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Abstract
Explanations are conceived to ensure the trustworthiness of AI systems. Yet, relying solemnly on algorithmic solutions, as 
provided by explainable artificial intelligence (XAI), might fall short to account for sociotechnical risks jeopardizing their 
factuality and informativeness. To mitigate these risks, we delve into the complex landscape of ethical risks surrounding 
XAI systems and their generated explanations. By employing a literature review combined with rigorous thematic analysis, 
we uncover a diverse array of technical risks tied to the robustness, fairness, and evaluation of XAI systems. Furthermore, 
we address a broader range of contextual risks jeopardizing their security, accountability, reception alongside other cog-
nitive, social, and ethical concerns of explanations. We advance a multi-layered risk assessment framework, where each 
layer advances strategies for practical intervention, management, and documentation of XAI systems within organizations. 
Recognizing the theoretical nature of the framework advanced, we discuss it in a conceptual case study. For the XAI com-
munity, our multifaceted investigation represents a path to practically address XAI risks while enriching our understanding 
of the ethical ramifications of incorporating XAI in decision-making processes.

Keywords  Explainable AI (XAI) · AI governance · Ethics assessment · Risk management · Adversarial perturbation · 
Robustness · Epistemology

Introduction

Explainable Artificial Intelligence (XAI) has emerged as a 
relevant area of research within the broader field of AI, as 
it seeks to provide human-understandable explanations for 
the decisions, recommendations, and predictions made by 
AI systems (Gunning & Aha, 2019). While the use of XAI 
has the potential to enhance transparency and accountability 
in AI-driven decision-making processes, it also raises new 
ethical concerns and challenges. XAI methods are generally 
developed to bring greater clarity to AI systems: yet such 
tools are evaluated primarily through quantitative measures, 
often without sufficient involvement from all stakeholders 
affected by these explanations (Kaur et al., 2020; Schem-
mer et al., 2022) or unclear benefits for their usefulness 
(Bertrand et al., 2022; Chen et al., 2023; Schemmer et al., 
2022; Vasconcelos et al., 2023). Explanations bring risks 
that, if not properly addressed, may undermine the intended 
benefits of XAI and negatively impact the individuals and 
communities affected by AI decisions (Bertrand et al., 2022; 
de Bruijn et al., 2022; Janssen et al., 2022; Liao & Var-
shney, 2021). Indeed, if the explanations produced are not 
adequately vetted and validated by affected users (Langer 
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et al., 2021), they may be of limited informativeness, if not 
entirely useless or even harmful (Liao & Varshney, 2021; 
Robbins, 2019). In this perspective, the Royal Society’s 
motto “Nullius in Verba,” which translates to “take nobody’s 
word for it,” emphasizes the importance of verifying claims 
through evidence and rigorous analysis rather than relying 
solely on authority or assertions (McKie, 1960; The Royal 
Society, 1662). In the context of XAI, we propose a slight 
adaptation of this motto: “Nullius in Explanans,” or “take 
nobody’s explanation for it.” This rephrasing highlights 
the need for a comprehensive and systematic approach to 
assessing and mitigating the risks associated with explana-
tions generated by AI systems. Rather than simply accepting 
the explanations at face value, it is then crucial to critically 
examine their validity, robustness, and potential vulnerabili-
ties. Indeed, despite the growing attention to XAI risks there 
remains a lack of comprehensive frameworks for assessing 
and mitigating the diverse array of technical and sociotechni-
cal risks associated with XAI systems.

This paper aims to address this gap by proposing a novel 
multi-layered risk assessment framework. We combine a 
literature review with thematic analysis, capturing a broad 
spectrum of risks and their underlying relationships. Our 
primary contribution lies in developing a taxonomy that 
classifies identified risks into two main categories: techni-
cal risks, related to data and architecture of XAI systems, 
and contextual risks, related to reception and deployment 
of explanations. From these categories, we advance a novel 
risk assessment framework for their identification and miti-
gation. To clarify, such assessment shall not be intended as 
a mechanism for demonstrating the “trustworthiness” of an 
XAI system. Instead, it constitutes a tool for critical reflec-
tion to facilitate introspection and inquiry regarding their 
design rationale and objectives. This paper is intended for 
a broad audience, including XAI practitioners, research-
ers, policymakers, and individuals interested in the ethical 
implications of AI and XAI systems. While some technical 
aspects of XAI methods are discussed, we aim to present the 
risks and the risk assessment framework in a manner acces-
sible to readers with varying levels of technical expertise.

We begin in section “Background” by discussing rele-
vant work that detailed desiderata and risks of explanations 
alongside ethical risk assessments. After, we will expose our 
method to retrieve and elaborate relevant research in section 
“Method”, presenting in the following section “Categoriza-
tion of risks in XAI systems” the taxonomy of technical risks 
in XAI (section “Technical risks”) and sociotechnical ones 
(section “Contextual risks”). Building on this taxonomy, 
section “A risk assessment framework for XAI systems” 
introduces our multi-layered XAI risk assessment frame-
work, that we illustrate in application through a theoretical 
case study in section “Use case example”. Finally, section 

“Conclusion” concludes with a discussion of research limita-
tions and future directions.

Background

In the realm of XAI, risks are predominantly treated as ends, 
signifying domain-specific objectives that explanations can 
address. When viewed as mediums associated with the struc-
ture of explanations, they are mostly related to the degree 
of fidelity concerning AI systems. Systematic reviews on 
XAI typically explore strategies and metrics for appraising 
explanations, encompassing both quantitative and qualitative 
evaluation methodologies, including human-centered evalu-
ation approaches (Adadi & Berrada, 2018; Guidotti et al., 
2019; Stepin et al., 2021).

A number of studies have advanced qualitative evaluation 
criteria, focusing on surveying acceptance and understand-
ability of explanations by end users (Langer et al., 2021; 
Löfström et al., 2022; Mohseni et al., 2021). Despite the bur-
geoning interest in qualitative XAI evaluation criteria, there 
remains a dearth of contributions investigating the empiri-
cal usability of explanations (Kaur et al., 2020; Schemmer 
et al., 2022). The desirable cognitive properties inform these 
contributions of a “good explanation,” taking into account 
human–computer interaction perspectives and concepts from 
social science and psychology (Lipton, 2018; Miller, 2019; 
Miller et al., 2017).

Trade-offs in XAI approaches To begin, the selection 
of XAI approaches encounters inherent technical challenges, 
notably when dealing with complex, high-dimensional data. 
For instance, Surrogate Models and Rule Extraction, while 
fostering model interpretability, run the risk of oversimplify-
ing intricate models, thereby potentially compromising the 
accuracy of their representation (Andrews et al., 1995; Cra-
ven & Shavlik, 1995; Freitas, 2013; Mohseni et al., 2018). 
Further, several XAI methods, including Partial Depend-
ence Plot (PDP), Individual Conditional Expectations Plot 
(ICE), and Global Variable Importance (GVI) measures1, 
often grapple with the delicate issue of feature interac-
tions and correlations (Fisher et al., 2019; Friedman, 2001; 
Goldstein et al., 2015). These dependencies can not only 

1  PDP is graphical visualization that shows the marginal effect of 
a feature on the predicted outcome of a machine learning model, 
while accounting for the average effect of all other features (Fried-
man, 2001); ICE is similar to PDP but shows the dependence of the 
predicted outcome on a feature for each instance separately, allowing 
for the identification of heterogeneous relationships (Goldstein et al., 
2015); GVI quantifies the overall importance of each feature in a 
model’s predictions, typically by calculating the increase in the mod-
el’s prediction error after permuting the values of the feature (Fisher 
et al., 2019).
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result in misleading representations but also limit the scope 
of the insights provided, affecting their utility, particularly 
in high-stakes contexts. Even approaches like Accumulated 
Local Effects Plots (ALE) and Counterfactual Explanations, 
designed to mitigate some of these issues by offering local-
ised insights or presenting alternative scenarios respectively, 
encounter their own challenges. ALE plots might struggle 
with visualising feature interactions (Sorokina et al., 2008), 
whereas generating meaningful counterfactuals tend to be 
instance-based and might not provide an overarching under-
standing of the model (Stepin et al., 2021; Wachter et al., 
2017). These challenges underscore the importance of an 
informed and judicious choice of XAI methods, contingent 
on the requirements of users and specific contexts.

Designing contextual explanations The imperative to 
comprehend explanations within the ecosystem where XAI 
solutions are developed has been underscored, particularly 
with regard to their epistemological value (Robbins, 2019). 
This pertains to the usability of explanations for a diverse 
array of end users (Schemmer et al., 2022), rather than 
solely their developers (Kaur et al., 2020). In response to 
this demand, a nascent subcurrent has emerged, concentrat-
ing on providing tangible approaches to tailor explanations 
for multiple users, aspiring to enhance their effectiveness by 
proffering design and evaluation guidelines (Mohseni et al., 
2021). This includes deliberating on the type of explana-
tions (Cabitza et al., 2023) or the sociocultural context of 
interaction among recipients (Dazeley et al., 2021). Other 
framework contributions, such as the survey from Löfström 
and Hammar, delineated subjective criteria of qualitative 
evaluation, advancing a model of explanation quality aspects 
(Löfström et al., 2022). Moreover, scholars such as Rudin 
advocated for inherently interpretable AI system designs 
when high stakes envelop their decisions (Rudin, 2019). In 
this vein, explainability desiderata shall inform and antici-
pate the design of XAI solutions, critically inquiring over 
the need for explanations concerning stakes and context of 
deployment of AI systems.

Proactive approaches and ethical risk assessments 
Despite the ongoing discourse surrounding the implemen-
tation of explanations in AI systems, alternative validation 
instruments for AI system explanations, such as impact 
assessment or risk management procedures, may offer val-
uable yet unexplored benefits (Floridi, 2018; Moss et al., 
2021). Some XAI scholars persist in referencing the “right 
to explanation” in the EU GDPR (European Commission, 
2016) to justify the benevolence of their research studies. 
Yet, due to the casuistry and debate over the enactment 
of such as a right, rather than benevolence, their state-
ments potentially indicate limited policy knowledge over 
requirements for establishing a legal baseline to implement 
XAI services (Nannini, 2024). This concern might be fur-
ther exacerbated by the heterogeneous policy landscape 

and the challenges policymakers confront in harmonizing 
regulations and guidelines with XAI research (Hacker & 
Passoth, 2022; Nannini et al., 2023). Given the potentially 
loose legislative baseline and the profusion of disparate 
“best practices” for ideal explanation properties, a proac-
tive approach concentrating on quantifying the risks of 
explanations may be desirable to address policy and opera-
tionalization requirements of explanations. Recent work in 
AI governance and risk management, particularly Ethical 
Risk Assessments (ERA), can be instrumental in struc-
turing the development of useful explanations (Hasan, 
et al., 2022; Mökander & Floridi, 2022; Moss et al., 2021; 
Selbst, 2021; Tartaro et al., 2024). ERAs provide valu-
able insights into both theoretical governance and its effec-
tiveness within practical case studies. These assessments 
are not independent, but they constitute valuable internal 
evaluations that focus on the potential negative impacts 
on stakeholders’ rights and interests while also consid-
ering positive benefits. ERAs involve two main stages: 
identification of potential harms and their prioritization. 
Such assessments transcend legal compliance and serve as 
the primary mechanism for analyzing social impacts and 
anticipating future audit or assurance requirements in the 
evolving regulatory landscape (Hasan, et al., 2022).

Related work & current gap To the best of our knowl-
edge, no research has yet embarked on taking such a proac-
tive and structured approach toward XAI risk assessment. 
The only framework for systematically assessing explain-
able approaches is advanced by Sokol and Flach (2020). The 
proposed taxonomy facilitates the systematic comparison of 
explainability approaches and offers insights into their capa-
bilities and discrepancies between their theoretical qualities 
and implementation properties. The work of de Bruijn et al. 
(2022) provide a comprehensive list of objections to XAI, 
including the difficulty of explaining AI to the public, the 
non-neutrality of explanations, the dynamic nature of algo-
rithms, and other issues. Alongside pitfalls, they propose 
corresponding strategies to mitigate these risks at the gov-
ernance level, emphasizing the importance of managing and 
addressing these concerns proactively. The recent survey by 
Baniecki and Biecek (2024) provides a comprehensive over-
view of adversarial attacks and defense mechanisms in XAI. 
While their work shares some commonalities with ours in 
addressing the security and trustworthiness of XAI systems, 
our research takes a broader perspective considering also 
contextual risks. To sum, the current research benefits from 
these works, yet stresses a perspective on XAI grounded in 
risk assessment, not just relying on XAI model selection or 
unstructured recommendations. By adopting this proactive 
approach to explanations design, we aim to anticipate not 
just the technical limitations of XAI, but also the risks stem-
ming from sociotechnical considerations.
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Method

We first performed a research literature retrieval grounded 
on concerns and vulnerabilities of XAI, from where we iden-
tified key technical risks. This preliminary analysis consti-
tuted the bedrock from which we departed our thematic anal-
ysis. As a second step, our search strategy through citation 
chaining and snowballing incorporated diverse disciplinary 
perspectives, including computer science, cognitive science, 
psychology, law, ethics, sociology, and others, ensuring a 
comprehensive view of the contextual risks associated with 
explanations in AI. This approach was inspired by social 
sciences studies informing the field of XAI (Lipton, 2017, 
2018; Miller, 2019; Wilkenfeld & Lombrozo, 2015). This 
allowed us to garner a deeper understanding of how explana-
tions function in non-AI contexts, enriching our understand-
ing of potential risks when these concepts are transposed 
into the XAI domain.

Research retrieval & filtering We began targeting vari-
ous the Scopus academic database and then expanding to 
other peer-reviewed sources such as ACM Digital Library 
and IEEE Explore. For search strings, keywords or concepts 
such as explainable, XAI, interpretable ML were incorpo-
rated with terms as vulnerabilities, adversarial attacks, 
robustness, data poisoning and others. Terms were chosen 
based on our prior knowledge of common challenges and 
threats faced by AI systems in general and XAI systems in 
particular. The departing Scopus queries were: 

1.	 Query (1) targeted technical risks related to the robust-
ness of XAI methods, including their vulnerability to 
adversarial attacks, model manipulation, and input per-
turbations.2

2.	 Query (2) focused on fairness risks in XAI, covering 
topics such as algorithmic bias, discrimination, disparate 
impact, and various fairness metrics and constraints.3

3.	 Query (3) addressed privacy and security risks associ-
ated with XAI, including information leakage, model 

inversion attacks, membership inference attacks, model 
extraction, and risks to intellectual property.4

To ensure a comprehensive search, we also included syn-
onyms and related terms for each keyword. For example, 
when searching for adversarial attacks, we also used terms 
like adversarial examples, adversarial perturbations, and 
adversarial manipulations. This approach helped capture a 
wider range of relevant literature that may use slightly dif-
ferent terminology to describe similar concepts.

Selection criteria & analysis To ensure the relevance 
and quality of the articles included in our analysis, we 
included papers: ( I◦ .) Published in a peer-reviewed journal, 
conference proceedings, or book chapters; ( II◦ .) Focused on 
explainable AI from a perspective informed by risk assess-
ment, associated vulnerabilities, or AI ethics frameworks; 
( III◦ .) Presented a theoretical or empirical analysis of risks 
related to XAI explanations, system architectures, or data; 
( IV◦ .) Written in English.

In addition to the structured search of XAI-specific lit-
erature, from our paper pool we expanded to similar works 
through citation chaining and snowballing incorporated 
diverse disciplinary perspectives, including computer sci-
ence, cognitive science, psychology, law, ethics, sociology, 
and others. We deliberately included papers from non-XAI/
AI contexts, particularly from the period before the estab-
lishment of the XAI program by DARPA in 2016 (Gunning 
& Aha, 2019). This decision was motivated by the recogni-
tion that the study of explanations has a long and rich history 
in fields such as psychology, cognitive science, philosophy, 
and human–computer interaction—e.g., (Clark & Brennan, 
1991; Harman, 1965; Hempel & Oppenheim, 1948; Keil 
et al., 2000; Lombrozo, 2012; Salmon, 1984, 1989; Trout, 
2002; Wilson & Keil, 1998). By drawing from this diverse 
body of knowledge, we aimed to gain a more comprehensive 
understanding of the potential risks and challenges asso-
ciated with explanations in human communication, and to 
identify foundational concepts and theories that have shaped 
the current understanding of explainability in AI (Confalo-
nieri et al., 2021).

Data extraction and analysis In analyzing this collec-
tion of papers, we adopted an iterative and reflexive pro-
cess. We derived key themes directly from the literature and 
honed through continuous comparison with our expanding 

2  (1) TITLE-ABS-KEY((“explainable AI” OR “XAI” OR “inter-
pretable machine learning”) AND (“robustness” OR “adversarial 
attacks” OR “adversarial examples” OR “adversarial perturbations” 
OR “model manipulation” OR “saliency maps” OR “counterfactual 
explanations” OR “concept activation vectors” OR “input perturba-
tions”) AND (“risks” OR “vulnerabilities” OR “challenges” OR 
“issues”))
3  (2) TITLE-ABS-KEY((“explainable AI” OR “XAI” OR “interpret-
able machine learning”) AND (“fairness” OR “bias” OR “discrimi-
nation” OR “disparate impact” OR “demographic parity” OR “equal 
opportunity” OR “algorithmic fairness” OR “fairness metrics” OR 
“fairness constraints” OR “fairness-aware learning”) AND (“risks” 
OR “vulnerabilities” OR “challenges”))

4  (3) TITLE-ABS-KEY((“explainable AI” OR “XAI” OR “interpret-
able machine learning”) AND (“privacy” OR “security” OR “infor-
mation leakage” OR “model inversion” OR “membership inference” 
OR “model extraction” OR “gradient leakage” OR “intellectual prop-
erty” OR “trade secrets” OR “privacy-preserving” OR “secure mul-
tiparty computation”) AND (“risks” OR “vulnerabilities” OR “chal-
lenges”))”



Nullius in Explanans: an ethical risk assessment for explainable AI﻿	 Page 5 of 28      5 

dataset.5 In particular, the thematic analysis was conducted 
in six phases following the guidelines proposed by Braun 
and Clarke (2006): 

1.	 Familiarization with the data The researchers read the 
selected papers to gain an understanding of the content.

2.	 Generating initial codes Each researcher independently 
coded a subset of the papers, identifying initial themes 
and patterns related to XAI risks.

3.	 Searching for themes Through an iterative process of 
discussion and refinement, the researchers developed a 
preliminary set of themes and subthemes that captured 
the key risks associated with XAI systems.

4.	 Reviewing themes The researchers independently 
reviewed the preliminary themes and subthemes, check-
ing their coherence and consistency against the coded 
data and the original papers. The researchers then met 
to discuss their findings and refine the themes and sub-
themes accordingly.

5.	 Defining and naming themes The researchers collabo-
ratively defined and named the final set of themes and 
subthemes, ensuring that each theme captured a distinct 
and meaningful aspect of XAI risks.

We clarify that this partitioning into themes and subthemes 
is inherently interpretive and adaptive. We acknowledge that 
due to the complexity of the field and the variable lexicon 
used across the literature, certain papers may resonate with 
multiple subthemes or themes.

Categorization of risks in XAI systems

We developed a taxonomy categorizing the identified risks 
into two primary domains: Technical Risks (section “Tech-
nical risks”), related to the data and models of XAI sys-
tems, and Contextual Risks (section “Contextual risks”), 
associated with the informativeness and reception of XAI 

explanations. The interested reader can visualize the tax-
onomy in Table 2 in Appendix A. Risks reported are to be 
considered as not mutually excluding.6

Technical risks

In this subsection, we examine risks through a holistic lens 
rather than the more traditional approach of examining indi-
vidual targets such as input data or the model itself. Our 
approach is centered on a comprehensive understanding of 
risks related to properties of the XAI models, such as model 
selection trade-offs, robustness against adversarial or unin-
tentional perturbations, technical fairness, and privacy risks, 
as well as design evaluation.

Robustness risks

The trustworthiness of an explanation, and thus the overall 
XAI system, depends on its robustness to various types of 
uncertainties and perturbations. Robustness Risks relate to 
the stability and reliability of explanations in the presence of 
uncertainties, perturbations, or adversarial attacks. Robust-
ness risks arise when explanations are sensitive to small 
changes in the input data, model parameters, or explanation 
methods, leading to inconsistent or misleading interpreta-
tions. Two primary dimensions of robustness risks in XAI 
can be identified as adversarial attacks and discrepancies.

Adversarial attacks are deliberate attempts to manipu-
late or mislead an XAI system (Carlini & Wagner, 2017b; 
Dombrowski et al., 2019; Goodfellow et al., 2015; Szegedy 
et al., 2014; Zhang et al., 2020). They can be targeted toward 
model explanations or the model’s predictions themselves. 
These types of attacks are designed to be subtle, often 
involving minor, carefully crafted changes to the input data 
or the model parameters that lead to significant alterations 
in the output or explanations (Dombrowski et al., 2019; 
Zhang et al., 2020). Such attacks can greatly undermine the 
credibility and utility of an XAI system. Adversaries can 
manipulate input samples at will, and they might even have 
details about the model’s parameters and architecture at their 
disposal (Biggio & Roli, 2018; Carlini & Wagner, 2017a; 
Ilyas et al., 2018; Madry et al., 2018; Papernot et al., 2017; 
Shafahi et al., 2019; Tramèr et al., 2020; Zhang et al., 2019). 

5  The thematic analysis was conducted by a team of three research-
ers with diverse expertise in XAI, AI ethics, and qualitative research 
methods. This interdisciplinary team composition ensured a com-
prehensive and rigorous analysis of the data. Researcher 1 (R1) has 
a background in computer science and XAI, with extensive experi-
ence in developing and evaluating XAI methods. Researcher 2 (R2) 
specializes in AI ethics and has published on the social and ethical 
implications of AI systems. Researcher 3 (R3) is an expert in qualita-
tive research methods.
  In the initial code generation phase, approximately 30% of the 
papers were analyzed by all three researchers independently. After 
defining the initial themes, the remaining papers were divided among 
the researchers for separate analysis. Regular meetings were held to 
discuss and refine the themes based on new insights. This iterative 
process continued until all papers were analyzed and thematic satura-
tion was reached.

6  We decided to arbitrarily adopt a categorization that reflects both 
the themes of literature retrieval and filtering exposed before, as well 
as citation chaining. We consider thus some of these risks mutual 
e.g., adversarial attacks can be used to manipulate the input data of 
the underlying AI system, which in turn can affect the fairness of 
the explanations generated by the XAI system; biased sociotechni-
cal explanations (e.g., essentialism) might be used to justify unfair 
data distributions; technical privacy risks easily overlap with gaming 
opportunities, etc.
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Explanation discrepancies occur when different explanation 
methods provide conflicting interpretations for the same 
model prediction or input. This lack of consistency includes 
variations in the underlying model, differences in the expla-
nation algorithms, or noise in the data. Model manipula-
tions, which could influence a large group of inputs at once, 
have been used for adversarial purposes (Dimanov et al., 
2020; Heo et al., 2019). Manipulations require an adver-
sary to be able to influence the training process/data or even 
control the model. This is enabled by poisoning attacks or 
constituted with query-based access only (Dong et al., 2021; 
Gu et al., 2019; Jagielski et al., 2018; Liu et al., 2018; Severi 
et al., 2021; Shafahi et al., 2018). These manipulations can 
either preserve the original model’s functionality or focus on 
maintaining high accuracy, potentially improving the overall 
performance. The manipulated model might provide nearly 
the same predictions, but sensitive target features receive 
low relevance scores in the explanations. So-called back-
dooring attacks or Trojan attacks can evoke a target label 
when the input carries a certain trigger pattern (Gao et al., 
2019; Gu et al., 2019; Jia et al., 2022; Liu et al., 2018; Severi 
et al., 2021). Among others, Robustness risks comprise:

(T-RR-1) Attacks on saliency-based explanation methods 
Saliency-based methods such as LIME (Ribeiro et al., 2016) 
and SHAP (Lundberg & Lee, 2017) are vulnerable to adver-
sarial attacks that aim to manipulate or obscure the true fea-
ture importance. Slack et al. (2020) demonstrate that these 
methods can be fooled by crafting adversarial classifiers that 
hide discriminatory behavior while appearing innocuous to 
LIME and SHAP. Similarly, Zhang et al. (2018) show that 
saliency maps can be perturbed in detectable ways by adver-
sarial examples, and propose a detection technique based 
on training a classifier with both original data and saliency 
maps. Potential solutions to mitigate these risks include 
robust saliency estimation techniques (Adebayo et al., 2018), 
self-explaining neural networks (Alvarez-Melis & Jaakkola, 
2018) that directly incorporate explanations into their archi-
tecture, adversarial training to improve model stability (Tang 
et al., 2022; Zhang et al., 2020), and leveraging adversarial 
explanations to gain a deeper understanding of the model’s 
behavior (Woods et al., 2019).

(T-RR-2) Manipulation of counterfactual explanations 
Counterfactual explanations (Stepin et al., 2021; Wachter 
et al., 2017), which provide minimal changes to obtain a dif-
ferent outcome, are also susceptible to adversarial manipula-
tion. Slack et al. (2021a) demonstrate that counterfactuals 
are sensitive to small input perturbations and introduce a 
technique to train seemingly fair adversarial models that 
provide low-cost recourse under perturbations, effectively 
deceiving users or obscuring biases. Virgolin and Fracaros 
(2023) propose robustness definitions for sparse counterfac-
tuals and show that accounting for robustness helps reduce 
the cost of recourse under adverse perturbations. Further 

research focuses on detecting and mitigating manipulation 
effects, such as improving counterfactual plausibility (Keane 
& Smyth, 2020; Kenny & Keane, 2021), incorporating addi-
tional constraints (Keane et al., 2021; Kuhl et al., 2022) to 
ensure realistic counterfactuals, and evaluating robustness in 
specific application domains (Mishra et al., 2021).

(T-RR-3) Attacks on concept-based explanation methods 
Concept-based explanation methods, like TCAV7 Kim et al. 
(2018), are vulnerable to adversarial attacks that can corrupt 
or misrepresent concepts. Ghorbani et al. (2019) demon-
strate that interpretations of neural networks are fragile and 
can be altered by small, carefully crafted perturbations to the 
input data. They show this fragility applies to several widely-
used feature importance interpretation methods. Brown and 
Kvinge (2023) further highlight the vulnerability of concept-
based methods, specifically TCAV. They introduce “token 
pushing” attacks which manipulate the concept examples to 
induce misinterpretations, such as making irrelevant con-
cepts appear important or hiding the importance of truly 
relevant concepts. Sinha et al. (2022) conduct a system-
atic study on the security vulnerabilities of concept-based 
models. Potential defenses include detection methods for 
adversarial examples (Ghorbani et al., 2019), careful cura-
tion and expansion of concept examples to cover potential 
gaps (Brown & Kvinge, 2023), and adversarial training to 
improve robustness (Sinha et al., 2022).

(T-RR-4) Adversarial data perturbations affecting expla-
nations Perturbations in input data, such as those affecting 
PDP (Baniecki et al., 2022), can significantly alter expla-
nations, reducing their reliability. Techniques to enforce or 
mitigate the effects of adversarial data perturbations include 
data poisoning attack strategies or frameworks targeting fair-
ness measures or decision boundaries (Mehrabi et al., 2021; 
Solans et al., 2020; Zhang et al., 2021). Nanda et al. (2021) 
examine robustness bias, and Tang et al. (2022) propose a 
new training scheme called Adversarial Training on EXpla-
nations (ATEX) to improve explanation stability.

(T-RR-5) Explanation-aware backdoors Explanation-
aware backdoors are a type of malicious modification to an 
AI system’s training data or model, specifically designed to 
manipulate the explanations generated by the model (Nop-
pel et al., 2023). Unlike traditional backdoors that aim to 
manipulate the model’s predictions (e.g., Chen et al. 2017, 
Gu et al. 2019, Veldanda et al. 2021), explanation-aware 
backdoors target the model’s explanations directly. These 
backdoors can be used to conceal or obfuscate the true 
behavior of the model. For instance, an adversary could 

7  TCAV, or Testing with Concept Activation Vectors is a technique 
for interpreting the internal representation of a neural network by 
quantifying the degree to which a user-defined concept is important 
to a classification result (Kim et al., 2018).
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craft a backdoor that makes a model’s explanations high-
light innocuous features when a trigger is present, while 
the actual prediction is based on sensitive or discriminatory 
features. Noppel et al. (2023) demonstrate several variants 
of explanation-aware backdoors.

(T-RR-6) Debugging challenges The effectiveness of 
post-hoc model explanations for diagnosing model errors 
has been challenged (Adebayo et al., 2020, 2022). There 
are indications that many explanation methods are ineffec-
tive in identifying various models, data, and test-time con-
tamination bugs. Further, Dai et al. (2022) emphasized that 
disparities in explanation quality may arise in complex and 
non-linear models, suggesting an unexplored risk of unfair-
ness in real-world decision-making introduced by post-hoc 
explanation methods.

(T-RR-7) Transferability of adversarial attacks Adver-
sarial attacks targeting one explanation method may also 
affect other methods, potentially compromising the over-
all robustness of XAI systems. This transferability risk has 
been highlighted by several studies, including Lakkaraju 
et al. (2020), who demonstrated that adversarial examples 
can transfer across different explanation methods, and Sinha 
et al. (2021), who showed that adversarial attacks can be 
transferable across different natural language processing 
models and explanation techniques.

Fairness risks

Fairness risks concern the potential for explanations to 
reflect, introduce, or amplify biases and discrimination 
against certain individuals or groups based on sensitive 
attributes such as race, gender, or age. These risks can per-
petuate or amplify existing societal biases and lead to unjust 
treatment of disadvantaged populations. Different typologies 
of “fairness attacks” in XAI systems are outlined:

(T-FR-1) Fairwashing Fairwashing involves the manip-
ulation of explanations to present an unfair ML model not 
as such (Aïvodji et al., 2019, 2021). This deceptive prac-
tice distorts fairness metrics, creating a misleading impres-
sion of fairness. Fairwashing attacks can be particularly 
challenging to detect, as they often involve subtle changes 
to the explanations that are difficult to distinguish from 
legitimate ones. Aïvodji et al. (2019) demonstrated that 
fairwashing attacks can be effective in fooling both human 
users and automated fairness auditing tools, highlighting 
the need for more robust fairness evaluation methods in 
XAI systems.

(T-FR-2) Biased sampling Biased sampling deceives 
fairness auditing tools by producing datasets that portray 
an unfair model as unbiased (Fukuchi et al., 2020; Laberge 
et al., 2022). This strategy helps to mask the unfairness of 
a model. By carefully selecting a subset of the data that 
appears to be fair, biased sampling attacks can manipulate 

the explanations generated by XAI methods, making it dif-
ficult to identify the underlying biases in the model. Fuku-
chi et al. (2020) introduced a stealthily biased sampling 
procedure that can effectively fool fairness auditing tools, 
emphasizing the importance of developing more robust 
sampling techniques and fairness evaluation metrics.

(T-FR-3) Adversarial poisoning Adversarial poisoning 
corrupts training data to induce unfair classification dis-
parities, particularly regarding sensitive attributes (Mehrabi 
et al., 2021; Solans et al., 2020). This deception results in 
skewed accuracy metrics. By carefully crafting adversarial 
examples and injecting them into the training data, adver-
sarial poisoning attacks can manipulate the learned decision 
boundaries and explanations, leading to unfair outcomes. 
Mehrabi et al. (2021) and Solans et al. (2020) demonstrated 
the effectiveness of adversarial poisoning attacks in induc-
ing unfairness in machine learning models, highlighting the 
need for more robust training procedures and fairness-aware 
data preprocessing techniques.

(T-FR-4) Manipulation of post-hoc explanations The 
manipulation of post-hoc explanations, as revealed in studies 
by Dimanov et al. (2020), Laberge et al. (2022), and Merrer 
and Trédan (2020), involves masking the role of sensitive 
features and undermining the reliability of remote explain-
ability, thus affecting race, gender,or other sensitive attrib-
utes. By carefully perturbing the input data or the model 
parameters, an attacker can manipulate the post-hoc explana-
tions generated by XAI methods, hiding the true importance 
of sensitive features and making the model appear fairer than 
it actually is.

(T-FR-5) Explanation disparity risks Other studies high-
light the potential for explanation methods to introduce or 
echo unfairness during model evaluation. Dai et al. (2022) 
stress the importance of high-quality explanations, point-
ing out increased disparities with more complex models. 
Balagopalan et al. (2022) discovered significant differences 
in explanation model fidelity across protected subgroups 
during a quality audit. They underscore the importance of 
user awareness regarding fidelity gaps and draw attention to 
biased explanation models as an uncharted challenge. These 
findings suggest that explanation methods themselves can 
introduce or perpetuate unfairness, even when the underly-
ing model is fair.

Evaluation risks

Evaluation risks regards the challenges and limitations in 
assessing, validating, and interpreting the quality, reliabil-
ity, and effectiveness of explanations. Evaluation risks arise 
when the metrics, methods, or assumptions used to evalu-
ate explanations are flawed, incomplete, or susceptible to 
manipulation, leading to incorrect conclusions or decisions 
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based on the explanations. Examples of evaluation risks 
include:

(T-ER-1) Dependence on model assumptions The validity 
and effectiveness of explanations and robustness measures 
are profoundly impacted by the assumptions made during 
the modeling process (Noack et al., 2021). These assump-
tions may include, but are not limited to, linearity, feature 
independence, or the absence of interactions among vari-
ables. When these assumptions are violated, the explana-
tions generated by the XAI system may be misleading or 
fail to capture the true underlying relationships in the data. 
If the underlying model assumptions are incorrect or overly 
simplified, the explanations or robustness measures derived 
from the model could be misleading or incorrect. Arora 
et al. (2022) highlighted how the limitations of specific 
explanation techniques could result in a failure to improve 
understanding or manipulation of complex models, such as 
BERT-based classifiers8

(T-ER-2) Evaluation manipulation and deception There 
exists a risk of malicious actors manipulating the evaluation 
of explanations to deceive users or system administrators 
(Warnecke et al., 2020). This risk could lead to incorrect 
decision-making or potential system vulnerabilities, particu-
larly in high-stakes applications such as cybersecurity or 
healthcare. Further complicating this issue, Adebayo et al. 
(2022) showed that post-hoc explanation methods might 
not be effective in detecting a model’s reliance on spurious 
signals in the training data, particularly when the spurious 
signal to be detected is unknown at test-time.

(T-ER-3) Robustness-explainability trade-off Even if 
contested (Rudin, 2019), a potential trade-off might arise 
between accuracy and interpretability in AI models (Noack 
et al., 2021). This complexity suggests that the relation-
ship between robustness and explainability is not entirely 
understood. As an example, in the context of Graph Neural 
Networks (GNNs), Agarwal et al. (2022) pointed out the 
violation of several desirable properties, such as faithful-
ness, stability, and fairness preservation, indicating that not 
all explanation methods may be reliable.

(T-ER-4) Reliability and consistency of interpretation 
methods The effectiveness of various interpretation meth-
ods has been questioned (Hooker et al., 2019; Tomsett et al., 
2020). These studies found inconsistencies in the reliability 
of saliency metrics and interpretability methods, raising 
concerns about their validity and usage. In a similar vein, 
the work of Huber et al. (2022) and Kim et al. (2022) both 

indicated a need for computational evaluation and compari-
son of different perturbation-based saliency map approaches.

Contextual risks

Contextual risks in XAI systems encompass a broad range 
of potential issues that can arise when these systems are 
deployed in real-world contexts. These risks go beyond the 
technical aspects of the systems themselves and include 
security vulnerabilities, accountability challenges, cognitive 
biases and heuristics, argumentative and logical fallacies, 
epistemological issues of underdetermination and overdeter-
mination, problematic conceptualizations such as reification 
and essentialism, and ethical concerns. While these risks are 
diverse in nature, they share some common characteristics. 
They all have the potential to undermine the effectiveness, 
trustworthiness, and fairness of XAI systems, and they can 
lead to unintended consequences or harms for individuals 
and society. These risks often involve complex interactions 
between the technical, psychological, social, and ethical 
dimensions of XAI systems, requiring an interdisciplinary 
approach to understanding and mitigating them.

Security risks

Security risks in XAI systems encompass vulnerabilities 
that can be exploited by malicious actors to compromise 
the integrity, confidentiality, or availability of the system and 
its explanations. These risks can have severe consequences, 
such as privacy breaches, intellectual property theft, or sys-
tem manipulation.

(CT-SR-1) Privacy Vulnerabilities still on a technical 
level, Quan et al. (2022) highlight the risks associated with 
post-hoc explanations, revealing that they amplify the vul-
nerabilities of ML models to various attacks. These expla-
nation methods can act as information-rich side-channels, 
enabling adversaries to conduct evasion, membership infer-
ence, and model extraction attacks. These insights empha-
size the complexity of the privacy-explainability trade-off. 
Shokri et al. (2021) analyze feature-based model explana-
tions to show how they might inadvertently leak sensitive 
information about a model’s training set through member-
ship inference attacks. This leakage indicates the existence 
of individual data in a model’s training set, underscoring 
a challenging trade-off between data privacy and expla-
nation quality. Echoing these findings, Duddu and Boutet 
(2022) alert to attribute inference attacks. In their study, 
sensitive attributes such as race or sex can be inferred from 
model explanations, reinforcing the understanding of model 
explanations as a potent attack surface and a threat to data 
privacy. Similarly, Liu et al. (2022) propose an approach 
based on Rényi differential privacy (RDP), ensuring robust 

8  Machine learning models that use the BERT (Bidirectional Encoder 
Representations from Transformers) architecture, which is designed 
to pre-train deep bidirectional representations from unlabeled text, for 
various natural language processing tasks such as text classification 
(Devlin et al., 2019).
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interpretation through top-k robustness and offering a bal-
ance between robustness and computational efficiency.

(CT-SR-2) Instrumentalization Value theory, which 
considers transparency as an extrinsic value, suggests that 
transparency has utility only when it serves as a means to 
fulfill an intrinsic value. In some scenarios, transparency 
may be inconsistent when juxtaposed with intrinsic values 
such as the protection of privacy over personal information 
(Ronnow-Rasmussen, 2015). Despite being often viewed 
as a desirable outcome of explainability for its potential 
to enhance understanding and trust in the system, trans-
parency carries its risks. One such risk is the potential for 
instrumentalization, where explanations allows the gaming 
intentions of recipients. Disclosing detailed information can 
enable individuals or organizations to exploit loopholes or 
vulnerabilities for personal gain (Agre, 2014). Explanations 
can inadvertently provide insight into sensitive intellectual 
property or trade secrets, allowing competitors or malicious 
actors to gain an advantage. As extensively detailed within 
technical risks, other concerns include the potential for 
adversarial attacks and reverse engineering of models upon 
disclosing explanations (Kuppa & Le-Khac, 2020; Oh et al., 
2019), as well as the possibility of jeopardizing the security 
of individuals or organizations through the disclosure of sen-
sitive information (Weitzner et al., 2008).

Accountability risks

Accountability is a crucial aspect of explanations, referring 
to the responsibility and justification that explainers have for 
their claims and actions. Ensuring accountability in XAI sys-
tems, however, can be particularly challenging due to several 
factors (de Bruijn et al., 2022).

(CT-ACCR-1) Traceability of explanation design The 
inherent complexity of AI systems as well as the supply 
chain related to data lineage and deployment can obscure 
the agent making assumptions underlying an explanation, 
making it difficult to trace the reasoning or actions derived 
from their outputs (Cobbe et al., 2023). This obscurity can 
be exacerbated when AI systems are deployed maliciously or 
manipulated to deceive, for example, by using them outside 
of controlled contexts to attack or pollute the informational 
sphere (Weidinger et al., 2022).

(CT-ACCR-2) Appraising explainers Epistemic author-
ity, or the perceived expertise and credibility of an explainer, 
may project a false sense of certainty or completeness over 
explanations, fostering unwarranted trust in the explainer’s 
authority and judgments. This phenomenon can lead to def-
erence to authority, where recipients accept explanations 
without critical evaluation or consideration of alternative 
perspectives (Kruglanski et al., 2005; Zagzebski, 2012).

(CT-ACCR-3) Explainer’s overconfidence Epistemic 
arrogance, where explainers overestimate their knowledge or 

abilities, can lead to overconfidence or dismissal of alterna-
tive perspectives or evidence (Kruglanski, 1989). Judgmen-
tal overconfidence concerning explanatory understandings 
engenders inflated self-assessments among both explainers 
and recipients (Kruger & Dunning, 2000; Yates et al., 1997). 
This cognitive bias can stifle open-mindedness and critical 
thinking necessary for effective explanations, potentially 
leading to misguided or harmful decisions.

Heuristics & reception risks

Heuristics and reception risks in XAI systems arise when 
explanations are influenced by cognitive biases or heuristics, 
or misinterpreted by recipients (Horton & Keysar, 1996). 
These risks can lead to the oversimplification or misrepre-
sentation of complex issues, the reinforcement of existing 
biases, or the misinterpretation of the explanations’ impli-
cations. Explanations carry the risk of being perceived as a 
panacea or placebo, leading to a false sense of understand-
ing. People experience cognitive satisfaction when they feel 
they understand something, often called a “visceral rush of 
understanding” (Gopnik, 1998). This can lead to an overes-
timation of one’s own understanding, a bias known as the 
“illusion of explanatory depth” (Rozenblit & Keil, 2002). 
Furthermore, explanations that are framed in a certain way, 
such as by invoking neuroscience or other technical jargon, 
can be particularly seductive, even if the information is irrel-
evant or misleading (Weisberg et al., 2008). Such risks can 
distort comprehension of the subject matter, predominantly 
due to:

(CT-HRR-1) Cognitive heuristics Heuristics are cogni-
tive shortcuts that might lead to biased or incomplete rea-
soning. Two main heuristics potentially distort explanations. 
The availability heuristic, according to Tversky and Kahne-
man (1973), might result in misjudged likelihoods or impor-
tance due to reliance on easily retrievable information. On 
the other hand, the representativeness heuristic could con-
tribute to stereotyping or discrimination by judging events’ 
likelihood based on their fit into specific categories or ste-
reotypes (Kahneman & Tversky, 1972).

(CT-HRR-2)  Implications of language and semantic 
framing The choice of language and framing can uninten-
tionally oversimplify or misrepresent explanations. Ambigu-
ous language might cause misunderstandings or misinterpre-
tations (Levinson, 2000), while information framing could 
shape perceptions and understanding, potentially leading 
to diverse conclusions or attitudes (Kahneman & Tversky, 
1984).

(CT-HRR-3) Cognitive biases Prior beliefs and biases 
can influence how information is interpreted and presented, 
leading to oversimplification or misrepresentation. Con-
firmation bias-the tendency to seek and interpret informa-
tion that validates existing beliefs-might result in a narrow 
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understanding of the subject (Nickerson, 1998). Simultane-
ously, the illusion of explanatory depth, which is the over-
estimation of one’s understanding of a topic, could lead to 
overconfidence in the provided explanations despite possible 
knowledge gaps or inaccuracies (Rozenblit & Keil, 2002). 
Lastly, the recency effect considers how the most recent 
explanations are given more weight than older ones, even 
when the older ones may be more accurate or relevant. This 
bias can be counterbalanced by consistently emphasizing the 
most relevant or accurate explanations, irrespective of their 
recency (Tubbs et al., 1990; Tversky & Kahneman, 1973).

Argumentative & logical risks

Heuristics and reception risks are primarily concerned with 
how cognitive biases, heuristics, and the recipient’s inter-
pretation can influence the understanding and impact of 
explanations. These risks arise from the interaction between 
the explanations and the human recipients, and they are 
largely shaped by the recipients’ cognitive processes, prior 
knowledge, and contextual factors. On the other hand, argu-
mentative and logical risks focus on the internal structure, 
reasoning, and argumentation of the explanations them-
selves. These risks stem from flaws in explanations’ logical 
construction, like fallacies, circularity, or weak inferences. 
While these risks can also impact the recipients’ understand-
ing and acceptance of the explanations, they are primarily 
rooted in the explanations’ inherent logical and argumenta-
tive qualities.

An example is brought by aporia, an argumentative fal-
lacy where the recipient is confronted with a situation or 
explanation that contains an insoluble internal contradiction 
or paradox, resulting in confusion or bewilderment (Latour, 
1988). Another is non-sequitur, where the explanation fails 
to logically follow the premises or provide a reasonable con-
clusion (Walton, 2010). In some cases, explanations may 
even induce a situation of Obscurum per obscurius, igno-
tum per ignotius (Translatable as “The obscure through the 
more obscure, the unknown through the more unknown”), an 
attempt to explain something by using concepts or terms that 
are even more obscure or unfamiliar to the recipient (Galilei, 
1953; Wikipedia, 2023).

Circularity and tautology, as fallacies, hinder the trans-
mission of new information and obstruct a deeper compre-
hension of the subject matter. They are primarily self-refer-
ential, offering no informative value.

(CT-ALR-1) Circular reasoning A form of fallacy, circu-
larity or “begging the question”, arises when the conclusion 
of an argument is repackaged as one of its premises. This 
fallacy creates a loop of self-justifying statements that lack 
external validation and meaningful depth (Hahn, 2011; Wal-
ton, 1994). In the context of AI explanations, circularity may 
manifest as an overreliance on the model’s internal logic or 

mechanisms, devoid of external corroborative evidence or 
a broader understanding of the problem context. Mitigating 
circular reasoning in explanations requires grounding asser-
tions in data, external findings, and the broader context of 
the problem addressed.

(CT-ALR-2) Tautology Tautology is another form of 
fallacy that surfaces as redundant repetition in logic or lan-
guage, where a statement is framed as inherently true with-
out conveying additional insight (Meibauer, 2008). Tautolo-
gies present as excessive use of jargon or technical terms that 
obscure the true mechanism or contribute to the illusion of 
explanatory depth. Strategies to avoid tautology involve the 
use of precise and accessible language, avoidance of redun-
dancies, and inclusion of explicit detail to highlight unique 
concepts or processes.

To counter these argumentation risks, explainers shall 
strive to design explanations that are clear, logical, and based 
on familiar concepts and argumentation style (Keil, 2006; 
Keysar & Bly, 1995; Walton, 2008). Avoiding circularity 
and tautology extends beyond mere linguistic precision and 
logical structure, encompassing a critical assessment of 
assumptions and beliefs underpinning explanations. Thus 
in scientific disciplines, including AI, explanations should be 
empirically grounded, testable, and open to revision based 
on new evidence (Popper, 2014; Stanford, 2006).

Underdetermination & overdetermination

On an epistemological level, the phenomena of underdeter-
mination and overdetermination can pose multifaceted chal-
lenges in the domain of explanatory practice, giving rise to 
potential pitfalls in developing and presenting explanations.

(CT-DETR-1) Underdetermination Philosophical dis-
course in the field of science extensively addresses under-
determination, particularly in the context of theory selection 
(Kuhn, 1981; Stanford, 2006). The dilemma arises when 
there exist several theories with comparable plausibility, all 
capable of explaining the same observed phenomena but 
with no decisive criteria available for preferring one over 
the others. This inherent ambiguity often ignites controversy 
among scientists and may culminate in an impasse or lack 
of consensus in the scientific community. The so-called 
Rashomon effect is illustrative of underdetermination, as it 
underscores the possible multiplicity and subjectivity in the 
interpretation of the same event (Derrida, 2016; Leventi-
Peetz & Weber, 2022).

(CT-DETR-2) Overdetermination Conversely, overdeter-
mination becomes pertinent in disciplines such as psychol-
ogy and cognitive science. It is observed when numerous 
causes or factors are invoked to explain a single phenom-
enon, even when they may not all be necessary or directly 
pertinent. Consequently, an explanation becomes mired in 
excessive complexity, obscuring rather than illuminating the 
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understanding of the phenomenon in question (Waldmann, 
2000). An essential strategy for mitigating underdetermi-
nation and overdetermination involves careful scrutiny and 
evaluation of the evidence at hand, along with a pursuit of 
coherence and parsimony in the explanatory model (Lom-
brozo, 2011).

Reification & essentialism

Reification and essentialism are closely related risks that 
arise when explanations oversimplify or misrepresent com-
plex social constructs or reinforce stereotypical assumptions 
about individuals or groups. Reification and essentialism 
have been studied in various fields, including social psy-
chology, cognitive psychology, and philosophy.

(CT-RER-1) Reification It can be intended a social psy-
chology risk, associated with explanations occurring when 
abstract concepts or constructs are treated as if they are 
concrete entities with fixed identities and values. This over-
simplification or misrepresentation of a phenomenon can 
hinder further inquiry and understanding (Schank, 2004). 
For example, the reification of mental disorders as discrete 
entities with clear boundaries can obscure the complexity 
and variability of mental health experiences, which may lead 
to misdiagnosis or inappropriate treatment (Hyman, 2010). 
In philosophy, it has been used to describe how abstract 
concepts, such as justice or freedom, can be treated as if 
they are concrete entities with a clear definition and identity 
(Vandenberghe, 2015). In psychology, reification is linked 
to overgeneralizing from limited observations and relying on 
stereotypes and heuristics rather than critical thinking and 
empirical evidence (Heft, 2003).

(CT-RER-2) Essentialism On the other hand, it occurs 
when an explanation attributes inherent or immutable char-
acteristics to a particular entity or group, based on precon-
ceived notions or assumptions. This can lead to stereotyping 
or discrimination, and may be used to justify harmful or 
unjust practices or policies. Essentialism has been studied 
extensively in social psychology and has been shown to 
contribute to intergroup conflicts and inequalities (Devine, 
1989; McGarty et al., 2002; Rhodes & Moty, 2020). Moreo-
ver, the use of essentialist language in scientific explanations 
can have negative consequences for marginalized groups, 
reinforcing biases and perpetuating stereotypes (Inbar & 
Lammers, 2012). For instance, essentialist explanations 
of mental health conditions that attribute certain traits or 
behaviors to particular genders or ethnic groups can per-
petuate harmful stereotypes and contribute to disparities 
in access to care and treatment (Halpern, 2000; Rossnan, 
2006).

Both reification and essentialism can pose significant 
risks to the quality and effectiveness of explanations. From 
a social psychology perspective, deployers of XAI critically 

evaluate the language and concepts they use to avoid the 
superimposition of distorted frames over complex phenom-
ena (Keil, 2006). Similarly, concepts and constructs shall 
be recognized in their complexity and potential for varia-
tion across contexts and individuals (Gopnik et al., 2001), 
avoid making unwarranted assumptions about the inherent 
characteristics of individuals or groups (Medin & Ortony, 
1989). Some approaches to counter the risks of reification 
and essentialism include using probabilistic or fuzzy con-
cepts that acknowledge the variability and complexity of 
phenomena and recognizing the role of social and cultural 
factors in shaping experiences and identities (Haslam et al., 
2000; Medin, 1989).

Ethical concerns

To conclude, we stress how explanations carry ethical impli-
cations, especially when they involve decisions impacting 
individuals or groups. In legal or medical contexts, for 
instance, explanations can significantly affect people’s lives 
and well-being, contributing to systemic biases and injus-
tices that might stem from biased data, flawed algorithms, 
or misinterpretations by human decision-makers (Angwin 
et al., 2016; de Bruijn et al., 2022; Shokri et al., 2021). Not 
only related to essentialism, explanations can perpetuate 
harmful or discriminatory narratives with the presump-
tion of algorithmic accuracy, reinforcing views of certain 
sub-populations and exacerbating the marginalization and 
oppression of already disadvantaged groups (Eubanks, 2018; 
Harding, 1991; Rahman, 2020).

To recognize such ethical concerns necessitates diverse 
perspectives and voices in discussions around explainabil-
ity and its ethical implications, including public engage-
ment and participatory design (Cheng et al., 2019; Ehsan 
et al., 2022; Langer et al., 2021). In terms of public or 
business deliberation, it is important to acknowledge the 
potential limitations and trade-offs associated with inte-
grating ethical considerations into XAI systems. As an 
example, certain explanations might be geared to justify 
not just opposite ethical instances, but rather highlight the 
pros and cons of each.

A risk assessment framework for XAI systems

Building upon the comprehensive categorization of tech-
nicals and contextual risks in XAI systems, we propose 
a multi-layered risk assessment framework designed to 
guide the identification, prioritization, and mitigation of 
these risks in practice. The proposed multi-layered risk 
assessment framework for XAI systems draws inspiration 
from ERA methodology, which has gained traction in 
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the AI governance and risk management domain (Hasan, 
et al., 2022; Mökander & Floridi, 2022; Moss et al., 2021; 
Selbst, 2021). The framework consists of three key layers: 
the Intervention Layer (section “Intervention layer: risk 
prioritization & mitigation”), which focuses on risk pri-
oritization and the implementation of targeted mitigation 
strategies; the Management Layer (section “Management 
layer: iterative risk assessment process”), which empha-
sizes continuous monitoring, adaptive risk reassessment, 
and feedback-driven improvement; and the Information 
Layer (section “Information layer: documentation & com-
munication”), which ensures transparency through com-
prehensive documentation and communication. The frame-
work—visually summarized in Table 3 of the Appendix 
A—provide a structured approach for proactively manag-
ing XAI risks and fostering responsible development and 
deployment of XAI systems.

Intervention layer: risk prioritization & mitigation

We depart with a tiered intervention mechanism, facilitat-
ing the effective allocation of resources in response to per-
ceived risks, with primary emphasis on those holding the 
highest likelihood and potential impact. We envision this 
risk prioritization as an adaptable process, shifting focus 
according to emerging challenges within the context of 
XAI system deployment and development. Our risk miti-
gation strategies are bespoke in nature, tailored specifi-
cally to the context, needs, and identified risks within the 
XAI system under consideration. The Intervention Layer 
aligns with the risk prioritization stage of ERAs, where 
identified risks are assessed based on their likelihood and 
potential impact (Selbst, 2021).

Development of a risk matrix

The creation of a risk matrix provides a visual representation 
of risks based on their likelihood and impact. This enables 
effective prioritization of mitigation efforts. The risk matrix 
should be updated dynamically as new risks are identified or 
the XAI system evolves. Risk identification comprises the 
following components:

•	 Categories Risks should be segmented into meaning-
ful categories. The categorization of risks proposed in 
section “Categorization of risks in XAI systems” and 
visually represented in A.1 can serve as a touchstone 
that users of the framework can employ. Risks could 
be categorized first as technical or contextual, and then 
further specified into more detailed categories, such as 
robustness risks (T-RR), fairness risks (T-FR), evalua-

tion risks (T-ER), security risks (CT-SR), accountability 
risks (CT-ACCR​), and so on.

•	 Ownership When possible, clearly defined responsibility 
for each risk should be allocated to individuals or teams, 
taking into account the concept of distributed morality 
for accountability (Floridi, 2013, 2016a).

•	 Scores A standardized scoring system should be used to 
assess the likelihood and impact of each risk. The scoring 
system should be based on a combination of quantitative 
and qualitative factors, considering the potential conse-
quences of each risk on the XAI system’s performance, 
fairness, security, and overall trustworthiness.

Implementation of mitigation actions

For each identified risk, specific mitigation actions are 
devised to reduce the probability or severity of the risk. 
These mitigation actions can be broadly categorized into: 
Technical mitigation actions involving the implementation 
of strategies to enhance robustness, fairness, and privacy; 
organizational actions such as forming a governance com-
mittee; procedural actions like scheduling regular internal 
assessments or external audits.

Technical mitigation actions
XAI systems face various risks, including robustness, 

fairness, security, privacy, and evaluation challenges. To 
address these risks, a range of technical mitigation actions 
can be employed at different stages of the XAI pipeline:

Data preprocessing Data preprocessing techniques, such 
as re-sampling or re-weighting (Ghalebikesabi et al., 2021; 
Vreš & Robnik-Šikonja, 2022), can help mitigate data biases 
and enhance model fairness (T-RR-(1-5), T-FR-2). How-
ever, it is essential to be aware of potential data poisoning 
attacks that can manipulate the training data to influence 
model behavior and explanations (Baniecki & Biecek, 2022; 
Baniecki et al., 2022). To mitigate these risks, practition-
ers can employ data sanitization techniques to identify and 
remove poisoned data points, and use robust aggregation 
methods for global explanations (Liu et al., 2022; Rieger 
& Hansen, 2020). As a side consideration, stealthily biased 
sampling (Fukuchi et al., 2020) can be used to manipulate 
fairness metrics and conceal biases. To counter this, statisti-
cal tests can be used to detect significant differences between 
the original and sampled data distributions, and multiple 
fairness metrics should be compared across different sub-
groups to identify hidden biases (Fukuchi et al., 2020).

Model training and explanation generation

•	 Adversarial training (Lakkaraju et al., 2020; Madry et al., 
2018), minimax optimization (Lakkaraju et al., 2020), 
and certifiably robust explanations (Cohen et al., 2019; 
Liu et al., 2022; Virgolin & Fracaros, 2023; Wicker et al., 
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2022) can improve the model’s resilience against adver-
sarial attacks and backdoors (T-RR-(1-5), T-ER-3).

•	 Fairness-aware explanation methods, such as those con-
sidering sensitive attributes and incorporating fairness 
constraints (Carmichael & Scheirer, 2023; Ferry et al., 
2022; Weerts et al., 2023), can help mitigate biases in 
explanations (T-FR-(1-5)). However, achieving perfect 
fairness may not always be possible and may involve 
trade-offs with other desirable properties of explanations 
(Dai et al., 2022; Mehrabi et al., 2022).

•	 Focused sampling and on-manifold explainability tech-
niques (Ghalebikesabi et  al., 2021; Vreš & Robnik-
Šikonja, 2022) can improve the robustness of LIME and 
SHAP explanations (T-RR-(1-5), T-FR-2), but their 
effectiveness may depend on the quality of the sampling 
process and the characteristics of the data and model.

Explanation validation and evaluation

•	 Explanation validation methods, such as those proposed 
by Adebayo et al. (2018) and Zhang et al. (2018), Dai 
et al. (2022), can assess the fidelity, coherence, and sta-
bility of explanations (T-RR-(1-5), T-FR-1, T-FR-4, 
T-ER-(1-3)). Nevertheless these methods can be compu-
tationally expensive and may not guarantee the absence 
of all biases or vulnerabilities.

•	 Model and data debugging techniques (Adebayo et al., 
2020, 2022; Baniecki et al., 2022) can help diagnose 
errors and enhance robustness (T-RR-(1-5)), but their 
effectiveness may depend on the availability of appropri-
ate tools and expertise.

•	 Uncertainty quantification frameworks, like MeTFA 
(Gan et al., 2022), can provide a measure of explanation 
uncertainty and increase stability in adversarial scenar-
ios (T-RR-(1-5)). This still considering that quantifying 
uncertainty may not always be straightforward and may 
depend on the quality of the hypothesis tests and assump-
tions.

Security and privacy

•	 Data reconstruction attacks can exploit explanations to 
retrieve sensitive information about the training data 
(Ferry et al., 2022). Defenses against such attacks include 
limiting the granularity of explanations and applying 
differential privacy techniques (Dwork, 2006; Liu et al., 
2022; Patel et al., 2022).

•	 Explanations can be used to perform membership infer-
ence attacks, breaching the privacy of individuals whose 
data was used to train the model (Shokri et al., 2021). 
Regularization techniques (Chen et  al., 2019; Dom-
browski et al., 2022) and knowledge distillation (Paper-

not et al., 2016) can help mitigate these risks, but may 
impact explanation quality.

Emerging techniques

•	 Concept-based explanations, such as TCAV (Kim et al., 
2018), can provide human-understandable explanations 
but may face challenges in terms of robustness and gen-
eralizability (Brown & Kvinge, 2023).

•	 Counterfactual explanations (Stepin et al., 2021) can offer 
actionable insights but may be sensitive to adversarial 
perturbations (Keane & Smyth, 2020; Keane et al., 2021; 
Kuhl et al., 2022; Slack et al., 2021a). Techniques such as 
robust optimization (Cohen et al., 2019; Lakkaraju et al., 
2020; Virgolin & Fracaros, 2023) and recourse invalida-
tion rate minimization (Pawelczyk et al., 2023) can help 
improve their robustness.

While this list of mitigation actions covers a wide range of 
strategies, it is not exhaustive, and future research should 
aim to expand upon this framework as the field of XAI 
evolves. Practitioners should carefully consider the trade-
offs and limitations associated with each technique and 
select the most appropriate strategies for their specific use 
case (Baniecki & Biecek, 2024; de Bruijn et al., 2022).

Organizational mitigation actions

•	 Establishing a governance committee Forming a com-
mittee comprising experts from different domains can 
improve risk management. This committee oversees the 
risk assessment process and ensures adherence to regu-
latory and ethical standards. This committee could, for 
instance, ensure that technical risks are mitigated effec-
tively, while, for contextual risks, oversee the disclosure 
of information to prevent instrumentalization (CT-SR-2) 
or deploy measures such as obfuscation, abstraction, and 
pseudonymization to protect sensitive information.

•	 Defining accountability Explicit roles and responsibili-
ties in managing risk, such as in CT-ACCR-1 explana-
tion design traceability, can enhance accountability and 
promote coordinated action (Floridi, 2016a). To address 
accountability risks, explainers should be mindful of 
their own epistemic limitations and to recognize the 
value of diverse perspectives and knowledge. Yet, even 
when systems are complex and assigning responsibil-
ity individually is not feasible, it is important to devise 
a method to assign it collectively using a distributed 
morality (Floridi, 2013, 2016a): within this lens, a con-
sequence can be seen as a product of a series of intercon-
nected actions produced by a network of agents. Our first 
step should be to recognize these nodes of “distributed 
moral actions”. Leveraging the idea of “faultless account-
ability” or “strict liability”, full moral responsibility is 
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bestowed on all agents within the relevant causal net-
work: essentially, we consider all nodes as “responsible 
by default”. Subsequently, an “overridability clause” 
may be employed to reassign responsibility in varying 
degrees, or even remove it completely, if an agent can 
prove they had no participation in the interactions. Lastly, 
it should be implemented a recurring adjustment mecha-
nism until reaching a level that is axiologically satisfac-
tory.

•	 Promoting a risk-aware culture Fostering a culture that 
is conscious of and proactive towards risk management 
can help to address the CT-DETR-1 underdetermination 
and CT-DETR-2 overdetermination phenomena. Regular 
training sessions can emphasize the importance of pur-
suing coherence and parsimony in explanatory models 
while mitigating risks associated with uninformative, 
misleading, or discriminating explanations (CT-RER-1, 
CT-RER-2, CT-HRR-1, CT-HRR-2, CT-HRR-3).

Procedural mitigation actions

•	 Dynamic risk assessment A continuously updated risk 
assessment is crucial in managing the dynamic and 
complex nature of XAI systems. Having an iterative 
process that can trace explanation design and appraise 
explainers can help to prevent risks like overconfidence 
and epistemic arrogance (CT-ACCR-2, CT-ACCR-3). 
Moreover, a recurring adjustment mechanism, such as an 
“overridability clause” in assigning responsibility, could 
be an important part of this assessment process (Floridi, 
2013).

•	 Ethical considerations XAI systems have the potential 
to significantly impact individuals and society, making 
it crucial to integrate ethical considerations into their 
design and deployment. To address these concerns, it 
is recommendable for XAI designers to be aware of 
potential ethical implications over explanations’ impact 
and strive to integrate ethical considerations into the 
design and deployment of explainable systems (Floridi, 
2016b; Robbins, 2019). Practical guidelines, like ethical 
impact assessments, ethics committees, or Value Sen-
sitive Design (VSD) principles, can provide actionable 
guidance for developers and policymakers to operation-
alize ethical considerations in XAI design (Friedman 
& Kahn, 2002; Hagendorff, 2019; Morley et al., 2023). 
During deployment, subjecting these systems to ongoing 
evaluation and scrutiny is crucial to ensure that ethical 
considerations are effectively integrated and maintained 
(Löfström et al., 2022; Sokol & Flach, 2020).

Management layer: iterative risk assessment process

Building upon the risk mitigation strategies established in 
the Intervention Layer, the Management Layer emphasizes 
continuous monitoring, adaptive risk reassessment, and 
feedback-driven improvement. This layer aligns with the 
iterative nature of ERAs, which require ongoing monitoring 
and updating of risk assessments as the AI system evolves 
and new risks emerge (Mökander & Floridi, 2022; Morley 
et al., 2023; Tartaro et al., 2024).

Continuous monitoring and adaptive risk reassessment

Rigorous, systematic auditing and monitoring practices are 
established, alongside a flexible approach to risk reassess-
ment that adjusts in response to system evolution or envi-
ronmental changes. Automated risk assessment tools that 
adapt to changes in the system or its operating environment 
are employed, using dynamic risk assessment methods (Raji 
et al., 2020; Raveendran et al., 2022; Tartaro et al., 2024).

Feedback‑driven improvement

Mechanisms to gather and integrate feedback from various 
stakeholders are established, refining the system and its pro-
cesses in a user-centric manner.

•	 Feedback collection User surveys, stakeholder meetings, 
and open forums are conducted to collect feedback on the 
system’s operation, explanation generation, and potential 
areas of concern, following user-centered design prin-
ciples (Cabitza et al., 2023; Ehsan et al., 2022; Langer 
et al., 2021; Liao & Varshney, 2021).

•	 System refinement The collected feedback is used to 
refine the explanation generation process, enhance sys-
tem security, and address other areas of concern. For 
example, if users find the explanations too technical, 
adjustments are made to simplify the language used or 
provide additional contextual information. This can help 
tackle the CT-DETR-2 overdetermination risk by focus-
ing improvements on actual user needs and concerns.

Information layer: documentation & communication

The final layer of the risk assessment framework, the Infor-
mation Layer, ensures transparency through comprehensive 
documentation and communication. This layer aligns with 
the importance of transparency and stakeholder engagement 
in ERAs (Moss et al., 2021).
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Integration of intrinsic values

Transparency is integrated with other core values, such as 
accessibility and reproducibility. Relevant information is 
made readily available and comprehensible to a diverse array 
of stakeholders. Risk assessment findings are presented 
in a format that is easily digestible and understandable, 
regardless of the stakeholder’s technical expertise, helping 
to bridge the gap between experts and non-experts, foster-
ing informed decision-making, and promoting stakeholder 
engagement.

Documentation and reporting

Develop comprehensive documentation on the XAI system, 
including its architecture, data sources, algorithms, and 
explanation techniques, making it accessible to authorized 
stakeholders.

•	 Comprehensive documentation The pivotal function of 
documentation extends beyond record-keeping to delin-
eating the intended and unintended uses of a particular 
AI system. Throughout the development and deployment 
AI pipeline, the concept of model cards is introduced 
(Mitchell et al., 2018). These comprehensive documents, 
widely employed today by developers, researchers, and 
industries, detail the technical specifications of a specific 
AI model, employing language that is as accessible as 
possible to a diverse array of stakeholders, ranging from 
policymakers to individuals with more technical back-
grounds. Concurrently, considerable effort is devoted to 
documenting the dataset upon which a given AI model 
has been trained. The research conducted by Gebru et al. 
(2021) highlights the advantages not only for the techni-
cal and social appraisal of certain datasets but also for 
understanding their societal implications. For instance, 
the potential under-representation or over-representation 
of specific populations or languages within a dataset can 
have significant technical and social consequences.

•	 Performance reports Reports on the system’s perfor-
mance, identified risks, and mitigation measures are 
regularly published, ensuring that authorized stakehold-
ers are informed of the system’s ongoing development 
and impact. These reports can be dual in nature: inter-
nal reports serve as follow-ups on issues specific to the 
team, while external reports seek to inform a particular 
stakeholder group or a broader group. In either case, a 
timeline must be set and met, and most importantly, these 
reports should be informed by the requirements set by the 
documentation of the specific artifact.

•	 System limitations and assumptions Information on the 
XAI system’s limitations and assumptions is shared, 
enabling stakeholders to understand and account for 

potential uncertainties in the explanations, maintaining 
transparency and verifiability (Gan et al., 2022; Papernot 
et al., 2016; Slack et al., 2021b).

Use case example

To illustrate the practical implications of our risk assess-
ment framework, we present an hypothetical use case involv-
ing the application of an XAI system for fraud detection in 
benefit applications. In recent years, several countries have 
automated welfare distribution and fraud detection processes 
by employing risk scoring algorithms, such as Denmark 
(Jørgensen, 2023), the United States (Eubanks, 2018), and 
even World Bank programs (Human Rights Watch, 2023). In 
these scenarios, especially because of its public relevance, 
agencies and governments are increasingly being asked to 
provide explanations with respect to automated decisions 
and their impacts on people. This is particularly true in the 
Netherlands, where in the wake of several scandals related 
to the use of algorithms to detect fraud against the state in 
applying for benefits the country is now increasing trans-
parency measures and process monitoring (Bekker, 2020; 
Hadwick & Lan, 2021; Wieringa, 2023).

Recently, an investigation revealed that the city of Rotter-
dam had been using risk scoring techniques to determine the 
risk of fraud in benefit applicants (Nast, 2023). The model 
employed indicators such as gender, age, and knowledge of 
Dutch language, effectively penalizing and flagging women, 
younger individuals, and people with migratory backgrounds 
as high-risk. Despite not having explicit XAI systems in 
place, this case exemplifies the potential ethical issues that 
could arise if explanations were provided without proper risk 
assessment and mitigation measures.

The supervised machine learning system used by Rot-
terdam from 2017 to 2021, a Gradient Boosting Machine, 
relied on 315 variables, including mental health history, per-
sonal relationships, and languages spoken, to assess the risk 
of fraud. Experts described this approach as amplifying his-
torical discrimination, creating a dehumanizing environment 
for beneficiaries that extended beyond biases in the training 
data, permeating the choice of variables, model design, and 
policy process (Nast, 2023).

In the context of Rotterdam’s risk scoring system, poten-
tial risks included (Table 1):

CT-SR-1 (Privacy Vulnerabilities) and CT-SR-2 
(Instrumentalization) were lower likelihood risks, but 
privacy vulnerabilities could still have a medium impact, 
necessitating robust mitigation measures by AI Engineers.

T-FR-2 (Biased Sampling) and T-FR-1 (Fairwashing) 
were crucial fairness risks. Biased sampling, a high likeli-
hood risk, could have a medium impact on model fairness, 
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while fairwashing, a medium likelihood risk, could poten-
tially mislead users about the model’s fairness, having a high 
impact. These risks would fall under the responsibility of the 
AI Ethics Committee.

CT-RER-2 (Essentialism), CT-ALR-1 (Circular Rea-
soning), and CT-DETR-2 (Overdetermination) were 
high likelihood risks associated with explanation quality, 
with varied impacts. Essentialism and overdetermination 
could significantly mislead interpretation due to biased 
fairness measures, having a high impact. Circular reason-
ing, although likely, generally posed a low impact. The 
AI Governance Board would be responsible for mitigat-
ing these risks, ensuring high-quality and comprehensible 
explanations.

The application of our risk assessment framework in this 
case would have prioritized these risks based on their likeli-
hood and impact, allocating resources to address the most 
significant ones first. Each layer of the framework plays a 
crucial role in mitigating different aspects of the identified 
risks:

•	 The intervention layer would have focused on immedi-
ate risk mitigation strategies. For instance, to address 
T-FR-2 (Biased Sampling), it would have implemented 
data preprocessing techniques such as re-sampling or re-
weighting. To mitigate evaluation risks, it would have 
established robust explanation validation procedures. The 
layer would also have set up a governance committee to 
oversee the ethical deployment of the system, directly 
addressing accountability risks CT-ACCR-(1-3).

•	 The management layer would have ensured the long-
term effectiveness of these interventions through regular 
monitoring, adaptive risk reassessment, and feedback-
driven improvements. This ongoing process would have 
been crucial in identifying and addressing emerging risks 
or changes in the operational environment (Raji et al., 
2020; Tartaro et al., 2024). For example, it could have 
detected shifts in the prevalence of CT-DETR-2 (Over-
determination) or CT-DETR-1 (Underdetermination) 
risks over time, allowing for timely adjustments to the 
explanation generation process.

•	 The information layer would have complemented these 
efforts by focusing on comprehensive documentation, 

transparent communication with stakeholders, and inclu-
sive stakeholder engagement. This layer would have been 
particularly effective in mitigating CT-RER-2 (Essen-
tialism) risks by ensuring that the system’s limitations 
and potential biases were clearly communicated. It would 
also have facilitated early detection of flaws and pro-
moted trust in the system (Langer et al., 2021), further 
reinforcing the accountability measures of the Interven-
tion Layer.

This case demonstrates how our framework’s layers work 
together to address specific risks. The Intervention Layer 
would directly tackle biased sampling through data pre-
processing. The Management Layer would continually 
monitor for emerging risks like overdetermination in 
explanations. The Information Layer would ensure trans-
parent communication about the system’s limitations, 
mitigating essentialism risks. Rotterdam’s experience 
highlights the critical need for comprehensive risk assess-
ment in public sector XAI. Technical explanations alone 
are insufficient; they must be coupled with social context. 
An XAI system reiterating biased criteria could perpetuate 
discrimination, potentially discouraging the use of auto-
mated risk assessment altogether. This underscores the 
importance of our multi-layered approach in developing 
trustworthy, fair XAI systems for public use.

Conclusion

This study introduces a novel risk assessment framework for 
XAI systems, offering a multi-layered approach to identify, 
prioritize, and mitigate technical and contextual risks. The 
framework enables tailored mitigation strategies, continu-
ous monitoring, feedback-driven improvement, and transpar-
ent documentation. By proactively managing risks through 
a holistic, iterative process, the framework promotes the 
ethical, accountable, and trustworthy deployment of XAI 
systems. We conclude by discussing our current research 
limitations and directions.

Table 1   Updated risk matrix with main risks highlighted

Likelihood ∖ Impact Low impact Medium impact High impact Risk owner

Low likelihood CT-SR-2: Instrumentalization CT-SR-1: Privacy Vulnerabilities AI Engineers
Medium likelihood T-FR-1: Fairwashing AI Engineers
High likelihood CT-ALR-1: Circular Reasoning T-FR-2: Biased Sampling CT-RER-2: Essentialism

CT-DETR-2: Overdetermination
AI Ethics 

Committee 
Board
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Limitations

Despite the comprehensive nature of our risk assessment 
framework, we acknowledge several limitations:

•	 The rapidly evolving landscape of XAI makes it chal-
lenging to provide an exhaustive catalog of all potential 
risks. While we do not provide an exhaustive risk list 
for XAI, our study’s goal is rather to foster an ongoing 
dialogue on the identification, understanding, and mitiga-
tion of these risks across diverse contexts. We encour-
age other researchers to adapt our methodology and risk 
categorization to their unique circumstances and refine 
them as required.

•	 Our methodology, while structured, is more qualitative 
compared to systematic literature reviews. This approach 
was necessary to capture the inherent complexity of soci-
otechnical risks associated with XAI explanations, which 
may not be easily reduced to a set of predefined keywords 
or a narrower focus on technical issues that might likely 
arise from contextual risks.

•	 The dynamic nature of the XAI field suggests that mul-
tiple XAI applications may interact in unforeseen ways, 
giving rise to new risks that resist fixed categorization. 
Examining risks from multiple perspectives is crucial, 
as they often exist in a complex web of interconnections 
where the implications of one issue can cascade into 
another (Cobbe et al., 2023; Floridi, 2016a; Sambasivan 
et al., 2021).

Research directions

Building upon the limitations identified, we outline sev-
eral research directions to further develop and validate 
our XAI risk assessment framework. Firstly, we plan to 
transition our framework from a theoretical model to an 
empirically validated tool, as reflected in the growing 
attention towards operationalizing AI ethics impact assess-
ments (Brown et al., 2021; Hasan, et al., 2022; Mökander 

& Floridi, 2022; Moss et al., 2021). This will involve 
applying the framework to real-world XAI systems and 
assessing its effectiveness in identifying and mitigating 
risks, also regularly updating the framework. To compre-
hensively address the multifaceted complexities of XAI 
risks, we will actively seek to incorporate diverse perspec-
tives from a range of stakeholders, including developers, 
end-users, policymakers, and domain experts (Ehsan et al., 
2022; Langer et al., 2021). Finally, to support the practical 
application of our framework, we aim to develop standard-
ized tools and metrics for XAI risk assessment, similar 
to the efforts made by (Arnold et al., 2019; Gebru et al., 
2021; Mitchell et al., 2018; Sokol & Flach, 2020). This 
will include creating risk assessment templates, check-
lists, and guidelines that can be easily adapted to different 
XAI use cases and domains, enhancing the framework’s 
robustness, applicability, and practical impact. As a final 
consideration, our research revealed a scarcity of struc-
tured attempts to proactively address both technical and 
sociotechnical risks in XAI. This observation aligns with 
the current state of AI ethics research which—as denoted 
by (Hickok, 2021)—is transitioning from principle affir-
mation to operationalization (Hagendorff, 2019; Morley 
et al., 2023). As initiated by Kaur et al. (2020) and Schem-
mer et al. (2022), we urge the XAI community to focus 
on developing and evaluating solutions that align with 
stakeholders’ needs, industry requirements, and regulatory 
norms (Ehsan et al., 2022; Nannini et al., 2023), rather 
than solely advancing technical constructs.

Appendix A: tables

A.1: categories of risk

See Table 2.
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Table 2   Categorization of risks

Category Subcategory References

Technical
 Robustness T-RR-1: Attacks on saliency-based explanation 

methods
Adebayo et al. (2018), Alvarez-Melis and Jaakkola 

(2018),  Lundberg and Lee (2017), Ribeiro et al. 
(2016), Slack et al. (2020), Tang et al. (2022), Woods 
et al. (2019), Zhang et al. (2018, 2020)

T-RR-2: Manipulation of counterfactual explanations Keane and Smyth (2020),  Keane et al. (2021), Kenny 
and Keane (2021), Kuhl et al. (2022), Mishra et al. 
(2021), Slack et al. (2021a), Stepin et al. (2021), Vir-
golin and Fracaros (2023), Wachter et al. (2017)

T-RR-3: Attacks on concept-based explanation 
methods

Brown and Kvinge (2023), Ghorbani et al. (2019), Kim 
et al. (2018), Sinha et al. (2022)

T-RR-4: Adversarial perturbations affecting explana-
tions

 Baniecki et al. (2022), Mehrabi et al. (2021), Nanda 
et al. (2021), Solans et al. (2020), Tang et al. (2022), 
Zhang et al. (2021)

T-RR-5: Explanation-aware backdoors  Noppel et al. (2023)
T-RR-6: Debugging challenges  Adebayo et al. (2020, 2022), Dai et al. (2022)
T-RR-7: Transferability of adversarial attacks  Lakkaraju et al. (2020), Sinha et al. (2021)

 Fairness T-FR-1: Fairwashing  Aïvodji et al. (2019, 2021)
T-FR-2: Biased sampling  Fukuchi et al. (2020), Laberge et al. (2022)
T-FR-3: Adversarial poisoning Mehrabi et al. (2021),  Solans et al. (2020)
T-FR-4: Manipulation of post-hoc explanations Dimanov et al. (2020), Laberge et al. (2022), Merrer and 

Trédan (2020)
T-FR-5: Explanation disparity risks Balagopalan et al. (2022),  Dai et al. (2022)

 Evaluation T-ER-1: Dependence on model assumptions Arora et al. (2022),  Noack et al. (2021)
T-ER-2: Evaluation manipulation and deception Adebayo et al. (2022),  Warnecke et al. (2020)
T-ER-3: Robustness-explainability trade-off Agarwal et al. (2022), Noack et al. (2021),  Rudin 

(2019)
T-ER-4: Reliability of interpretation methods  Hooker et al. (2019), Huber et al. (2022), Kim et al. 

(2022), Tomsett et al. (2020)
Contextual
 Security CT-SR-1: Privacy vulnerabilities Duddu and Boutet (2022), Liu et al. (2022), Quan et al. 

(2022), Shokri et al. (2021)
CT-SR-2: Instrumentalization Agre (2014),  Dwork (2006), Kuppa and Le-Khac 

(2020), Metcalf and Crawford (2016), Oh et al. (2019), 
Patel et al. (2022), Ronnow-Rasmussen (2015),  
Weitzner et al. (2008)

 Accountability CT-ACCR-1: Traceability of explanation design  Cobbe et al. (2023), Weidinger et al. (2022)
CT-ACCR-2: Appraising explainers  Kruglanski et al. (2005), Zagzebski (2012)
CT-ACCR-3: Explainer’s overconfidence Floridi (2013, 2016a), Kruger and Dunning (2000), 

Kruglanski (1989), Yates et al. (1997)
 Heuristics & reception CT-HRR-1: Cognitive heuristics  Kahneman and Tversky (1972), Tversky and Kahneman 

(1973)
CT-HRR-2: Implications of language and semantic 

framing
Kahneman and Tversky (1984),  Levinson (2000)

CT-HRR-3: Cognitive biases  Nickerson (1998), Rozenblit and Keil (2002), Tubbs 
et al. (1990), Tversky and Kahneman (1973)

 Argumentative & logical CT-ALR-1: Circular reasoning  Hahn (2011), Walton (1994)
CT-ALR-2: Tautology  Meibauer (2008), Popper (2014), Stanford (2006)

 Under & over determination CT-DETR-1: Underdetermination  Derrida (2016), Kuhn (1981), Leventi-Peetz and Weber 
(2022), Stanford (2006)

CT-DETR-2: Overdetermination Lombrozo (2011),  Waldmann (2000)
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A.2: framework layers

See Table 3.

Table 2   (continued)

Category Subcategory References

 Reification & essentialism CT-RER-1: Reification Heft (2003), Hyman (2010), Lakoff (2008), Lakoff et al. 
(1999), Schank (2004), Searle (1979), Vandenberghe 
(2015), Watson (2019)

CT-RER-2: Essentialism  Devine (1989), Inbar and Lammers (2012), McGarty 
et al. (2002), Rhodes and Moty (2020), Rossnan 
(2006)

Table 3   Details of the XAI Risk Management Framework

Components Subcomponents Description

Intervention Risk Matrix
Development

Risk
Categories

Segment into categories and subcategories following technical 
and contextual risks

Risk
Ownership

Define and allocate responsibilities for each risk to individuals 
or teams to promote accountability

Risk
Scores

Employ a standardized scoring system to assess the likelihood 
and impact of each risk using methods

Implement Mitigation Technical
Actions

Implement technical solutions (e.g., data pre-processing, adver-
sarial training)

Organizational Actions Form a governance committee, define clear roles and responsi-
bilities and promoting risk communication

Procedural Actions Implement a dynamic risk assessment process
Management Continuous Monitoring &

Adaptation
System
Audits

Regularly assess the performance, fairness, and security of the 
XAI system using methods for fairness auditing and robust-
ness to adversarial perturbations

Adaptive Risk
Reassessment

Employ automated risk assessment tools that adapt to changes 
in the system or its operating environment using dynamic risk 
assessment methods

Mitigation
Strategy
Adjustment

Adjust the mitigation strategies by adopting new encryption 
standards or incorporating additional adversarial training 
methods as per audit findings

Feedback-Driven Improvement Feedback
Collection

Conduct user surveys or adopt any other strategy to collect 
feedback following user-centered design principles

System
Refinement

Use the collected feedback to refine the system as per usability 
engineering models

Information Integration of Core Values Accessibility Ensure that information is readily available and comprehensible
Reproducibility Ensure that techniques are verifiable and can be replicated 

through comprehensive documentation
Documentation & Reporting Comprehensive Documentation Develop comprehensive documentation on the XAI system, 

following software documentation best practices
Performance Reports Regularly report over system’s performance, identified risks, 

and mitigation measures
System
Limitations

Share information on the system’s limitations and assumptions
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