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Abstract
We show that under some natural geometric assumption, Einstein metrics on conformal
products of two compact conformal manifolds are warped product metrics.
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1 Introduction

Given two Riemannian manifolds (M1, g1), (M2, g2), the product M1 × M2 carries a natural
metric g = g1 + g2 (the Riemannian product metric) whose Levi–Civita connection has
reducible holonomy. Conversely, the local de Rham theorem states that every Riemannian
manifold (M, g)whose Levi–Civita connection has reducible holonomy, is locally isometric
to a Riemannian product.

However, things are more complicated in the category of conformal manifolds. The notion
of product is no longer canonically defined, and there is no distinguished connection playing
the role of the Levi–Civita connection as in Riemannian geometry. Recall that a conformal
class on a smooth manifold M is an equivalence class c of Riemannian metrics for the
equivalence relation defined by

g ∼ g′ ⇐⇒ ∃ f ∈ C∞(M), g′ = e2 f g.

By the very definition, every Riemannian metric g determines a conformal class denoted
[g]. A linear connection ∇ on (M, c) is called conformal if ∇g = −2θ g ⊗ g for every
Riemannian metric g ∈ c, where θ g is a 1-form called the Lee form of ∇ with respect to
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g. This 1-form transforms according to the rule θ g
′ = θ g − d f for every other conformally

equivalent metric g′ = e2 f g.
In the conformal setting one has to replace the Levi–Civita connection by the set of torsion-

free conformal connections, called Weyl connections. This set is an affine space modeled on
the vector space of real 1-forms. A Weyl connection is called closed (resp. exact) if its Lee
form with respect to each metric in the conformal class is closed (resp. exact). From the
above transformation rule it readily follows that a Weyl connection is closed (resp. exact) if
and only if it is locally (resp. globally) the Levi–Civita connection of a metric in the given
conformal class.

Unlike the Riemannian case, given two conformal manifolds (M1, c1), (M2, c2), the prod-
uct M1 × M2 is no longer endowed with a natural “product” conformal structure, but rather
with a set of conformal structures obtained by choosing Riemannian metrics gi ∈ ci and
functions fi ∈ C∞(M1 × M2) for i ∈ {1, 2} and defining c = [e2 f1g1 + e2 f2g2]. These
conformal classes are called conformal product structures. Each conformal product structure
carries a unique compatible Weyl connection whose holonomy preserves the decomposition
TM = TM1 ⊕ TM2 and conversely, every conformal class carrying a Weyl connection with
reducible holonomy is locally a conformal product structure [3, Theorem 4.3].

The aim of this paper is to study conformal product structures on compact manifolds M =
M1 × M2 containing an Einstein metric. Since every conformal class on a compact surface
contains Einstein metrics, we will implicitly assume throughout the text that dim(M) ≥ 3. It
turns out that this problem can be understood as part of a long-term classification project for
compact Riemannian manifolds (M, g) with special holonomy, carrying a Weyl connection
∇ (different from the Levi–Civita connection of g), which also has special holonomy.

Some parts of this project have already been carried out recently. Indeed, when∇ is exact,
this reduces to the study of conformal classes containing two non-homothetic Riemannian
metrics with special holonomy, and was solved in [9] and [11]. The case where ∇ is closed
but non-exact, was solved in [2]. It is thus natural to consider the remaining case, where ∇
is non-closed.

Using theMerkulov–Schwachhöfer classification [10] of holonomy groups of torsion-free
connections applied to the special case of Weyl structures, we obtain that if the dimension
of M is different from 4, then a non-closed Weyl connection ∇ has special holonomy if and
only if it is reducible (whence locally the adapted Weyl connection of a conformal product).
Moreover, according to the Berger–Simons holonomy theorem, if the Levi–Civita connection
of g has special holonomy, then g is either reducible, or Kähler, or Einstein. This last case
is thus contained in the problem mentioned above (but of course the inclusion is strict, since
not every Einstein metric has special holonomy).

It turns out that this problem is too hard in full generality. In order to attack it, we make a
simplification, namely we assume that the restriction to one of the factors of the conformal
product of the Lee form of the reducible Weyl structure ∇ with respect to g, is ∇-parallel in
the direction of the second factor. Equivalently, we are looking for Einstein metrics of the
form e2 f1g1 + e2 f2g2 on M1 × M2, where f1 only depends on M2 and f2 is any function
on M1 × M2. Such metrics generalize the so-called doubly warped metrics, which have the
same expression e2 f1g1 + e2 f2g2, except that f1 is a function on M2 and f2 is a function on
M1. Our main result is the following:

Theorem 1.1 Let (M1, c1) and (M2, c2) by two compact conformal manifolds such that
dim(M1 × M2) ≥ 3 and let c be a conformal product structure on M1 × M2, with adapted
Weyl connection ∇. Assume that c contains an Einstein metric g, such that the restriction to
TM2 of the Lee form of ∇ with respect to g is ∇-parallel in the direction of TM1. Then there
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exist metrics hi ∈ ci such that c = [h1 + h2], i.e. the Einstein metric g is conformal to a
product metric.

By Kühnel and Rademacher [8, Theorem 3.2 and Corollary 3.4], this can only happen if
g is a warped product metric. A complete classification of warped product Einstein metrics
on compact manifolds is not yet available, except when the base of the warped product is
one-dimensional.

2 Preliminaries

2.1 Weyl connections

A Weyl connection on a conformal manifold (M, c) is a torsion-free linear connection ∇
which preserves the conformal class c in the sense that for each metric g ∈ c, there exists a
unique 1-form θ g ∈ �1(M), called the Lee form of D with respect to g, such that

∇g = −2θ g ⊗ g. (1)

The Weyl connection ∇ is then related to the Levi–Civita covariant derivative ∇g by the
well-known formula

∇X = ∇g
X + θ g(X)Id + θ g ∧ X , ∀X ∈ TM, (2)

where θ g ∧ X is the skew-symmetric endomorphism of TM defined by

(θ g ∧ X)(Y ) := θ g(Y )X − g(X , Y )(θ g)�.

AWeyl connection D is called closed if it is locally the Levi–Civita connection of a (local)
metric in c and is called exact if it is the Levi–Civita connection of a globally defined metric
in c. Equivalently, D is closed (resp. exact) if its Lee form with respect to one (and hence to
any) metric in c is closed (resp. exact).

2.2 Differential operators on products

Let M = M1 × M2 be a product manifold and let πi : M → Mi denote the standard
projections for i = 1, 2. We denote by n1, n2 the dimensions of M1, M2 and by n := n1 +n2
the dimension of M .

For each 0 ≤ k ≤ n, the bundle of k-forms of M splits into direct sums

�kM =
⊕

p+q=k

π∗
1 (�pM1) ⊗ π∗

2 (�qM2) =: �p,qM,

where of course the notation �p,qM is specific to this product setting, and should not be
confused with the Dolbeault decomposition on complex manifolds. The exterior differential
on M maps C∞(�p,qM) onto C∞(�p+1,qM ⊕ �p,q+1M). The projections on the two
factors of this direct sum are first-order differential operators denoted by d1 and d2 which
satisfy the relations:

d = d1 + d2, d21 = d22 = d1d2 + d2d1 = 0. (3)

Assume now that g1, g2 are Riemannian metrics on M1, M2. The formal adjoints of di with
respect to the Riemannian metric g1 + g2 on M are denoted by δi . If {eα}1≤α≤n1 denotes a
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local orthonormal basis of TM1, inducing a local frame of the distribution π∗
1 (TM1) ⊂ TM ,

then

d1 =
n1∑

α=1

eα ∧ ∇g1+g2
eα , δ1 = −

n1∑

α=1

eα�∇g1+g2
eα . (4)

These operators are clearly conjugate with the corresponding operators on the factors, in the
sense that if ω is an exterior form on M1, then

d1(π
∗
1ω) = π∗

1 (dM1ω), δ1(π
∗
1ω) = π∗

1 (δg1ω), (d1δ1 + δ1d1)(π
∗
1ω) = π∗

1 (
g1ω).

We denote by 
1 := d1δ1 + δ1d1.

Lemma 2.1 If a function f ∈ C∞(M) satisfies d1d2 f = 0, then f is a sum of two functions,
each of them depending only on one of the factors, i.e. there exist functions ai ∈ C∞(Mi )

such that f = a1 + a2.

Proof Let X1 ∈ C∞(M1) be any vector field. Clearly X1�(d2 f ) = 0 and by the Cartan
formula together with (3) we can write

LX1(d2 f ) = d(X1�(d2 f )) + X1�(dd2 f ) = X1�(d1d2 f ) = 0.

This shows that the 1-form d2 f is basic with respect to the projection π2 : M1 × M2 → M2,
so there exists a 1-form ω2 ∈ �1(M2) such that d2 f = π∗

2ω2.
For every x1 ∈ M1 we denote by ix1 the inclusion M2 → M1 × M2, given by x2 �→

(x1, x2). Then π2 ◦ ix1 = idM2 , whence ω2 = i∗x1π
∗
2ω2 = i∗x1d2 f = dM2(i∗x1 f ). This shows

that for every x1 ∈ M1, the function i∗x1 f ∈ C∞(M2) is a primitive of ω2. In particular
ω2 = dM2a2 is exact on M2, and by connectedness, for every x1 ∈ M1, there exists a
constant a1(x1) such that i∗x1 f = a1(x1) + a2. In other words f (x1, x2) = a1(x1) + a2(x2)
for every (x1, x2) ∈ M , and the function a1 is smooth on M1 since f is smooth on M . ��

2.3 Conformal product structures

Definition 2.2 Consider two conformal manifolds (M1, c1) and (M2, c2). A conformal prod-
uct structure on M := M1×M2 is a conformal class c such that the two canonical projections
πi : (M, c) → (Mi , ci ) are orthogonal conformal submersions.

Equivalently, for every x := (x1, x2) ∈ M and for every Riemannian metrics gi ∈ ci and
g ∈ c, there exist real numbers f1(x), f2(x) such that for all tangent vectors Xi ∈ Tx Mi ⊂
Tx M one has g(X1, X2) = 0 and g(Xi , Xi ) = e2 fi (x)gi (Xi , Xi ). Consequently, for every
choice of Riemannian metrics g1 and g2 in the conformal classes c1 and c2, every conformal
product structure can be defined by two functions f1 and f2 on M by the formula c := [g],
where g := e2 f1g1 + e2 f2g2. Clearly, the conformal class c only depends on the difference
f1 − f2. This motivates the following definition:

Definition 2.3 Let M1 and M2 be two manifolds. A Riemannian metric g on M1 × M2 of
the form g = e2 f1g1 + e2 f2g2, where f1 and f2 are functions on M1 × M2 and g1, g2 are
Riemannian metrics on M1, resp. M2, is called a conformal product metric.

For i ∈ {1, 2}, the vector fields on Mi will be denoted by the index i , e.g. Xi , Yi , Zi . Each
vector field Xi on Mi naturally induces a vector field on M , denoted by X̃i , so we have the
inclusion C∞(TMi ) ⊂ C∞(T(M1 × M2)). Let us remark that the Lie bracket between vector

123



Annals of Global Analysis and Geometry (2024) 65 :20 Page 5 of 15 20

fields arising from the different factors M1 and M2 vanishes, e.g. [X̃1, X̃2] = 0. In order to
keep the notation as simple as possible, we will identify from now on each vector field Xi

on Mi with the corresponding vector field X̃i on M and in the sequel it will be clear from
the context whether the vector field is considered on M or on one of its factors.

Lemma 2.4 The Levi–Civita connection ∇g of a conformal product metric g = e2 f1g1 +
e2 f2g2 is given by the following formulas, for all vector fields Xi , Yi ∈ C∞(TMi ), i ∈ {1, 2}:

∇g
X1
Y1 = ∇g1

X1
Y1 + X1( f1)Y1 + Y1( f1)X1 − g(X1, Y1)d f

#g
1 , (5)

∇g
X2
Y2 = ∇g2

X2
Y2 + X2( f2)Y2 + Y2( f2)X2 − g(X2, Y2)d f

#g
2 , (6)

∇g
X1

X2 = ∇g
X2

X1 = X1( f2)X2 + X2( f1)X1. (7)

In particular, from (5) it follows that

g(∇g
X1
Y1, X2) = −g(X1, Y1)X2( f1). (8)

Proof We consider vector fields X1, Y1, Z1 ∈ C∞(TM1) and X2, Y2, Z2 ∈ C∞(TM2) and
we compute using the Koszul formula:

2g(∇g
X1
Y1, Z2) = −Z2(g(X1, Y1)) = −Z2(e

2 f1g1(X1, Y1)) = −2d f1(Z2)g(X1, Y1),

2g(∇g
X1
Y1, Z1) = X1(g(Y1, Z1)) + Y1(g(X1, Z1)) − Z1(g(X1, Y1))

+ g([X1, Y1], Z1) − g([X1, Z1], Y1) − g([Y1, Z1], X1)

= 2g(∇g1
X1
Y1, Z1) + 2X1( f1)g(Y1, Z1)

+ 2Y1( f1)g(X1, Z1) − 2Z1( f1)g(X1, Y1),

which together yield (5). Equation (6) follows then by symmetry, permuting the indexes in
(5). We further compute using the Koszul formula:

2g(∇g
X1

X2, Y1) = X2(g(X1, Y1)) = X2(e
2 f1g(X1, Y1)) = 2X2( f1)g(X1, Y1),

2g(∇g
X1

X2, Y2) = X1(g(X2, Y2)) = X1(e
2 f2g(X2, Y2)) = 2X1( f2)g(X2, Y2),

which together yield (7). ��
For every conformal product structure c = [e2 f1g1 + e2 f2g2] on M , there exists a unique

Weyl connection∇ whose holonomy preserves the decomposition TM = TM1 ⊕TM2. This
connection is called adapted and its Lee form with respect to g := e2 f1g1 + e2 f2g2 reads
θ g = −d1 f2 − d2 f1 (cf. [3, Sect. 6.1]). Note that the adapted Weyl connection is closed if
and only if d1d2( f1 − f2) = 0.

Let us remark that the vector fields tangent to one of the two factors M1 or M2 are parallel
with respect to the adapted Weyl connection in the direction of the other factor, namely for
all Xi ∈ C∞(TMi ) we have:

∇X1X2
(2)= ∇g

X1
X2 + θ g(X1)X2 + θ g(X2)X1

(7)= X1( f2)X2 + X2( f1)X1 − X1( f2)X2 − X2( f1)X1 = 0. (9)

2.4 Curvature of conformal product metrics

The purpose of this section is to establish the formulas for the Riemannian curvature tensor
and the Ricci curvature of a conformal product metric, which generalize the well-known
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O’Neill formulas for warped products. Let g be such a metric given as g = e2 f1g1 + e2 f2g2
on M . We start by computing the Riemannian curvature tensor of g.

Lemma 2.5 The Riemannian curvature tensor Rg of the metric g = e2 f1g1 + e2 f2g2 on M
is given by the following formulas, for all vector fields X1, Y1, Z1 ∈ C∞(TM1) which are
∇g1 -parallel at the point where the computation is done and X2, Y2, Z2 ∈ C∞(TM2), which
are ∇g2 -parallel at the same point:

Rg(X1, Y1, Z1, X2) = g(X1, Z1)[Y1(X2( f1)) − Y1( f2) · X2( f1)]
− g(Y1, Z1)[X1(X2( f1)) − X1( f2) · X2( f1)], (10)

Rg(X1, Y1, Y1, X1) = Rg1 (X1, Y1, Y1, X1) + 2X1(Y1( f1))g(X1, Y1) + (g(X1, Y1))
2|d f1|2g

− 2X1( f1) · Y1( f1) g(X1, Y1) − X1(X1( f1)) |Y1|2g − Y1(Y1( f1)) |X1|2g
+ (X1( f1))

2|Y1|2g + (Y1( f1))
2|X1|2g − |d f1|2g |X1|2g |Y1|2g, (11)

Rg(X1, X2, X2, X1) = −(X1( f2))
2 |X2|2g − X1(X1( f2)) |X2|2g + 2X1( f1) · X1( f2)|X2|2g

− X2(X2( f1)) |X1|2g + 2X2( f1) · X2( f2) |X1|2g − (X2( f1))
2 |X1|2g

− g(d f1, d f2) |X1|2g |X2|2g . (12)

By symmetry, permuting the indexes, we also obtain the analogous formulas to (10)
and (11):

Rg(X2, Y2, Z2, X1) = g(X2, Z2)[Y2(X1( f2)) − Y2( f1) · X1( f2)]
− g(Y2, Z2)[X2(X1( f2)) − X2( f1) · X1( f2)], (13)

Rg(X2, Y2, Y2, X2) = Rg2 (X2, Y2, Y2, X2) + 2X2(Y2( f2))g(X2, Y2) + (g(X2, Y2))
2|d f2|2g

− 2X2( f2) · Y2( f2) g(X2, Y2) − X2(X2( f2)) |Y2|2g − Y2(Y2( f2)) |X2|2g
+ (X2( f2))

2|Y2|2g + (Y2( f2))
2|X2|2g − |d f2|2g |X2|2g |Y2|2g . (14)

Proof Since X1 and Y1 are ∇g1 -parallel at the point where the computation is done, we have
by the definition of the Riemannian curvature tensor:

Rg(X1, Y1, Z1, X2) = −Rg(X1, Y1, X2, Z1) = −g(∇g
X1

∇g
Y1
X2, Z1) + g(∇g

Y1
∇g
X1

X2, Z1).

(15)

The first term on the right-hand side is then computed by applying the formulas obtained for
the Levi–Civita connection in Lemma 2.4:

g(∇g
X1

∇g
Y1
X2, Z1)

(7)= g(∇g
X1

(Y1( f2)X2 + X2( f1)Y1), Z1)

= Y1( f2)g(∇g
X1

X2, Z1) + X1(X2( f1))g(Y1, Z1) + X2( f1)g(∇g
X1
Y1, Z1)

(5),(7)= Y1( f2)X2( f1)g(X1, Z1) + X1(X2( f1))g(Y1, Z1)

+ X2( f1)X1( f1)g(Y1, Z1)

+ X2( f1)Y1( f1)g(X1, Z1) − X2( f1)Z1( f1)g(X1, Y1).
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Replacing this formula and the one obtained from it by interchanging the roles of X1 and Y1
into (15) we obtain (10). We now show (11) by computing as follows:

Rg(X1, Y1, Y1, X1) = g(∇g
X1

∇g
Y1
Y1, X1) − g(∇g

Y1
∇g
X1
Y1, X1)

= X1(g(∇g
Y1
Y1, X1)) − g(∇g

Y1
Y1,∇g

X1
X1) − Y1(g(∇g

X1
Y1, X1))

+ g(∇g
X1
Y1,∇g

Y1
X1)

(5)= X1(g(∇g1
Y1
Y1, X1)) + 2X1(Y1( f1)g(X1, Y1)) − X1(|Y1|2g X1( f1))

− g(2X1( f1)X1 − |X1|2g d f1, 2Y1( f1)Y1 − |Y1|2g d f1)
− Y1(g(∇g1

X1
Y1, X1)) − Y1(Y1( f1)|X1|2g)

+ (X1( f1))
2|Y1|2g + (Y1( f1))

2|X1|2g + (g(X1, Y1))
2|d f1|2g

− 2X1( f1) · Y1( f1) g(X1, Y1)

= Rg1(X1, Y1, Y1, X1)

+ 2X1(Y1( f1))g(X1, Y1) + 4X1( f1) · Y1( f1)g(X1, Y1)

− X1(X1( f1)) |Y1|2g − 2(X1( f1))
2|Y1|2g

− 4X1( f1) · Y1( f1)g(X1, Y1) + 2(X1( f1))
2|Y1|2g

+ 2(Y1( f1))
2|X1|2g − |d f1|2g|X1|2g|Y1|2g

− Y1(Y1( f1))|X1|2g − 2(Y1( f1))
2|X1|2g

+ (X1( f1))
2|Y1|2g + (Y1( f1))

2|X1|2g + (g(X1, Y1))
2|d f1|2g

− 2X1( f1) · Y1( f1) g(X1, Y1),

which yields (11). Similarly, we compute:

Rg(X1, Y2, Y2, X1) = g(∇g
X1

∇g
Y2
Y2, X1) − g(∇g

Y2
∇g
X1
Y2, X1)

= X1(g(∇g
Y2
Y2, X1)) − g(∇g

Y2
Y2,∇g

X1
X1) − Y2(g(∇g

X1
Y2, X1))

+ g(∇g
X1
Y2,∇g

Y2
X1)

(5),(6)= −X1(|Y2|2g X1( f2)) + 2|Y2|2g X1( f1) · X1( f2)

+ 2|X1|2g Y2( f1) · Y2( f2) − |X1|2g|Y2|2g g(d f1, d f2)
− Y2(|X1|2gY2( f1)) + (X1( f2))

2|Y2|2g + (Y2( f1))
2|X1|2g

= −(X1( f2))
2 |Y2|2g − X1(X1( f2)) |Y2|2g − (Y2( f1))

2

|X1|2g − Y2(Y2( f1)) |X1|2g
+ 2X1( f1) · X1( f2)|Y2|2g + 2Y2( f1)·
Y2( f2) |X1|2g − g(d f1, d f2) |X1|2g|Y2|2g,

which yields (12). ��
Lemma 2.6 The Ricci curvature tensor Ricg of a conformal product metric g = e2 f1g1 +
e2 f2g2 on M is given by the following formulas, for each vector fields
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X1 ∈ C∞(TM1) and X2 ∈ C∞(TM2):

Ricg(X1, X2) = (1 − n1)X1(X2( f1)) + (1 − n2)X2(X1( f2)) + (2 − n)X1( f2) · X2( f1),

(16)

Ricg(X1, X1) = Ricg1(X1, X1) + (e−2 f2
2 f1 + e−2 f1
1 f1)|X1|2g
+(2 − n2)g(d2 f1, d2 f2)|X1|2g

−[n2 g(d1 f1, d1 f2) + n1|d2 f1|2g − (2 − n1)|d1 f1|2g]|X1|2g
+ (2 − n1)[Hessg1( f1)(X1, X1) − (X1( f1))

2]
− n2[Hessg1( f2)(X1, X1) + (X1( f2))

2 − 2X1( f1) · X1( f2)], (17)

where for every function f ∈ C∞(M) and vector field X1 ∈ C∞(TM1) ⊂ C∞(TM), we
denote by Hessg1( f )(X1, X1) := X1(X1( f )) − (∇g1

X1
X1)( f ) the Hessian with respect to g1

of the restriction of f to the M1-leaves of M.

Proof Considering a local g-orthonormal basis of the form {e− f1αi , e− f2β j }1≤i≤n1,1≤ j≤n2 ,
where {αi }1≤i≤n1 is a local g1-orthonormal basis on M1 and {β j }1≤ j≤n2 is a local g2-
orthonormal basis on M2, we write:

Ricg(X1, X2) = e−2 f1
n1∑

i=1

Rg(X1, αi , αi , X2) + e−2 f2
n2∑

j=1

Rg(X1, β j , β j , X2). (18)

We compute separately the first term on the right-hand side of (18) using the formulas
obtained for the Riemannian curvature tensor in Lemma 2.5:

e−2 f1
n1∑

i=1

Rg(X1, αi , αi , X2)
(10)= e−2 f1

n1∑

i=1

g(X1, αi )[αi (X2( f1)) − αi ( f2) · X2( f1)]

− e−2 f1
n1∑

i=1

g(αi , αi )[X1(X2( f1)) − X1( f2) · X2( f1)]

= X1(X2( f1)) − X1( f2) · X2( f1) − n1X1(X2( f1))

+ n1X1( f2) · X2( f1)

= (1 − n1)[X1(X2( f1)) − X1( f2) · X2( f1)].
The second term in (18) is computed similarly:

e−2 f2
n2∑

j=1

Rg(X1, β j , β j , X2) = e−2 f2
n2∑

j=1

Rg(X2, β j , β j , X1)

(13)= e−2 f2
n2∑

j=1

g(X2, β j )[β j (X1( f2)) − β j ( f1) · X1( f2)]

− e−2 f2
n2∑

j=1

g(β j , β j )[X2(X1( f2)) − X2( f1) · X1( f2)]

= X2(X1( f2)) − X1( f2) · X2( f1) − n2X2(X1( f2))

+ n2X1( f2) · X2( f1)

= (1 − n2)[X2(X1( f2)) − X1( f2) · X2( f1)].
Replacing these two formulas in (18) we obtain (16).
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Considering the same local orthonormal bases as above, namely a local g1-orthonormal
basis {αi }1≤i≤n1 on M1 and a local g2-orthonormal {β j }1≤ j≤n2 on M2, we write:

Ricg(X1, X1) = e−2 f1
n1∑

i=1

Rg(X1, αi , αi , X1) + e−2 f2
n2∑

j=1

Rg(X1, β j , β j , X1), (19)

where the first term on the right-hand side of (19) is computed as follows:

e−2 f1
n1∑

i=1

Rg(X1, αi , αi , X1)

(11)= Ricg1(X1, X1)

+ e−2 f1
n1∑

i=1

[2X1(αi ( f1))g(X1, αi ) − 2X1( f1) · αi ( f1) g(X1, αi )]

−
n1∑

i=1

[X1(X1( f1)) |αi |2g + αi (αi ( f1)) |X1|2g − (X1( f1))
2|αi |2g − (αi ( f1))

2|X1|2g]

−
n1∑

i=1

[|d f1|2g|X1|2g|αi |2g − (g(X1, αi ))
2|d f1|2g]

= Ricg1(X1, X1) + e−2 f1
n1∑

i=1

[2X1(αi ( f1))g(X1, αi ) − 2X1( f1) · αi ( f1) g(X1, αi )]

− e−2 f1
n1∑

i=1

[X1(X1( f1)) |αi |2g + αi (αi ( f1)) |X1|2g − (X1( f1))
2|αi |2g − (αi ( f1))

2|X1|2g]

− e−2 f1
n1∑

i=1

[|d f1|2g|X1|2g|αi |2g − (g(X1, αi ))
2|d f1|2g]

= Ricg1(X1, X1) + (n1 − 2)(X1( f1))
2 − (n1 − 2)X1(X1( f1)) + e−2 f1
1 f1 · |X1|2g

+ (2 − n1)|d1 f1|2g|X1|2g + (1 − n1)|d2 f1|2g|X1|2g.

Similarly, the second term on the right-hand side of (19) is computed as follows:

e−2 f2
n2∑

j=1

Rg(X1, β j , β j , X1)
(12)= −n2[(X1( f2))

2 + X1(X1( f2)) − 2X1( f1) · X1( f2)]

+ [(2 − n2)g(d2 f1, d2 f2) − n2g(d1 f1, d1 f2)] |X1|2g
− [|d2 f1|2g + e−2 f2
2 f1] |X1|2g.

Altogether, replacing the last two formulas in (19), we obtain (17), which finishes the proof
of the lemma. ��
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By symmetry, permuting the indexes in (17), we obtain the analogous formula:

Ricg(X2, X2) = Ricg2(X2, X2) + (e−2 f1
1 f2 + e−2 f2
2 f2)|X2|2g
+(2 − n1)g(d1 f1, d1 f2)|X2|2g

−[n1 g(d1 f2, d2 f1) + n2|d1 f2|2g − (2 − n2)|d2 f2|2g]|X2|2g
+ (2 − n2)[Hessg2( f2)(X2, X2) − (X2( f2))

2]
− n1[Hessg2( f1)(X2, X2) + (X2( f1))

2 − 2X2( f2) · X2( f1)]. (20)

3 Main result

In this section we give the proof of Theorem 1.1. Let us start with the following equivalent
characterization of the geometric assumption in Theorem 1.1 about the Lee form of the
adapted Weyl connection:

Lemma 3.1 Let (M1, c1) and (M2, c2) be two compact conformal manifolds and let c be
a conformal product structure on M1 × M2, with adapted Weyl connection ∇. A metric g
in the conformal class c has the property that the restriction to TM2 of the Lee form of ∇
with respect to g is ∇-parallel in the direction of TM1 if and only if there exist functions
f1, f2 ∈ C∞(M) satisfying d1 f1 = 0 and metrics gi ∈ ci , such that g = e2 f1g1 + e2 f2g2.

Proof Let g be a metric in c. Then there exist metrics gi on Mi and functions f1, f2 on M ,
such that g = e2 f1g1 + e2 f2g2. Since the Lee form of the Weyl connection ∇ with respect
to g is given by θ g = −d1 f2 − d2 f1, it follows that its restriction to TM2 is θ

g
2 = −d2 f1.

We compute for all vector fields Xi ∈ C∞(TMi ):

(∇X1θ
g
2 )(X2) = −(∇X1d2 f1)(X2) = −X1(X2( f1)) + d2 f1(∇X1X2)

(9)= −d1d2 f1(X1, X2).

This equation shows that θ
g
2 satisfies ∇X1θ

g
2 = 0 for all X1 ∈ C∞(TM1) if and only if

d1d2 f1 = 0. By Lemma 2.1 applied to f1, there exist functions ai ∈ C∞(Mi ), such that
f1 = a1 + a2. If we replace f1 by a2 and the metric g1 by e2a1g1, then we may assume that
d1 f1 = 0, which finishes the proof of the lemma. ��

Let now g be an Einstein metric on M1 × M2 satisfying the assumption of Theorem 1.1.
According to Lemma 3.1, the metric g can be written as g = e2 f1g1 + e2 f2g2, where f1
satisfies d1 f1 = 0.Under these assumptions, the formulas for theRicci curvature of g become
much simpler. First, because the metric g is Einstein, the left-hand side of (16) vanishes. On
the other hand, d1 f1 = 0 implies that the term X1(X2( f1)) on the right-hand side of (16)
also vanishes. Thus, (16) yields the following equality:

(n − 2)X1( f2) · X2( f1) = (n2 − 1)X1(X2( f2)), (21)

for all vector fields Xi ∈ C∞(TMi ). Let λ ∈ R be the Einstein constant of g, i.e. Ricg = λg.
Under the assumption that d1 f1 = 0, Equation (17) reads:

λ|X1|2g = Ricg1(X1, X1) + |X1|2g[e−2 f2
2 f1 + (2 − n2)g(d2 f1, d2 f2) − n1|d2 f1|2g]
− n2(Hess

g1( f2)(X1, X1) + X1( f2)
2), (22)

for all vector fields Xi ∈ C∞(TMi ).
The key argument for the proof of Theorem 1.1 is the following:
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Lemma 3.2 The function f2 satisfies d1d2 f2 = 0.

Proof We introduce the following closed subsets of M :

C1 := {x ∈ M | (d1 f2)x = 0} and C2 := {x ∈ M | (d2 f1)x = 0}.
The proof of Lemma 3.2will be split into three cases, according to the possible dimensions

of the factors M1 and M2.
Case 1. In this first case we assume that the dimension of each factor is at least 2, i.e.

n1 ≥ 2 and n2 ≥ 2. Then, Equality (21) reads

X1(X2( f2)) = n − 2

n2 − 1
X1( f2) · X2( f1), ∀Xi ∈ C∞(TMi ). (23)

By definition, d2 f1 = 0 on C2. Hence, Equation (23) implies that d1d2 f2 = 0 at all points
of C2. If M = C2 we are done, so we assume for the remaining part of the argument that the
open set M \ C2 is non-empty. Equation (22) can be equivalently written

Hessg1( f2)(X1, X1) + (X1( f2))
2 = 1

n2
Ricg1(X1, X1) + ϕ|X1|2g1 , (24)

where we denote by ϕ the function ϕ := 1
n2
e2 f1(e−2 f2
2 f1 + (2 − n2)(d2 f1, d2 f2) −

n1|d2 f1|2g−λ). Differentiating (24) in the direction of X2 and choosing X1 to be∇g1 -parallel
at the point where the computation is done, we obtain:

|X1|2g1X2(ϕ) = 2X2(X1( f2)) · X1( f2) + Hessg1(X2( f2))(X1, X1)

(23)= 2(n − 2)

n2 − 1
(X1( f2))

2 · X2( f1) + X1

(
n − 2

n2 − 1
X1( f2) · X2( f1)

)

= n − 2

n2 − 1

[
2(X1( f2))

2 + Hessg1( f2)(X1, X1)
] · X2( f1).

By tensoriality, this equation holds for all vector fields Xi ∈ C∞(TMi ). Let x ∈ M \ C2 be
an arbitrary point. By definition, there exists X2 ∈ C∞(TM2) such that X2( f1) �= 0 on some
neighborhood Vx of x . Restricting the above equality to Vx , we can write

2(X1( f2))
2 + Hessg1( f2)(X1, X1) = |X1|2g1ϕ1,

where ϕ1 := n2 − 1

n − 2
· X2(ϕ)

X2( f1)
, which is well-defined on Vx . Differentiating this last equation

again in the direction of X2 ∈ C∞(TM2), a similar computation using (23) shows that

4(X1( f2))
2 + Hessg1( f2)(X1, X1) = |X1|2g1ϕ2,

where ϕ2 := n2 − 1

n − 2
· X2(ϕ1)

X2( f1)
. The difference of the last two identities reads

(X1( f2))
2 = |X1|2g1ϕ3,

where ϕ3 := 1
2 (ϕ2−ϕ1) on Vx . Since this equality holds for all vector fields X1 ∈ C∞(TM1),

we obtain that d1 f2 ⊗ d1 f2 = ϕ3g1 on Vx . Since n1 ≥ 2 and Vx is non-empty, it follows
that ϕ3 = 0 and thus d1 f2 = 0 on the open set Vx , thus on the whole M \ C2 since x was
arbitrary. By (21) it follows that d1d2 f2 = 0 on M \ C2. But we have already noticed that
d1d2 f2 = 0 on C2 so finally d1d2 f2 = 0 on M .
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Case 2. Assume that n2 = 1 and n1 > 1. Since X1( f1) = 0 for all X1 ∈ C∞(TM1),
Equality (16) yields that

X1( f2) · X2( f1) = 0,

for all vector fields Xi ∈ C∞(TMi )which are∇gi -parallel at the point where the computation
is done. Thus in this case we have M = C1 ∪ C2, which in particular implies that the union

of the interiors
◦
C1 ∪ ◦

C2 is a dense subset in M .

We claim that d2d1 f2 = 0 at each point of
◦
C1 ∪ ◦

C2. At points of
◦
C1, this follows directly

by differentiating the relation d1 f2 = 0 which holds on the open set
◦
C1.

On the other hand, since d2 f1| ◦
C2

= 0 and d1 f1 = 0 by assumption, it follows that f1 is

locally constant on
◦
C2. Thus, on

◦
C2, Eq. (22) simplifies to:

λ|X1|2g = Ricg1(X1, X1) − (Hessg1( f2)(X1, X1) + X1( f2)2). (25)

Substituting X2 = ∂
∂t in (20), where t denotes the arc length coordinate on (M2, g2) and

denoting by f ′, f ′′ the derivatives of a function f with respect to t , we obtain on
◦
C2:

λe2 f2 = e2 f2 [e−2 f1
1 f2 − e−2 f2 f ′′
2 − |d1 f2|2g + e−2 f2( f ′

2)
2] + f ′′

2 − ( f ′
2)

2,

or, equivalently:

λ = e−2 f1
1 f2 − |d1 f2|2g = e−2 f1(
1 f2 − |d1 f2|2g1). (26)

We now show that d1d2 f2 = 0 on
◦
C2, by considering the following subcases:

a) If
◦
C1 = ∅, then ◦

C2 is dense in M , so (26) is satisfied on M . Evaluating (26) at a point
of M where f2 attains its global maximum yields λ ≥ 0, and at a point where f2 attains
its global minimum we obtain λ ≤ 0. Consequently λ = 0, whence 
1 f2 = |d1 f2|2g1
on M . Integrating on each slice M1 × {x2} yields d1 f2 = 0 on M . In particular, also
d1d2 f2 = 0.

b) If
◦
C2 = ∅, then ◦

C1 is dense in M , so d1 f2 = 0 on M . In particular, also in this case it
follows that d1d2 f2 = 0.

c) If
◦
C1 �= ∅ and

◦
C2 �= ∅, then we evaluate Equation (26) at a point from the intersection

of the closures of
◦
C1 and

◦
C2, which is not empty (because the union of these closures is

M which is connected), yields λ = 0. Hence, (26) further implies that 
1 f2 = |d1 f2|2g1
on

◦
C2. Since this equality holds by definition on

◦
C1, it then follows by density that


1 f2 = |d1 f2|2g1 onM .We conclude like in case a) that d1d2 f2 = 0 onM , by integration
on the slices M1 × {x2}.
Case 3. Assume that n1 = 1 and n2 > 1. Equation (21) reads:

d1d2 f2 = d1 f2 ∧ d2 f1. (27)

Hence, d1d2 f2 = 0 on C1 ∪ C2. We denote by U the open set U := M \ (C1 ∪ C2). If
U = ∅, then the equality d1d2 f2 = 0 holds on M and we are done. Assume for the rest of
the proof that U �= ∅. Denoting by t the arc length coordinate on (M1, g1), we remark that,
by definition, f ′

2 does not vanish at any point of U . Equation (17) implies that

λe2 f1 = e2 f1 [e−2 f2
2 f1 + (2 − n2)g(d2 f2, d2 f1) − |d2 f1|2g] − n2( f
′′
2 + ( f ′

2)
2),
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or, equivalently,

λe2 f2 = 
2 f1 + (2 − n2)g2(d2 f2, d2 f1) − |d2 f1|2g2 − n2e
2 f2−2 f1( f ′′

2 + ( f ′
2)

2). (28)

Differentiating this equality with respect to t yields:

2λ f ′
2e

2 f2 = (2 − n2)g2(d2 f
′
2, d2 f1) − n2e

2 f2−2 f1 [2 f ′
2( f

′′
2 + ( f ′

2)
2) + f (3)

2 + 2 f ′
2 f

′′
2 ].

From (27) and d1 f1 = 0, it follows that d2 f ′
2 = f ′

2d2 f1, so we have

g2(d2 f
′
2, d2 f1) = g2( f

′
2d2 f1, d2 f1) = f ′

2|d2 f1|2g2 ,
which replaced in the above equality yields

2λ f ′
2e

2 f2 = (2 − n2) f
′
2|d2 f1|2g2 − n2e

2 f2−2 f1 [4 f ′
2 f

′′
2 + 2( f ′

2)
3 + f (3)

2 ]. (29)

Dividing this equality by f ′
2, which does not vanish onU , and then differentiating again with

respect to t , we obtain:

4λ f ′
2e

2 f2 = −n2e
2 f2−2 f1 [12 f ′

2 f
′′
2 + 4( f ′

2)
3 + 6 f (3)

2 + f (4)
2 ( f ′

2)
−1 − ( f ′

2)
−2 f ′′

2 f (3)
2 ],

or, equivalently, after dividing by −n2 f ′
2e

2 f2−2 f1 :

− 4λe2 f1

n2
= 12 f ′′

2 + 4( f ′
2)

2 + 6 f (3)
2

f ′
2

+ f (4)
2

( f ′
2)

2 − f ′′
2 f (3)

2

( f ′
2)

3 . (30)

Differentiating this equality once more with respect to t yields:

0 = 12 f (3)
2︸ ︷︷ ︸

=:A1

+ 8 f ′
2 f

′′
2︸ ︷︷ ︸

=:A2

+ 6 f (4)
2
f ′
2

− 6 f ′′
2 f (3)

2
( f ′

2)
2

︸ ︷︷ ︸
=:A0

+ f (5)
2

( f ′
2)

2 − 2 f ′′
2 f (4)

2
( f ′

2)
3 − ( f (3)

2 )2 + f ′′
2 f (4)

2
( f ′

2)
3 + 3( f ′′

2 )2 f (3)
2

( f ′
2)

4
︸ ︷︷ ︸

=:A−1

.

We have introduced the above notation A�, for � ∈ {−1, 0, 1, 2} motivated by the fact
that each A� is a rational fraction of degree � in the derivatives f (k)

2 of f2 with respect to t .
Notice that Equality (27) together with the fact that d1 f1 = 0 yields

d2 f
(k)
2 = f (k)

2 d2 f1, for all k ≥ 1. (31)

The following general lemma will be applied to the above defined functions A�, for � ∈
{−1, 0, 1, 2}.
Lemma 3.3 Let f1 and f2 be two functions on M, satisfying (31).

a) For any homogeneous polynomial P of s ≥ 1 variables and of degree p ≥ 0, and for
every positive integers k1, . . . , ks , the following relation holds:

d2P( f (k1)
2 , . . . , f (ks )

2 ) = p · P( f (k1)
2 , · · · , f (ks )

2 ) · d2 f1.
b) For any two homogeneous polynomials P and Q of s ≥ 1 variables and of degree p,

respectively q, and for every positive integers k1, . . . , ks , the following relation holds:

d2

(
P

Q
( f (k1)

2 , . . . , f (ks )
2 )

)
= (p − q) · P

Q
( f (k1)

2 , · · · , f (ks )
2 ) · d2 f1.

Proof (a) Follows directly by (31) applied to each monomial of P .
(b) Follows from (a) applied to P and Q. ��
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Applying Lemma 3.3 to A� yields d2A� = �A� · d2 f1, for all � ∈ {−1, 0, 1, 2}. Thus,
applying d2 to the equality A1+ A2+ A0+ A−1 = 0 implies that A1+2A2− A−1 = 0, since
d2 f1 does not vanish on U . Applying again d2 to this relation yields A1 + 4A2 + A−1 = 0.
Repeating the same argument once again yields A1 + 8A2 − A−1 = 0. This last equality
together with the initial equality A1+A2+A0+A−1 = 0 implies that A2 = 0, i.e. f ′

2 f
′′
2 = 0,

which means that f ′′
2 = 0 onU , because f ′

2 does not vanish onU . Replacing f ′′
2 = 0 in (30)

we obtain the following equality on U :

( f ′
2)

2 = −λe2 f1

n2
, (32)

which implies in particular that λ < 0. Replacing now f ′′
2 = 0 in (29) yields another equality

on U :

2λe2 f2 = (2 − n2)|d2 f1|2g2 − 2n2e
2 f2−2 f1( f ′

2)
2.

The last two equalities imply that

2λe2 f2 = (2 − n2)|d2 f1|2g2 + 2n2e
2 f2−2 f1 · λe2 f1

n2
,

so (2 − n2)|d2 f1|2g2 = 0. Since d2 f1 �= 0 on U , it follows that n2 = 2. Replacing f ′′
2 = 0

and n2 = 2 in (28) yields

λe2 f2 = 
2 f1 − |d2 f1|2g2 − n2e
2 f2−2 f1( f ′

2)
2 = 
2 f1 − |d2 f1|2g2 + λe2 f2

and thus 
2 f1 = |d2 f1|2g2 on U .

This shows that the function ϕ := e−2 f2(
2 f1 − |d2 f1|2g2) vanishes on U and
◦
C2. Fur-

thermore, using (22) we deduce that ϕ = λ on
◦
C1. In particular dϕ = 0 on

◦
C1 ∪ ◦

C2 ∪ U
which is dense in M , whence ϕ is constant. Moreover U �= ∅ by assumption, so ϕ = 0 on
M . This shows that the previous relation 
2 f1 = |d2 f1|2g2 actually holds on M . Like before,
integrating over the leafs {x1} × M2 yields d2 f1 = 0 on M , so M = C2. Thus U = ∅,
contradicting our assumption. This concludes the proof of Case 3, and thus of Lemma 3.2. ��

Wecan nowfinish the proof of Theorem1.1. ByLemmas 3.1 and 3.2, the Einsteinmetric g
representing the conformal product structure onM1×M2 can be written g = e2 f1g1+e2 f2g2
where g1, g2 are Riemannian metrics on M1, M2, respectively, and f1, f2 are functions on
M1 × M2 satisfying d1 f1 = 0 and d1d2 f2 = 0. The first equation shows that in fact f1 ∈
C∞(M2), whereas the second equation together with Lemma 2.1 shows that f2 = a1 + a2
for some functions a1 ∈ C∞(M1) and a2 ∈ C∞(M2). Thus the conformal class c can be
written as

c = [g] = [e2 f1g1 + e2 f2g2] = [e2 f1g1 + e2a1+2a2g2]
= [e−2a1g1 + e−2 f1+2a2g2] = [h1 + h2],

where h1 := e−2a1g1 is a metric on M1 and h2 := e−2 f1+2a2g2 is a metric on M2. This
concludes the proof of Theorem 1.1.

As already mentioned in the introduction, the fact that the Einstein metric g on M1 × M2

is conformal to the product metric h1 + h2, implies by [8, Thm. 3.2 and Cor. 3.4] that the
conformal factor between g and h1 + h2 is a function which only depends on M1 or on M2,
i.e. g is a warped product metric. However, the complete classification of warped product
Einstein metrics on compact manifolds is not yet available [4], except when the base is
one-dimensional, cf. [5–7].
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