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Silent speechinterfaces decode speech intent without audible sound,
enabling communication in settings where voice is inaccessible, or for
individuals with speech impairments. Here we examine how sensing
technologies shape the capabilities of silent speech interfaces. We compare
off-, on-and in-body sensing modalities, identifying how proximity,
coupling stability and invasiveness govern signal fidelity, robustness

and user comfort. We highlight key trends, including the rise of flexible
bioelectronics, multimodal sensor fusion for artefact resilience, and

the growing role of edge artificial intelligence in real-time, low-power
decoding. We show that on-body systems currently offer the best balance
between accuracy and deployability, whereas in-body approaches provide
unmatched neural access for individuals with complete loss of articulation.
Looking ahead, advances in multimodal sensing, embedded intelligence and
closed-loop architectures are poised to expand silent communication across

rehabilitation, daily interaction and human-machine interfaces.

Silent speechinterfaces (SSls) aim to unlock anew dimension of human
communication by decoding speech-related intent without relying
onvocalized sound"* Rather than viewing speech solely as an audi-
ble output, these systems conceptualize it as a complex neuromotor
process that originates in the brain, propagates through articulatory
musculature and can be sensed and reconstructed through a variety
of physiological pathways>. This transformative class of technologies
redefines howindividuals interact with machines and with each other,
offering fundamentally new modes of expression in contexts where
acoustic speech is inaccessible, impractical or undesired. From ena-
bling silent interaction in noise-sensitive or privacy-critical environ-
ments torestoring communication for individuals affected by stroke,
neurodegenerative disease or laryngectomy, SSIs address both every-
day and medically underserved needs across society**.

At the core of any SSl lies the sensing interface, which governs
whichsignal canbe accessed, howreliably it canbe recorded and under
which constraints it can be deployed. Sensing strategies fall into three
major categories—off body, on body and in body—defined not solely

by physical placement, but also by the nature and stability of coupling
between the sensor and the physiological source of speech-related
information (Fig. 1a). Off-body interfaces, such as optical and acoustic
sensors, prioritize user comfort and deployability through non-contact
orloosely coupled approaches, but are limited by indirect or distal cou-
pling to the articulatory system>®. On-body sensors, including electro-
myography (EMG), strain and inertial modules, offer a closer and more
stable connection to neuromuscular activity through tight skin contact,
butintroduce wearability considerations”’. In-body neural interfaces,
suchaselectrocorticography (ECoG) or intracortical microelectrodes,
providedirect accesstothe brain’s speech-generating regions and ena-
bledecodingeveninthe complete absence of peripheralmuscle control.
However, this advantage comes at the cost of invasiveness and aneed for
custom-designed solutions or intervention procedures due to patient
diversity in their anatomical structure, pathological conditions, bio-
logical responses and functional goals, alongside ethical constraints'",

These sensing modalities present diverse formfactors tailored to
different user contexts (Fig. 1b). Off-body sensing has been integrated
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Fig.1|Sensor-based classification of SSIs and their deployment form factors.
a, Sensor modalities in SSIs can be categorized, by the proximity of signal
acquisition to the humanbody, as either off-body device interfaces (for example,
optical cameras or ultrasound probes), on-body sensor interfaces (for example,
surface EMG, strain sensors, EEG and IMUs) or in-body neural interfaces (for
example, ECoG, sEEG or MEAs). These categories represent a continuum between

Smartphone
« Optical
« Acoustic

user comfort and signal specificity, ranging from general-purpose wearable
devices to highly personalized clinical systems. b, Representative deployment
examples for each category, aligned with the same taxonomy: off body
(smartphones, earbuds and smart glasses), on body (facial patch/tattoo, choker/
throat patch, mask and EEG hat) and in body (ECoG, sEEG and MEA implants). The
asterisks denote technologies with clinical validation.

into earbuds, mobile phones and smart glasses, offering non-contact
solutions with high comfort but lower signal specificity. On-body
approaches, leveraging biomechanical and bioelectrical sensors,
are implemented in smart chokers, facial patches, masks and head-
mounted wearables, balancing wearability with stable neuromuscular
access. In-body strategies are represented by invasive brain-computer
interfaces, such as ECoG grids and intracortical electrodes, some of
which have already been applied in clinical speech decoding trials.
Overall, these categories delineate trade-offs among comfort,
invasiveness and system complexity. Signal fidelity introduces a fur-
ther dimension: while not dictated by proximity alone, it depends on
modality, device properties (for example,impedance and bandwidth),
placement stability and downstream processing. Yet, a broad trend
remains—closer interfaces to articulatory or neural sources generally
yield higher fidelity, manifested as greater information throughput

and error resilience under realistic use. These gradients also map
onto application domains: off-body sensors support general-purpose
interaction (such as silent command inputor privacy-preserving com-
munication); on-body sensors enable early-stage restoration of speech
in patients with residual motor function; and in-body systems remain
the only current method for decoding continuous, near-real-time
speech in completely locked-inindividuals.

The timeline of the development of SSI technologies mirrors
this stratification (Fig. 2). Early studies explored both camera-based
lipreading and surface EMG'*", with intracortical recording of speech-
related brain activity also beginning to show feasibility in the late
1990s". Since 2020, the field has witnessed the proliferation of flex-
ible sensing materials, integration with consumer electronics, and
initial clinical deployments of wearable and implanted systems.
Across modalities, advancesin spatial and temporal resolution, signal
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Fig.2| Timeline of sensor-driveninnovations in SSIs. Presented is a timeline

of SSlinnovations, from the earliest to the latest: EMG-based vowel recognition
(1985)", camera-based lipreading (1985)", EEG word decoding (1997)",
intracortical microelectrodes (1998)%, ECoG speech decoding (2004)*,
ultrasound imaging (2004)%?, depth cameras (2012)%, ultra-wideband (UWB)
radar (2016)**, camera SSls for mobile devices (2018), full-sentence decoding
viaECoG (2019)*, flexible EMG sensors (2020)’, wearable strain sensors (2021)¥,

TENG-based lipreading (2022)*, flexible strain sensors (2022)%, IMU-based
decoding (2023)*° and magnetoelastic silent speech sensors (2024)%. Each
milestone s categorized as off body (red), on body (yellow) or inbody (blue)
based on the specific sensing implementation used in the corresponding silent
speech study, rather than the full spectrum of technological variants. The
asterisks denote technologies with clinical validation.

robustness and integration with learning algorithms are reshaping
whatis feasible (Table 1).

Assilent speech technologies approachatranslational inflection
point, asensing-led perspective becomes essential to reframe system
capability, usability and societal reach. The field is rapidly expanding
with the introduction of novel sensor modalities, advances in flex-
ible bioelectronics, and early-stage clinical studies. However, it still
lacks acomprehensive framework that integrates these developments
throughthelens of sensing. By positioning sensing as both a constraint
and a catalyst, this Review redefines the foundations of silent speech
systems. Trade-offs in comfort, fidelity and invasiveness are not just
technical considerations but strategic levers that shape adoption
and impact.

We classify existing approachesinto off-, on-and in-body sensing
strategies, each presenting distinct trade-offsin signal fidelity, comfort
and clinical relevance. We compare sensor modalities across spatial
and temporal resolution, invasiveness and integration potential and
trace their development from early vision-based systems to recent
advances in flexible bioelectronics and neural interfaces. Finally, we
outline emerging directions in sensor-artificial intelligence (Al) inte-
gration, real-time decoding and closed-loop systems that are poised
to transform communication, rehabilitation and human-machine
interaction atscale.

SSIs using off-body sensors
Off-body sensors enable non-intrusive SSIs by capturing articulatory
and physiological signals without direct skin contact. These systems
typically rely on optical and acoustic modalities integrated into exter-
nal devices such as cameras, smartphones, glasses or headsets. Their
appealliesin high user comfort, ease of deployment and compatibility
with commodity hardware, making them attractive for scalable and
low-burdeninteraction. However, signal quality in off-body sensing is
often susceptible to environmental conditions, such as lighting vari-
ation or acoustic interference, and may suffer from indirect coupling
to the user’s intent.

Recent advances have broadened the landscape of off-body
silent speech systems, transitioning from laboratory-grade setups
to increasingly wearable and context-aware platforms. For instance,

optical systems have evolved from static RGB cameras to mobile and
multi-angle vision modules, whereas acoustic approaches have moved
beyond medical ultrasound towards integrated earbud and headphone
solutions that leverage subtle biomechanical cues. These innovations
mark an important step towards accessible, privacy-preserving and
device-integrated SSls, but challenges remain in achieving consist-
ent performance across diverse real-world settings and user profiles.

Optical sensing

Optical sensing enables silent speech input by visually capturing articu-
latory movements, including lip and facial dynamics, through off-body
modalities. The most straightforward approachinvolves RGB cameras,
which offer high-resolution visual data for articulator tracking>'°.
However, this method is inherently sensitive to occlusion, head pose
variation and lighting conditions and typically requires a fixed setup,
limiting portability and real-world applicability.

Toimprove deployment flexibility, optical sensing has beeninte-
gratedinto mobile platforms. Front-facing smartphone cameras enable
real-time interaction without auxiliary hardware (Fig. 3a)""", whereas
depth-sensing modules enhance robustness against environmental
variation by capturing three-dimensional motion profiles, achieving
91.3% within-user accuracy and 74.9% cross-user accuracy ona30-com-
mand vocabulary?’. Nevertheless, both solutions remain constrained
by frontal positioning and the instability of handheld use.

To overcome these limitations, alternative camera placements
have been explored. Side-* and chin-mounted® optical systems provide
morestable tracking and allow for more natural user movements during
interaction, with reported performance exceeding 90% accuracy on
vocabularies of approximately 50 words. Although challenges remain
in ensuring consistent performance across diverse usage scenarios,
optical sensing remains a user-friendly and hardware-light strategy
that is particularly suited for applications prioritizing convenience
and accessibility.

Acousticsensing

Acoustic sensing has gained marked traction in SSIs due to its off-
bodyimplementation, strong resilience to occlusion and poor light-
ing, and inherent advantages for preserving user privacy. Although
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Table 1| Comparison of sensing modalities used in SSls

Family Modality Sensing principle Spatial resolution Temporal Signal Strengths Limitations
resolution fidelity
Optical Visible or infrared Sub-millimetre (lips)  30-60Hz Medium Non-contact; Lighting variability;
Off body or millimetre scale commodity occlusion; camera
(non-contact (face) hardware angle sensitivity
or loose
coupling; high  Ultrasound  Air-coupled acoustic Millimetre scale 30-100Hz Medium Access to deep Bulky probe
comfort, lower time-of-flight (frame based) vocal-tract placement; needs
specificity geometry; robust  calibration; airflow
to lighting noise
IMU MEMS Motion scale 100-200Hz Low to Captures micro- Motion artefacts;
medium motions; low head movement
cost and small coupling; signal
size drift
Strain Piezoresistive or Millimetre scale 1-1,000Hz High Skin conformal; Thermal or
capacitive deformation (material comfortable mechanical drift;
dependent) nonlinear response
On body EMG Surface myopotential Millimetre scale 1-2kHz Mediumto  Mature Electrode
(stable skin (physiological high technology; impedance
contact; band: 20-450Hz) direct muscle drift; motion/
balanced intent sweat artefacts;
wearability and placement
fidelity) sensitivity
TENG Triboelectric charge Millimetre scale Event-triggered Mediumto  No external Session-to-session
transfer pulses (roughly high power; high SNR  variability; long-
microsecond pulses term stability
scale)
EEG Scalp neural potentials Centimetre scale 1-2kHz Low to Non-invasive Low SNR;
(physiological medium brain intent setup time; hair
band: 0.5-100Hz) interference
ECoG Subdural cortical LFP Millimetre scale 1-5kHz (LFP band:  High High bandwidth;  Requires
1-500Hz) low noise craniotomy; patient
In body specific
(implanted; SEEG Depth-electrode sEEG Millimetre scale 1-5kHz (LFP band:  High 3D access to Haemorrhage or
highest fidelity 1-500Hz) speech network  infection risk
m}gssi\l;;?w::sl) MEA Intracortical spikes Cellular scale 30kHz Very high Highest Foreign-body
(spike band: information rate;  response; long-term

300-5,000Hz)

single-neuron
decoding

signal loss; most
invasive

The reported values represent typical ranges across SSI studies and may vary depending on sensor configuration, body location, signal processing pipeline and application scenario. Modality
classification (off body, on body or in body) reflects typical implementations within the SS| literature. 3D, three dimensional; LFP, local field potential; MEMS, micro-electro-mechanical

systems; SNR, signal-to-noise ratio.

conventional speech decoding relies on external microphones
to capture audible voice signals, such methods fall outside the
scope of SSIs, which aim to decode speech intent in the absence of
vocalized sound. One early-studied silent approach utilizes ultra-
sound imaging, wherein probes placed beneath the jaw capture fine-
grained tongue kinematics with high spatial fidelity (Fig. 3b)*. This
approach achieves a3.6-s decoding speed with -33% word error rate
(WER) on vocabularies of several dozen commands, but its depend-
ence on specialized imaging hardware restricts its practicality for
daily use.

To circumvent such hardware constraints, several strategies
have turned to commodity devices. Smartphone-based methods,
for instance, emit inaudible acoustic signals via built-in speakers and
analyse their reflections using onboard microphones® ¢, The reflected
echoesencodearticulatory movements of the lips and tongue, allowing
the systems to reach >90% word-level accuracy and <10% sentence-
level WER across vocabularies spanning from simple commands to
short conversational sentences. These systems offer a hardware-
light solution, yet often face performance degradation in noisy or
dynamic environments.

To enhance robustness and integrate seamlessly into everyday
settings, researchers have embedded acoustic sensors into wearable
devices. Glasses-mounted systems detect perioral skin deformation?,

earbuds capture air-pressure variations within the ear canal®* and
headphones monitor temporomandibular joint motion”. Each con-
figuration tapsinto distinct biomechanical cues, collectively enabling
silent command recognition with minimal user effort and improved
tolerance to ambient noise. Reported implementations have repeat-
edlyachieved >90% accuracy on vocabularies of more than100 words,
delivering performance comparable to smartphone-based methods
while offering substantially greater portability. Together, these diverse
implementations underscore the versatility of acoustic sensing and
highlight its growing relevance as a scalable, non-intrusive pathway
forsilent speech decoding.

Developmental trends and outlook

Off-body sensing has evolved from static, laboratory-bound cameras
and ultrasound probes to wearable and device-integrated platforms
such assmartphones, glasses and earbuds. Reported accuracies above
90% demonstrate feasibility, yet performance remains fragile under
real-world lighting, acoustic noise and inter-user variability. Future
progress hinges on environmental robustness, cross-user adaptation
and edge Alintegration, and socially acceptable and privacy-preserving
formfactors arelikely to define scalability. Together, these directions
frame off-body systems as the most accessible entry point for wide-
spread SSladoption.
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SSIs using on-body sensors

Although off-body sensors offer high user comfort and ease of integra-
tion, theirindirect coupling to physiological signals and sensitivity to
environmental noise often limit decoding accuracy in unconstrained
scenarios. To address these limitations, on-body sensing has emerged
as a compelling alternative, providing closer physical proximity to
the articulatory system and enabling more direct access to neuro-
muscular or biomechanical activity. By attaching directly to the body
surface through either flexible materials or compact rigid modules,
on-body sensors canachieve motion-resolved and often higher-fidelity
capture of speech-related signals, even under motion, occlusion or
low-light conditions.

This improvement in signal quality comes with trade-offs. Com-
pared with off-body methods, on-body systems require physical con-
tact, which introduces considerations around comfort, attachment
stability and long-term usability. Nevertheless, these challenges are
often outweighed by the benefits in scenarios that demand precision
and robustness. On-body sensors have therefore gained traction not
onlyinsilentcommunication for daily use but alsoin clinical contexts,
where they assistindividuals withimpaired speech. These systems have
been explored in the decoding of residual muscle activity in patients
withdysarthria, laryngectomy or neurodegenerative diseases, offering
an accessible and responsive interface where conventional acoustic
speech is unavailable. The enhanced signal access and application
versatility position on-body sensing as a critical component in the
development of both consumer and healthcare-grade SSls.

Inertial measurement unit sensing

Inertial measurement units (IMUs), long used in gait and gesture rec-
ognition, have only recently gained traction for SSls due to difficulty
resolving fine-scale articulatory kinematics amid head motion. Early
systems used facial accelerometer arrays to detect speech-induced
vibrations, achieving high accuracy (94.65 + 2.54% in classifying 40 Eng-
lish words) but suffering from head-motion artefacts that constrained
real-world use™. Differential sensing paradigms were developed to
tackle this challenge, where signals from articulator-mounted IMUs are
fused with reference sensors onstable regions such as the forehead or
ears to isolate speech-specific motion (Fig. 3c), achieving an average
accuracy of 92% across seven users for actual continuous lip-speech
recognition on 93 English sentences’. The method offers strong envi-
ronmental robustness, withimmunity to lighting, occlusion and noise,
and supports ultra-low-power, consumer-ready formfactors. Despite
sacrificing spatial specificity compared with bioelectric methods, their
motion resilience and wearability position IMUs as scalable solutions
for mobile SSI deployment.

Triboelectric nanogenerator sensing

Triboelectric nanogenerators (TENGs) convert mechanical deforma-
tioninto electrical signals via contact electrification and electrostatic
induction. Their self-powered, low-cost and flexible design makes them
attractive for wearable sensing®*2. In SSls, TENGs enable energy-auton-
omous detection of articulatory motion. Recent studies have shown
that soft, skin-mounted TENG arrays can capture lip dynamics and
decode phrasesusing machinelearning (Fig. 3d), yielding anaccuracy

0f94.5% on 20 words™*. Compared with optical methods, which depend
onambientillumination, TENGs provide greater privacy and robustness
invariable environments. They can also be seamlessly embeddedinto
daily wear, such as face masks or patches, making them unobtrusive for
long-termuse. However, their outputs depend on tribo-charge state and
contactregime and are sensitive to humidity, sweat and material ageing.
Combined with the ultra-high source impedance and load-dependent
readout, thisleads to non-stationarity and session-to-session gain drift
that often requires charge management, high-impedance front ends
and periodic calibration.

EMG sensing

Surface EMG provides non-invasive direct access to muscle activation
underlyingarticulation, enabling robust decoding of speechintentin
silent contexts. Compared with inertial or force-based methods, EMG
captures signals at the neuromuscular source, offering higher specific-
ity but requiring stable skin contact and being susceptible to motion
artefacts®*, Early systems used rigid electrodes and benchtop acquisi-
tion setups, limiting usability. Recent advances in conformal bioelec-
tronics have addressed this. Tattoo-like EMG sensors affixed to facial
muscles enabled high-accuracy word-level decoding under dynamic,
real-world conditions, recognizing up to 110 daily-use words with an
average accuracy of 92.6% (Fig. 3e)*. Additionally, textile-based EMG
electrodesintegrated into headphone earmuffs captured neuromuscu-
lar activity from periauricular and jaw-adjacent muscles and leveraged
amulti-channel adaptive decoding network to dynamically weight
signal quality. This setup demonstrated high usability and robustnessin
mobile contexts, achieving 96% accuracy on ten commonly used voice-
free controlwords®. Together, these studies exemplify a convergence
of high-fidelity sensing with ergonomic form factors.

Strain sensing

Strain sensors capture subtle deformations of facial and laryngeal
tissue during articulation, providing a direct mechanical interface
betweenuserintent and silent speech decoding. Foundational workin
wearable strainsensors established the feasibility of stretchable, skin-
conformal materials for physiological monitoring across dynamic body
surfaces®*, Translating this concept to SSI, researchers have explored
arange of material strategies to balance comfort, signal stability and
deployment readiness.

Early demonstrations using ultrathin silicon gauges achieved
high sensitivity and fast relaxation times, enabling robust word-level
decoding under skinstrain (87.53% accuracy among 100 words)®. Build-
ing on bioinspired mechanisms, ionic hydrogel sensors mimicked
mechanoreceptor transduction to detect throat vibrations without
requiring electrical contact, achieving an average accuracy of 95% in
the 26-instruction test*°. Hybrid systems integrating facial deforma-
tion and subcutaneous vibration cues revealed that combined motion
signatures carry rich, decodable linguistic information even in noisy
settings, demonstrating an average accuracy of 99.05% in classifying
basic speech elements (phonemes, tones and words)*..

Textile-based strain sensors further advanced the field by embed-
ding high-resolution sensing into wearable form factors optimized for
daily use (Fig. 3f), achieving 95.25% accuracy on 20 frequently used

Fig. 3| Representative sensor modalities used in SSIs. a-i, Schematics
illustrating key sensing technologies enabling silent speech decoding,
categorized by sensing principle: optical sensing (a; asmartphone-based

front camera detects articulatory motion, such as lip and jaw movements);
ultrasonic sensing (b; an ultrasound imaging probe beneath the jaw visualizes
tongue motionin real time); IMU sensing (c; IMUs distributed at the head, lip
and chin track multi-point facial kinematics during articulation); triboelectric
sensing (d; self-powered wearable sensors detect facial motion through
contactelectrification); EMG (e; tattoo-like epidermal electrodes acquire facial
myopotentials associated with silent articulation); strain sensing (f; textile strain

sensors embedded in a smart choker capture throat deformation patterns);

EEG (g; in-ear conformal bioelectronics measure brain activity associated with
speechimagery); ECoG (h; implanted cortical arrays decode neural activity
from speech-generating regions in patients with brainstem injury); and MEA

(i; intracortical electrodes implanted in the motor cortex record neural activity
associated with fine motor intention, enabling high-resolution decoding of
attempted handwriting and speechimagery). PI, polyimmide; PVC, polyvinyl
chloride. Panels adapted from:d, ref. 33, CCBY 4.0; e, ref. 36, CC BY 4.0; f, ref. 42,
CCBY4.0;g,ref.47, CCBY 4.0.
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English words*. These systems have evolved from controlled experi-
mentstoreal-world trials in patients who have suffered strokes, where
strain signals were leveraged not only for word decoding but also for
capturing emotional context, achieving a 4.2% WER and improving
daily communication satisfaction by 55% in five patients recovering
from strokes®. Across these developments, strain sensing highlights
how material and structuralinnovations candirectly shape the usability
and expressiveness of silent speech technologies.

Electroencephalography sensing

Electroencephalography (EEG) enables non-invasive access to corti-
cal activity via scalp or ear-adjacent electrodes, offering a wearable,
surface-based approachto capture neural correlates of speech intent
upstream of articulation. However, EEG signals are inherently noisy
and spatially diffuse, posing major challenges for speech decoding.
Foundational studies demonstrated that event-related potentials** and
modulated sensorimotor rhythms* can support basic intent detection,
laying the groundwork for EEG-based communication.

Recent efforts have redefined the role of EEG in silent speech
decoding by innovating at the sensor and system levels. Ear-centred*®
and in-ear EEG devices (Fig. 3g)*” have matched traditional scalp set-
ups in decoding accuracy while enhancing comfort and form factor.
Meanwhile, to mitigate physiological and motion artefact limitations*®,
recent studies have explored integrated multimodal platforms combin-
ing EEG with additional modalities***°. By providing complementary
spatial and physiological signals (for example, inertial, haemodynamic
or muscular activity), these systems enable artefact identification
and weighting in decoding pipelines, thereby improving robustness.
Moving beyond command classification, large-scale studies now lev-
erage contrastive learning to align EEG signals with deep speech rep-
resentations’’, enabling zero-shot decoding of perceived sentences
without retraining on specific vocabularies, with an average accu-
racy of ~41% (up to 80% in some individuals) over more than 1,000
candidate segments.

Although EEG is constrained by low signal fidelity and high inter-
subject variability, its distinct advantage liesin the ability to access pre-
articulatory neural activity, offering a uniquely scalable non-invasive
modality for early-stage intent decoding. Although currentaccuracies
remain modest compared with peripheral sensing methods, ongoing
advances in sensor design and learning architectures highlight the
potential of EEG to enable predictive and generalized SSI systems.

Developmental trends and outlook

On-body sensors have evolved fromrigid electrodes to soft, skin-con-
formal bioelectronics and energy-harvesting textiles, aiming to bal-
ance signal fidelity with everyday wearability. However, this proximity
introduces vulnerability to motion artefacts, skinimpedance drift and
long-term comfort challenges. Recent progressincreasingly hinges on
functionally complementary multimodal fusion. For example, EMG
signals capture neuromuscular intent but are motion sensitive, whereas
strainsensorstrack tissue deformation and sensor displacement. Fus-
ing the two allows decoding models to contextualize signal quality,
improving robustness under movement.

This shift reframes sensor fusion not as redundancy, but as a
deliberate strategy to resolve the fidelity-stability trade-off inherent
in wearable decoding. Combined with advances in stretchable sub-
strates and low-power design, on-body platforms are positioned as
the most deployable SSI solution, balancing accuracy with resilience
inreal-world conditions.

SSIs using in-body sensors

In-body sensing offers the most direct access to the neural substrates
of speech, capturing activity from cortical regions responsible for
planning and articulation. By implanting electrodes either onto the
brain surface or within its depths, these systems bypass peripheral

musculature and enable speech decodinginindividuals who have lost
all voluntary motor output. They are uniquely positioned to support
communicationin cases of locked-in syndrome or advanced neurode-
generation, where no other interface s viable.

Althoughin-body approaches provide exceptional signal fidelity
and decoding precision, they require invasive procedures, patient-
specific adaptation and long-term clinical support. As such, their
application remains limited to research settings and highly selected
clinical scenarios. Nevertheless, recent progressin electrode miniaturi-
zation, signal processing and neurosurgical techniques has expanded
the scope of implanted speech interfaces. These systems not only
advance assistive communication but also serve as platforms for prob-
ing the neural basis of language and developing future brain-centred
interaction technologies.

ECoG sensing

ECoG acquires high-fidelity local field potentials viasubdural electrode
grids placed over cortical speech regions. Compared with non-inva-
sive EEG, ECoG offers superior spatial resolution and bandwidth with
reduced signal attenuation, enabling direct access to the neural sub-
strates of articulation®>*. Its semi-invasive nature positions it between
scalp-based andintracortical approaches, makingitaclinically viable
modality for patients with severe motor speech impairments.

Over the past decade, ECoG-based silent speech systems have
progressed from decoding isolated phonemes to reconstructing full
sentences in real time***°. Further evolution reflects a broader shift
from offline, trial-based studies to continuous, streaming paradigms
that prioritize naturalistic communication (Fig. 3h), achieving large-
vocabulary decoding at up to 78 words per minute with ~25% WER*®
and enabling online fluent synthesis in 80-ms increments®. Recent
efforts emphasize low-latency, high-intelligibility speech synthesis
directly from neural activity, marking atransition towards closed-loop
brain-to-speech systems. In parallel, the development of high-density
micro-electrocorticography arrays has enabled finer spatial resolution
and improved signal fidelity, reinforcing a device-level trend towards
more precise, information-rich neural interfaces*®. As decoding archi-
tectures mature and deployment barriers narrow, ECoG stands as the
most clinically advanced in-body interface for restoring communica-
tioninindividuals with profound speech loss.

Stereo-EEG sensing

Stereo-EEG (sEEG) records intracranial neural activity via depth elec-
trodes implanted in cortical and subcortical regions, offering three-
dimensional spatial coverage. Compared with ECoG, which requires
craniotomy to place grid or strip electrodes directly on the cortical sur-
face, sEEG electrodes are introduced through stereotactically guided
burr holes. This minimally invasive surgical approach generally car-
ries lower perioperative morbidity, despite the deeper implantation
sites’*°. This accessibility to deeper structures makes sEEG particularly
valuable for capturing both cortical and subcortical elements of speech
planning and tone modulation.

Recent advances have enhanced sEEG as a sensing modality by
improving both stimulation and recording strategies. Intermediate-
frequency protocols increase mapping sensitivity while reducing
afterdischarges, enabling more stable and spatially specific probing of
language circuits®. Complementing these protocol-level refinements,
the release of structured sEEG datasets capturing vocalized, mimed
andimagined speech provides aricher basis for modelling the sensor-
to-signal relationship in diverse linguistic contexts®’. Together, these
developments position SEEG as a minimally invasive and increasingly
optimized sensing platform for speech decoding.

Microelectrode array sensing
Intracortical microelectrode arrays (MEAs) offer direct access to
the spiking activity of neurons, providing unparalleled temporal
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Fig. 4| Conceptual integration of sensing, processing and feedback in

future SSIs. SSIs follow a multi-stage pipeline beginning with the acquisition

of articulatory or neural signals via off-, on- or in-body sensors. These signals
are first conditioned by hardware circuits comprising analogue front ends
(AFEs), microcontrollers (MCUs), wireless modules (such as Bluetooth or WiFi)
and power and memory units. Although most systems transmit pre-processed
datato external devices for inference, a subset integrates edge Al processors to
enablelocal, low-latency decoding. The captured signals span optical, acoustic,

biomechanical and bioelectrical domains, each reflecting distinct aspects of
speech-related activity. Decoding is achieved through algorithmic frameworks,
including deep learning, transfer learning and contrastive learning, enabling
context-aware interpretation across users and settings. The outputs are
translated into feedback modalities, such as synthesized speech, robotic actions
or haptic cues, forming a closed-loop interface for assistive and interactive
applications.

resolution and spatial specificity for speech decoding®***. By pen-
etrating cortical tissue, these sensors can capture fine-scale dynam-
ics of speech motor planning that are not accessible through
surface-level recordings.

Initial demonstrations showed that MEAs could support pho-
neme-level decodingin open-loop paradigms, laying the groundwork
for intracortical speech interfaces®. More recently, their integra-
tion into closed-loop systems has enabled real-time synthesis of
intelligible words and phrases inindividuals with severe speech loss
(Fig. 3i)°°. These advances mark a shift from offline analysis to continu-
ousdecoding pipelines aimed at restoring functional communication.

Despite their exceptional signal fidelity, MEAs face practical limita-
tionsincluding surgical invasiveness, long-term biocompatibility and
signal degradation over time. Nevertheless, they remain the bench-
mark for understanding the upper bounds of neural resolution in
brain-to-speechinterfaces.

Developmental trends and outlook

In-body interfaces represent the frontier of SSI potential, offer-
ing direct access to cortical speech networks and enabling
decoding capabilities that are fundamentally beyond the reach of
peripheral sensing. Although current systems have yet to match the
real-time accuracy of advanced on-body solutions, particularly in
healthy users, their unique strength lies in restoring communication
when peripheral musculature is nolonger viable. This transformative
promise, however, isinseparable from profound biological and ethi-
cal tensions. Biologically, craniotomy, long-term biocompatibility
challenges and foreign-body responses threaten signal stability, and
the absence of fully implantable wireless systems increases infec-
tion risk and hinders long-term deployment. Ethically, these inter-
faces engage directly with the neural substrates of language, raising
unprecedented concerns around mental privacy, data ownership and
informed consent for the continuous decoding of inner speech. Far
from ancillary, these risks will fundamentally shape the pace, scope
and social acceptability of in-body SSI technologies.

Looking ahead, progress in minimally invasive electrodes, fully
sealed wireless closed-loop platforms and adaptive learning archi-
tectures may help toreconcile the demands of high decoding fidelity
with the requirements of long-term biological safety. At the same time,
robust governance frameworks addressing privacy, data rights and
user agency will be essential to uphold ethical standards and ensure
responsible deployment. Taken together, these technological and
ethical developments may allow in-body systems to serve not only
as clinical tools for individuals with severe impairments, but also as
scientific instruments for exploring and interacting with the neural
mechanisms underlying human language.

Conclusions

SSlsare reshaping the landscape of human communication by enabling
speech decoding without audible output. This Review examines the
field through the lens of sensing technologies, revealing how sens-
ing configurations fundamentally shape system fidelity, comfortand
usability. By categorizing SSIs into off-, on-and in-body modalities, we
have highlighted the trade-offs that govern their deployment—from
ambient, non-contact interaction to implantable neuroprosthetics.

These sensing choices are not merely technical parameters
but strategic levers that determine who can benefit, where systems
can operate and how effectively silent speech can be translated
into actionable outputs. With the convergence of flexible electron-
ics, neuromuscular decoding and intelligent feedback, SSls are
emerging not only as assistive tools for individuals with speech
impairments but also as scalable platforms for future human-
machineinteraction.

Yet, sensing alone does not determine system capability. As SSIs
transitiontowards real-world deployment, the co-evolution of sensing,
embedded hardware and learning algorithmsis becomingincreasingly
central. Inthis context, sensing acts not only as an input modality, but
as the foundation of tightly coupled signal processing pipelines that
enable responsive, low-latency interaction.

Signals acquired from off-, on- or in-body sensors must be routed
through analogue front ends, microcontrollers and wireless mod-
ules. Modern SSIsystems increasingly incorporate edge Al processors
that support real-time, low-power inference directly on wearable or
mobile platforms, minimizing latency and safeguarding privacy®’. This
hardware-algorithm co-design paradigm underpins recent advances,
including throat-mounted acoustic and biomechanical sensors that
drive robotic control via silent commands®®,

Figure 4 provides a conceptual overview of this integrated pipe-
line—from acquisition to decoding to feedback. The captured signals
span optical, acoustic, biomechanical and bioelectrical domains,
each offering distinct trade-offs between fidelity and comfort. For
instance, wearable ultrasonic sensors and strain gauges have demon-
strated strong signal-to-noise ratios and resilience to ambient inter-
ference®*, in some cases outperforming surface EMG in specificity’.
These signals are standardized through pre-processing pipelines and
increasingly fused across modalities to improve robustness across
users and settings.

The decoding stageis primarily driven by lightweight deep learn-
ing models—convolutional and transformer-based architectures that
supportnear-real-time performance on embedded systems*>®’. Trans-
fer learning and few-shot personalization enable rapid adaptation to
new vocabularies or users'’°, whereas contrastive and cross-modal
learning increasingly bridge silent and vocal speech domains using
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large-scale audio datasets'". These algorithmic advances substantially
reduce data requirements and enhance generalization.

The final outputs of SSIs range from text and synthesized speech
todirectrobotic or digital commands**%, Real-time feedback, such as
haptic cues or voice synthesis, is crucial for enabling closed-loop, inter-
active communication. Although challenges remain in generalization,
energy efficiency and vocabulary breadth, the synergistic development
of sensing hardware, embedded inference and learning architectures
is rapidly moving SSlIs towards widespread real-world application.

Looking ahead, the next wave of hardware advances will centre on
sensor evolution, miniaturization and integration. Flexible and stretcha-
ble materials will continue to transform sensors into conformal, skin-like
interfaces capable of robust acquisition under motion and daily wear” .
The emergence of hybrid systems, merging bioelectrical, biomechanical
and acoustic domains, will offer richer signal streams and redundancy to
counteractartefacts and variability™. Real-time decoding will be increas-
ingly enabled by edge Al processors embedded in wearable circuits,
unlocking low-latency inference and feedback without cloud reliance™.
These developments are complemented by ultra-low-power designand
energy-autonomous sensorssuch as TENGs, paving the way for continu-
ous, passive sensing ecosystems. As sensing hardware becomes more
discreet, adaptive and multimodal, it will not only reshape how silent
speechis captured, but enlarge where and by whom it can be used.

Beyond hardware, the software layer of SSls is entering a new
era driven by embodied intelligence and large-scale models. Algo-
rithmically, we anticipate a shift from task-specific neural networks
towards multimodal foundation models that integrate audio, EMG,
strain and even neural data through shared embeddings and atten-
tion mechanisms”. This will enable cross-modal learning, few-shot
personalization and generalization across vocabularies and users.
Embedded inference will increasingly adopt neuromorphic or event-
drivenarchitectures, optimizinglatency and energy consumption for
real-world use’”’®. Furthermore, SSls are positioned to serve as a key
interface for human body digital twins, where physiological signals
are continuously mapped onto real-time avatars for speech, emotion
and motor intent, enabling closed-loop interaction across healthcare,
social robotics and communication prosthetics”. As algorithms evolve
toreflect not just learned data but the embodied dynamics of human
expression, theboundary between input and interface will blur.

In the broader societal context, the future of SSIs extends far
beyond clinical assistive technology. As silent interfaces become
embedded in daily life, supporting unobtrusive interaction in public
spaces, privacy-preserving commands in shared environments and
silent collaboration in noisy or sensitive contexts, they will extend the
boundary of human-human and human-machine communication.
More importantly, for individuals with profound speech or motor
disabilities, SSIs might offer not just atool but arestoration of agency
andidentity, helpingto alleviate psychological distress and foster more
effective rehabilitation®. By grounding these technologies ininclusive
design and responsible innovation, we can ensure that silent speech
systems contribute not only to technical progress but also to human
dignity, empowerment and equitable access to communication.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.
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