighed by the benefits in scenarios that demand precision 
and robustness. On-body sensors have therefore gained traction not 
only in silent communication for daily use but also in clinical contexts, 
where they assist individuals with impaired speech. These systems have 
been explored in the decoding of residual muscle activity in patients 
with dysarthria, laryngectomy or neurodegenerative diseases, offering 
an accessible and responsive interface where conventional acoustic 
speech is unavailable. The enhanced signal access and application 
versatility position on-body sensing as a critical component in the 
development of both consumer and healthcare-grade SSIs.

Inertial measurement unit sensing
Inertial measurement units (IMUs), long used in gait and gesture rec-
ognition, have only recently gained traction for SSIs due to difficulty 
resolving fine-scale articulatory kinematics amid head motion. Early 
systems used facial accelerometer arrays to detect speech-induced 
vibrations, achieving high accuracy (94.65 ± 2.54% in classifying 40 Eng-
lish words) but suffering from head-motion artefacts that constrained 
real-world use30. Differential sensing paradigms were developed to 
tackle this challenge, where signals from articulator-mounted IMUs are 
fused with reference sensors on stable regions such as the forehead or 
ears to isolate speech-specific motion (Fig. 3c), achieving an average 
accuracy of 92% across seven users for actual continuous lip-speech 
recognition on 93 English sentences9. The method offers strong envi-
ronmental robustness, with immunity to lighting, occlusion and noise, 
and supports ultra-low-power, consumer-ready form factors. Despite 
sacrificing spatial specificity compared with bioelectric methods, their 
motion resilience and wearability position IMUs as scalable solutions 
for mobile SSI deployment.

Triboelectric nanogenerator sensing
Triboelectric nanogenerators (TENGs) convert mechanical deforma-
tion into electrical signals via contact electrification and electrostatic 
induction. Their self-powered, low-cost and flexible design makes them 
attractive for wearable sensing31,32. In SSIs, TENGs enable energy-auton-
omous detection of articulatory motion. Recent studies have shown 
that soft, skin-mounted TENG arrays can capture lip dynamics and 
decode phrases using machine learning (Fig. 3d), yielding an accuracy 

of 94.5% on 20 words33. Compared with optical methods, which depend 
on ambient illumination, TENGs provide greater privacy and robustness 
in variable environments. They can also be seamlessly embedded into 
daily wear, such as face masks or patches, making them unobtrusive for 
long-term use. However, their outputs depend on tribo-charge state and 
contact regime and are sensitive to humidity, sweat and material ageing. 
Combined with the ultra-high source impedance and load-dependent 
readout, this leads to non-stationarity and session-to-session gain drift 
that often requires charge management, high-impedance front ends 
and periodic calibration.

EMG sensing
Surface EMG provides non-invasive direct access to muscle activation 
underlying articulation, enabling robust decoding of speech intent in 
silent contexts. Compared with inertial or force-based methods, EMG 
captures signals at the neuromuscular source, offering higher specific-
ity but requiring stable skin contact and being susceptible to motion 
artefacts34,35. Early systems used rigid electrodes and benchtop acquisi-
tion setups, limiting usability. Recent advances in conformal bioelec-
tronics have addressed this. Tattoo-like EMG sensors affixed to facial 
muscles enabled high-accuracy word-level decoding under dynamic, 
real-world conditions, recognizing up to 110 daily-use words with an 
average accuracy of 92.6% (Fig. 3e)36. Additionally, textile-based EMG 
electrodes integrated into headphone earmuffs captured neuromuscu-
lar activity from periauricular and jaw-adjacent muscles and leveraged 
a multi-channel adaptive decoding network to dynamically weight 
signal quality. This setup demonstrated high usability and robustness in 
mobile contexts, achieving 96% accuracy on ten commonly used voice-
free control words37. Together, these studies exemplify a convergence 
of high-fidelity sensing with ergonomic form factors.

Strain sensing
Strain sensors capture subtle deformations of facial and laryngeal 
tissue during articulation, providing a direct mechanical interface 
between user intent and silent speech decoding. Foundational work in 
wearable strain sensors established the feasibility of stretchable, skin-
conformal materials for physiological monitoring across dynamic body 
surfaces38,39. Translating this concept to SSI, researchers have explored 
a range of material strategies to balance comfort, signal stability and 
deployment readiness.

Early demonstrations using ultrathin silicon gauges achieved 
high sensitivity and fast relaxation times, enabling robust word-level 
decoding under skin strain (87.53% accuracy among 100 words)8. Build-
ing on bioinspired mechanisms, ionic hydrogel sensors mimicked 
mechanoreceptor transduction to detect throat vibrations without 
requiring electrical contact, achieving an average accuracy of 95% in 
the 26-instruction test40. Hybrid systems integrating facial deforma-
tion and subcutaneous vibration cues revealed that combined motion 
signatures carry rich, decodable linguistic information even in noisy 
settings, demonstrating an average accuracy of 99.05% in classifying 
basic speech elements (phonemes, tones and words)41.

Textile-based strain sensors further advanced the field by embed-
ding high-resolution sensing into wearable form factors optimized for 
daily use (Fig. 3f), achieving 95.25% accuracy on 20 frequently used 

Fig. 3 | Representative sensor modalities used in SSIs. a–i, Schematics 
illustrating key sensing technologies enabling silent speech decoding, 
categorized by sensing principle: optical sensing (a; a smartphone-based 
front camera detects articulatory motion, such as lip and jaw movements); 
ultrasonic sensing (b; an ultrasound imaging probe beneath the jaw visualizes 
tongue motion in real time); IMU sensing (c; IMUs distributed at the head, lip 
and chin track multi-point facial kinematics during articulation); triboelectric 
sensing (d; self-powered wearable sensors detect facial motion through 
contact electrification); EMG (e; tattoo-like epidermal electrodes acquire facial 
myopotentials associated with silent articulation); strain sensing (f; textile strain 

sensors embedded in a smart choker capture throat deformation patterns);  
EEG (g; in-ear conformal bioelectronics measure brain activity associated with 
speech imagery); ECoG (h; implanted cortical arrays decode neural activity  
from speech-generating regions in patients with brainstem injury); and MEA  
(i; intracortical electrodes implanted in the motor cortex record neural activity 
associated with fine motor intention, enabling high-resolution decoding of 
attempted handwriting and speech imagery). PI, polyimmide; PVC, polyvinyl 
chloride. Panels adapted from: d, ref. 33, CC BY 4.0; e, ref. 36, CC BY 4.0; f, ref. 42, 
CC BY 4.0; g, ref. 47, CC BY 4.0.
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English words42. These systems have evolved from controlled experi-
ments to real-world trials in patients who have suffered strokes, where 
strain signals were leveraged not only for word decoding but also for 
capturing emotional context, achieving a 4.2% WER and improving 
daily communication satisfaction by 55% in five patients recovering 
from strokes43. Across these developments, strain sensing highlights 
how material and structural innovations can directly shape the usability 
and expressiveness of silent speech technologies.

Electroencephalography sensing
Electroencephalography (EEG) enables non-invasive access to corti-
cal activity via scalp or ear-adjacent electrodes, offering a wearable, 
surface-based approach to capture neural correlates of speech intent 
upstream of articulation. However, EEG signals are inherently noisy 
and spatially diffuse, posing major challenges for speech decoding. 
Foundational studies demonstrated that event-related potentials44 and 
modulated sensorimotor rhythms45 can support basic intent detection, 
laying the groundwork for EEG-based communication.

Recent efforts have redefined the role of EEG in silent speech 
decoding by innovating at the sensor and system levels. Ear-centred46 
and in-ear EEG devices (Fig. 3g)47 have matched traditional scalp set-
ups in decoding accuracy while enhancing comfort and form factor. 
Meanwhile, to mitigate physiological and motion artefact limitations48, 
recent studies have explored integrated multimodal platforms combin-
ing EEG with additional modalities49,50. By providing complementary 
spatial and physiological signals (for example, inertial, haemodynamic 
or muscular activity), these systems enable artefact identification 
and weighting in decoding pipelines, thereby improving robustness. 
Moving beyond command classification, large-scale studies now lev-
erage contrastive learning to align EEG signals with deep speech rep-
resentations51, enabling zero-shot decoding of perceived sentences 
without retraining on specific vocabularies, with an average accu-
racy of ~41% (up to 80% in some individuals) over more than 1,000 
candidate segments.

Although EEG is constrained by low signal fidelity and high inter-
subject variability, its distinct advantage lies in the ability to access pre-
articulatory neural activity, offering a uniquely scalable non-invasive 
modality for early-stage intent decoding. Although current accuracies 
remain modest compared with peripheral sensing methods, ongoing 
advances in sensor design and learning architectures highlight the 
potential of EEG to enable predictive and generalized SSI systems.

Developmental trends and outlook
On-body sensors have evolved from rigid electrodes to soft, skin-con-
formal bioelectronics and energy-harvesting textiles, aiming to bal-
ance signal fidelity with everyday wearability. However, this proximity 
introduces vulnerability to motion artefacts, skin impedance drift and 
long-term comfort challenges. Recent progress increasingly hinges on 
functionally complementary multimodal fusion. For example, EMG 
signals capture neuromuscular intent but are motion sensitive, whereas 
strain sensors track tissue deformation and sensor displacement. Fus-
ing the two allows decoding models to contextualize signal quality, 
improving robustness under movement.

This shift reframes sensor fusion not as redundancy, but as a 
deliberate strategy to resolve the fidelity–stability trade-off inherent 
in wearable decoding. Combined with advances in stretchable sub-
strates and low-power design, on-body platforms are positioned as 
the most deployable SSI solution, balancing accuracy with resilience 
in real-world conditions.

SSIs using in-body sensors
In-body sensing offers the most direct access to the neural substrates 
of speech, capturing activity from cortical regions responsible for 
planning and articulation. By implanting electrodes either onto the 
brain surface or within its depths, these systems bypass peripheral 

musculature and enable speech decoding in individuals who have lost 
all voluntary motor output. They are uniquely positioned to support 
communication in cases of locked-in syndrome or advanced neurode-
generation, where no other interface is viable.

Although in-body approaches provide exceptional signal fidelity 
and decoding precision, they require invasive procedures, patient-
specific adaptation and long-term clinical support. As such, their 
application remains limited to research settings and highly selected 
clinical scenarios. Nevertheless, recent progress in electrode miniaturi-
zation, signal processing and neurosurgical techniques has expanded 
the scope of implanted speech interfaces. These systems not only 
advance assistive communication but also serve as platforms for prob-
ing the neural basis of language and developing future brain-centred 
interaction technologies.

ECoG sensing
ECoG acquires high-fidelity local field potentials via subdural electrode 
grids placed over cortical speech regions. Compared with non-inva-
sive EEG, ECoG offers superior spatial resolution and bandwidth with 
reduced signal attenuation, enabling direct access to the neural sub-
strates of articulation52,53. Its semi-invasive nature positions it between 
scalp-based and intracortical approaches, making it a clinically viable 
modality for patients with severe motor speech impairments.

Over the past decade, ECoG-based silent speech systems have 
progressed from decoding isolated phonemes to reconstructing full 
sentences in real time54,55. Further evolution reflects a broader shift 
from offline, trial-based studies to continuous, streaming paradigms 
that prioritize naturalistic communication (Fig. 3h), achieving large-
vocabulary decoding at up to 78 words per minute with ~25% WER56 
and enabling online fluent synthesis in 80-ms increments57. Recent 
efforts emphasize low-latency, high-intelligibility speech synthesis 
directly from neural activity, marking a transition towards closed-loop 
brain-to-speech systems. In parallel, the development of high-density 
micro-electrocorticography arrays has enabled finer spatial resolution 
and improved signal fidelity, reinforcing a device-level trend towards 
more precise, information-rich neural interfaces58. As decoding archi-
tectures mature and deployment barriers narrow, ECoG stands as the 
most clinically advanced in-body interface for restoring communica-
tion in individuals with profound speech loss.

Stereo-EEG sensing
Stereo-EEG (sEEG) records intracranial neural activity via depth elec-
trodes implanted in cortical and subcortical regions, offering three-
dimensional spatial coverage. Compared with ECoG, which requires 
craniotomy to place grid or strip electrodes directly on the cortical sur-
face, sEEG electrodes are introduced through stereotactically guided 
burr holes. This minimally invasive surgical approach generally car-
ries lower perioperative morbidity, despite the deeper implantation 
sites59,60. This accessibility to deeper structures makes sEEG particularly 
valuable for capturing both cortical and subcortical elements of speech 
planning and tone modulation.

Recent advances have enhanced sEEG as a sensing modality by 
improving both stimulation and recording strategies. Intermediate-
frequency protocols increase mapping sensitivity while reducing 
afterdischarges, enabling more stable and spatially specific probing of 
language circuits61. Complementing these protocol-level refinements, 
the release of structured sEEG datasets capturing vocalized, mimed 
and imagined speech provides a richer basis for modelling the sensor-
to-signal relationship in diverse linguistic contexts62. Together, these 
developments position sEEG as a minimally invasive and increasingly 
optimized sensing platform for speech decoding.

Microelectrode array sensing
Intracortical microelectrode arrays (MEAs) offer direct access to 
the spiking activity of neurons, providing unparalleled temporal 
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resolution and spatial specificity for speech decoding63,64. By pen-
etrating cortical tissue, these sensors can capture fine-scale dynam-
ics of speech motor planning that are not accessible through 
surface-level recordings.

Initial demonstrations showed that MEAs could support pho-
neme-level decoding in open-loop paradigms, laying the groundwork 
for intracortical speech interfaces65. More recently, their integra-
tion into closed-loop systems has enabled real-time synthesis of 
intelligible words and phrases in individuals with severe speech loss  
(Fig. 3i)66. These advances mark a shift from offline analysis to continu-
ous decoding pipelines aimed at restoring functional communication.

Despite their exceptional signal fidelity, MEAs face practical limita-
tions including surgical invasiveness, long-term biocompatibility and 
signal degradation over time. Nevertheless, they remain the bench-
mark for understanding the upper bounds of neural resolution in 
brain-to-speech interfaces.

Developmental trends and outlook
In-body interfaces represent the frontier of SSI potential, offer-
ing direct access to cortical speech networks and enabling  
decoding capabilities that are fundamentally beyond the reach of 
peripheral sensing. Although current systems have yet to match the 
real-time accuracy of advanced on-body solutions, particularly in 
healthy users, their unique strength lies in restoring communication 
when peripheral musculature is no longer viable. This transformative 
promise, however, is inseparable from profound biological and ethi-
cal tensions. Biologically, craniotomy, long-term biocompatibility 
challenges and foreign-body responses threaten signal stability, and 
the absence of fully implantable wireless systems increases infec-
tion risk and hinders long-term deployment. Ethically, these inter-
faces engage directly with the neural substrates of language, raising 
unprecedented concerns around mental privacy, data ownership and 
informed consent for the continuous decoding of inner speech. Far 
from ancillary, these risks will fundamentally shape the pace, scope 
and social acceptability of in-body SSI technologies.

Looking ahead, progress in minimally invasive electrodes, fully 
sealed wireless closed-loop platforms and adaptive learning archi-
tectures may help to reconcile the demands of high decoding fidelity 
with the requirements of long-term biological safety. At the same time, 
robust governance frameworks addressing privacy, data rights and 
user agency will be essential to uphold ethical standards and ensure 
responsible deployment. Taken together, these technological and 
ethical developments may allow in-body systems to serve not only 
as clinical tools for individuals with severe impairments, but also as 
scientific instruments for exploring and interacting with the neural 
mechanisms underlying human language.

Conclusions
SSIs are reshaping the landscape of human communication by enabling 
speech decoding without audible output. This Review examines the 
field through the lens of sensing technologies, revealing how sens-
ing configurations fundamentally shape system fidelity, comfort and 
usability. By categorizing SSIs into off-, on- and in-body modalities, we 
have highlighted the trade-offs that govern their deployment—from 
ambient, non-contact interaction to implantable neuroprosthetics.

These sensing choices are not merely technical parameters 
but strategic levers that determine who can benefit, where systems  
can operate and how effectively silent speech can be translated  
into actionable outputs. With the convergence of flexible electron-
ics, neuromuscular decoding and intelligent feedback, SSIs are  
emerging not only as assistive tools for individuals with speech 
impairments but also as scalable platforms for future human–
machine interaction.

Yet, sensing alone does not determine system capability. As SSIs 
transition towards real-world deployment, the co-evolution of sensing, 
embedded hardware and learning algorithms is becoming increasingly 
central. In this context, sensing acts not only as an input modality, but 
as the foundation of tightly coupled signal processing pipelines that 
enable responsive, low-latency interaction.

Signals acquired from off-, on- or in-body sensors must be routed 
through analogue front ends, microcontrollers and wireless mod-
ules. Modern SSI systems increasingly incorporate edge AI processors 
that support real-time, low-power inference directly on wearable or 
mobile platforms, minimizing latency and safeguarding privacy67. This 
hardware–algorithm co-design paradigm underpins recent advances, 
including throat-mounted acoustic and biomechanical sensors that 
drive robotic control via silent commands68.

Figure 4 provides a conceptual overview of this integrated pipe-
line—from acquisition to decoding to feedback. The captured signals 
span optical, acoustic, biomechanical and bioelectrical domains, 
each offering distinct trade-offs between fidelity and comfort. For 
instance, wearable ultrasonic sensors and strain gauges have demon-
strated strong signal-to-noise ratios and resilience to ambient inter-
ference8,24, in some cases outperforming surface EMG in specificity7. 
These signals are standardized through pre-processing pipelines and 
increasingly fused across modalities to improve robustness across 
users and settings.

The decoding stage is primarily driven by lightweight deep learn-
ing models—convolutional and transformer-based architectures that 
support near-real-time performance on embedded systems42,69. Trans-
fer learning and few-shot personalization enable rapid adaptation to 
new vocabularies or users11,70, whereas contrastive and cross-modal 
learning increasingly bridge silent and vocal speech domains using 
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O� body

On body
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    MCU
    Power
    AFE
    Antenna
    Edge AI
    Memory

Signals
• Optical

• Acoustic

• Biomechanical

• Bioelectrical

Algorithms
• Deep learning

• Transfer learning

• Contrastive learning

Feedback
• Speech output

• Robotic response

• Haptic cue

Fig. 4 | Conceptual integration of sensing, processing and feedback in 
future SSIs. SSIs follow a multi-stage pipeline beginning with the acquisition 
of articulatory or neural signals via off-, on- or in-body sensors. These signals 
are first conditioned by hardware circuits comprising analogue front ends 
(AFEs), microcontrollers (MCUs), wireless modules (such as Bluetooth or WiFi) 
and power and memory units. Although most systems transmit pre-processed 
data to external devices for inference, a subset integrates edge AI processors to 
enable local, low-latency decoding. The captured signals span optical, acoustic, 

biomechanical and bioelectrical domains, each reflecting distinct aspects of 
speech-related activity. Decoding is achieved through algorithmic frameworks, 
including deep learning, transfer learning and contrastive learning, enabling 
context-aware interpretation across users and settings. The outputs are 
translated into feedback modalities, such as synthesized speech, robotic actions 
or haptic cues, forming a closed-loop interface for assistive and interactive 
applications.
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large-scale audio datasets17,51. These algorithmic advances substantially 
reduce data requirements and enhance generalization.

The final outputs of SSIs range from text and synthesized speech 
to direct robotic or digital commands43,68. Real-time feedback, such as 
haptic cues or voice synthesis, is crucial for enabling closed-loop, inter-
active communication. Although challenges remain in generalization, 
energy efficiency and vocabulary breadth, the synergistic development 
of sensing hardware, embedded inference and learning architectures 
is rapidly moving SSIs towards widespread real-world application.

Looking ahead, the next wave of hardware advances will centre on 
sensor evolution, miniaturization and integration. Flexible and stretcha-
ble materials will continue to transform sensors into conformal, skin-like 
interfaces capable of robust acquisition under motion and daily wear71–73. 
The emergence of hybrid systems, merging bioelectrical, biomechanical 
and acoustic domains, will offer richer signal streams and redundancy to 
counteract artefacts and variability74. Real-time decoding will be increas-
ingly enabled by edge AI processors embedded in wearable circuits, 
unlocking low-latency inference and feedback without cloud reliance75. 
These developments are complemented by ultra-low-power design and 
energy-autonomous sensors such as TENGs, paving the way for continu-
ous, passive sensing ecosystems. As sensing hardware becomes more 
discreet, adaptive and multimodal, it will not only reshape how silent 
speech is captured, but enlarge where and by whom it can be used.

Beyond hardware, the software layer of SSIs is entering a new 
era driven by embodied intelligence and large-scale models. Algo-
rithmically, we anticipate a shift from task-specific neural networks 
towards multimodal foundation models that integrate audio, EMG, 
strain and even neural data through shared embeddings and atten-
tion mechanisms76. This will enable cross-modal learning, few-shot 
personalization and generalization across vocabularies and users. 
Embedded inference will increasingly adopt neuromorphic or event-
driven architectures, optimizing latency and energy consumption for 
real-world use77,78. Furthermore, SSIs are positioned to serve as a key 
interface for human body digital twins, where physiological signals 
are continuously mapped onto real-time avatars for speech, emotion 
and motor intent, enabling closed-loop interaction across healthcare, 
social robotics and communication prosthetics79. As algorithms evolve 
to reflect not just learned data but the embodied dynamics of human 
expression, the boundary between input and interface will blur.

In the broader societal context, the future of SSIs extends far 
beyond clinical assistive technology. As silent interfaces become 
embedded in daily life, supporting unobtrusive interaction in public 
spaces, privacy-preserving commands in shared environments and 
silent collaboration in noisy or sensitive contexts, they will extend the 
boundary of human–human and human–machine communication. 
More importantly, for individuals with profound speech or motor 
disabilities, SSIs might offer not just a tool but a restoration of agency 
and identity, helping to alleviate psychological distress and foster more 
effective rehabilitation80. By grounding these technologies in inclusive 
design and responsible innovation, we can ensure that silent speech 
systems contribute not only to technical progress but also to human 
dignity, empowerment and equitable access to communication.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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