
Josu Doncel
Anne Remke
Daniele Di Pompeo (Eds.)

LN
CS

 1
54

54

Computer
Performance Engineering
20th European Workshop, EPEW 2024
Venice, Italy, June 14, 2024
Revised Selected Papers

Lecture Notes in Computer Science 15454
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Josu Doncel · Anne Remke · Daniele Di Pompeo
Editors

Computer Performance
Engineering
20th European Workshop, EPEW 2024
Venice, Italy, June 14, 2024
Revised Selected Papers

Editors
Josu Doncel
University of the Basque Country
Leioa, Spain

Daniele Di Pompeo
University of L’Aquila
L’Aquila, Italy

Anne Remke
University of Münster
Münster, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-80931-6 ISBN 978-3-031-80932-3 (eBook)
https://doi.org/10.1007/978-3-031-80932-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-5552-9134
https://orcid.org/0000-0003-2041-7375
https://orcid.org/0000-0002-5912-4767
https://doi.org/10.1007/978-3-031-80932-3

Preface

The European Performance Engineering Workshop (EPEW) aims to bring together
researchers working on performance evaluation of systems from theoretical and practical
viewpoints. The concept of performance in EPEW 2024 was considered in its broadest
sense including the notions of Quality of Service, scalability, reliability, availability and
systems management, among others.

The 20th edition of EPEW was held on the 14th of June 2024 in Venice, and it
was co-located with the conference ACM SIGMETRICS/IFIP PERFORMANCE 2024.
This edition was a very fruitful workshop with numerous presentations dealing with
performance evaluation research problems.

We acknowledge the organizers of the conference ACM SIGMETRICS/IFIP PER-
FORMANCE 2024 (the General Chairs Andrea Marin and Michele Garetto as well as
the Workshop Chairs Dieters Fiems and Valeria Cardellini and the Local Arrangement
Chairs Diletta Olliaro and Sabina Rossi) for their help in the organization of this edi-
tion of EPEW. We also thank Mirco Tribastone for accepting the invitation to give a
keynote talk in this edition of EPEW, which was entitled ‘Software Performance Model-
ing for the Cloud: An Overview’. Furthermore, we acknowledge the work of the Program
Committee, which was formed by 28 top-level researchers from different countries.

In this edition, there was a two-phase review process. First, we solicited short papers
of at most 7 pages for presentation at the conference; these short papers will not be
published. Then, authors of accepted short papers were invited to submit a full paper
with at most 15 pages. Accepted full papers appear in this volume. Initially, we received
15 short papers, from which 13 were accepted for presentation at the conference. Besides,
we received 12 full paper submissions and 10 of them were accepted for publication in
this volume. Each paper was single-blindly reviewed in each of the rounds by at least
three reviewers.

Finally, we would like to thank all the authors that contributed to this workshop, for
either submitting a paper to the workshop or giving a talk during the event, or submitting
a full paper for publication in this volume.

October 2024 Daniele Di Pompeo
Josu Doncel
Anne Remke

Organization

General Chair

Josu Doncel University of the Basque Country, Spain

Program Committee Chairs

Daniele Di Pompeo University of L’Aquila, Italy
Anne Remke University of Münster, Germany

Program Committee

Salvador Alcaraz Miguel Hernández University, Spain
Elvio Gilberto Amparore University of Turin, Italy
Paolo Ballarini CentraleSupélec, France
Marco Bernardo University of Urbino, Italy
Laura Carnevali University of Florence, Italy
Davide Cerotti Università del Piemonte Orientale, Italy
Carina Da Silva University of Münster, Germany
Dieter Fiems Ghent University, Belgium
Matthew Forshaw Newcastle University, UK
Jean-Michel, Fourneau Université de Versailles St Quentin, France
Pedro Pablo Garrido Abenza Miguel Hernández University, Spain
Antonio Gomez Complutense University of Madrid, Spain
Marco Gribaudo Politecnico di Milano, Italy
Nikolas Herbst University of Würzburg, Germany
András Horváth University of Turin, Italy
Alain Jean-Marie Inria, France
Carlos Juiz University of the Balearic Islands, Spain
Lasse Leskelä Aalto University, Finland
Francesco Longo University of Messina, Italy
Marco Paolieri University of Southern California, USA
Nihal Pekergin Univ. Paris-Est Creteil, France
Tuan Phung-Duc University of Tsukuba, Japan
Agapios Platis University of the Aegean, Greece
Marco Scarpa University of Messina, Italy

viii Organization

Markus Siegle University of Munich, Germamy
Nigel Thomas University of Newcastle, UK
Catia Trubiani Gran Sasso Science Institute, Italy
Joris Walraevens Ghent University, Belgium

Additional Reviewers

Lukas Beierlieb

Contents

Design and Analysis of Distributed Message Ordering over a Unidirectional
Logical Ring . 1

Ye Liu, Paul Ezhilchelvan, and Isi Mitrani

The Omnibus Java Library: Efficient Synthesis of Optimal Signal
Schedules for Multimodal Intersections . 14

Nicola Bertocci, Laura Carnevali, Leonardo Scommegna,
and Enrico Vicario

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 29
Hassan Laghbi and Nigel Thomas

Implementations Based Evaluation of No-Wait Approach for Resolving
Conflicts in Databases . 45

Yingming Wang, Paul Ezhilchelvan, Jack Waudby, and Jim Webber

Performance Evaluation of Smart Bin Systems Using Markovian Agents
for Efficient Garbage Collection . 60

Enrico Barbierato, Alice Gatti, Marco Gribaudo, and Mauro Iacono

Approximation of First Passage Time Distributions of Compositions
of Independent Markov Chains . 75

András Horváth, Marco Paolieri, and Enrico Vicario

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 91
Daria Smuseva, Ivan Malakhov, Andrea Marin, Carla Piazza,
and Sabina Rossi

A Lumped CTMC for Modular Rewritable PN . 106
Lorentzo Capra and Marco Gribaudo

Analytical Modelling of Asymmetric Multi-core Servers . 121
M. Gribaudo and T. Phung-Duc

Robust Streaming Benchmark Design in the Presence of Backpressure 137
Iain Dixon, Matthew Forshaw, and Joe Matthews

Author Index . 153

Design and Analysis of Distributed
Message Ordering over a Unidirectional

Logical Ring

Ye Liu, Paul Ezhilchelvan(B), and Isi Mitrani

School of Computing, Newcastle University, NE4 5TG Newcastle, UK
{Y.Liu197,paul.ezhilchelvan,isi.mitrani}@newcastle.ac.uk

Abstract. Several servers generate and disseminate messages which
must be processed in the same order by all of them. A ring protocol
is proposed, where a folder carrying messages circulates in one direc-
tionting queueing model is analysed in the steady state and an approx-
imate solution is developed, allowing the computation of performance
measures. This is applied to some example systems and the results are
compared with simulations.

1 Introduction

Message ordering involves distributed servers processing messages in an identi-
cal order. This is long known as a fundamental requirement for building crash
tolerant services through replicated processing [11]. The messages being ordered
typically contain requests, e.g. file updates, to a replicated file service. A client
sends its request to any one of the replicated servers (typically on 3 or 5 dis-
tinct hosts), which then disseminates the request to all other servers so that
updates everywhere are performed in a mutually consistent manner. Apache
Zookeeper [6] is an industrial strength replicated service used in many practical
applications.

There is an extensive literature on ordering protocols (see [2] for a sur-
vey). Most take a centralised approach, including Zookeeper and its newer ver-
sion RAFT [10], in order to minimise ordering latency. Here, one replica is des-
ignated as the leader to whom all others send their messages for ordering; leader
then does two multicasts for disseminating and then confirming its ordering
choice. Most networked systems do not readily support group or IP multicast
whereby a sender can transmit a message to multiple destinations in one oper-
ative step, but rather require that the sender carry out multiple unicasts, one
for each destination. This aspect of multiple unicasting increases network traffic
and the load placed on the leader [3].

More recently, interest has focused on high throughput and scalable data
processing (even at the expense of latency). The major constraint in achieving
this appears to be the network capacity [13]. Consequently, alternatives to mul-
tiple unicasting have been explored and the prominent approach is to arrange
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 1–13, 2025.
https://doi.org/10.1007/978-3-031-80932-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-80932-3_1

2 Y. Liu et al.

server replicas as a chain. Each server sends messages only to its neighbour in
one direction, and receives them only from its neighbour in the other direction
[4]. The resulting structure is a leader-free, decentralised ring. It is argued in [5]
that the message ordering over a ring structure can offer scalable throughput
that closely matches the network throughput.

In this paper, we propose a new ring protocol wherein a server dissemi-
nates its messages in batches. A folder circulates continuously around the ring,
visiting each server in turn. It contains a fixed number of message slots dedicated
to each server. Messages are numbered sequentially. When the folder arrives at
a server, all messages in it are copied and ordered according to their sequence
numbers; the server then removes its own messages from the folder and fills its
slots with new ones waiting to be disseminated. Each of the newly loaded mes-
sages is sequentially numbered by working out the largest sequence number in
the received folder. The folder is then sent to the next server in the ring.

If servers on a ring are allowed to transmit messages at any time (i.e., without
a folder), some form of fairness control is essential. Without such control, a heav-
ily loaded server may choose to give priority to its own messages, at the expense
of those sent to it for forwarding. This issue was recognised and addressed in [5]
by means of a rather complex algorithm. Our protocol imposes fairness in an
easily implementable manner by means of the circulating folder. The price paid
for that simplicity is that servers are constrained to transmit only when visited
by the folder, and each transmission is limited by the number of slots allocated
to them.

We analyse the queueing behaviour of the folder protocol and provide an
approximate solution that allows us to compute performance measures. Such an
analysis has not, to our knowledge, been done before. There is a resemblance
between our circulating folder and a ‘polling server’ which visits a number of
stations. While there is a large volume of work on polling systems (e.g., see [12]
for a good survey), none of the existing results apply to our model. The main
reason for this is that the time the folder remains at a server depends on the
total number of occupied slots, i.e. not only on the state of the current server’s
queue, but also on the queues of all other servers.

The single folder version can be easily extended to multiple circulating fold-
ers. However, the analysis would then become considerably more complicated
and is therefore left for future work. Another issue that we do not consider here
relates to the possibility of server crashes. After a breakdown, the ring struc-
ture would need to be reconfigured and a new folder must be initialised. During
this recovery process, servers would communicate with each other in the nor-
mal manner and can use any of the algorithms proposed in [5, 7, 9,10]. Recovery
would be possible, as long as no more than one server crashes between successive
reconfigurations. For our study, we assume that all servers are reliable.

Another, more distantly related work is [8], where a combination of a
leader and a ring is proposed. There is also a class of protocols where a log-
ical ring is used for rotating the leadership role among servers [2].

Design and Analysis of Distributed Message Ordering 3

The model is described in Sect. 2. Section 3 develops the approximate solu-
tion, while Sect. 4 presents several examples.

2 The Model

We consider a system with .N service stations, numbered 1, 2,, . N . They
communicate with each other by means of a folder which travels in one direction
only: station 1 sends it to station 2, station 2 sends it to station 3,, station
.N sends it to station 1. The folder contains spaces referred to as ‘slots’, each of
which may carry one message. Station . i has .ki slots within the folder reserved
exclusively for its use (.i = 1, 2, . . . , N). Thus the maximum number of messages
carried by the folder is .K = k1 + k2 + . . . + kN .

Messages requiring transmission arrive at station . i according to an indepen-
dent Poisson process with rate . λi, and join a separate FIFO queue, .Qi. The
dispatching protocol works as follows. When the folder comes to station . i, up to
.ki messages from .Qi are loaded into it, in their order of arrival; if there are fewer
than .ki messages in .Qi at that moment, then some of the reserved slots would be
unused. As the folder visits the other stations in turn, each of them copies .Qi’s
messages and loads up to its reserved number of slots with messages from its
own queue. When the folder returns to .Qi, the messages loaded on the previous
visit are considered to have been delivered and are deemed to have departed
from the system. A new batch of messages from .Qi is loaded. The same protocol
applies to all stations.

Let . a be the average time it takes to copy or load one slot. If all slots are being
used, the folder is delayed for an average interval of .aK at each station. The
average time, . ti, to transfer the folder from station . i to the next station may also
depend on the number of occupied slots. If all .K allocated slots are occupied,
that average has the form .ti = bK + βi, where . b and .βi are given constants.
Thus, the maximum average cycle time, . T̄ , i.e. the average interval between two
consecutive visits of the folder to station . i, is given by

.T̄ = NKα + β , (1)

where .α = a + b and .β = β1 + β2 + . . . + βN . During such a cycle, .ki messages
originating at station . i are delivered and leave the system. Of course, if there
are unused slots, then both the cycle time and the number of departures would
be lower.

It is intuitively clear that the system as a whole is stable if, at all sta-
tions, the average number of messages that arrive during a maximum cycle is
lower than those that can be delivered:

.λiT̄ < ki ; i = 1, 2, . . . , N . (2)

If, when the folder arrives at station . i, there are fewer than .ki messages in
.Qi, some of the slots assigned to that station will be unused. Moreover, some of
the slots allocated to other stations may be travelling empty. Thus, the time the

4 Y. Liu et al.

folder remains at station . i on each visit depends not only on the current state
of .Qi, but also on the previous states of the other queues. This is the crucial
difference between the circulating folder in this system, and a polling server.

The complex interdependencies between the queueing processes at different
stations mean that an exact analysis of this model is intractable. We there-
fore propose an approximate solution that will enable us to compute reasonable
estimates of performance measures.

3 Fixed-Point Approximation

Consider station . i in isolation, with .Qi evolving in a stationary environment
defined by the other stations. That is, .Qi is treated as an M/M/1 queue with
Poisson arrivals and state-dependent ‘bulk services’. There is a sequence of
‘departure moments’, when several messages leave the queue simultaneously.
These moments correspond to the visits of the folder at station . i. The rates at
which they occur, and the number of departures that take place, depend on the
state of the queue and are modulated by the environment.

In order to simplify the notation, we shall omit the index . i from the arrival
rate, slot allocation and steady-state probabilities of .Qi. The behaviour of that
queue is described as follows. If there are at least . k messages present, then the
next departure moment occurs at rate .μk and the number of messages departing
at that moment is . k. If there are . j messages present (.j = 1, 2, . . . , k − 1), then
the next departure moment occurs at rate .μj and the number of departures is
. j; the queue would then be emptied.

The environment is defined by the average numbers of slots in the folder
that are occupied by the other stations. Those averages will be referred to as
‘occupancies’ and will be denoted by .sm, .m ∈ 1, 2, . . . , N , .m �= i. The sum,
. S, of the other stations’ occupancies is assumed fixed and is the environment
in which .Qi evolves.

For a given value of . S, if . j messages depart from .Qi, the average cycle length
of the folder would be

.Tj = N(j + S)α + β ; j = 1, 2, . . . , k , (3)

where . α and . β are the parameters that appear in (1). Hence, the rates at which
departure moments occur at .Qi can be expressed as

.μj = [N(j + S)α + β]−1 ; j = 1, 2, . . . , k . (4)

These rates are state-dependent when there are fewer than . k messages in .Qi,
and become state-independent when there are . k or more messages present.

The proposed approximation consists in assuming that .Qi in isolaton behaves
as a Markov process, with arrival rate . λ and bulk departure rates given by (4).
That is, for a given environment, the intervals between consecutive visits of the
folder to .Qi are assumed to be distributed exponentially with state-dependent
parameters . μj .

Design and Analysis of Distributed Message Ordering 5

Let .πj be the steady-state probability that there are . j messages in queue .Qi.
These probabilities satisfy the following set of balance equations.

.λπ0 =
k∑

j=1

μjπj , (5)

.(λ + μj)πj = λπj−1 + μkπj+k ; j = 1, 2, . . . , k − 1 , (6)

and for all states where .j ≥ k,

.(λ + μk)πj = λπj−1 + μkπj+k ; j = k, k + 1, (7)

It is known that, if the departure rates are state-independent, the steady-
state distribution of a queue with bulk services is geometric (e.g., see [1]). Here
we cannot expect a geometric distribution because the rates are state-dependent.
However, the distribution of .Qi turns out to have a geometric tail. Specifically,
we can find a solution to equations (7) (for .j > k), of the form

.πj = Czj0 ; j = k, k + 1, . . . (8)

where .C and .z0 are some positive constants. Indeed, substituting (8) into (7),
we find that the equations are satisfied as long as .z0 is a zero of the polynomial
of degree . k + 1

.P (z) = λ(1 − z) − μkz(1 − zk) . (9)

In addition, in order that we may obtain a probability distribution, .z0 must
satisfy .|z0| < 1.

Note that .P (0) > 0 and .P (1) = 0. Hence, .P (z) has a real zero, . z0, in the
interval .(0, 1− ε). Moreover, it can be shown that .P (z) has no other zeros in the
interior of the unit disk. That follows from Rouche’s theorem.

The probabilities . πj , for .j = 0, 1, . . . , k − 1, and the constant . C, are deter-
mined from equations (6) and (5), and from the requirement that the sum of all
probabilities must be 1. The easiest way to perform that computation is to start
by setting .C = 1 and .πk = 1, so that .πk+j = zj0. Use equations (6) to determine
.πk−1, .πk−2,, .π1 in turn, and equation (5) to determine . π0. Finally, normalize
the computed ‘probabilities’, multiplying each of them by the constant

.C =

⎡

⎣
k−1∑

j=0

πj +
πk

1 − z0

⎤

⎦
−1

. (10)

Having determined the distribution of .Qi, the corresponding occupancy, . s,
(i.e. the average number of messages it occupies in the folder), is obtained from

.s =
k−1∑

j=1

jπj +
kπk

1 − z0
. (11)

6 Y. Liu et al.

That occupancy has an upper bound . k, and a lower bound which would be
achieved if all other queues were always empty.

The average number of messages, . L, present in .Qi, is given by

.L = s +
πkz0

(1 − z0)2
. (12)

Now we need to take into account the interdependency between the .N sta-
tions. The above computational procedure yields the occupancy of one station,
given the occupancies of the other stations. That occupancy in turn influences
the other stations by taking part in their environments.

Suppose that we start by assuming some occupancies, .(s2, s3, . . . , sN), for
stations 2, 3,, . N . Applying (11) we determine the occupancy of station 1, . s1.
Then, using the new . s1, together with the old . s3,, .sN , we can compute a new
value, . s2, for the occupancy of station 2. The new .s1 and . s2, together with the
old . s4,, .sN , determine a new . s3, and so on. After .N such steps, the values of
all occupancies are renewed.

We can summarize the above .N -step procedure by denoting it as a function,
. f , which transforms an old vector of occupancies, .sold = (sold1 , sold2 , . . . , soldN) into
a new vector of occupancies, .snew = (snew1 , snew2 , . . . , snewN):

.snew = f(sold) . (13)

The model solution is provided by the fixed point, . s∗, of the function . f . That is
a ‘mutually consistent’ vector of occupancies which does not change when used
to define the environments of different stations:

.s∗ = f(s∗) . (14)

Intuitively, such a fixed point exists because . f is continuous and the set of
occupancy vectors is bounded and convex. Moreover, while not having a proof,
we conjecture that the fixed point is unique. A referee has suggested a possible
approach to proving that conjecture, but we feel that such a proof is outside the
scope of the present study.

The point .s∗ can be computed by iterating the transformation . f . Start with
an initial guess, . s0, e.g. .s0 = (k1, k2, . . . , kN) (this is the initial guess that we
have usually adopted). At the . nth iteration, compute

.sn = f(sn−1) ; n = 1, 2, (15)

Stop when two consecutive iterations are sufficiently close to each other and
return the resulting performance measures .(L1, L2, . . . , LN).

3.1 Special Cases

The complexity of the solution is reduced considerably when the system is sym-
metric. If the arrival rates and slot allocations are the same at all stations, . λi = λ
and .ki = k for all . i, then the occupancies are also the same, .si = s, and the

Design and Analysis of Distributed Message Ordering 7

environment of any isolated station is defined by a total occupancy, .(N − 1)s, of
the other stations. For a given value of . s, the state-dependent departure rates
(4) become

.μj = [N(j + (N − 1)s)α + β]−1 ; j = 1, 2, . . . , k . (16)

The mutually consistent occupancy, . s, is produced by the fixed-point iterations
(15), which are now in terms of a single variable.

If, in a symmetric system, all stations are allocated one slot each, the solution
can be obtained in closed form. In this case messages depart singly and the
occupancy variable for every queue, . s, is the probability that the queue is not
empty. The state-independent departure rate is given by (16), with .j = 1:

.μ1 = [N(1 + (N − 1)s)α + β]−1 . (17)

Since the probability that the queue is not empty is equal to .s = λ/μ1, we can
write the fixed-point equation for . s as

.s = λ[N(1 + (N − 1)s)α + β] . (18)

When the stability condition (2) is satisfied, i.e. when .λ(N2α + β) < 1, this
equation has a unique solution in the interval (0,1):

.s =
λ(Nα + β)

1 − λN(N − 1)α
. (19)

That solution provides an estimate for the average queue size at each station:

.L =
s

1 − s
. (20)

The solution of an asymmetrical system depends on how many stations have
different parameters. Suppose, for example, that stations 2, 3,, .N are iden-
tical, with arrival rates equal to . λ and slot allocations . k each, while station 1 is
different, with arrival rate .λ1 and slot allocation . k1. Then there would be one
environment for station 1, defined by the total occupancy, .(N − 1)s, of stations
2, 3,, . N , and another environment for any of the other stations, with total
occupancy .s1+(N −2)s that includes station 1. The fixed-point iterations would
compute a two-element vector .(s1, s).

4 Examples

We have experimented first with a symmetric system containing 5 stations, all
having the same parameters. The processing and communication parameters are
fixed at .a + b = 10−3 secs and .β = 10−5 secs, respectively. The arrival rate
is varied, and the average number of messages present at one station, . L, is
estimated by the model and by simulation, for purposes of comparison.

8 Y. Liu et al.

In the first example, just one slot is allocated to each station: .ki = 1 for all . i.
The estimated values of . L are computed according to the closed-form expressions
(19) and (20).

The maximum cycle time is about 0.025 secs, which means that, for stabil-
ity, the arrival rate at each station must be less than 40 messages per second.
In the simulation, it was assumed that the intervals between a visit of the folder
to one station and the visit to the next station are distributed exponentially.
When a total of .S slots are occupied, the average length of that interval is
.v = Sα + β/N . Then the simulation generates an exponentially distributed ran-
dom number with mean . v. When all slots are occupied, the mean is 0.005 secs.
Hence, the simulated maximum cycle has a 5-phase Erlang distribution with
mean 0.025 secs, whereas in the model it is distributed exponentially with the
same mean. This discrepancy adds to the approximate nature of the results.

0

1

2

3

4

5

6

7

8

9

35 36 37 38 39

L

λ

Approximation

+
+

+

+

+
+

Simulation

× ×
×

×

××

Fig. 1. Symmetric system. Increasing arrival rate, . k = 1

In Fig. 1, the arrival rate per station increases from .λ = 35 to .λ = 39. As
expected, . L increases non-linearly. It would have a vertical asymptote close to
.λ = 40. The approximation is consistently pessimistic, possibly because the
exponential distribution has a higher coefficient of variation than the Erlang.
However, the estimated average queue sizes are very accurate. Their relative
errors, compared with the simulated values, are on the order of 5%.

For each value of . λ, ten independent simulation runs were made for the
purpose of computing the 95% confidence intervals. During each run, a total
of 100000 messages arrived into the system. The half-widths of the resulting
confidence intervals are displayed in Table 1. We observe that all but the first
two approximated values of . L are within the corresponding confidence intervals.

Design and Analysis of Distributed Message Ordering 9

Table 1. Confidence intervals for estimates in Fig. 1

.λ 35 36 37 38 39

.L approximated 1.41 1.81 2.48 3.84 7.94

.L simulated 1.30 1.68 2.43 3.66 7.70
conf. interval half-width 0.03 0.06 0.20 0.46 1.20

It is interesting to consider the effect of increasing the slot allocation per
station, . k. In a symmetric system, the stability condition (2) can be written as

.λ <
k

N2kα + β
. (21)

Since the value of . β is typically close to 0, that condition is almost independent
of . k and is approximately .λ < 1/(N2α), which in our case is .λ < 40. Allocating
more slots per station brings a negligible improvement in stability, but has a
significant effect on performance. What happens is that an increase in . k leads to
an increase in the number of departing messages from each queue per folder visit,
together with a proportionate increase in the intervals between visits. Replac-
ing frequent single departures with less frequent batch departures degrades the
performance, by causing messages to remain in the queue for longer.

Fig. 2. Symmetric system. Increasing slot allocation

In order to illustrate and quantify the above phenomenon, the allocation of
slots to each station was varied between .k = 1 and .k = 5. This was done for two
different arrival rates, .λ = 35 and .λ = 38, and in each case the approximated
value of the average queue size was compared with the simulated one. The other

10 Y. Liu et al.

parameters are te same as in te first example. The resulting plots are displayed
in Fig. 2.

In this experiment, the approximate values of . L were computed by apply-
ing the fixed-point iterations (15), with state-dependent departure rates given by
(16). The resulting plots suggest that the average queue sizes increase almost
linearly with the slot allocation. Moreover, the gradient of that increase is higher
when the offered load is higher. The accuracy of the approximations as compared
with simulations is again good, especially under the higher load. In the more
lightly loaded system, the discrepancy between approximations and simulations
appears to grow with . k.

In a non-symmetrical setup, the situation can be very different. Our next
experiment involves a system where station 1 is much more important than the
other stations. The objective is to minimise .L1, the average length of .Q1, regard-
less of what happens at the other queues. In this example, stations . 2, 3, . . . , N
are allocated 1 slot each, while . k1, the station 1 allocation, is varied. Moreover,
queues .2, 3, . . . , N are assumed to be never empty, i.e. each of their occupan-
cies is .s = 1. Thus, the environment of .Q1 is defined by the state-dependent
departure rates (16), which now have the form

.μj = [N(j + N − 1)α + β]−1 ; j = 1, 2, . . . , k1 . (22)

Fig. 3. Asymmetric system. Increasing slot allocation for station 1

In Fig. 3 the approximated and simulated values of .L1 are plotted against
the slot allocation . k1. The parameters . α and . β are the same as before, while the
.Q1 arrival rate is fixed at .λ1 = 37. That constitutes a heavy load when . k1 = 1
(remember that then we must have .λ1 < 40 for stability), but the load decreases
when .k1 increases. The resulting average queue length is computed according to
(12), without the need for fixed-point iterations.

Design and Analysis of Distributed Message Ordering 11

We observe that the largest performance benefit is derived by increasing
the slot allocation from .k1 = 1 to .k1 = 2. The reduction in the average queue
size is substantial. However, further increases in .k1 have a very limited effect
because the advantage of larger departing batches is counterbalanced by the
larger intervals between departures.

The next and final experiment aims to evaluate the effect of different dis-
tributions of folder processing times on performance. This was done entirely by
simulation. Remember that when a total of . S slots in the folder are occupied,
the average interval until it reaches the next station is .v = Sα + β/N , and the
simulation generates a random number with mean . v. Now the distribution of
that random number is varied. Five different distributions with the same mean
but increasing coefficients of variation were tried.

1. Constant: the interval is equal to . v. The coefficient of variation is .C2 = 0.
2. Uniform: the interval is distributed uniformly between 0 and . 2v. The coeffi-

cient of variation is .C2 = 1/3.
3. Exponential: the interval is distributed exponentially with mean . v (this has

been the case so far). The coefficient of variation is .C2 = 1.
4. Hyperexponential A: with probability 2/3 the interval is distributed exponen-

tially with mean .v/2 and with probability 1/3 it is distributed exponentially
with mean . 2v. The coefficient of variation is .C2 = 2.

5. Hyperexponential B: with probability 5/6 the interval is distributed exponen-
tially with mean .v/5 and with probability 1/6 it is distributed exponentially
with mean . 5v. The coefficient of variation is .C2 = 37.

Fig. 4. Different distributions of processing times

12 Y. Liu et al.

The other parameters are the same as in the first example. The arrival rate
is increased and the average size of the isolated queue, . L, is plotted against . λ.
The results are displayed in Fig. 4.

It is well known that the performance of any queueing system tends to deteri-
orate when the coefficient of variation of either the arrival process or the service
process increases. This phenomenon is clearly illustrated here. Each increase in
.C2 causes the corresponding plot to be higher than the one before. Moreover,
the performance deterioration becomes worse as the offered load increases.

Note that for the first four distributions, .C2 ≤ 2. Within that range, the
approximation based on the exponential distribution would be quite acceptable,
even at heavy loads. However, the coefficient of variation of the Hyperexponen-
tial B distribution is an order of magnitude higher and the corresponding per-
formance is worse by a factor of 3. Then the exponential approximation would
not be acceptable. On the other hand, it is unlikely that loading and copying
times would have such a high coefficient of variation in practice.

5 Conclusion

We have proposed, analysed and evaluated a new protocol for ordering messages
in a distributed environment. The solution enabling the computation of perfor-
mance measures is approximate but its accuracy appears to be good. This has
been verified by comparisons with simulations.

The assumption that one message fits in one slot can be relaxed considerably,
while applying the developed general approximation methodology. Each station
could be allocated a storage block of a given size in the folder, and message sizes
could be i.i.d. random variables with a given distribution. When the folder visits
a station, as many messages are loaded as can fit in the allocated block. Such
a generalisation is left for future work, since it would require a more complex
analysis of an isolated queue.

Another direction in which the work can be extended is to generalize the
protocol by allowing more than one circulating folder. That would certainly be
worth doing and will be attempted, even though the analysis is likely to require
further approximations.

References

1. Bailey, N.T.J.: On queueing processes with bulk service. J. Roy. Stat. Soc. B 16(1),
80–87 (1954)

2. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
taxonomy and survey. ACM Comput. Surv. (CSUR) 36(4), 372–421 (2004)

3. Ejem, A., Ezhilchevan, P.: Design and performance evaluation of raft variations.
In: 39th Annual UK Performance Engineering Workshop (2023)

4. Fouto, P., Preguiça, N., Leitão, J.: High throughput replication with inte-
grated membership management. In: 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pp. 575–592 (2022)

Design and Analysis of Distributed Message Ordering 13

5. Guerraoui, R., Ron, R., Pochon, B., Quéma, V.: Throughput optimal total order
broadcast for cluster environments. ACM Trans. Comput. Syst. (TOCS) 28(2),
1–32 (2010)

6. Junqueira, F., Reed, B.: ZooKeeper: Distributed Process Coordination. O’Reilly
Media, Inc. (2013)

7. Liskov, B., Cowling, J.: Viewstamped replication revisited (2012)
8. Marandi, P.J., Primi, M., Schiper, N., Pedone, F.: Ring Paxos: a high-throughput

atomic broadcast protocol. In: 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN), pp. 527–536 (2010)

9. Oki, B.M., Liskov, B.H.: Viewstamped replication: a new primary copy method
to support highly-available distributed systems. In: Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed Computing, pp. 8–17 (1988)

10. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (USENIX ATC 14), pp. 305–319
(2014)

11. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

12. Takagi, H.: Queuing analysis of polling models. ACM Comput. Surv. 20, 5–28
(1988)

13. Verbitski, A., et al.: Amazon aurora: design considerations for high throughput
cloud-native relational databases. In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 1041–1052 (2017)

The Omnibus Java Library: Efficient
Synthesis of Optimal Signal Schedules

for Multimodal Intersections

Nicola Bertocci, Laura Carnevali, Leonardo Scommegna(B), and Enrico Vicario

Department of Information Engineering, University of Florence, Florence, Italy
{nicola.bertocci,laura.carnevali,leonardo.scommegna,

enrico.vicario}@unifi.it

Abstract. The Omnibus Java library efficiently derives optimal signal
schedules for multimodal intersections. Specifically, intersections among
tram lines with right of way and vehicle flows are considered, minimizing
the maximum expected percentage of queued vehicles of each flow.

Trams are modeled by Stochastic Time Petri Nets (STPNs), cap-
turing periodic tram departures and bounded delays and travel times
with general (i.e., non-Exponential) distribution. Vehicles are modeled by
finite-capacity vacation queues with general vacation times determined
by the intersection availability. For each vehicle flow, the expected queue
size over time is derived, as well as the steady-state distribution of the
expected queue size at multiples of the hyperperiod (resulting from nom-
inal tram arrival times and vehicle traffic signals). Then, the behavior of
each vehicle flow can be studied over intervals of arbitrary duration by
just performing transient analysis for the hyperperiod duration, starting
from the steady-state distribution of the expected queue size.

Omnibus is notably designed to facilitate code usability, maintain-
ability, and extensibility. It is available open source under the AGPLv3
licence. In particular, Omnibus leverages the SIRIO Library of the ORIS
tool to model duration distributions and to specify and analyze STPNs.

Keywords: Multimodal intersections · optimal signal schedules ·
stochastic time Petri nets · finite-capacity vacation queues with general
vacation time · Simulation of Urban MObility (SUMO) · software tools
and libraries

1 Introduction
1.1 Motivation

The development of tramways is promoted to meet the needs of urban trans-
port while improving its environmental sustainability [1]. The actual success of
this initiative depends on the deployment of measures to mitigate the impact
of tramways, which in fact reduce the space available for road traffic and typi-
cally have right of way at multimodal intersections. The main mitigation mea-
sure is to optimize traffic signals to minimize the duration of the intervals of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 14–28, 2025.
https://doi.org/10.1007/978-3-031-80932-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-80932-3_2

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 15

intersection unavailability for road transport. To this end, quantitative evalua-
tion of stochastic models capturing behavior of road traffic and tram traffic at
multimodal intersections can effectively support early assessment and runtime
adaptation of design choices, notably exploiting widespread smart technologies
for online estimation of traffic parameters and tram delays [14], so as to max-
imize expected capacity or minimize expected queue lengths and delays [6]. In
addition, a well-engineered implementation of quantitative evaluation methods
is also needed to achieve their full exploitation, notably to support the derivation
of traffic signal schedules that optimize some performance measure of interest.

1.2 Related Works

A variety of approaches supports operation and management of urban trans-
portation systems, using models with different abstraction level [13]. Notably,
microscopic models mainly capture behavior of individual vehicles and drivers,
while macroscopic models capture global or aggregated features of traffic flows,
typically achieving computational efficiency while not representing synchronous
events, such as tram arrivals. These approaches leverage various modeling for-
malisms [22,27,28] and solution techniques [11,24,36,40,42] to compute quan-
titative measures of interests [13], such as the expected queue lengths at inter-
sections. Like the approach implemented by the library presented in this paper,
these methods typically do not assume pervasive smart technologies, nor they
require significant amounts of mobility data as input. Conversely, other methods
optimize traffic signals by leveraging accurate information on vehicle position and
movements [17,21,23,31,33], thus requiring advanced vehicle technologies, or by
exploiting machine learning methods [2, 7,13,32,41], thus requiring availability
of large amounts of mobility data. According to this, these latter approaches are
considered out of scope with respect to the contribution of this paper.

Specifically, concerning methods based on microscopic models, a model of
multiple signalized intersections is defined in [9] using Deterministic and Stochas-
tic Petri Nets (DSPNs) [25], approximating normal distributions of vehicle flows
and travel times with Erlang distributions, and deriving the durations of traf-
fic light phases that minimize queue lengths. In [4, 5], a microscopic model
of a road-tramway intersection is presented, modeling periodic tram depar-
tures and stochastic tram delays and travel times by Stochastic Time Petri
Nets (STPNs) [39], while explicitly representing each state of the queue of vehi-
cles, and thus providing only a rough estimate on the average queue size over
time by grouping car arrivals into platoons. Other approaches support rule-based
simulation of different signal policies at signalized intersections under different
traffic demands [11], the definition of model predictive control policies [30] for
connected multimodal signalized intersections between vehicles and bicycles, the
development of traffic control policies [18] in the VISSIM microscopic simula-
tion tool [15,37] to accommodate asynchronous priority requests from different
modes of transport. Coordination of tram time timetables and signal timing at
intersections with road transport is addressed to optimize tram travel times and
timetable adherence, by exploiting smart technologies such as automatic vehicle

16 N. Bertocci et al.

location and advanced control systems [35] or by predetermining signal coor-
dination based on volumes and operational characteristics of road vehicles [20]
or by leveraging a simplified model assuming that the same transit signal pri-
ority actions have the same effect irrespective of traffic conditions [44]. Cellar
automata models have also been used to analyze signal control mechanisms and
tram priority policies at vehicle-tram intersections, though typically considering
simplified scenarios, e.g. deterministic tram arrival times not subject to stochas-
tic delays [43] and simplified network topology and traffic load [38].

Concerning methods based on macroscopic models, Hybrid Petri
Nets (HPNs) are used to represent road transport (continuous dynamics) and
traffic light signals (discrete dynamics) for both individual [10,12] and multiple
intersections [8]. Macroscopic models are also defined by capturing the vehicle
flow dynamics at each intersection [45] or by exploiting the input-output app-
roach [34] and the shockwave theory [36]. As a common trait, these approaches
typically model the vehicle flow dynamics and the temporization of traffic signal
schedules, while not capturing tram traffic behavior characterized by periodic
departure times.

To the best of our knowledge, none of the reviewed papers provides an open-
source implementation supporting accurate and efficient derivation of optimal
signal schedules at multimodal intersections among tram lines and vehicle lows.

1.3 Contribution

We present Omnibus, 1 a Java library available open-source under the AGPL v3
licence, implementing the compositional approach of [3] for efficient derivation
of optimal signal schedules for multimodal intersections among tram lines with
right of way and vehicle flows. To this end, the approach combines the analysis
of a microscopic model of tram traffic specified by STPNs, capturing periodic
tram departures as well as bounded delays and travel times with general (non-
Exponential) distribution, with the analysis of a macroscopic model of vehicle
flows in terms of finite-capacity vacation queues with general vacation times.
Notably, the approach of [3] just assumes the presence of sensors detecting tram
passages and the availability of statistics of inter-arrival and travel times of vehi-
cles and trams. Omnibus exploits the SIRIO Library 2 of the ORIS tool [29] 3 to
represent Probability Density Functions (PDFs) of durations as well as to model
and evaluate STPNs. It is designed to facilitate code usability, maintainability,
and extensibility, by exploiting consolidated design patterns [16].

In the following, first we provide an overview on the Omnibus features, also
presenting the typical workflow (Sect. 2). Then, we illustrate the Omnibus pack-
ages that support modeling of multimodal intersections (Sect. 3) and evaluation
of the expected queue size over time of each vehicle flow (Sect. 4), and we dis-
cuss how the obtained results can be exploited to derive optimal signal schedules

1 https://doi.org/10.5281/zenodo.13907731.
2 https://github.com/oris-tool/sirio.
3 https://www.oris-tool.org.

https://doi.org/10.5281/zenodo.13907731
https://doi.org/10.5281/zenodo.13907731
https://doi.org/10.5281/zenodo.13907731
https://doi.org/10.5281/zenodo.13907731
https://doi.org/10.5281/zenodo.13907731
https://doi.org/10.5281/zenodo.13907731
https://doi.org/10.5281/zenodo.13907731
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio
https://github.com/oris-tool/sirio
https://www.oris-tool.org
https://www.oris-tool.org
https://www.oris-tool.org
https://www.oris-tool.org
https://www.oris-tool.org

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 17

(Sect. 5). Finally, we draw our conclusions and we discuss possible future exten-
sions of the library (Sect. 6).

2 The Omnibus Library

The use case diagram of Fig. 1a shows the main functionalities, implemented by
the packages shown in the package diagram of Fig. 1b, i.e., tram, vehicle, and
intersection. Figure 1c shows the data flow diagram of the typical workflow.
Specifically, first the intersection is defined; then, the STPNs modeling tram
tracks are generated and analyzed to derive the probability that the intersection
is available for vehicles; next, the queues modeling vehicle flows are generated
and analyzed to derive the transient probability of each queue state after a

Fig. 1. Omnibus library: (a) UML use case diagram, (b) UML package diagram, and
(c) UML data flow diagram of the typical modeling and evaluation workflow.

18 N. Bertocci et al.

hyperperiod (i.e., least common multiple of periods of traffic signals and tram
lines); finally, steady-state and transient analyses of vehicle flows are combined to
derive the expected queue length over time over intervals of arbitrary duration.

3 Intersection Modeling

Tram and Vehicle Traffic Model. A tram track is modeled by an STPN, where
deterministic (DET) transitions represent periodic tram departures and offsets,
while general (GEN) transitions model tram delays and travel times. Each vehicle
flow is modeled by a finite-capacity vacation queue with EXP (Exponential)
inter-arrival times and service times, and GEN vacation times determined by
the probability that the intersection is available for vehicles and by the time-
division multiplexing schedule of the intersection traffic light.

Figure 2 shows a multimodal intersection considered in [3], whose main
stochastic parameters are reported in Table 1. Specifically, the intersection con-
sists of a bidirectional tram line, i.e., a tram line made of two tracks .φtram

11 and
.φtram

12 , and three vehicle flows .φveh
1 , .φveh

2 , and .φveh
3 . Trams of both tracks have

arrival period .T = 220 s, travel time from the wayside system to the intersection
equal to .5 s (a wayside system is installed on each track, close to the intersec-
tion, to detect tram passages and trigger the traffic signals of vehicles red as the
tram is approaching), and crossing time uniformly distributed over .[6, 14] s. The
offset of tram arrivals (i.e., nominal arrival time of the first tram of a track) is
equal to .0 s for the first track and equal to .40 s for the second track, and the
delay with respect to the nominal arrival time at the wayside system is uniformly
distributed over .[0, 120] s for the first track and .[0, 40] s for the second one. It is
worth noting that these values of the intersection parameters tend to synchronize

Fig. 2. Multimodal intersection
considered in [3], with .2 tram
tracks and . 3 vehicle flows.

Table 1. Main stochastic parameters of the tram
lines and the vehicle flows of the multimodal inter-
section represented in Fig. 2.

parameter value
tram line period .T 220 s
.Φtram

11 offset 0 s
.Φtram

12 offset 40 s
.Φtram

11 delay distribution UNIF(0 s,120 s)
.Φtram

12 delay distribution UNIF(0 s,40 s)
.Φtram

11 , .Φtram
12 red signal trigger time 5 s

.Φtram
11 , .Φtram

12 crossing time distribution UNIF(6 s,14 s)
traffic light period .P 110 s
.Φveh

1 arrival rate . 0.05 s−1

.Φveh
2 arrival rate . 0.1 s−1

.Φveh
3 arrival rate . 0.15 s−1

.Φveh
1 , .Φveh

2 , .Φveh
3 leaving rate . 0.092 s−1

.Φveh
1 , .Φveh

2 , .Φveh
3 queue capacity 31

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 19

tram passages, and thus to increase the duration of the intervals of intersection
unavailability for vehicles, thus making the search for optimal schedules more
challenging.

Concerning vehicle flows, the traffic light period . P is equal to .110 s, i.e., half
of the tram departure period. Vehicle flows .Φveh

1 , .Φveh
2 , and .Φveh

3 have arrival
rate equal to .0.05 s−1, .0.1 s−1, and .0.15 s−1, respectively. All vehicle flows have
leaving rate equal to .0.092 s−1, which results from street length equal to . 150 m
and maximum vehicle speed equal to .50 km h−1 (the latter two parameters are
not shown in Table 1). Moreover, all vehicle flows have queue capacity .K = 31,
which results from the mentioned street length and from vehicle length equal
to .4.5 m and safe distance between vehicles equal to .0.3 m) (also in this case,
the latter two parameters are not shown in Table 1). We remark that street
length, vehicle length, and safe distance between vehicles are not parameters
of the queues modeling vehicle flows. Rather, they are typical parameters of
microscopic traffic simulators, like SUMO (Simulation of Urban MObility) [26].
Therefore, such parameters are considered to facilitate the comparison of the

Fig. 3. Omnibus library: UML class diagram of packages.

20 N. Bertocci et al.

experimental results with those achieved by using tools like SUMO. This kind
of validation is in fact performed in [3] for the optimization of signal schedules.

Implementation. Figure 3 shows the Omnibus class diagram. Each vehicle flow
(class CarFlow) is associated with a queue (class BaseQueue) and a set of obsta-
cles (class Obstacle), i.e., semaphores (class CarSemaphore) and tram crossings
(class TramCrossing) related to tram lines (class TramLine) composed of tracks
(class TramTrack). Omnibus emphasizes the concept of vehicle flow rather than
that of intersection, reflecting the implemented compositional approach.

Listing 1.1 constructs the model of the intersection shown in Fig. 2.
1 // tram line parameter definition
2 BigInteger tramPeriod = BigInteger . valueOf (220) ;
3

4 // track 1 parameter definition
5 BigInteger t1_offsetTime = BigInteger . ZERO ;
6 BigInteger t1_delayEFTime = BigInteger . ZERO ;
7 BigInteger t1_delayLFTime = BigInteger . valueOf (120) ;
8

9 // track 2 parameter definition
10 BigInteger t2_offsetTime = BigInteger . valueOf (40) ;
11 BigInteger t2_delayEFTime = BigInteger . ZERO ;
12 BigInteger t2_delayLFTime = BigInteger . valueOf (40) ;
13

14 // track 1 and track 2 parameter definition
15 BigInteger redSignalTime = BigInteger . valueOf (5) ;
16 BigInteger leavingEFTime = BigInteger . valueOf (6) ;
17 BigInteger leavingLFTime = BigInteger . valueOf (14) ;
18

19 // track 1 instantiation
20 PetriNetTramTrack bin1 = PetriNetTramTrackBuilder . getInstance (" bin1 " ,
21 tramPeriod , t1_offsetTime , t1_delayEFTime , t1_delayLFTime ,
22 redSignalTime , leavingEFTime , leavingLFTime) ;
23

24 // track 2 instantiation
25 PetriNetTramTrack bin2 = PetriNetTramTrackBuilder . getInstance (" bin2 " ,
26 tramPeriod , t2_offsetTime , t2_delayEFTime , t2_delayLFTime ,
27 redSignalTime , leavingEFTime , leavingLFTime) ;
28

29 // tram line definition
30 TramLine tramLine = new TramLine (" line1 ");
31 tramLine . addTramTrack (bin1 , bin2) ;
32

33 // tram cross definition
34 TramCrossing tramCross = new TramCrossing (tramLine) ;
35

36 // vehicle flow 1 parameter definition
37 BigDecimal arrivalRate1 = BigDecimal . valueOf (0.05) ;
38

39 // vehicle flow 1 , vehicle flow 2 , and vehicle flow 3 parameter definition
40 BigInteger carSemaphorePeriod = BigInteger . valueOf (110) ;
41 BigDecimal mu = BigDecimal . valueOf (0.092) ;
42 BigInteger maxQueueSize = BigInteger . valueOf (31) ;
43 BigInteger initialCars = BigInteger . valueOf (0) ;
44

45 // vehicle flow 1 instantiation
46 CarFlow carFlow1 = new CarFlow (" carFlow1 ");
47 carFlow1 . setQueue (BaseQueueBuilder . getInstance (
48 arrivalRate1 , mu , maxQueueSize , initialCars)) ;
49

50 // vehicle flow 2 and 3 instantiation
51 ...
52

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 21

53 // semaphore instatiation with period 110 s
54 CarSemaphore carSem1 = new CarSemaphore (carSemaphorePeriod , TIMESTEP) ;
55 CarSemaphore carSem2 = new CarSemaphore (carSemaphorePeriod , TIMESTEP) ;
56 CarSemaphore carSem3 = new CarSemaphore (carSemaphorePeriod , TIMESTEP) ;
57

58 // adding obstacles to vehicle flow 1
59 carFlow1 . addObstacle (tramCross) ;
60 carFlow1 . addObstacle (carSem1) ;
61

62 // adding obstacle to vehicle flows 2 and 3
63 ...

Listing 1.1. Construction of the model of the intersection of Fig. 2.

4 Intersection Evaluation

Tram and Vehicle Traffic Analysis. The STPN of each tram track is analyzed in
isolation by forward transient analysis based on the method of stochastic state
classes [19], deriving the transient probability that the intersection is available
for each vehicle flow. For every flow, a set of ordinary differential equations is
defined, where the leaving rate of vehicles is modulated by the probability that
the intersection is available for their transit. For each vehicle flow, the solution
of this set of equations yields the expected queue size over time.

Within a few hyperperiods, the distribution of the expected queue size of each
vehicle flow reaches a steady state at multiples of the hyperperiod. In particu-
lar, the distribution of the expected queue size of each vehicle flow at multiples
of the hyperperiod can be derived by steady-state analysis of the Discrete Time
Markov Chain (DTMC) embedded in the continuous-time birth-death process of
the queue at multiples of the hyperperiod, performing transient analysis within a
hyperperiod to derive the DTMC transition probability matrix. Therefore, once
the mentioned steady-state distribution is derived for each vehicle flow, the eval-
uation of the expected queue size over time can be performed over time-intervals
of arbitrary duration, even in presence of time-varying stochastic parameters. It
is worth remarking that deriving such steady-state distribution by using a micro-
scopic traffic simulator would be almost unfeasible, as discussed in [3]. In fact,
the analysis time using Omnibus is up to nearly four orders of magnitude lower
than the simulation time using SUMO, notably evaluating in few minutes hun-
dreds of schedules requiring tens of hours in SUMO, which actually prevents
using SUMO when a significant number of simulation runs is required, as in the
case of the evaluation of the mentioned steady-state distribution.

Implementation. The probability that the intersection is available for vehicles is
derived by class ParallelGreenVisitor, implemented using the Visitor design
pattern [16], allowing the analysis to be performed both for single tracks (class
BasicPetriNetTramTrack) and for all tracks (class TramWay). For each vehicle
flow, transient and steady-state analysis are performed by classes TransientAna-
lyzer and SteadyStateAnalyzer, respectively. Listing 1.2 illustrates these con-
cepts by analyzing the model built in Listing 1.1.

22 N. Bertocci et al.

1 // tram crossings analysis
2 tramCross . analyze (new ParallelGreenProbabilityVisitor () , timeStep) ;
3

4 // transient analysis
5 double [] expectedState = carFlow . analyzeQueue (new TransientAnalyzer () ,

BigInteger . valueOf (carFlow . getObstaclesHyperPeriod ()) , timeStep) .
getExpectedStateAlongTime ());

6

7 // steady -state analysis
8 double [] steadyStateDistribution = carFlow1 . analyzeSteadyStateDistribution

(new DTMCSteadyStateAnalyzer () , new TransientAnalyzer () , timeStep) .
getSteadyStateDistribution () ;

Listing 1.2. Evaluation of the intersection model built in Listing 1.1.

5 Efficient Derivation of Optimal Signal Schedules

Defining and Exploring a Set of Static Signal Schedules. A set of static traffic
signal schedules can be defined starting by varying sequence and duration of
phases. In particular, in [3], a set of 390 different traffic signal schedules is defined
as follows. During a traffic light period .P = 110 s, phases of duration . Δ ∈
{15, 25, 35} s are considered, except for the last phase which may be longer. A
short time interval of .5 s during which all vehicle signals are red is considered
between any two phases assigned to vehicle flows. Finally, to guarantee that each
phase has duration at least equal to .15 s, the time until the end of the period
is assigned to the second-to-last phase if the last phase lasted less than .15 s.
For instance, within each period .[0, 110] s, a possible schedule is the one that
assigns the time interval .[0, 25] s to the first vehicle flow .φveh

1 , the time interval
.[30, 65] s to the second vehicle flow .φveh

2 , and the time interval .[70, 105] s to the
third vehicle flow .φveh

3 . During the intervals .(25, 30) s and .(65, 70) s the signal is
red for all the vehicle flows. Also note that, when a time interval is assigned to
a vehicle flow, then the signal during that time interval is green for the vehicle
flow unless a tram is approaching or crossing the intersection.

For each schedule, the analysis is performed up to . 5 hyperperiods (i.e., .110 s)
with time step equal to .0.1 s, For each schedule, .25 simulation runs are also
performed through the SUMO microscopic traffic simulator. In both cases, the
computed measure of interest is the maximum expected percentage of queued
vehicles of any flow within the interval comprised between 2 and 5 hyperperiods.
The optimality of each of the 390 traffic signal schedule is evaluated in terms of
minimizing this quantitative measure by using SUMO, and the obtained results
are compared with those achieved by using Omnibus.

Figure 4 shows the expected queue size over time of each vehicle flow starting
from its steady-state distribution at multiples of the hyperperiod, computed for
the best schedule, the worst schedule, and the schedule in median position, com-
puted by using SUMO. Note that the best and worst schedules can be identified
also using Omnibus, notably with a significantly lower computation time.

Implementation. Listing 1.3 provides a proof of concept demonstrating
how Omnibus can be used to efficiently derive optimal schedules. The

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 23

Fig. 4. For each vehicle flow of the intersection of Fig. 2, expected queue size over time
starting from the steady-state distribution at multiples of the hyperperiod, obtained
in [3] for (a) the best schedule, (b) the worst schedule, and (c) the schedule in median
position among the 390 considered schedules.

snippet is divided into two methods, i.e., identifyOptimalSchedule and
getMaxOccupationPer-centage, thus enhancing readability and flexibility.
On the one hand, identify-OptimalSchedule handles the initial setup
and the iteration over the schedules to be analyzed. On the other hand,
getMaxOccupationPercentage is responsible for analyzing how a schedule
affects a vehicle flow by calculating the maximum percentage of queue occu-
pation at multiples of the hyperperiod. There is a functional dependency
between the two methods: getMaxOccupationPercentage will be invoked by
identifyOptimalSchedule to analyze each vehicle flow at the intersection for
each schedule. In turn, identifyOptimalSchedule will be invoked by the end-
user in order to obtain the best schedule.

Note that the best schedule is currently identified as the one that minimizes
the maximum percentage of queue occupation in any flow of the intersection.
However, other criteria could be considered as well, depending on the specific
context and aim of the optimization. For example, in case some queues might be
more important than others, and thus a weighted optimization should be imple-

24 N. Bertocci et al.

mented. Alternatively, it might be desirable to optimize the absolute number of
vehicles queued at the intersection instead of the percentage. In such cases, it
is sufficient to replace the method getMaxOccupationPercentage with the new
method that implements the desired heuristic.

In more detail, starting from the method identifyOptimalSchedule, the
method generateSemaphoreSchedules is invoked in line 5. This method gener-
ates the space of schedules to explore in the form of Java Strings and it is not
represented because it is considered trivial and not crucial for the purposes of this
paper. We just provide some details on the format of the schedule. Specifically,
the id of the vehicle flow for which the semaphore is exclusively green is repeated
for each time unit. For example, if the id of the object carFlow1 is 1 and the
id of the object carFlow2 object is 2, then a valid schedule with period 6 could
be “111222” and “112211”. As discussed in [3] and in the previous paragraph
of this section, it could be realistic considering semaphore schedules in which
the right of way of vehicle flows is intertwined with intervals of red signal for
all the vehicle flows. In this case, using id 9 to identify time intervals, the above
mentioned schedule would become the one represented by String “119229”.

1 public String identifyOptimalSchedule (CarFlow [] carFlows ,
2 CarSemaphore [] carSemaphores)

{
3 String bestSchedule ;
4 double bestScheduleOccupationPercentage = Double . MAX_VALUE ;
5 BlockingQueue schedulesToAnalyze = generateSemaphoreSchedules () ;
6 for (String schedule : schedulesToAnalyze) {
7 Utils . applySchedule (schedule , carSemaphores) ;
8 double maxOccupationPercentage = Double . MIN_VALUE ;
9 for (CarFlow carFlow : carFlows) {

10 double w = getMaxOccupationPercentage (carFlow) ;
11 maxOccupationPercentage = Math . max (maxOccupationPercentage ,w);
12 }
13 if (maxOccupationPercentage < bestScheduleOccupationPercentage) {
14 bestSchedule = schedule ;
15 bestScheduleOccupationPercentage = maxOccupationPercentage ;
16 }
17 }
18 return bestSchedule ;
19 }
20

21 private double getMaxOccupationPercentage (CarFlow carFlow) {
22 double [] steadyStateDistribution = carFlow
23 . analyzeSteadyStateDistribution (
24 new DTMCSteadyStateAnalyzer () ,
25 new TransientAnalyzer () ,
26 timeStep) . getSteadyStateDistribution () ;
27

28 BigDecimal [] bdDist = Arrays . stream (steadyStateDistribution)
29 . mapToObj (BigDecimal :: valueOf)
30 . collect (Collectors . toList ())
31 . toArray (new BigDecimal [0]) ;
32

33 carFlow . getQueue () . setInitialDistribution (bdDist) ;
34

35 return Arrays . stream (carFlow . analyzeQueue (new TransientAnalyzer () ,
BigInteger . valueOf (carFlow . getObstaclesHyperPeriod ()) , timeStep) .
getExpectedStateAlongTime ()) . max () . getAsDouble () / carFlow . getQueue () .
getSize () . doubleValue () ;

36 }

Listing 1.3. Implementation of the optimal signal schedule identification.

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 25

Once the schedule space is generated, it is explored using the for loop in
line 6. In line 7, the method applySchedule is invoked. This is a utility func-
tion that sets the green and red intervals for each semaphore according to the
schedule under consideration. Subsequently, for each vehicle flow at the inter-
section, the method getMaxOccupationPercentage is invoked, calculating the
maximum expected percentage of queued vehicles of each flow. For each sched-
ule, the maximum expected percentage of queued vehicles among all the flows
of the intersection is selected (lines 10 and 11). Once this measure of inter-
est (i.e., maxOccupationPercentage) is identified, the schedule that yields the
smallest value of this measure is selected as the best schedule (lines 13 to 15).

The core of the process however is the method GetMaxOccupationPercentage
(line 21). Given a vehicle flow, the method returns the maximum expected percent-
age of queued vehicles during a hyperperiod starting from thes steady-state distri-
bution (of the number of queued vehicles at multiples of the hyperperiod). This
calculation is made possible by transient and steady-state analyses provided by
the Omnibus Java Library. The mentioned steady-state distribution is calculated
for a vehicle flow at line 22, equivalently to how it was illustrated in Listing 1.2
(line 8). Subsequently, the queue occupation is set equal the value obtained at the
steady state in the previous step (line 33). Finally, transient analysis is performed
(line 35), again equivalently to how it was illustrated in Listing 1.2 (line 5). In the
same instruction, the maximum expected value in the hyperperiod is extracted and
the percentage of occupation is calculated (line 41).

6 Conclusions and Future Extensions

We have presented the Omnibus Java library, implementing efficient derivation
of optimal signal schedules for multimodal intersections [3]. Specifically, inter-
sections among tram lines with right of way and vehicle flows are considered in
Omnibus, combining a microscopic model of tram traffic (i.e., STPNs represent-
ing periodic tram departures, and bounded delays and travel times with non-
Exponential distribution) with a macroscopic model of vehicle flows (i.e., finite-
capacity vacation queues with general vacation times). The analyses of both
models are also combined in [3], developing an efficient compositional approach
to compare the intersection performance (in terms of expected percentage of
queued vehicles of each flow) under different signal schedules. Therefore, the
implementation of the approach provided by Omnibus can be effectively used to
analyze a significant number of signal schedules and derive an optimal solution.

The Omnibus library is specifically designed to facilitate code usability, main-
tainability, and extensibility, supporting a variety of extensions that also com-
prise relevant advancements in the theoretical and application perspective. In
particular, Omnibus could be easily extended to represent vehicle arrival times
in the class of time-inhomogeneous Poisson Processes, enabling representation
of vehicles arriving in bursts, platoons, and free flow. Other non-Exponential
distributions that can be represented by a Markovian model, such as hyper-
Exponential distributions and Markovian Arrival Processes, could be imple-
mented as well to represent arrival times and leaving times of vehicles. In both

26 N. Bertocci et al.

cases, though the advancement involves both the modeling and evaluation per-
spectives, the extension of the implementation remains mainly confined to a
couple of classes. Namely, BaseQueue, possibly implementing a subclass, and
TransientAnalyzer, adapting the analysis to the arrival and service time dis-
tributions of the new subclass, possibly by implementing a strategy method [16].

Another possible extension that would bring greater expressiveness to the
Omnibus Java Library could consist in considering pedestrian crossing as an
additional factor for the intersection. This would exclusively require the imple-
mentation of a new subclass of the class Obstacle where, similarly to the classes
CarSemaphore and TramCrossing, the designer defines the law according to
which pedestrians occupy a lane while crossing the intersection.

Moreover, the Omnibus library could also be extended to represent multiple
connected intersections within a urban transportation network, enabling joint
optimization of traffic signal schedules. Similarly to the previous case, thanks to
the flexible architecture of the library, the extension would mainly require the
addition of new classes (e.g., to define how the intersections are connected with
each other) rather that the modification of the existing ones.

Notably, all these potential extensions demonstrate how Omnibus adheres to
the Open/Closed Principle. In fact, these additions would not alter the existing
API exposed to end-users (including the methods invoked in Listing 1.1 to 1.3).
Rather, they comprise extensions of the API, allowing the designer to instantiate
new types of obstacles and specify new types of arrival and crossing patterns
without creating relevant incompatibilities with the new versions of the library.

Acknowledgement. This work was partially supported by the European Union under
the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, part-
nership on “Telecommunications of the Future” (PE00000001 - program “RESTART”),
and by the MUR PRIN 2022 PNRR P2022A492B project ADVENTURE (ADVancEd
iNtegraTed evalUation of Railway systEms) funded by the European Union - NextGen-
erationEU.

References

1. ACEA: The 2030 urban mobility challenge. Technical report (2016)
2. Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control. IEEE

Comput. Intell. Mag. 5(4), 43–51 (2010)
3. Bertocci, N., Carnevali, L., Scommegna, L., Vicario, E.: Efficient derivation of opti-

mal signal schedules for multimodal intersections. Simul. Modelling Pract. Theory
102912 (2024)

4. Carnevali, L., Fantechi, A., Gori, G., Vicario, E.: Analysis of a road/tramway inter-
section by the ORIS tool. In: International Conference on Verification and Evalu-
ation of Computer and Communication Systems, pp. 185–199. Springer (2018)

5. Carnevali, L., Fantechi, A., Gori, G., Vicario, E.: Stochastic modeling and analysis
of road-tramway intersections. Innovations Syst. Softw. Eng. 16(2), 215–230 (2020)

6. Cheng, C., Du, Y., Sun, L., Ji, Y.: Review on theoretical delay estimation model
for signalized intersections. Transp. Rev. 36(4), 479–499 (2016)

Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections 27

7. Chu, T., Wang, J., Codecà, L., Li, Z.: Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Tran. Intell. Transp. Syst. 21(3), 1086–1095
(2019)

8. Di Febbraro, A., Giglio, D., Sacco, N.: Urban traffic control structure based on
hybrid Petri nets. IEEE Tr. Int. Tran. Sys. 5(4), 224–237 (2004)

9. Di Febbraro, A., Giglio, D., Sacco, N.: A deterministic and stochastic Petri net
model for traffic-responsive signaling control in urban areas. IEEE Trans. Int.
Transp. Sys. 17(2), 510–524 (2016)

10. Di Febbraro, A., Sacco, N.: On modelling urban transportation networks via hybrid
Petri nets. Control Eng. Pract. 12(10), 1225–1239 (2004)

11. Dion, F., Hellinga, B.: A rule-based real-time traffic responsive signal control sys-
tem with transit priority: application to an isolated intersection. Transp. Res. Part
B: Methodol. 36(4), 325–343 (2002)

12. Dotoli, M., Fanti, M.P., Iacobellis, G.: An urban traffic network model by first
order hybrid Petri nets. In: 2008 IEEE International Conference on Systems, Man
and Cybernetics, pp. 1929–1934. IEEE (2008)

13. Eom, M., Kim, B.-I.: The traffic signal control problem for intersections: a review.
Eur. Transp. Res. Rev. 12(1), 1–20 (2020). https://doi.org/10.1186/s12544-020-
00440-8

14. Faria, R., Brito, L., Baras, K., Silva, J.: Smart mobility: a survey. In: International
Conference on IoT for the Global Community, pp. 1–8. IEEE (2017)

15. Fellendorf, M.: VISSIM: A microscopic simulation tool to evaluate actuated sig-
nal control including bus priority. In: 64th Institute of Transportation Engineers
Annual Meeting, vol. 32, pp. 1–9. Springer (1994)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Patterns, D.: Elements of reusable
object-oriented software. Design Patterns (1995)

17. Guo, Q., Li, L., Ban, X.J.: Urban traffic signal control with connected and auto-
mated vehicles: a survey. Transp. Res. Part C: Emer. Technol. 101, 313–334 (2019)

18. He, Q., Head, K.L., Ding, J.: Multi-modal traffic signal control with priority, signal
actuation and coordination. Transp. Res. Part C: Emer. Technol. 46, 65–82 (2014)

19. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012).
https://doi.org/10.1016/j.peva.2011.11.002

20. Ji, Y., Tang, Y., Du, Y., Zhang, X.: Coordinated optimization of tram trajectories
with arterial signal timing resynchronization. Transp. Res. Part C: Emer. Technol.
99, 53–66 (2019)

21. Ji, Y., Tang, Y., Shen, Y., Du, Y., Wang, W.: An integrated approach for tram
prioritization in signalized corridors. IEEE Trans. Intell. Transp. Syst. 21(6), 2386–
2395 (2019)

22. Li, Y., Sun, D.: Microscopic car-following model for the traffic flow: the state of
the art. J. Contr. Theory and Appl. 10(2), 133–143 (2012)

23. Li, Z., Elefteriadou, L., Ranka, S.: Signal control optimization for automated vehi-
cles at isolated signalized intersections. Transp. Res. Part C: Emer. Technol. 49,
1–18 (2014)

24. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow
on long crowded roads. Proc. Roy. Soc. Lon. Ser. A. Math. Phys. Sci. 229(1178),
317–345 (1955)

25. Lindemann, C.: Performance modelling with deterministic and stochastic petri
nets. ACM Sigmetrics Perform. Eval. Rev. 26(2), 3 (1998)

26. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: International
Conference on Intelligent Transportation Systems, pp. 2575–2582. IEEE (2018)

https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1186/s12544-020-00440-8
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002
https://doi.org/10.1016/j.peva.2011.11.002

28 N. Bertocci et al.

27. Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep.
419(1), 1–64 (2005)

28. Ng, K.M., Reaz, M.B.I., Ali, M.A.M.: A review on the applications of Petri nets
in modeling, analysis, and control of urban traffic. IEEE Trans. Int. Transp. Syst.
14(2), 858–870 (2013). https://doi.org/10.1109/TITS.2013.2246153

29. Paolieri, M., Biagi, M., Carnevali, L., Vicario, E.: The ORIS tool: quantitative
evaluation of non-Markovian systems. IEEE Trans. Softw. Eng. 47(6), 1211–1225
(2021)

30. Portilla, C., Valencia, F., Espinosa, J., Nunez, A., De Schutter, B.: Model-based
predictive control for bicycling in urban intersections. Transp. Res. Part C: Emer.
Technol. 70, 27–41 (2016)

31. Pourmehrab, M., Elefteriadou, L., Ranka, S., Martin-Gasulla, M.: Optimizing sig-
nalized intersections performance under conventional and automated vehicles traf-
fic. IEEE Trans. Intell. Transp. Syst. 21(7), 2864–2873 (2019)

32. Prabuchandran, K., AN, H.K., Bhatnagar, S.: Multi-agent reinforcement learning
for traffic signal control. In: International IEEE Conference on Intelligent Trans-
portation Systems, pp. 2529–2534. IEEE (2014)

33. Reddy, R., Almeida, L., Gaitán, M.G., Santos, P.M., Tovar, E.: Synchronous man-
agement of mixed traffic at signalized intersections towards sustainable road trans-
portation. IEEE Access (2023)

34. Sharma, A., Bullock, D.M., Bonneson, J.A.: Input-output and hybrid techniques
for real-time prediction of delay and maximum queue length at signalized intersec-
tions. Transp. Res. Record 2035(1), 69–80 (2007)

35. Shi, J., Sun, Y., Schonfeld, P., Qi, J.: Joint optimization of tram timetables and
signal timing adjustments at intersections. Transp. Res. Part C: Emer. Technol.
83, 104–119 (2017)

36. Stephanopoulos, G., Michalopoulos, P.G., Stephanopoulos, G.: Modelling and anal-
ysis of traffic queue dynamics at signalized intersections. Transp. Res. Part A:
General 13(5), 295–307 (1979)

37. Stevanovic, J., Stevanovic, A., Martin, P.T., Bauer, T.: Stochastic optimization of
traffic control and transit priority settings in VISSIM. Transp. Res. Part C: Emer.
Technol. 16(3), 332–349 (2008)

38. Tonguz, O.K., Viriyasitavat, W., Bai, F.: Modeling urban traffic: a cellular
automata approach. IEEE Comm. Maga. 47(5), 142–150 (2009)

39. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719
(2009)

40. Webster, F.V.: Traffic signal settings. Road Research Technical Paper 39. Technical
report (1958)

41. Wei, H., Zheng, G., Gayah, V., Li, Z.: A survey on traffic signal control methods.
arXiv preprint arXiv:1904.08117 (2019)

42. Yagar, S., Han, B., Greenough, J.: Real-time signal control. for mixed traffic and
transit based on priority rules. In: Traffic Management. Proceedings of the Engi-
neering Foundation Conference (1992)

43. Zhang, L., Garoni, T.: A comparison of tram priority at signalized intersections.
arXiv preprint arXiv:1311.3590 (2013)

44. Zhang, T., Mao, B., Xu, Q., Feng, J.: Timetable optimization for a two-way tram
line with an active signal priority strategy. IEEE Access 7, 176896–176911 (2019)

45. Zhang, Y., Su, R.: An optimization model and traffic light control scheme for
heterogeneous traffic systems. Transp. Res. Part C: Emer. Technol. 124, 102911
(2021)

https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2013.2246153
http://arxiv.org/abs/1904.08117
http://arxiv.org/abs/1311.3590

Performance Evaluation of Beaconing
Schemes for Vehicular Platooning

Hassan Laghbi1,2(B) and Nigel Thomas1(B)

1 Newcastle University, Newcastle upon Tyne NE1 7RU, UK
{h.laghbi2,nigel.thomas}@ncl.ac.uk

2 Jazan University, Jazan 82817, Saudi Arabia

Abstract. In this study, we propose PlatoonB, a distributed scheme
designed to reduce communication channel load and maintain safety in
vehicular platooning networks. Because all the evaluated schemes exhib-
ited their poorest performance in maintaining the minimum inter-vehicle
distance during the emergency braking experiment, we further propose
PlatoonBE, an enhanced version of PlatoonB which performs better in
the braking experiment. We conducted extensive simulations to compare
our scheme with five other approaches -Static, Slotted, DynB1, DynB2
and JerkB- focusing on key performance indicators: channel busy ratio,
packet collision rate per second, and minimum distance between platoon
members. The results reveal that our scheme is light on the communica-
tion channel and safer in the braking scenario.

Keywords: V2V · Platooning · Congestion · Beaconing

1 Introduction

Traffic jams, shock waves and high fuel consumption by heavy-duty vehicles can
have significant environmental and economic impacts including decreased pro-
ductivity, more fuel expenses, and higher carbon emissions. An application that
aims to mitigate these impacts is vehicular platooning where vehicles move in
harmony as a single entity. By reducing the gaps between vehicles, this appli-
cation not only increases road capacity but also reduces fuel consumption by
reducing the air resistance that platoon members face [1]. Vehicular platooning
relies on cooperative adaptive cruise control (CACC) systems installed in the
vehicles [17]. These controllers need data from other platoon members, including
the lead vehicle, data that cannot be fully gathered through sensors alone. Thus,
platooning requires a robust vehicle-to-vehicle (V2V) communication network,
where vehicles continuously broadcast messages (beacons) containing necessary
information including position, speed, and acceleration.

Deciding on optimal beaconing rates poses a challenge, as no single beaconing
frequency is universally effective across all scenarios. Static beaconing at a high
frequency, for example, 10 or 20 messages per second, can cause channel conges-
tion and lead to frequent packet losses, particularly in situations where there is a
high number of vehicles within range. Applications other than platooning, such
as cooperative perception [18] and danger warnings, may be also running on the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 29–44, 2025.
https://doi.org/10.1007/978-3-031-80932-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-80932-3_3

30 H. Laghbi and N. Thomas

vehicles and require their own share of the communication channel. Conversely,
static beaconing at a lower frequency, such as 1 or 2 times per second, may not
provide platooning controllers with the timely data necessary to calculate the
next input which is crucial for maintaining platoon stability and safety. Dynamic
beaconing approaches, such as DCC, LIMERIC and DynB [3,15,16], adapt the
beaconing interval to reduce the channel load but without considering platoon-
ing requirements which leads to unsafe platooning. DCC and LIMERIC increase
or decrease beaconing based on the current CBR (channel busy ratio), while
DynB considers both the CBR and the number of neighbouring vehicles within
range. However, none of these schemes react to vehicle dynamics making them
unsuitable for critical applications like platooning. For example, when a pla-
toon experiences changes in speed and updates need to be exchanged between
platoon members, DynB restricts the frequency of updates if the number of
neighbours within range is high, which can lead to vehicle crashes. Synchroni-
sation approaches, such as using Time Division Multiple Access (TDMA), like
Slotted, or tokens, are effective against packet loss but do not reduce the channel
load. Another scheme, Jerk Beaconing [6], does consider vehicle dynamics but
is insufficiently reactive in some critical situations such as hard braking in high
vehicle density conditions. Our approach reduces the load on the communication
channel while remaining highly reactive in such critical scenarios.

The main contributions of this work are as follows:

– We propose PlatoonB, a beaconing scheme for platooning that is light on the
communication channel.

– We propose the addition of intent beacons to increase reactivity in the
stopping scenario, and implement this within PlatoonB (referred to as Pla-
toonBE). In the experiments, the earlier version, PlatoonB, is also included
to provide a clear comparison and highlight the improvements brought by
PlatoonBE.

– We limit the maximum beaconing interval by TTC, time to crash, which
dynamically allows vehicles to beacon more when inter-vehicle distance
becomes shorter. Calculating this dynamic metric adds no extra overhead
since it uses local data from vehicle sensors or information already included
in the exchanged beacons.

– We perform extensive simulation experiments to compare the performance of
our scheme against other approaches.

The rest of this paper is organised as follows: Sect. 2 reviews the current
beaconing schemes. Section 3 presents the considered system model and explains
the proposed schemes. Section 4 presents the experiments and results. Section 5
concludes the paper and presents some future directions.

2 Related Work

In [14], Martijn et al. studied the periodic beacon generation rate required for
CACC systems, noting that it typically ranges between 10 and 25 Hz. Such Static

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 31

beaconing is acceptable when the number of vehicles in a range is small and
when vehicles are not generating additional traffic from other VANET applica-
tions besides platooning. Otherwise, the communication channel could become
congested which leads to delays and packet loss.

Distributed Congestion Control (DCC) [15] and LIMERIC [16], are two con-
gestion control algorithms which both rely on the CBR as a key metric for
detecting and managing congestion. A commonly used variant of DCC uses a
table that matches CBR values to different beaconing intervals. For example, a
beaconing interval of 0.5 s is selected when the CBR is greater than 59%. On
the other hand, LIMERIC allows each vehicle to adapt its beaconing interval
so that the collective CBR eventually reaches a desired value. Sommer et al.
[3] designed a dynamic beaconing scheme, DynB, for vehicular ad-hoc networks
which adjusts the beaconing interval, . I, based on two parameters: .bt a measure
of the channel busy time, and . N , a count of one-hop neighbours. DynB aims
to keep . I close to a desired value .Ides without letting the channel load exceed
.bdes. The beaconing interval is then calculated as .I = Ides(1 + rN) where . r is
computed as .r = bt

bdes
− 1. Therefore, the beaconing interval increases with the

number of neighbours only when the CBR is above .bdes.
Segata et al. [4] proposed Slotted Beaconing which is an intra-platoon TDMA

approach based on the positions of the platoon members. This approach keeps
the beaconing interval static and aims at containing congestion by reducing
channel contention. It evenly divides the beaconing interval into fixed time slots
for each vehicle’s data transmission, starting with the leader and ending with
vehicle .n − 1, in an .n-vehicle platoon. Their results show reduction in channel
contention among platoon members. A similar TDMA approach was proposed
in [5], however, rather than allocating all the time slots to periodic beacons, it
dedicates some slots for event-driven messages. Additionally, it incorporates the
use of relayers and introduces a relay selection policy tailored for platooning
systems. Leveraging Slotted beaconing, Segata et al. [6] designed Jerk Beacon-
ing in which the beaconing interval is dynamically adjusted based on Jerk, the
rate of change of acceleration. To enhance reliability, Jerk Beaconing also uses
acknowledgements and retransmissions. In [7], Balador et al. considered a dif-
ferent approach which is token-based where token management is centralised
within a designated platoon member situated mid-platoon. This member gener-
ates the initial token, regenerates a new token upon loss and manages the token
passing operation. Since their approach is based on the age of information, each
platoon member maintains an updated list of all other platoon members and
their last received beacons. The token is always passed to the vehicle with the
oldest received data.

Our approach reduces the CBR while enhancing reactivity in critical scenar-
ios such as emergency braking using intent beacons. It also prioritises simplicity
by avoiding the use of retransmissions and without increasing the size of beacons.
Integrating the proposed functionalities with the existing schemes could enhance
their performance but it does not imply that they will become less complex.

32 H. Laghbi and N. Thomas

Algorithm 1. PlatoonB
Require: .decelerationmax, .actuationLag, .BImin (minimum beaconing interval),

.BImax (maximum beaconing interval), .CBRlimit (desired CBR)
Ensure: Beaconing Interval .BI in [. BImin−ε, min(BImax, (TTC −actuationLag))+ε]

1: .TTC ← getTTC() {approximate time to crash without actuation lag, from eq. 2}
2: . accelerationcurrent ← getCurrentAcceleration()
3: . CBRcurrent ← getCurrentCBR()
4: . BImax ← max(BImin, min(BImax, TTC − actuationLag))

5: . BInew ← BImax ·
(
1 −

∣∣∣accelerationcurrent
decelerationmax

∣∣∣
)

6: . b ← max
(
0,

(
CBRcurrent
CBRlimit

− 1
))

7: . BInew ← BInew + b · BInew
8: . BI ← max(BImin, min(BImax, BInew)
9: .BI ← U(BI − ε, BI + ε) {offset. e.g., 0.001s}

10: . schedule(tcurrent + 0.05s, udpateBeaconingInterval)

3 Proposed Beaconing Schemes

3.1 System Model

We consider a number of platoons cruising on a one-directional, multi-lane high-
way. Each platoon consists of a leader and a number of followers. The leader
is driven by a traditional adaptive cruise controller (ACC) which uses sensor
readings (e.g., LIDAR) to automatically adjust the speed to maintain a safe dis-
tance from the vehicle or hazard ahead. Therefore, the leader does not require
input from its followers. In contrast, the following vehicles are equipped with a
Cooperative Adaptive Cruise Controller, specifically employing the PATH CACC
controller which requires vital information, such as speed and acceleration, from
the platoon leader and the immediate vehicle ahead. PATH CACC maintains a
constant inter-vehicle distance .dd by outputting the desired acceleration .ui to
be fed to the vehicle actuator, using the following control law (Eq. 1) [8]:

.ui = α1ui−1 + α2u0 + α3(−dradar + dd) + α4(ẋi − ẋ0) + α5(ẋi − ẋi−1), (1)

where . i is the vehicle index and .ẋi is its speed. The .αi constants are configuration
parameters. .dradar is the radar-measured distance to front vehicle. .u̇i−1 and . ẋi−1

are the acceleration and speed of the front vehicle, respectively. .u0 and .ẋ0 are
the acceleration and speed of the platoon leader, respectively. The acceleration
and speed are obtained using the vehicle-to-vehicle wireless network.

All the vehicles are equipped with 802.11p network interface cards and they
transmit their messages at 100mW of transmit power, propagating according to
the free space model. The vehicles broadcast beacons according to the beaconing
scheme they are running. Once a vehicle receives a beacon from the leader or
from the vehicle ahead, it extracts the required information and feeds that to
its CACC controller so that it outputs the required acceleration or deceleration
to be in turn fed to a lower actuation controller which controls the vehicle’s
accelerator and brake.

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 33

Table 1. Algorithm 1 parameters

Parameter Description
.BImin Minimum beaconing interval (Typically 0.1 s or less).
.BImax Maximum beaconing interval. It impacts awareness. (Typically 1 s or less).
.decelerationmax Maximum deceleration capability of a vehicle. It depends on vehicle type (e.g., -6 m/s. 2).
.accelerationcurrent Current acceleration or deceleration of a vehicle.
.actuationLag Engine and braking lag. It varies. (e.g., 0.5 s).
.CBRlimit Desired threshold for the CBR to limit the channel usage of a specific application (e.g., 50%).
.CBRcurrent Current CBR measured over a period, such as 1 s.
.ε Offset for the randomisation of beacon generation at the application layer (e.g., 0.001 s)
.TTC Time to Crash obtained using Eq. 2.

3.2 PlatoonB

We propose Platoon Beaconing, PlatoonB, a distributed scheme that runs on
each platoon member to reduce the communication channel load without neg-
atively impacting the efficiency of the platooning application. The scheme is
specified in Algorithm 1 which expects the following inputs: .decelerationmax,
the maximum deceleration capability of a platoon member; .actuationLag, the
delay taken by vehicle actuators (e.g., engine) to receive and execute the con-
troller commands; .BImin, the desired minimum beaconing interval; .BImax, the
desired maximum beaconing interval; .CBRlimit, the desired CBR (Table 1). The
scheme starts by calculating .TTC which is an approximate time to crash to
the vehicle ahead assuming the ego vehicle takes no action while the preced-
ing vehicle brakes with maximum deceleration. This safety metric is used as an
upper bound on the defined maximum beaconing interval .BImax after account-
ing for the actuation lag to ensure that the beaconing interval decreases as the
inter-vehicle distance decreases (line 4 in Algorithm 1). Note that this met-
ric is different from the headway time and TTC which are explained in [12].
.TTC is estimated based on a basic equation of motion (Eq. 2) where .speed and
.speedfront are the current speeds of the ego vehicle and the one in front, respec-
tively. .Decelerationmax represents the maximum deceleration capability of the
front vehicle, and . d denotes the distance between the two vehicles. An example
of how TTC reacts to different inter-vehicle distances is as follows: At a speed
of 100 km/h and a maximum deceleration of -6 m/s. 2, TTC (before subtracting
the actuation lag) will be approximately .0.6 s, .1.3 s, and .1.8 s for inter-vehicle
distances . d of .1m, .5m, and .10m, respectively.

.speed · TTC = d + speedfront · TTC +
1
2

· decelerationmax · TTC2 (2)

Then, the scheme obtains the current acceleration of the ego vehicle and mea-
sures .CBRcurrent, the current CBR. In line 5 of the algorithm, the beaconing
interval .BInew will remain at its maximum value unless the vehicle speed changes
(.accelerationcurrent �= 0). .BInew will decrease based on how close the current
acceleration or deceleration is to the maximum value. The .|decelerationmax| is
used as the maximum for both as it is reasonably assumed to be always greater
than .accelerationmax. The beaconing interval is reduced when a vehicle’s speed
changes which means more frequent and timely updates. This ensures that with

34 H. Laghbi and N. Thomas

Fig. 1. PlatoonBE flowchart.

greater speed changes the vehicles send more beacons to maintain the safety of
the platoon.

The beaconing interval is also impacted by the current communication chan-
nel state when it crosses a defined limit, .CBRlimit. Below this limit, the beacon-
ing interval is only affected by the change in acceleration or deceleration. That
is, when the .CBRcurrent ≤ CBRlimit, . b will be zero, otherwise . b will increase
.BInew to reduce the channel load. The final beaconing interval is uniformly
selected within a specified offset range to further minimise simultaneous bea-
coning attempts at the application layer. The scheme schedules the beaconing
interval for update every time . t (e.g., 50ms) which has to be at most .BImin to
allow the platooning controller to respond to changes promptly and safely.

3.3 PlatoonBE

As we will see in Sect. 4.2, all the evaluated schemes perform poorly during an
emergency breaking scenario. This is because the beaconing approach presents a
snapshot of speed and position that requires a subsequent beacon to be updated.
This snapshot quickly becomes out of date during periods of rapid deceleration.
This scenario poses a challenge for heavy-duty vehicles as they can decelerate

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 35

at high rates (.6m/s2 or more) [13]. It is therefore logical to prioritise enhance-
ments targeting this specific scenario to improve overall safety and performance.
Therefore, we introduce PlatoonBE (PlatoonB Enhanced) where special bea-
cons are sent immediately when the leader knows that it is going to perform an
emergency braking at a specific deceleration rate. These beacons are not based
on the beaconing interval. This is based on a reasonable assumption that the
leader would know that it is going to perform an emergency braking due to a
hazard or stopped traffic. The additional beacons include a special field identi-
fying them as (intent beacons) as well as a field for the deceleration value. Once
received by a follower, it will immediately perform the deceleration regardless of
the output of its CACC controller. Note that the intents and the corresponding
actions upon receiving these intents are predefined and pre-agreed between the
leader and all its followers. That is, upon receiving an emergency braking intent,
all the following vehicles will brake at the same deceleration rate as the leader.

Figure 1 illustrates the operation of PlatoonBE. If the ego vehicle is a leader,
it follows the PlatoonB scheme for beaconing. If a leader determines that it needs
to brake, it immediately sends out intent beacons. To increase the chances of
successful intent delivery, redundant intent beacons can be sent. In this work,
three beacons were chosen as a compromise between reliability and network
overhead. If the ego vehicle is a follower, it will also continue beaconing as usual
according to PlatoonB. However, upon receiving a beacon, a follower will check
its type. If the beacon is a normal one from the platoon leader or the vehicle in
front, the necessary information will be extracted and fed to the vehicle’s CACC
controller. On the other hand, if the beacon is an intent beacon, the encapsulated
deceleration value will be extracted and executed immediately. This leads to a
faster reaction time and therefore better inter-vehicle distances, as the results
show in Sect. 4.

4 Evaluation

4.1 Metrics

To evaluate the impact of our approach on the V2V network, we use CBR, chan-
nel busy ratio which is the average percentage of time a channel is sensed busy by
the physical layer. Lowering CBR is an important objective to reduce delay and
packet loss as the channel is shared among the vehicles in the communication
range. We also count the number of physical layer collisions per second to assess
the overall performance of the network when our scheme is used as compared to
the other schemes.

To assess the impact on platoon safety, we use the minimum inter-vehicle
distance as our main metric. The closer the inter-vehicle distance to a predefined
value (5 m in our scenarios), the safer the platoon is considered. In addition, we
show the beaconing interval over simulation time for each scheme to understand
its behaviour.

36 H. Laghbi and N. Thomas

4.2 Experiments and Results

We implemented our schemes and conducted extensive simulations using PLEXE
[2], a platooning framework for OMNeT++ and SUMO, to evaluate their perfor-
mance compared to the other schemes. Regarding the DynB scheme, we observed
that it was not suitable for platooning as it resulted in vehicle crashes in most
of the simulation runs. This is because DynB uses the number of neighbours to
rapidly increase the beaconing interval in response to even minor rises in CBR
beyond the preferred threshold. Therefore, we instead used two variations of
DynB that are more suitable for platooning: DynB1 and DynB2. DynB1 uses the
same formula as DynB but additionally takes the logarithm base 2 of the neigh-
bour count to reduce its impact on the beaconing interval. DynB2 uses only the
parameter . r as the beaconing interval, capped within the range [.BImin, BImax].
Table 2 lists the simulation parameters.

In all the following experiments, the intra-platoon separation is 5 m while
the inter-platoon separation is approximately 33.33 m. Distances of five meters
or less between platoon members have been shown to result in much less energy
consumption and CO2 emissions [9,10]. The inter-platoon separation is main-
tained by the ACC controllers on the leaders and is calculated as the product
of headway and speed: .1.2s · 27.78 m/s. Each experiment includes two scenarios:
low congestion (120 vehicles), and high congestion (480 vehicles). In the low con-
gestion case we use 8 platoons while in the high congestion case we expand the
number of platoons to 32, all of size 15 vehicles which is the size recommended by
the SARTRE project [11]. The initial speed used in all experiments is .27.78m/s,
(100 km/h). In the Static and Slotted schemes, the beaconing interval is 0.1 s
while in the other schemes, the beaconing interval is dynamic.
Experiment I (Normal). In this experiment, we compare the schemes under
a normal or near-ideal platoon operation with very minor disturbances. Specif-
ically, at 10.0 s of simulation time, the leaders slightly change their speed from
100 km/h to 100.5 km/h which results in an acceleration rate of .0.14m/s2 for a
duration of 2 simulation seconds. The purpose of this experiment is to observe
that the different approaches perform as expected.

Fig. 2. Channel busy ratio [Experiment I].

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 37

Fig. 3. Average number of collisions per second [Experiment I].

Fig. 4. Minimum distance to front vehicle [Experiment I].

Low Congestion (120 Vehicles). In this scenario, eight platoons were used. As
shown in Fig. 2a, this led to around 35% of CBR for Static, DynB1 and DynB2.
Here, DynB1 and DynB2 behaved exactly the same as Static (broadcasting at a
fixed beaconing interval) since the CBR remained below the desired threshold,
which we set to 50% throughout the simulation time. This is clearly demon-
strated by the behaviour of the beaconing interval over time under DynB1 and
DynB2, as depicted by the blue lines in a segment of the simulation presented
in Fig. 5a and 5b. Slotted had nearly a similar figure since it also broadcasts 10
beacons per second while PlatoonB and JerkB showed a significantly less CBR,
at about 9%. This is because both schemes always send beacons at the maximum
interval (400ms) as long as the changes in speed are slight as in this experiment,
as shown in Fig. 5c and 5d (note that the blue line is covered by the orange
line). The number of packet collisions per second was low for all the schemes
as the shared channel was not heavily congested in this scenario (Fig. 3a). With
regard to the minimum inter-vehicle distance (Fig. 4a), as expected when distur-
bances are nearly absent, all the schemes achieved an almost perfect inter-vehicle
distance.

High Congestion (480 Vehicles). With the increase in contention for the shared
communication channel, the CBR jumped to about 80% for both the Static and
Slotted schemes (Fig. 2b), and as expected, the number of collisions per second

38 H. Laghbi and N. Thomas

Fig. 5. Beaconing interval behaviour over time. [Experiment I]. (Color figure online)

Table 2. Simulation parameters.

Parameter Value Parameter Value
Phy & MAC 802.11p (6 Mbit/s) Vehicle count 120, 480
txPower 100 (mW) Platoon size 15
Loss model Free space .decelerationmax . 6 (m/s2)

Beacon size 200B .actuationLag 0.5 (s)
Controller PATH CACC .BImin, BImax, CBRlimit, p, Δumax 0.1, 0.4 (s), 0.5, 1, 2 . (m/s2)

surged substantially too (Fig. 3b). However, Slotted had a slightly lower number
of collisions because of its partial (within platoon) TDMA. In comparison, both
DynB1 and DynB2 had much lower CBR because they increase the beaconing
interval when the CBR exceeds the desired threshold. The orange lines in Fig. 5a
and 5b illustrate how the beaconing interval responds to variations in CBR.
When the CBR exceeds 50%, the beaconing interval increases which leads to less
traffic generated by vehicles, which in turn results in a lower CBR. Consequently,
the beaconing interval decreases again and this cycle continues. Unlike DynB2,
DynB1 also considers the .log2 of the number of neighbours and this causes its
beaconing interval to increase slightly more. This leads to a lower overall CBR
for DynB1. PlatoonB demonstrated a notably better CBR, achieving around
28%, followed by JerkB with minimal increase in the number of collisions per
second for both in contrast to the other schemes, with JerkB achieving the
lowest number of packet collisions as it works on top of Slotted. Again, this
is because in this experiment, both PlatoonB and JerkB send at the maximum
beaconing interval almost all the time (Fig. 5c and 5d). Concerning safety, almost
similar to the low congestion scenario, all the schemes had figures close to the
desired distance of 5 m. This shows that even with high congestion, when the
disturbances are very minor, all the schemes are very safe.

Experiment II (Oscillation). In this experiment, the goal is to determine
whether a scheme can provide timely updates and tackle network congestion
which can lead to packet loss and delays. Such issues can lead to unstable pla-
tooning. In an unstable platoon, vehicles are likely to exhibit high relative speeds
leading to vehicle crashes. Initially, all platoons cruise at a speed of .27.78m/s,
and at 5.0 s of simulation time, the leaders of the first platoons start speeding
up and then slowing down every 5.0 s at .±2.78m/s.

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 39

Fig. 6. Channel busy ratio [Experiment II].

Fig. 7. Average number of collisions per second [Experiment II].

Low Congestion (120 Vehicles). As shown in Fig. 6a, the CBR results for all
schemes except PlatoonB and JerkB are similar to those observed in Experi-
ment I. This arises because the other schemes do not react to changes in vehicle
dynamics (variations in speed across different experiments). Therefore, their bea-
coning intervals remain unchanged from those in Experiment I (Fig. 9a and 9b).
In contrast, PlatoonB and JerkB adapt to speed changes by dynamically reduc-
ing the beaconing interval and this led to a higher number of beacons sent and
a slightly increased CBR. The collision figures remained unchanged across all
schemes because the congestion was negligible as mentioned before, and besides
PlatoonB and JerkB, the schemes did not alter their transmission rates.

With regard to the minimum inter-vehicle distance (Fig. 8a), all the schemes
overall exhibited distances near the desired 5-meter. However, all other schemes
experienced instances of distances falling below 1 m, with Slotted, DynB1 and
DynB2 even resulting in at least one crash, none of which were observed with
PlatoonB and JerkB, suggesting that they may be considered the safest schemes
in this scenario.

High Congestion (480 Vehicles). As in Experiment I, the increase in contention
for the shared communication channel led to a significant rise in CBR and the
number of collisions per second. This resulted in figures almost identical to those
in Experiment I for all schemes except PlatoonB (Figs. 6b and 7b) whose CBR

40 H. Laghbi and N. Thomas

Fig. 8. Minimum distance to front vehicle [Experiment II].

Fig. 9. Beaconing interval behaviour over time. [Experiment II].

increased to about 38% compared to about 28% in Experiment I, yet lower
than that of JerkB. However, as shown in Figs. 9c and 9d, JerkB was more
reactive. This is reflected in the inter-vehicle distance where JerkB achieved the
best results followed by Slotted, PlatoonB and Static. Both DynB1 and DynB2
resulted in unsafe inter-vehicle distances with DynB1 being the poorest scheme
in this scenario. This confirms that varying the beaconing interval dynamically
based on the number of neighbours or CBR without considering the vehicle
dynamics and the platooning application requirements is not a safe approach.

Experiment III (Stopping). This experiment tests the schemes in a critical
situation, specifically emergency braking. At 5.0 s of simulation time, all platoon
leaders brake at .−6m/s2 to a complete stop. Here, PlatoonBE is included as
well.

Low Congestion (120 Vehicles) The figures for CBR and the number of col-
lisions per second remained consistent with those in the previous experiments
(Figs. 10a and 11a). In JerkB, more beacons were sent during sudden changes in
speed (at 5.0 s and 10.0 s), as shown in Fig. 13d). In PlatoonB and PlatoonBE,
more beacons were sent during the entire braking period, with PlatoonBE send-
ing intent beacons at 5.0 s (Fig. 13c). The distances for all schemes were overall
shorter compared to the previous experiments. Despite this, overall, the dis-
tances remained within acceptable limits. Notably, only JerkB, PlatoonBE and
PlatoonB had no instances of vehicle crashes which shows that they are the
safest in this scenario.

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 41

Fig. 10. Channel busy ratio [Experiment III].

Fig. 11. Average number of collisions per second [Experiment III].

High Congestion (480 Vehicles). As previously explained, Static and Slotted
use fixed beaconing intervals, while DynB1 and DynB2 adjust their beaconing
intervals independently of vehicle speed. Therefore, the CBR and the number
of collisions per second for all these schemes remained nearly identical to the
previous experiments (Fig. 10b and 11b). For PlatoonB, the CBR was overall
lower but with greater variance compared to earlier results. This is because,
for most of the simulation, the scheme operated at the maximum beaconing
interval due to stable speeds (resulting in a low CBR), and only during the
short braking period, the beaconing interval was at its minimum (resulting in a
temporary high CBR, as shown in Fig. 13c). This fluctuation is also the reason
for the increased and more variable number of collisions. PlatoonBE’s results
were similar to those of PlatoonB. However, due to higher synchronisation in
transmission timing among vehicles, PlatoonBE experienced a higher number of
collisions. This synchronisation led to more frequent instances where the channel
was perceived as idle simultaneously, resulting in a lower CBR.

For safety, JerkB consistently resulted in vehicle crashes showing that it is
ineffective when sudden braking occurs by multiple platoon leaders in high vehi-
cle density situations (Fig. 12b). PlatoonBE achieved unparalleled safe distances,
and therefore it stands out as the best and safest scheme in this scenario. Besides
Slotted and PlatoonB, the remaining schemes exhibited impractical and unsafe
distances.

42 H. Laghbi and N. Thomas

Fig. 12. Minimum distance to front vehicle [Experiment III].

Fig. 13. Beaconing interval behaviour over time. [Experiment III].

5 Conclusion and Future Work

In this paper, we introduced PlatoonB and its enhanced version, PlatoonBE, a
beaconing scheme that is light on the vehicle-to-vehicle communication channel
which makes it suitable for platooning in congested scenarios, especially during
critical situations. In summary, the results indicate that using a fixed interval for
beaconing is impractical in heavy congestion scenarios unless mechanisms like
TDMA are employed to mitigate packet collisions. Additionally, we observed
that transmission rate control based solely on network indicators, such as the
the number of neighbours or CBR, without considering application requirements
is not effective. To be effective, it has to also consider vehicle dynamics and
application requirements as done by JerkB and PlatoonB, and it performs even
better when complemented with notifications as demonstrated in the enhanced
version, PlatoonBE. Future work will take into account the variation in packet
sizes across the different schemes and the related overhead because JerkB gen-
erates larger packets due to the inclusion of an acknowledgment map in each
beacon. This was not considered in the current simulations and will be explored
in the future. Future work will also focus on enhancing the reactivity of Pla-
toonBE in less critical scenarios and integrating various schemes to leverage
their strengths. Further, the schemes will be evaluated when the underlying
communication technology is C-V2X rather than 802.11p.

Performance Evaluation of Beaconing Schemes for Vehicular Platooning 43

References

1. Balador, A., Bazzi, A., Hernandez-Jayo, U., Iglesia, I., Ahmadvand, H.: A survey
on vehicular communication for cooperative truck platooning application. Veh.
Commun. 35, 100460 (2022)

2. Segata, M., Joerer, S., Bloessl, B. , Sommer, C., Dressler, F., Cigno, R.: A platoon-
ing extension for Veins. In: 2014 IEEE Vehicular Networking Conference (VNC),
pp. 53–60. IEEE, Paderborn (2014)

3. Sommer, C., Joerer, S., Segata, M., Tonguz, O., Cigno, R., Dressler, F.: How
shadowing hurts vehicular communications and how dynamic beaconing can help.
IEEE Trans. Mob. Comput. 14(7), 1411–1421 (2015)

4. Segata, M., et al.: Toward communication strategies for platooning: simulative and
experimental evaluation. IEEE Trans. Veh. Technol. 64(12), 5411–5423 (2015)

5. Hoang, L., Uhlemann, E., Jonsson, M.: An efficient message dissemination tech-
nique in platooning applications. IEEE Commun. Lett. 19(6), 1017–1020 (2015)

6. Segata, M., Dressler, F., Cigno, R.: Jerk Beaconing: a dynamic approach to pla-
tooning. In: 2015 IEEE Vehicular Networking Conference (VNC), pp. 135–142.
IEEE, Kyoto (2015)

7. Balador, A., et al.: Supporting beacon and event-driven messages in vehicular
platoons through token-based strategies. Sensors 18(4), 955 (2018)

8. Segata, M., et al.: On platooning control using IEEE 802.11p in conjunction with
visible light communications. In: Proceedings of the 2016 12th Annual Conference
on Wireless On-demand Network Systems and Services (WONS), pp. 1–4. IEEE,
Cortina d’Ampezzo (2016)

9. Tsugawa, S.: Results and issues of an automated truck platoon within the energy
ITS project. In: IEEE Intelligent Vehicles Symposium Proceedings, pp. 642-647.
IEEE, Dearborn (2014)

10. Murthy, D.K., Masrur, A.: Braking in close following platoons: the law of the
weakest. In: Euromicro Conference on Digital System Design (DSD), pp. 613-620.
IEEE, Limassol (2016)

11. Robinson, T., Chan, E., Coelingh, E.: Operating platoons on public motorways:
an introduction to the SARTRE platooning programme. In: 17th World Congress
on Intelligent Transport Systems, pp. 12. (2010)

12. Vogel, K.: A comparison of headway and time to collision as safety indicators.
Accid. Anal. Prev. 35(3), 427–33 (2003)

13. Zheng, R., et al.: Study on emergency-avoidance braking for the automatic pla-
tooning of trucks. IEEE Trans. Intell. Transp. Syst. 15(4), 1748–1757 (2014)

14. Van Eenennaam, M., Wolterink, W.K., Karagiannis, G., Heijenk, G.: Exploring
the solution space of beaconing in VANETs. In: IEEE Vehicular Networking Con-
ference (VNC), pp. 1–8. IEEE, Tokyo (2009)

15. Bansal, G., Cheng, B., Rostami, A., Sjoberg, K., Kenney, J.B., Gruteser, M.: Com-
paring LIMERIC and DCC approaches for VANET channel congestion control.
In: IEEE 6th International Symposium on Wireless Vehicular Communications
(WiVeC 2014), pp. 1–7. IEEE, Vancouver (2014)

16. Bansal, G., Kenney, J.B., Rohrs, C.E.: LIMERIC: a linear adaptive message rate
algorithm for DSRC congestion control. IEEE Trans. Veh. Technol. 62(9), 4182–
4197 (2013)

44 H. Laghbi and N. Thomas

17. Dey, K., et al.: A review of communication, driver characteristics, and controls
aspects of cooperative adaptive cruise control (CACC). IEEE Trans. Intell. Transp.
Syst. 17(2), 491–509 (2016)

18. Thandavarayan, G., Sepulcre, M., Gozalvez, J.: Cooperative perception for con-
nected and automated vehicles: evaluation and impact of congestion control. IEEE
Access 8, 197665–197683 (2020)

Implementations Based Evaluation
of No-Wait Approach for Resolving

Conflicts in Databases

Yingming Wang1, Paul Ezhilchelvan1(B), Jack Waudby2, and Jim Webber2

1 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
{Y.Wang303,paul.ezhilchelvan}@ncl.ac.uk

2 Neo4j UK, Union House, 182-194 Union Street, London SE1 0LH, UK
{Jack.Waudby,Jim.Webber}@neo4j.com

Abstract. In this paper, we describe No-Wait concurrency control
mechanisms to address conflict resolution and then comprehensively eval-
uate their performance under Read-Committed and Serializability isola-
tion levels using an in-memory database system in various configura-
tions and contention scenarios. Key performance metrics are percentage
of transaction aborts and average latency for those who do not abort.
Our evaluations affirm that the No-Wait approach indeed offers a cost-
effective, practical alternative to traditional conflict resolution mecha-
nisms.

Keywords: Databases · Transactions · Concurrency control ·
Deadlock Avoidance · No-Wait · Implementation · Performance
Evaluation

1 Introduction

In traditional Database Management Systems (DBMS), managing concurrent
transactions often leads to blocking, where a transaction is made to wait for
another ongoing transaction when it encounters an access conflict over the same
data, causing performance issues. The most challenging issue is a deadlock -
a situation where transactions wait for each other, halting progress altogether.
Deadlock treatment strategy is either preemptive, avoiding deadlocks before they
happen, or reactive, resolving them after they occur.

There are three types of access conflicts in a DBMS: after an on-going trans-
action has written a data item, say, X, if another one wishes to write or read X,
then a write-write or write-read conflict is said to occur, respectively; similarly,
a read-write conflict arises when a later transaction seeks to write X after an
earlier one has read X. An in-depth literature review on the topic of conflict
management in database systems can be found in our previous work [1].

The canonical work on deadlock management, Serialization Graph Testing
(SGT) [2], dynamically constructs a graph wherein nodes represent ongoing
transactions and edges the conflicts among these transactions. Cycles in this
graph indicate deadlocks. By aborting only those transactions that need to be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 45–59, 2025.
https://doi.org/10.1007/978-3-031-80932-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-80932-3_4

46 Y. Wang et al.

aborted, deadlocks are resolved efficiently. Thus, SGT keeps the number of trans-
action aborts to the bare minimum. However, SGT incurs a significant overhead
due to the need to maintain a graph and is not well-suited to distributed DBMS.
Since distributed transactions are a focus in our on-going work, we will use SGT
as a baseline for comparing the performance of the protocols presented here.

In this paper, the term No-Wait will refer to a non-blocking concurrency
control strategy, designed to prevent transactions from waiting on conflicts and
eliminate thereby any risk of deadlocks as well as to yield high-performance
(see Li et al. [3]). Consider an object that is already accessed by an ongoing
transaction, say, T1, and needs to be accessed also by another transaction, say
T2, giving rise to a conflict. In No-Wait, T2 never waits for the lock to be
released by T1 but either aborts itself or wounds T1 by forcing T1 to abort;
i.e., every conflict encountered is pessimistically assumed to lead to a deadlock
if one transaction is made to wait for another to complete, and is dealt with by
ensuring that no transaction waits for locked data to be released. There are two
options for T2 to abort itself or wound T1 : instantaneous or delayed.

In the instantaneous option, conflicts are addressed immediately upon being
encountered. Upon detecting a conflict, an incoming transaction immediately
wounds the preceding transaction or aborts itself. It has been analytically eval-
uated and simulated in our earlier work [1]. In the delayed option, a transaction
encountering a conflict delays conflict resolution and proceeds with its oper-
ation without waiting, thereby leaving the conflict unresolved for now. After
it completes all its operations, it enters a validation phase and resolves each
conflict encountered earlier (by wounding or aborting), if the conflict still exists
during validation. Note that a conflict disappears if a preceding transaction com-
pletes before a later transaction validates. Thus, delayed No-Wait optimistically
expects conflicts encountered earlier to naturally disappear with passing of time.

Assessing the performance impact of both instantaneous and delayed ver-
sions of No-Wait using benchmark-compliant implementations on a multi-core
machine is the main contribution of this paper while [1] analytically evaluated
and simulated only instantaneous versions. The fraction of transactions that
abort and completion times of those that do not abort are the metrics mea-
sured and compared. Further, our performance study considers the two most
widely used isolation levels [2]: Read-Committed and Serializability. Under Read-
Committed, we consider both instantaneous and delayed options. Under Serial-
izability, however, practical considerations force us to employ only the instan-
taneous option and to introduce several hybrids to address specific types of
conflicts.

2 No-Wait Under Read-Committed

At the Read-Committed isolation level, a transaction can only read data that
has already been committed by other transactions, effectively preventing it from
reading dirty value that has been written by an on-going (and hence uncommit-
ted) transaction. At this isolation level, only write-write conflicts can occur.

Implementations Based Evaluation of No-Wait Approach 47

1. Instantaneous Scheme
– Instantaneous Abort (IA): The incoming transaction aborts itself, requir-

ing a rollback, i.e., undoing any and all write operations it may have
carried out earlier. The preceding transaction is left undisturbed.

– Instantaneous Wound (IW): The incoming transaction wounds the pre-
ceding transaction by marking it as "aborted" and continues to write. In
scenarios such as social media or short video applications [3], the incom-
ing transaction may possess fresher information, making it advantageous
to allow the later transaction to proceed. Compared to the Instantaneous
Abort, this method requires more computational resources, as each trans-
action needs to continually check if it has been wounded.

2. Delayed Scheme
– Delayed Abort (DA): The incoming transaction delays aborting itself on

encountering a write-write conflict by proceeding with its own operations
and additionally recording all active preceding transactions involved in
that conflict. In the validation phase, it passes its validation if and only
if all preceding transactions recorded earlier are complete; i.e., it aborts
itself even if one of the recorded predecessors is found to be still active
during its validation. DA, like IA, incurs a low overhead and, unlike IA,
seeks to minimise the chances of an abort outcome.

– Delayed Wound (DW): The incoming transaction records its predecessors
as in DA. At the validation phase, it wounds all the recorded predecessors
that are found to be still active by marking them as “aborted”, ensuring
thereby that active predecessors do not overwrite its written value later.
On the other hand, if a predecessor is found to be aborted or committed
during validation, nothing is done. Thus a transaction in DW seeks to
minimise the number of other transactions it wounds and its own chances
of being wounded.

Read-Committed (RC) permits the lost update issue, which occurs when
two or more transactions read the same data item and then make independent
updates based on the value they read. The following two cases exemplify this
issue when RC is enforced, where RJ, WJ and CJ indicate read, write and
commit by transaction .TJ , respectively.

Case 1: R1[X=10] R2[X=10] W2[X=X+10] W1[X=X+20] C2 C1
Case 2: R1[X=10] R2[X=10] W2[X=X+10] C2 W1[X=X+20] C1
In both cases, transactions T1 and T2 read the same committed value of X,

which is 10. T2 writes X as 20 followed by T1 writing X to 30. In Case 2, T2
writes and commits which is then followed by T1 writing, leaving X at 30. In
both scenarios, the update X= X+10 by T2 is lost due to the subsequent write
by T1. This lost update phenomenon results in a final data state that does not
reflect the update of T2, but is still permissible under RC isolation level.

Since C2 occurring before C1 implies that T2 completes before T1, avoiding
lost update must leave the final value of X as 40 in both cases. We illustrate below
that neither our schemes nor SGT can guarantee avoidance of lost update:

48 Y. Wang et al.

1. IA/IW: These mechanisms resolve write-write conflicts instantaneously when
multiple transactions seek to write the same data item. Thus, they avoid lost
update in Case 1. However, in Case 2, after T2 commits, there is no write-
write conflict on X for T1 to detect. Therefore, the instantaneous schemes
allow lost update in Case 2.

2. DA/DW: They resolve write-write conflicts during the validation phase by
either aborting itself or wounding the preceding transaction if any preceding
transaction is still active. In Case 1, lost update is prevented, if T1 validates
before T2 commits; otherwise, not. Neither DA nor DW can prevent lost
update in Case 2. Thus, lost update can also occur in delayed schemes.

3. SGT: SGT can allow both cases of lost update in a manner similar to the
delayed schemes.

3 No-Wait Under Serializability

Under serializability, conflicts of all three types must be handled to ensure that
the concurrent execution of transactions remain equivalent to some serial exe-
cution [2]. While instantaneous schemes are readily applicable for conflicts of all
types, delayed schemes are not so, because they can introduce multiple versions
of data in the interval that elapses between write operations and the subsequent
(intentionally delayed) no-wait conflict resolution during validation. The ratio-
nale for selecting appropriate delayed schemes is provided below, after presenting
the instantaneous schemes and hybrid solutions that these selections led to:

1. Instantaneous Scheme
– Instantaneous Abort (IA): The incoming transaction aborts itself instan-

taneously, when it encounters a conflict, irrespective of the type of conflict
encountered: write-write, write-read, or read-write.

– Instantaneous Wound (IW): The incoming transaction, on encountering
a conflict of any type, wounds the preceding transaction instantaneously
by changing its state to “aborted”.

2. Hybrid Schemes
– Hybrid 1 (H1): It uses Instantaneous Abort for resolving write-write

conflicts and delayed schemes to handle both the read-related conflicts:
Delayed Wound for read-write conflicts and Delayed Abort for write-read
conflicts. During the validation phase, all read related conflicts are con-
sidered. A transaction wounds its predecessor in a read-write conflict only
if the read predecessor is still active; otherwise no wounding is done. Fur-
ther, a transaction being validated aborts itself if its predecessor in a
write-read conflict is found not to have already committed, i.e., if the
write predecessor either has already aborted or is still running.

– Hybrid 2 (H2): The only difference between Hybrid 1 and Hybrid 2 is
that Hybrid 2 uses Instantaneous Wound to resolve write-write conflict.

Implementations Based Evaluation of No-Wait Approach 49

Table 1. Hybrid conflict-resolution approaches to Serializability

Conflict type H1 H2 Notes
write-write IA IW instantaneously: abort itself (H1) or wound predecessor (H2)
read-write DW DW during validation: wound every active read predecessor
write-read DA DA in validation: abort itself if write predecessor not committed

Table 1 outlines two hybrid solutions for addressing specific types of conflicts,
which is then followed by the rationale for employing a particular method to
resolve each type of conflict.

Only instantaneous schemes are employed for write-write conflict resolu-
tion in hybrids. The reason for not considering delayed schemes is that they
permit simultaneous existence of multiple uncommitted writes on a given data
item. At the Serializability isolation level, when several transactions modify a
given data element, abort of one can cause all those transactions which later
wrote that item, to abort as well. These cascading aborts increase system load
and are not useful for both the user and the system [4]. Managing these cas-
cading aborts requires substantial computational resources and memory. The
DBMS must track the temporal dependencies among transactions to determine
which ones must be aborted following a given transaction’s abort. This track-
ing process, coupled with the execution of multiple transaction aborts and their
associated rollbacks, imposes a heavy load on the system.

In addition, another consequence of cascading aborts is the temporary
unavailability of the database segments affected by these aborts. This unavail-
ability can severely degrade system throughput and negatively impact the user
experience. Therefore, the delayed scheme, which increases the risk of cascading
aborts, is excluded. The following examples provide a detailed explanation of
how cascading aborts occur.

An example of using DW leading to cascading aborts is shown in Table 2
where tj denotes time step j. Data items X and Y are accessed by concurrent
transactions, T1 to T5. This Table elucidates the sequence of operations exe-
cuted by these concurrent transactions over a defined temporal span. Transaction
operations are denoted as follows: W(X) represents a read-then-write operation
conducted on data X ; R(X) represents a read operation executed on data X ; A

Table 2. Delayed Wound leads to cascading aborts.

Txn t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
T1 W(X) A
T2 W(X) V A
T3 W(X) W(Y) A
T4 R(Y) A
T5 W(Y) A

50 Y. Wang et al.

Fig. 1. Transactions’ cascading aborts in the example

represents abort operation; V the validation phase that precedes commit oper-
ation which does not appear in Table 2 as no transaction commits (Fig. 1).

Initially, T1 performs the first read-then-write operation on X at step t0. T2
reads this newly written, uncommitted value of X in time step .t1 and writes a
second new value for X. In the next step . t2, T3 reads the value of X - the one
written at step .t1 - and writes a third new value for X. Subsequently, T3 performs
operations on data Y according to its transaction logic, writing a value to Y at
time . t3, which is then used by T4 and T5 at time steps .t4 and .t5 respectively.

Remark 1: When a transaction, say T, reads the value of an uncommitted data,
say X, and then uses that value to compute a value to be written or X (or
any other data item), the second write under Serializability must be aborted
if the uncommitted value used in computation is not subsequently committed;
otherwise, an equivalent serial execution cannot be derived. So, T must abort,
irrespective of the conflict resolution scheme used under Serializability.

Remark 2: The issue of T in Remark 1 aborting does not arise under RC,
because T never reads an uncommitted value. However, as we have discussed
earlier, reading only the committed value, instead of the latest uncommitted
value, leads to lost update anomaly which cannot occur under Serializability.

Referring to Table 2, suppose that T2 enters the validation phase first in
time step .t6 and wounds its active predecessor T1 as per DW scheme. T his
leads to T2 aborting itself as per Remark 1 which then triggers a cascade of

Fig. 2. read-write conflicts Fig. 3. write-read conflict

Implementations Based Evaluation of No-Wait Approach 51

all transactions aborting. A similar example showing cascading aborts can be
constructed when DA is used.

Consequently, we exclude delayed schemes to resolve write-write conflicts,
opting exclusively for instantaneous schemes. The choice between Instantaneous
Abort and Instantaneous Wound depends on whether later transactions are
assigned equal or higher priority as explained earlier.

DW is turns out to be the optimal strategy for handling read-write con-
flicts in hybrid schemes. Our decision to exclude instantaneous schemes is aimed
to improving the throughput of read-only transactions without impeding update
transactions. Illustrated by Fig. 2, T4 ’s write operation presents conflicts with
three read-only transactions. The Instantaneous Wound would abort all preced-
ing transactions, detrimentally affecting the throughput of read-only transac-
tions. Additionally, the Instantaneous Abort, especially in the presence of fre-
quently accessed “hot” data, forces update transactions into self-abort until the
contested data item becomes idle, significantly compromising update transaction
throughput and availability.

Thus, we determine the instantaneous scheme unsuitable. Additionally, the
Delayed Abort, which necessitates self-abortion of update transactions upon
encountering active preceding transactions during validation, is impractical due
to the expensive rollback processes.

Delayed Wound thus emerges as the optimal strategy for handling read-write
conflicts by deferring conflict resolution until its validation phase, particularly if
the preceding transaction remains active. For instance, in Fig. 2, T4 will wound
the still active transactions among T1, T2, and T3, in T4 ’s validation phase. This
approach is predicated on the characteristic behavior of read-only transactions
in a DBMS employing Delayed Wound: these transactions primarily require vali-
dation against dirty reads; they do not modify data. The Delayed Wound allows
read-only transactions additional time to complete until its validation phase,
thereby enhancing the overall throughput of read-only transactions. Moreover,
it is highly probable that preceding transactions still active during the validation
phase are update transactions, necessitating their abortion. On the other hand,
the chance that an ongoing preceding transaction is a lengthy read-only trans-
action, is relatively small. Therefore, by adopting the Delayed Wound, DBMS
affords read-only transactions the necessary leeway to complete without immedi-
ate interruption, ensuring a balanced throughput between read-only and update
transactions.

For handling write-read conflicts, DA turns out be appropriate, as both
wound strategies are unsuitable. It is illogical for read-only transactions, which
do not modify any data, to have the capability to abort update transactions.
Specifically, while the Instantaneous Wound approach may prevent dirty reads
and has the potential to increase read-only transaction throughput, its benefits
are overshadowed by the negative impact on update transaction throughput and
the substantial rollback costs involved. On the other hand, the Delayed Wound
introduces the risk of contaminating read values, consequently necessitating the
abortion of both involved transactions. Furthermore, the remaining Instanta-

52 Y. Wang et al.

neous Abort impacts the throughput of read-only transactions, diverging from
our objectives. Consequently, we conclude that Delayed Abort represents our
preferred method for addressing write-read conflicts.

In scenarios of write-read conflicts and Delayed Abort, a transaction does a
self-abortion during its validation phase if preceding transactions remain active
or have already been aborted. Figure 3 exemplifies this with T2 aborting itself
should T1, the preceding transaction, be active or aborted. This strategy pes-
simistically avoids dirty reads without waiting for the completion of preced-
ing transactions in the validation phase. Additionally, the Delayed Abort app-
roach extends the temporal window for the completion of preceding transactions,
thereby potentially enhancing the throughput of read-only transactions by pro-
viding them with a broader time frame to conclude successfully.

4 Experiments

This section presents our performance evaluation of the protocols discussed in
Sect. 3. The experiments were conducted on a Microsoft Azure virtual machine
using an E64s v5 instance type, which features 64 CPU cores and 512 GB of
high-performance memory. To conduct our experiments, we created databases
according to two standard benchmarks (see below) and the contents were filled
in using appropriately chosen random values. The abort percentage and average
response time of committed transactions are the metrics measured by varying
the number of cores (and thus the maximum concurrent transactions) and the
data access pattern by transactions.

Section 4.1 introduces the benchmarks used in our experiments: SmallBank
[5] and Yahoo! Cloud Serving Benchmark (YCSB) [6]. The subsequent sections,
4.2 and 4.3, discuss the experimental results under Read-Committed and Seri-
alizability isolation levels, respectively.

4.1 Benchmarks and Workloads

The section describes the benchmarks deployed in our experiments.
SmallBank: The SmallBank benchmark [5] is a widely used microbench-

mark for evaluating the performance in terms of transaction processing. It com-
prises three tables: Account, Saving, and Checking, each containing two columns,
with the account id as the primary key. We have set the number of rows for each
table as 1,000. SmallBank also specifies six transactions: Balance, DepositCheck-
ing, TransactSaving, Amalgamate, WriteCheck, and an additional SendPayment.
Of these, only Balance is a read-only transaction, while the rest involve both
read and write operations, following a read-then-write pattern. The number of
operations for each transaction type is fixed between 3 and 8 (e.g., 3 and 8 for
Balance and Amalgamate respectively). Finally, each transaction type is equally
likely to occur.

YCSB: The YCSB (Yahoo! Cloud Serving Benchmark) [6] is employed to
evaluate the performance of various cloud databases. YCSB includes a single

Implementations Based Evaluation of No-Wait Approach 53

table with 1,000 rows and 11 columns, where the first column is the primary key,
and each of the other columns contains 100 bytes of random characters. In YCSB,
there is only one type of transaction, which involves 10 accesses to randomly
chosen data in a random order. Read and write operations occur with equal
probability, 50%. Data access follows a Zipf distribution, with the frequency
of access to randomly-chosen “hot” data controlled by a skew parameter, theta.
When the theta is set to 0, there is no hot data and every data is accessed with
uniform frequency.

4.2 Read-Committed

This section evaluates the protocols under Read-Committed isolation using the
SmallBank and YCSB benchmarks. For the SmallBank benchmark, Figs. 4 and
5 illustrate the abort percentage and response time. Subsequently, Figs. 6 and
7 present the abort percentage and response time for the YCSB benchmark,
focusing on scenarios with theta = 0 and a 50% update rate. The comparative
analysis reveals that, in contrast to SmallBank’s diverse transaction types with
varying lengths, YCSB transactions are unique in type and consistently longer,
involving more write operations. This results in a higher abort percentage and
longer response times due to the increased likelihood of write-write conflicts.

Fig. 4. Abort percentage under SmallBank

Figures 4 and 6 display the abort percentages under the two benchmarks.
At the Read-Committed isolation level, various protocols exhibit distinct abort
percentages due to their inherent conflict resolution strategies. The SGT pro-
tocol consistently demonstrates the lowest abort rate among these protocols,
attributed to its comprehensive cycle detection mechanism. Even as the num-
ber of cores increases, SGT maintains an abort percentage close to 0%, with
Figs. 4 and 6 showing an abort percentage of approximately 0.002% and 0.033%,
respectively, at 64 cores.

54 Y. Wang et al.

Fig. 5. Response time under SmallBank

Fig. 6. Abort percentage under YCSB

Fig. 7. Response time under YCSB

Implementations Based Evaluation of No-Wait Approach 55

In contrast, the instantaneous schemes, including Instantaneous Abort (IA)
and Instantaneous Wound (IW), exhibit higher abort percentages due to their
immediate and pessimistic conflict resolution approach. These increases in abort
percentage are more pronounced in the longer transactions of YCSB compared to
those in SmallBank. Between these two protocols, the IW slightly increases the
abort percentage compared to the IA. This difference primarily arises in scenarios
where transactions can be wounded by others while attempting to wound or
awaiting wound results. To prevent indefinite wounding attempts, transactions
will self-abort after a limited number of retries.

The delayed scheme, including Delayed Abort (DA) and Delayed Wound
(DW), positions itself between SGT and the instantaneous schemes by defer-
ring conflict resolution to the validation phase. This approach reduces the abort
percentage compared to the instantaneous schemes by allowing transactions to
continue without immediate termination upon encountering a conflict.

Figures 5 and 7 depict the response times under the two benchmarks. SGT’s
cycle checks significantly elongate transaction response times. As the number
of cores increases, SGT’s response time rises more rapidly due to increased con-
tention, which adds complexity to maintaining the dependency graph and check-
ing for cycles. Additionally, the longer transactions in YCSB contribute to this
complexity, leading to a steeper rise in response time compared to SmallBank.

The instantaneous schemes prioritize rapid conflict resolution, resulting in
the shortest response times among the protocols. Despite their operational dif-
ferences, IA and IW report similar response times. Theoretically, the slight edge
in speed observed with the IA is due to it bypassing the overhead of modifying
the status of preceding transactions, a step present in the IW process. However,
in practice, the high-speed computation capabilities of modern computers and
the limited number of wound attempts result in similar response times.

The delayed schemes find a middle ground in response times by deferring
conflict resolution to the validation phase. This strategic delay allows them to
reduce the overhead associated with instantaneous conflict resolution and the
extensive cycle checks of SGT.

4.3 Serializability

Figures 8 and 9 display the abort percentages and response times for the pro-
tocols using the SmallBank benchmark. For the YCSB benchmark, Figs. 10 and
11 present these performance metrics under theta = 0 and a 50% update rate.
Additionally, Figs. 12 and 13 show the performance metrics with varying skew
values (theta), 32 cores, and a 50% update rate.

An analysis of abort percentages reveals a similar pattern across protocols
compared to their performance under Read-Committed isolation. However, a
notable distinction is that Serializability requires handling all types of conflicts
to maintain data consistency, which significantly increases the likelihood of con-
flicts and consequently leads to a higher abort percentage compared to Read-
Committed isolation.

56 Y. Wang et al.

Fig. 8. Abort percentage under SmallBank

Fig. 9. Response time under SmallBank

Fig. 10. Abort percentage under YCSB

Implementations Based Evaluation of No-Wait Approach 57

Fig. 11. Response time under YCSB

A significant rise in the abort percentage for SGT is observed in YCSB when
the number of cores is very high. This increase is attributed to extremely high
contention, which triggers numerous cycles, leading to transaction aborts and
cascading aborts.

The instantaneous schemes register the highest abort percentages. At 64
cores, their abort percentages are approximately 7% for SmallBank and 75%
for YCSB. Longer transactions require more data access and take more time to
execute, increasing the probability of being aborted or wounded.

Positioned between these, Hybrid 1 (H1) and Hybrid 2 (H2) display similar
abort percentages under both benchmarks, approximately 3% and 33% at 64
cores respectively. They postpone the resolution of read-related conflicts while
directly addressing write-write conflicts, resulting in slow growth in abort per-
centages, even in high concurrency and long transaction scenarios. H2’s abort
percentage is marginally higher than H1’s because wounding can lead to more
cascading aborts and the potential for being wounded by another transaction
during its wounding.

Regarding response times, the instantaneous schemes maintain the short-
est durations, reflecting the efficiency of their conflict resolution methods. In
contrast, SGT exhibits the longest response times due to its exhaustive cycle
verification process. This effect is more pronounced under high contention, as
evidenced in Figs. 9 and 11, where response times increase significantly after 32
cores. H1 and H2 occupy a middle ground, offering quicker response times than
the rigorous SGT but slower than the instantaneous schemes. This is achieved
by delaying conflict resolution and not waiting for the completion of preceding
transactions. Even under high contention in YCSB, as shown in Fig. 11, H1 and
H2 still demonstrate good response times with only slow growth.

We observed the performance metrics under varying skew values, theta, while
keeping other parameters constant: 32 cores and a 50% update rate. Figure 12
illustrates the changes in abort percentages for these protocols. As expected,
SGT maintains the lowest abort percentage until the skew value reaches 0.7. At

58 Y. Wang et al.

Fig. 12. Abort percentage with skewed value

Fig. 13. Response time with varying skew values

higher skew values, transactions continually accessing highly contended data lead
to persistent cycles, eventually causing transaction aborts and cascading aborts.
This results in SGT’s abort percentage approaching that of H1 beyond theta =
0.7. In contrast, IA and IW consistently exhibit high abort percentages, even at
low skew levels. Positioned between these extremes, H1 and H2 show a steady
increase in abort percentages. Their strategy of allowing preceding transactions
time to complete results in the abort percentages under high contention that are
similar to SGT’s.

Figure 13 displays the response times as theta increases. SGT experiences
a rapid rise in response time beyond theta = 0.6. This is due to skewed data
access causing cycles to appear more frequently, increasing the complexity of
maintaining the graph and detecting cycles, thereby leading to longer response
times. In contrast, IA and IW show almost no change. In scenarios with a small
data set and high contention, the variation in theta has little impact on the
abort percentages of these two protocols. Positioned between them, H1 and H2

Implementations Based Evaluation of No-Wait Approach 59

begin to show increased response times only after theta = 0.7, and their rate of
increase is slightly smaller compared to SGT.

5 Conclusions

In this paper, we presented a detailed analysis of several transaction processing
protocols and evaluated their performance under two benchmarks, SmallBank
and YCSB. Delayed Abort and Hybrid 1 proved to be an excellent choice, under
Read-Committed isolation and Serializability respectively, with the latter main-
taining a good balance between abort percentage and response time, regardless
of transaction length or data access skew. Our future work will use these schemes
in a distributed setting.

References

1. Ezhilchelvan, P., Mitrani, I., Webber, J., Wang, Y.: Evaluating the performance
impact of no-wait approach to resolving write conflicts in databases. In: Iacono,
M., Scarpa, M., Barbierato, E., Serrano, S., Cerotti, D., Longo, F. (eds.) Computer
Performance Engineering and Stochastic Modelling, pp. 171–185. Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43185-2_12

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Longman Publishing Co., Inc, USA (1986)

3. Li, C., et al.: ByteGraph: a high-performance distributed graph database in
bytedance. Proc. VLDB Endow. 15(12), 3306–3318 (2022). https://doi.org/10.
14778/3554821.3554824

4. Durner, D., Neumann, T.: No false negatives: accepting all useful schedules in a
fast serializable many-core system. In: 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pp. 734–745 (2019)

5. Alomari, M., Cahill, M., Fekete, A., Rohm, U.: The cost of serializability on plat-
forms that use snapshot isolation. In: 2008 IEEE 24th International Conference on
Data Engineering, pp. 576–585 (2008)

6. Cooper, B.F., Silberstein, A., Tam, E.: Benchmarking cloud serving systems with
YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, ser. SoCC
2010. New York, NY, USA: Association for Computing Machinery, 2010, pp. 143–
154 (2010). https://doi.org/10.1145/1807128.1807152

https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.1007/978-3-031-43185-2_12
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152

Performance Evaluation of Smart Bin Systems
Using Markovian Agents for Efficient Garbage

Collection

Enrico Barbierato1(B) , Alice Gatti1 , Marco Gribaudo2 , and Mauro Iacono3

1 Dip. di Scienze Matematiche, Fisiche e Naturali, Università Cattolica del Sacro Cuore,
via della Garzetta 48, 25133 Brescia, Italy

{enrico.barbierato,alice.gatti}@unicatt.it
2 Dip. di Elettronica, Informatica e Bioingegneria Politecnico di Milano,

via Ponzio 51, 20133 Milano, Italy
marco.gribaudo@polimi.it

3 Dip. di Matematica e Fisica Università degli Studi della Campania “L. Vanvitelli”,
viale Lincoln 5, 81100 Caserta, Italy

mauro.iacono@unicampania.it

Abstract. Smart bins, equipped with sensors and IoT technologies, play a cru-
cial role in optimizing waste collection by providing real-time data on bin fill
levels. This paper introduces a Markovian Agent Model to simulate and evaluate
different garbage collection strategies in a smart bin system. By analyzing various
alarm thresholds and routing policies, the study identifies optimal approaches for
minimizing overflows and enhancing collection efficiency. The results demon-
strate that a strategy combining responsive alarm handling with route resumption
(Resume policy) and a higher alarm threshold improves system stability and oper-
ational effectiveness.

Keywords: markovian agents · smart bins · performance analysis

1 Introduction

In the contemporary landscape of smart city development, advanced technologies are
leveraged to enhance efficiency, sustainability, and overall welfare. Therefore, multiple
aspects of everyday life are characterized by innovative solutions enabling smartness.
In the context of waste management systems, smart bins are intelligent waste containers
that integrate IoT sensors, AI, and data analytics to optimize waste collection processes
in sight of both environmental sustainability and efficiency. A smart bin is a techno-
logically enhanced waste dumpster equipped with both sensors and technologies that
enable advanced features and functionalities, improving the usual waste management
processes. Each smart bin is typically assigned a unique identification (ID) to distin-
guish it from other bins within the system. Smart bins are integrated with Geographic
Information Systems (GIS) for spatial data collection, analysis, and visualization pur-
poses. Thus, real-time dynamical geographical data, traffic flows and conditions, and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 60–74, 2025.
https://doi.org/10.1007/978-3-031-80932-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_5&domain=pdf
http://orcid.org/0000-0003-1466-0248
http://orcid.org/0009-0008-8422-8024
http://orcid.org/0000-0002-1415-5287
http://orcid.org/0000-0002-2089-975X
https://doi.org/10.1007/978-3-031-80932-3_5

Performance Evaluation of Smart Bin Systems 61

road networks are made available. In particular, each bin has precise geographical coor-
dinates (latitude and longitude) associated. Merging the bins’ real-time data with cities’
roadmaps uncovers concentrations of waste generation, optimized collection routes, and
enables a more efficient allocation of resources. Long-term planning and infrastructure
development are also affected. Smart bins are equipped with sensors to measure and
immediately record information about the waste level. Different types of sensors are
available. Visual measurement is accomplished through ultrasonic sensors that mea-
sure the distance between the bin cover and its bottom via propagation of sound waves
and consequently achieve a precise fullness measure via calculations on the expired
time between the emission and the return of the waves. Weight measurement is instead
accomplished by the usage of a weighing scale mounted on a double-bottom of the bin.
Every bin records its present level of waste, signifying its capacity from being empty
to completely overflowing. The sensors serve for the decision-making process. If a spe-
cific threshold is exceeded, the bin is added to the waste collection routing queue. A
bin might be added to the routing schedule even if its waste threshold is not reached,
as bins are also integrated with time-out mechanisms. A pre-determined time limit is
set and, when triggered, the bin is automatically enrolled for collection. All smart bins
are part of a network and are connected via wireless communication systems. Each
bin is expected to send messages to the network, notifying its current state. Micro-
controllers and microcomputer technologies enable integrated systems to perform local
processing. Also, the real-time collected data can be stored and processed in a cloud-
based system accessible via the bins’ connection. External systems and applications
can be integrated via the usage of Application Programming Interfaces (APIs). As each
bin has a unique IP address in the network, APIs enable methodical and simultaneous
queries of all the bins. Message Queuing Telemetry Transport (MQTT) allows the swift
exchange of information through its lightweight design and publish-subscribe architec-
ture, making it a suitable transmission method for the messages of the network of bins.
Depending on the state of a bin, it can be dynamically inserted in route planning. How-
ever, the adaptive and real-time optimization of waste collection routes based on the
continuously changing fill levels of smart bins requires dynamic routing. The collection
schedule is dynamically adjusted for the routing of collection vehicles to bins that are
marked as “to be emptied”. Consequently, the unnecessary visits to bins with lower fill
levels can be minimized, optimizing efficiency and reducing operational costs.

The contribution of this work lies in introducing a framework that allows garbage
collectors to adapt dynamically between routine operations and emergency responses
based on real-time data from smart bins. By evaluating different routing strategies and
alarm thresholds, the study provides valuable insights into optimizing waste collection
efficiency, minimizing overflow incidents, and enhancing system stability. The paper
is organized as follows. Section 2 reviews the related work. Section 3 characterizes the
considered case study and the corresponding model, which is simulated and discussed
in Sect. 4. Finally, Sect. 5 concludes this work.

2 Related Work

A comprehensive review of classic and ML-based algorithms for optimizing smart bin
collection in smart cities is provided in [6]. It critically examines various methodolo-

62 E. Barbierato et al.

gies, including Reinforcement Learning (RL), time-series forecasting, Genetic Algo-
rithms (GA), and Graph Neural Networks (GNNs), for their efficiency in collection
processes. Huh et al. [9] introduce an IoT-based Smart Trash Bin designed to enhance
recycling and waste management efficiency with reduced costs. The work highlights
three innovative designs utilizing sensor, image processing, and spectroscopy technolo-
gies within an IoT framework, aiming to cut operational expenses, including labor
costs. Benarbia et al. [4] present an innovative model for smart waste collection sys-
tems (SWCs) using stochastic Petri nets (PN) with inhibitor arcs and discrete event
simulation. This approach addresses the challenges in waste collection by introducing a
real-time inventory control system that optimizes the routing and scheduling of collec-
tion vehicles based on the fill levels of waste containers. In [3], the authors discuss a new
modeling language tailored for Big Data systems to model the MapReduce paradigm.
The language is designed within the SIMTHESys framework ([1,10]), enabling effi-
cient modeling of data distribution and processing across multiple computing nodes.
The deployed methodology aims to minimize the complexity of performance model-
ing by abstracting the underlying systems, allowing domain experts to focus on the
system architecture rather than low-level details. Likotiko et al. [11] discuss an app-
roach to optimizing waste collection through IoT technologies. The authors developed
a multi-agent-based IoT architecture for monitoring and optimizing solid waste col-
lection. Utilizing the NetLogo multi-agent platform, their system simulates real-time
scenarios of waste bin fill levels and truck collection processes, enabling dynamic and
smart decision-making. A novel approach named QueSAIR (Queuing System Assess-
ment and Impact Reduction), is discussed in [13], integrating queuing theory into the
reverse logistics network for effective inert construction waste management. This app-
roach assesses queuing systems and their impacts through simulation and quantitative
analysis. The case study focuses on reducing negative impacts like cost, emissions,
noise pollution, extra fuel consumption, loss in productivity, and energy losses. Markov
et al. [12] discuss optimizing waste collection routes, focusing on recyclable waste.
The authors introduce a mixed binary linear programming model that accounts for vari-
ous real-world complexities, such as heterogeneous vehicle fleets, multiple depots, and
site-specific constraints. A significant contribution is the development of a local search
heuristic capable of solving large instances with an optimality gap of less than 2%. With
regard to the deployment of Markovian Agent Models (MAMs, see for example [5]),
Gribaudo et al. [8] propose an Internet of Things (IoT)-based approach for monitor-
ing cultural heritage sites, with a focus on the UNESCO-protected center of Matera,
Italy. The system utilizes a mix of heterogeneous sensors and MAMs to monitor crowd
behavior and anticipate threats to the site, aiming to prevent damage to cultural heritage.
This approach stands out for its ability to adapt to real-time data, predict future scenar-
ios, and optimize incident management strategies, marking a significant contribution
to cultural heritage preservation and smart city applications. The modeling of sensor
nodes using MAMs is discussed in [7]. This work compares four on-off strategies to
manage power consumption, where sensors alternate between active, asleep, or failed
states. A MAM assesses network performance and dependability, considering message
routing and transmission between nodes based on geographic position. Finally, in [2],
the authors present a modeling approach for evaluating the impact of storage allocation

Performance Evaluation of Smart Bin Systems 63

policies in geographically distributed, large-scale cloud architectures, based on MAMs.
The related works differ in their approach and focus on waste collection optimization.
For instance, Huh et al. focus on enhancing waste separation through the integration of
multiple sensor types, while Benarbia et al. emphasize the use of stochastic Petri nets
for optimizing the routing and scheduling of collection vehicles. Likotiko et al. take a
multi-agent-based approach, which allows for real-time dynamic decision-making and
citizen engagement, differing from the purely IoT-based systems. Gatti et al. distinguish
their work by critically reviewing various algorithmic methodologies and their applica-
tion to waste collection, offering insights into both classic and ML-based techniques.
Our approach focuses on utilizing MAMs to simulate the behavior of garbage collectors
and smart bins in a dynamic environment. Unlike the works mentioned above, which
primarily rely on either machine learning or deterministic optimization approaches, we
adopt a stochastic model to evaluate different garbage collection strategies. The key
difference between our model and the multi-agent system proposed by Likotiko et al.
is that we incorporate Markov-modulated processes to represent the fill levels of bins
dynamically, allowing for a more precise analysis of system behavior under various
collection policies.

3 Case Study and Model

Fig. 1. The smart Waste Collection System

Figure 1 outlines a smart waste collection system composed of a base station . w, a
garbage collector.GC, and multiple blocks. The.GC is tasked with traversing clockwise

64 E. Barbierato et al.

a predefined circuit to collect waste from smart bins located at each block. The system’s
features are as follows: i) Base Station (. w): The starting point for the garbage collector’s
route; ii) Blocks: Represented by polygons, these are the locations where smart bins are
positioned; iii) Garbage Collector (.GC): A mobile unit that travels at a constant speed
. v (meters/minute) following a clockwise direction around the circuit; iv) Smart Bins:
Equipped with sensors, these bins are depicted as small circles, distributed along the
blocks; v) Emptying Time (. t): The time taken by the.GC to empty a smart bin, measured
in minutes; vi) Filling Rate: The rate at which garbage accumulates in bin . i, expressed
as a percentage per minute. As outlined later, we assume the filling rate follows a two-
state Markov-modulated process; vii) Alarm Threshold (. α): A predefined fill level at
which a smart bin sends an alert to the .GC, indicating an urgent need for emptying,
and finally, viii) Alarm Indication: A smart bin that has surpassed the alarm threshold
is marked with a dashed circle.

Fig. 2. Markovian Model of the garbage collector

The behavior of the .GC illustrates an integrated and responsive system that opti-
mally balances routine collection duties with the capacity to respond immediately to
critical events, thereby enhancing the efficiency and reliability of urban waste manage-
ment services. Incorporating a dual-modality operation underscores the system’s agility
in adapting to dynamic urban environments. Specifically, Fig. 2 delineates the opera-
tional modalities of the .GC within a smart waste management system. Under normal
operating conditions, the .GC commences its cycle in a waiting state, denoted as NW,
where it remains for a predetermined duration at the base .w before initiating its recon-
naissance. This transition is indicated by a shift from NW to the Normal Movement
(NM) state, wherein the .GC traverses the predefined route to service the smart bins.
Subsequently, the process culminates in the Normal Emptying (.NE) state, where the
.GC performs the waste evacuation from the smart bins as per its usual itinerary. Con-
versely, the system is designed to adapt to exigent circumstances necessitated by the

Performance Evaluation of Smart Bin Systems 65

surpassing of a predetermined fill-level threshold (. α). When a smart bin reports that a
threshold . α has been exceeded, the .GC promptly aborts its current task, irrespective
of its state, and enters an Alarm Movement (.AM) mode, sending alert messages. This
state is characterized by the .GC swiftly relocating to the smart bin that has issued the
alert. Upon arrival, the.GC transitions to the Alarm Emptying (.AE) state to address the
overfilled condition. After successfully emptying the contents of the alerted smart bin,
GC can resume normal operations or react to another alarm.

Fig. 3. Markov Model of the smart bin

Figure 3 illustrates a Markovian model of a smart bin (.SB) system, where the
smart bin can exist in various states. Initially, it operates in a normal state, transitioning
between two primary modes: actively being filled with waste (state . F) or undergoing
emptying (.E state) by the garbage collector. Upon surpassing a predetermined waste
threshold, the smart bin’s agent initiates alarm messages to the garbage collector . GC
agent, signaling the need for immediate emptying. However, if .GC fails to promptly
respond, the .SB agent enters an .O state, signifying the potential spillage of waste onto
the street. The level of waste in the bin is represented as a continuous fluid state . L,
with transitions occurring towards an empty state or incoming flows either from .F or
.A states. The flow of trash is modulated by a 2 state Continuous Time Markov Chain,
that alternates between a state .N with normal rate .λN , and a state .H with a high rate
.λH . In particular, it jumps from .N to .H at a Poisson rate .γN , and from .H to .N at
rate .γH . Table 1 recaps the components of the case study, the units of measure, and the
corresponding values.

66 E. Barbierato et al.

Table 1. Parameters of the Smart Waste Collection System

Parameter Unit of Measure Value

Sweeper speed (. v) [m/min] 60

Emptying time (. t) [min] 3

Alarm threshold percentage (. α) [%] 60%.. . . 90%

Wait at base (. w) [min] 30

Modulation rates (.γN , .γH) [hours.−1] .γN = 1/3, . γH = 12

Filling rates (.λN , .λH) [%.
−1] .λN = 1/5, . λH = 5/2

3.1 Solution

We compute 1 the performance indices using discrete event simulation of the agents’
behavior. In particular, the simulation randomly decides the state of the modulating
input rate process for each bin, deciding whether it is experiencing a normal or a high
input flow rate, and then decides the evolution of the agents accordingly.

We define the topology as a weighted undirected graph, where nodes describe the
bin’s positions and path junctions. The weight of the arcs corresponds to the distance
between the starting and ending nodes. The function describing the cycle .fc(t) (com-
puted using Dijkstra’s algorithm) indicates the location of the garbage collector at each
time instant, specifying whether it is moving or emptying a bin. The cycle time is
denoted as . tc. Let .N denote the graph nodes and. E the edges. Then, .fc(t) is defined as:

.fc : [0, tc] → N ∪ E (1)

where .N indicates that the garbage collector is currently at a node, performing its task,
and . E indicates that it is in transit along an edge.

The function for the time to reach the alarm .fa(a, n) (computed using the minimal
path) determines the time required to reach a bin that has triggered an alarm from the
garbage collector’s current position. .fa(a, n) is defined as:

.fa : (N ∪ E) × N → R
+ (2)

where .fa(a, n) specifies the time required to reach the node .n ∈ N , where the alarm
has been triggered, from the node .a ∈ N or edge .a ∈ E , depending on the garbage
collector’s current location. The simulator uses functions .fc(t) and .fa(a, n) to decide
the movement of the GC according to the evolution of the level of the bins, and to one
of three policies defined later.

4 Experiments and Discussions

Figure 4 illustrates the evolution of the filling percentage of 4 out of 15 bins, specifically
the 4 bins that have the most activity concerning alarms and potential overflows.

1 The code used in this work is available at https://github.com/EBarbierato/epew2024.

https://github.com/EBarbierato/epew2024
https://github.com/EBarbierato/epew2024
https://github.com/EBarbierato/epew2024
https://github.com/EBarbierato/epew2024
https://github.com/EBarbierato/epew2024

Performance Evaluation of Smart Bin Systems 67

Fig. 4. The evolution of the level of the bins 3, 9, A and B.

The figure emphasises how the modulating process alters the filling rate of the bins,
with two slopes: one corresponding to the slow rate, and the other to the state with a
faster filling. In the same figure, it can also be observed the contribution of the garbage
collector, which resets a bin to its empty state.

Fig. 5. The evolution of the state of the garbage collector: 1 - Waiting (NW), 2 - Moving (NM), 3 -
Emptying (NE), 4 - Alarm during emptying (AFE), 5 - Alarm Moving (AM), 6 - Alarm Emptying
(AE). The line on the secondary axis represents the bin currently served by the GC.

Figure 5 illustrates the evolution of the state of the GC, which alternates between
movement, emptying, pause, and alarm management (blue line). State 5 is observed
when the garbage collector is moving towards the bin that triggered the alarm, and state
6 is observed when it is emptying the bin that triggered the alarm. Particular attention

68 E. Barbierato et al.

should be given to the figure showing the agent’s state at around 3 h, because at this
time, the garbage collector briefly reaches state 4 due to an alarm sounding while it is
emptying another bin. The same figure, on the right axis corresponding to the orange
line, it shows which bin the garbage collector is going to empty. The numbers repre-
senting the bins range from 1 to 15 (with a range of .10 − 15 corresponding to bins
.A − F).

Figure 6 depicts the state of the 4 selected bins and shows how they alternate
between normal filling, alarm state, overflow state, and finally emptying. Note how
the emptying states correspond to the same action performed by the CG agent.

Fig. 6. The evolution of the state of the bins 3, 9, A and B: 1 - Filling (F), 2 - Alarm (A), 3 -
Overflow (O), 4 - Emptying (E).

Considered Garbage Collection Policies

The following policies have been taken into account:

1. Ignore - The alarms from the smart bins are ignored. The route is followed as if the
garbage bins were not smart.

2. Continue - When an alarm is triggered, the garbage collector immediately proceeds
to empty the bin that raised the alarm as soon as possible. After emptying it, if
some other alarms or overflows occur in the meantime, it goes to address those.
Priority is given to overflows: if any bin has overflowed during the emptying process,
the GC first deals with those before attending to other alarms. After emptying all
problematic bins, the route continues from the point reached by the GC.

3. Resume - As the Continue policy, but in this case when the GC returns to normal
operation, the inspection route resumes from where it was interrupted.

Performance Evaluation of Smart Bin Systems 69

Fig. 7. The Ignore policy for 6 randomly selected nodes 1, 4, A, B, 8, and E. Bin occupancy status
is at the top; the agent’s status is at the bottom.

Figure 7 focuses on the Ignore policy, and it shows that the agent ignores all alarms
and only alternates between the states of movement, emptying, and pause. It illustrates
how this affects six bins that experience more overflows and alarms, suggesting that
these bins operate autonomously without any interaction with the agent.

The Continue policy is depicted in Fig. 8. The GC, after responding to an alarm,
continues its route from the point where it had arrived due to the alarm. Essentially,
during its route, if it moves towards a bin and skips others, it then ignores the skipped
bins and continues from where it went due to the alarm. Alternatively, if the alarm
causes the agent to backtrack, it resumes and visits the same bins multiple times. In this
scenario, it can be observed that when a bin triggers an alarm, the agent moves to and
empties it.

The Resume policy is shown in Fig. 9. It can be observed, when looking at the
orange line representing the bin the agent is emptying, that after jumping up and down
to manage exceptions, it resumes from where it had last stopped.

Evaluation

Initially, we consider an alarm threshold set at 75%. Later we will study the impact of
the threshold on the performance of the system. Figure 10 shows the average number
of times one bin is cleaned according to each policy, and emphasises how the bins are
handled differently. Bins located closer to the start of the first route are emptied at a
time when they cannot yet be filled because they are emptied almost immediately. One
day is insufficient for the system to reach a steady state, and the transient caused by the

70 E. Barbierato et al.

Fig. 8. The Continue policy for 6 randomly selected nodes 8, 9, D, 4, 5, and 1. Bin occupancy
status is at the top; the agent’s status is at the bottom.

Fig. 9. The Resume policy for 6 randomly selected nodes C, 7, 3, B, 2, and 1. Bin occupancy
status is at the top; the agent’s status is at the bottom.

Performance Evaluation of Smart Bin Systems 71

bin from where the route begins has a very different impact, which also depends on the
three policies.

Fig. 10. Average number of cleaning per bin (including the confidence intervals), for the consid-
ered policies.

Figure 11 shows the time that elapses between the emptying of one bin and another.
In this case, even if the alarm is ignored, the average time between two emptying is not
constant, even for the policy that ignores alarms, because some bins are initially emptied
even though there has not been enough time for them to fill up. Although the considered
cleaning cycle time is two hours, it is evident how the policies lead to varying periods
of time, either longer or shorter, depending on the position of the bins.

Figures 12, 13 and 14 focus on examining the importance of the threshold. It con-
siders the three policies by setting three alarm levels (60%, 75%, and 90%). Figure 12
shows that the policy that ignores the threshold results in the fewest alarms, while the
other two have almost identical results. Even if the Ignore policy does not consider the
level of bins, a smaller threshold causes a larger number of alarms. Figure 13 shows that
the Ignore policy has also the smallest number of overflows per day, unless the thresh-
old is very high, in the case in which the Resume policy performs better. However, as
shown in Fig. 14, the Ignore policy is also the one that has the longest time during which
a bin remains in overflow, which represents a critical moment for the system.

72 E. Barbierato et al.

Fig. 11. Average time between cleanings per bin, for the considered policies.

Fig. 12. Average number of alarms per day, for the considered policies and different thresholds.

Fig. 13. Average number of overflows per day, for the considered policies and different thresholds.

Performance Evaluation of Smart Bin Systems 73

Fig. 14. Average duration of an overflow, for the considered policies and different thresholds.

Results

This analysis concludes that the optimal approach is to handle the alarm, but then
resume the route to avoid the risk that, over time, the last bins are always and only man-
aged due to alarms. This situation could overwhelm the system. Resuming the route
ensures that when the alarms are limited, they do not disrupt the system or cause the
garbage collector to jump from one alarm to another, but instead allow for preventive
emptying.

The system performs better with a higher threshold (90%). The threshold should be
set as high as possible so that the agent can reach the bin within the short time between
when the alarm is triggered and when it reaches the bin that sent the alarm. If the alarm
is triggered too early, the system becomes unstable. However, if the garbage collector
can reach the bin that raised the alarm just before it overflows, it can effectively solve
the situation, without affecting too much the regular operation cycle. This approach
stabilizes the system as if there were no alarms, thanks to the fact that the garbage
collector resumes its route from where it was interrupted and remains responsive to
incoming alarms.

5 Conclusions

In this study, we addressed the challenge of optimizing garbage collection in environ-
ments equipped with smart bins. By developing a Markovian Agent Model, we ana-
lyzed various collection strategies and their thresholds, particularly focusing on the
behaviors and interactions between the garbage collector and the smart bins. Our find-
ings indicate that actively responding to alarms and resuming the predetermined route
post-response (Resume policy) offers an optimal balance, ensuring bins are serviced
efficiently without overwhelming the system. Moreover, setting higher alarm thresh-
olds, such as 90%, proved beneficial, allowing the garbage collector sufficient time to
address alerts without frequent disruptions. This approach not only stabilizes the sys-
tem but also minimizes instances of overflow. Future work will delve into more complex

74 E. Barbierato et al.

topologies, diverse filling rates, and scenarios involving multiple garbage collectors to
further enhance the robustness and applicability of our model.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Barbierato, E., Bobbio, A., Gribaudo, M., Iacono, M.: Multiformalism to support software
rejuvenation modeling. In: 2012 IEEE 23rd International Symposium on Software Reliability
Engineering Workshops, pp. 271–276. IEEE (2012)

2. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems in SIMTHESys. Elec-
tron. Theor. Comput. Sci. 327, 5–25 (2016)

3. Barbierato, E., Gribaudo, M., Iacono, M., et al.: A performance modeling language for big
data architectures. In: ECMS, pp. 511–517 (2013)

4. Benarbia, T., Darcherif, A.M., Sun, D.J.: Modelling and performance analysis of smart waste
collection system: a petri nets and discrete event simulation approach. Int. J. Decision Supp.
Syst. 4(1), 18–40 (2019)

5. Bobbio, A., Cerotti, D., Gribaudo, M., Iacono, M., Manini, D.: Markovian agent models:
a dynamic population of interdependent markovian agents. In: Al-Begain, K., Bargiela, A.
(eds.) Seminal Contributions to Modelling and Simulation, pp. 185–203. Springer Interna-
tional Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-33786-9 13

6. Gatti, A., Barbierato, E., Pozzi, A.: Toward greener smart cities: A critical review of classic
and machine-learning-based algorithms for smart bin collection. Electronics 13(5) (2024).
https://doi.org/10.3390/electronics13050836, https://www.mdpi.com/2079-9292/13/5/836

7. Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor networks using
interacting Markovian agents. In: 2008 Sixth Annual IEEE International Conference on Per-
vasive Computing and Communications (PerCom), pp. 300–305. IEEE (2008)

8. Gribaudo, M., Iacono, M., Levis, A.H.: An iot-based monitoring approach for cultural her-
itage sites: The matera case. Concurr. Comput.: Pract. Exp. 29(11), e4153 (2017)

9. Huh, J.H., Choi, J.H., Seo, K.: Smart trash bin model design and future for smart
city. Appl. Sci. 11(11) (2021). https://doi.org/10.3390/app11114810, https://www.mdpi.com/
2076-3417/11/11/4810

10. Iacono, M., Barbierato, E., Gribaudo, M.: The simthesys multiformalism modeling frame-
work. Comput. Math. Appl. 64(12), 3828–3839 (2012). https://doi.org/10.1016/J.CAMWA.
2012.03.009, https://doi.org/10.1016/j.camwa.2012.03.009

11. Likotiko, E.D., Nyambo, D., Mwangoka, J.: Multi-agent based iot smart waste monitoring
and collection architecture. arXiv preprint arXiv:1711.03966 (2017)

12. Markov, I., Varone, S., Bierlaire, M.: Vehicle routing for a complex waste collection problem.
In: 14th Swiss Transport Research Conference (2014)

13. Zhang, X., Ahmed, R.R.: A queuing system for inert construction waste management on a
reverse logistics network. Autom. Constr. 137, 104221 (2022)

https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.3390/electronics13050836
https://doi.org/10.3390/electronics13050836
https://doi.org/10.3390/electronics13050836
https://doi.org/10.3390/electronics13050836
https://doi.org/10.3390/electronics13050836
https://doi.org/10.3390/electronics13050836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://www.mdpi.com/2079-9292/13/5/836
https://doi.org/10.3390/app11114810
https://doi.org/10.3390/app11114810
https://doi.org/10.3390/app11114810
https://doi.org/10.3390/app11114810
https://doi.org/10.3390/app11114810
https://doi.org/10.3390/app11114810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://www.mdpi.com/2076-3417/11/11/4810
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
https://doi.org/10.1016/j.camwa.2012.03.009
http://arxiv.org/abs/1711.03966

Approximation of First Passage Time
Distributions of Compositions
of Independent Markov Chains

András Horváth1(B) , Marco Paolieri2 , and Enrico Vicario3

1 Department of Computer Science, University of Turin, Turin, Italy
horvath@di.unito.it

2 Department of Computer Science, University of Southern California,
Los Angeles, USA

paolieri@usc.edu
3 Department of Information Engineering, University of Florence, Florence, Italy

enrico.vicario@unifi.it

Abstract. To improve performance or reliability, systems frequently
include multiple components that operate in parallel or with limited
interaction, e.g., replicated components for triple modular redundancy.
We consider components modeled by independent and possibly different
continuous-time Markov chains and propose an approach to estimate
the distribution of first passage times for a combination of component
states (e.g., a system state where all components have failed) without
generating the joint state space of the underlying Markov chain nor eval-
uating probabilities for each of its states. Our results highlight that the
approach leads to accurate approximations with significant reductions of
computational complexity.

Keywords: First Passage · Bounded Reachability · CTMC · Markov
Chain · Replicated · Modular Redundancy

1 Introduction

Continuous-time Markov chains (CTMCs) are a class of stochastic processes
that has found broad application in models of system performance and reliability.
Many high-level modeling formalisms such as stochastic Petri nets [17], stochastic
process algebras [9], and queuing networks [15] define CTMC processes that can
then be analyzed using dedicated tools [1, 12, 16] to evaluate transient or steady-
state metrics.

To improve performance or reliability, systems frequently include replicated
components operating in parallel or with limited interaction, e.g., components
replicated for triple modular redundancy (TMR). When the system includes
many replicated components, each with a state evolving over time, the large
number of states of the resulting CTMC process presents major challenges due
to memory and computation requirements. These issues are exacerbated by the
necessity of using phase-type (PH) distributions [18] to model activities with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 75–90, 2025.
https://doi.org/10.1007/978-3-031-80932-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_6&domain=pdf
http://orcid.org/0000-0002-8210-545X
http://orcid.org/0000-0001-5110-203X
http://orcid.org/0000-0002-4983-4386
https://doi.org/10.1007/978-3-031-80932-3_6

76 A. Horváth et al.

non-exponential durations. PH distributions can be introduced in the model as
a sequence of intermediate states (phases) for a non-exponential activity, where
rates between states are selected to fit the original distribution (by matching
moments [4], tail behavior [11], or both [13], or by maximizing likelihood [3]).
While the use of additional intermediate states allows more accurate approxima-
tions, it also increases the number of system states, especially when many such
activities can execute in parallel.

Several approaches were proposed to analyze large CTMCs with multiple
components. These include binary decision diagrams (BDDs) [16], which repre-
sent the CTMC transition matrix as a directed graph where paths select rate
values, and structured analysis [6], which represents the CTMC transition matrix
as a sum of Kronecker products of the small transition matrices of individual
components. Either approach can be used to evaluate transient or steady-state
probabilities of each system state through iterative methods.

In this work, we propose an approximate solution method to evaluate the
cumulative distribution function (cdf) of the first passage time of a combina-
tion of component states (e.g., a system state where all components have failed)
without enumerating system states (in contrast with alternative approaches com-
puting probabilities for each system state). The approximation will be developed
by time discretization assuming that the system can be in the concerned combi-
nation of component states at the end of a small time interval only if all but one
of the components are already there at the beginning of the time interval. The
state distribution of the components at the beginning of each interval is assumed
to be independent, irrespective of first passage events in previous time intervals.
Time discretization will be removed then leading to a differential equation whose
numerical integration provides the approximation.

In contrast with classical work on replicated components [2, 5, 19], we consider
possibly different CTMC components with an arbitrary number of states (instead
of one up and one down state) and evaluate the cdf (instead of the moments) of
the first passage time.

The paper is organized as follows. We recall background and define our prob-
lem in Sect. 2, and we present our approximation method in Sect. 3. In Sect. 4,
we provide numerical results and discuss some implementation issues, drawing
our conclusions in Sect. 5.

2 Background and Problem Definition

We consider a system composed of .n independent components modeled as
CTMCs .{Yk(t)}1≤k≤n with finite state spaces .Sk and infinitesimal generators
.Qk = (qkij)i,j∈Sk

with .k = 1, ..., n. We denote by .Fk ⊆ Sk the set of failure
states of component . k. In general, the components can be repaired (i.e., the
states in .Fk are not absorbing). The transient probabilities of component . k are
denoted by

. pkij(t) = P (Yk(t) = j | Yk(0) = i) for i, j ∈ Sk, k = 1, ..., n,

which can be calculated, for example, by uniformization.

First Passage Distributions of Compositions of Independent Markov Chains 77

The system can be modeled as a CTMC .{X(t)} with state space denoted by
.S = S1×S2× ...×Sn, where .X(t) = (Y1(t), . . . , Yn(t)). The set of states in which
all components are in a failure state is denoted by .F = F1 × F2 × ... × Fn ⊆ S.

Let . T be the first time when all the components are in a failure state, that
is,

. T = min {t ≥ 0 | X(t) ∈ F} ,

and let .FT (t) indicate its cdf, that is, .FT (t) = P (T ≤ t). The cdf .FT (t) is known
as first passage time distribution to reach a state in . F . It is also referred to as
time-bounded reachability in probabilistic model checking.

Since the components are independent, the transient probabilities of the com-
posed system can easily be computed based on the transient probabilities of the
components in product form as

.P (X(t) = (y1, ..., yn) | X(0) = (s1, ..., sn)) =
n∏

k=1

pkskyk
(t) . (1)

where .(s1, ..., sn) is the initial state. Accordingly, also .P (X(t) ∈ F), that is,
the probability that all components are in a failure state at a given time . t
(which is not equal to .FT (t)), can be computed in product form considering the
components in isolation.

On the contrary, .FT (t), i.e., the first passage time cdf to reach a state in . F ,
cannot be obtained in product form multiplying first passage time cdfs of the
components. Indeed, the product of first passage time cdfs of the components
yields the probability that all components have been in a failure state before
time . t at least once (and not the probability that all components have been in
a failure state at the same time).

In order to determine .FT (t) exactly, one has to consider a variant of .{X(t)},
that we denote by .{X ′(t)}, in which states in .F are made absorbing. In this
modified CTMC we have

. FT (t) = P (X ′(t) ∈ F | X ′(0) = (s1, ..., sn)) .

Making states in . F absorbing couples the behavior of the components and they
are not independent anymore in a probabilistic sense. Consequently, the transient
probabilities of .{X ′(t)} are not in product form and we need to consider a CTMC
with .|S| − |F | states (it is not necessary to represent states in .F during the
calculations), with exponential growth of the state space with respect to the
number of components, quickly making the analysis unfeasible.

The aim of this paper is to propose an approximation of .FT (t), denoted by
.F̂T (t), that is based on the individual behavior of the components and hence
does not require analyzing .{X ′(t)}. By doing so, the computational complexity
is kept linear with respect to the number of components.

3 Approximation Method

In order to provide the stochastic interpretation of the proposed approximation
method, we give first a description in which time is discretized. This discretized

78 A. Horváth et al.

version proceeds in time by taking steps of length . δ and calculating . F̂T (iδ), i =
0, 1, 2, . . . , the approximation of .FT (iδ) for .i = 0, 1, 2, We assume that . δ is
such that there is negligible probability that more than one component makes a
transition in an interval of length . δ.

The assumption on . δ implies that the system enters a state in . F in . (t, t + δ]
only if at time . t the number of failed components is .n − 1. For this reason, at
each step we calculate the probability that in .{X(t)} at time . t all components
other than component . k are failed by

.Uk(t) =
∏

1≤i≤n,i �=k

P (Yi(t) ∈ Fi) . (2)

The intensity with which component . k moves from up states to down states at
time . t can be calculated as

.Dk(t) =
∑

i�∈Fk

⎛

⎝P (Yk(t) = i)
∑

j∈Fk

qkij

⎞

⎠ . (3)

The probability itself that component . k is up at time . t and makes a transition
from an up state to a down state in .(t, t + δ] can be approximated by .Dk(t)δ.

In order to easily consider all components together, we introduce also

.G(t) =
n∑

i=1

Ui(t)Di(t) . (4)

The approximation starts with .F̂T (0) = FT (0) = P (X(0) ∈ F), which can be
easily calculated given the initial distribution of the components, and proceeds
according to

.F̂T ((i + 1)δ) = F̂T (iδ) + (1 − F̂T (iδ))G(iδ)δ , (5)

where we multiply by .(1 − F̂T (iδ)) to consider the probability that a state in . F
was already reached.

The approximation in Eq. (5) relies on the fact that in .{X ′(t)} the compo-
nents evolve independently up to the moment in which the system reaches a state
in . F . This suggests that the product-form probabilities in Eq. (1) multiplied by
the probability that a state in . F has not been reached give a good approximation
of the probabilities of the states in .S \ F , that is,

. P (X ′(t) = (y1, ..., yn)) ≈ (1 − FT (t))
n∏

i=1

P (Yi(t) = yi) for (y1, ..., yn) �∈ F ,

where in our numerical scheme .FT (t) is substituted by .F̂T (t). For the states in . F
we have .P (X ′(t) ∈ F) = FT (t) ≈ F̂T (t).

To remove time discretization, note that Eq. (5) can be reorganized as

.
F̂T ((i + 1)δ) − F̂T (iδ)

δ
= (1 − F̂T (iδ))G(iδ) ,

First Passage Distributions of Compositions of Independent Markov Chains 79

and by taking the limit .δ → 0, we obtain the differential equation

.F̂ ′
T (t) = (1 − F̂T (t))G(t) (6)

with initial condition .F̂T (0) = FT (0). The approximation .F̂ (t) can then be
calculated by numerical integration of Eq. (6).

Note that if the components are identical and share also the initial distribu-
tion, then

. U(t) := U1(t) = ... = Un(t) = P (Y1(t) ∈ F1)n−1,

D(t) := D1(t) = ... = Dn(t) =
∑

i�∈F1

⎛

⎝P (Y1(t) = i)
∑

j∈F1

q1ij

⎞

⎠ ,

and Eq. (4) simplifies to . G(t) = nU(t)D(t).

4 Numerical Experiments and Implementation Issues

We present two sets of experiments. First, we use a model composed of identical
components described by a CTMC with a small state space. This case allows us
to compare the results obtained by the proposed approximation method against
exact results. Next, a model composed of different CTMCs with large state spaces
is analyzed. In this case we compare the approximation against simulation.

After the experiments, we briefly discuss implementation issues and provide
execution times.

4.1 Identical Components with Small State Space

The infinitesimal generator of the components is

. Q =

⎛

⎜⎜⎝

−α α 0 0
α −2α − β α β
0 α −α − β β
γ 0 0 −γ

⎞

⎟⎟⎠ ,

which describes a four state system in which (i) the first three states correspond
to normal operation states among which there are transitions with intensity . α,
(ii) from the second and third up states, the down state can be reached by a
transition with intensity . β, and (iii) repair takes to the first state with intensity . γ.

The parameters .(α, β, γ) allow us to calibrate the steady-state probability of
being in the failure state in a component considered in isolation which, as we will
see, has an impact on the accuracy of the approximations. The following sets of
parameters .(α, β, γ) will be used: .(1, 1, 12) (Case 1), .(2, 2, 3) (Case 2), . (4, 4, 0.75)
(Case 3). Steady-state probabilities of the failure state are . 133 , . 15 , . 23 , respectively.

We calculated exact and approximate first passage distributions, i.e., . FT (t)
and .F̂T (t), for several values of . n in the above cases. The initial state . s is the
state in which all components are in the first state.

80 A. Horváth et al.

Fig. 1. Case 1: Exact .FT (t) and approximate .F̂T (t) (top); approximation ARE
(bottom).

Fig. 2. Case 1: Approximate and exact state probabilities with .n = 2 (top); ARE of the
probability of the fourth state (i.e., the failure state) for different values of . n (bottom).

Figure 1 shows .FT (t) and .F̂T (t) and the absolute relative error (ARE) of
.F̂T (t). Visually, the approximation cannot be distinguished from the exact values.
The ARE shows that the approximation error is low and decreases as we increase

First Passage Distributions of Compositions of Independent Markov Chains 81

the number of components. The downward spikes in the ARE are due to the
points where exact and approximate curves cross each other leading to a point
where the ARE is zero. In order to investigate the source of the approximation
error of .F̂T (t), we calculated state probabilities of the components based on
the approximation and exactly. In Fig. 2 there is no visible error in the state
probabilities with .n = 2 and the ARE of the probability of the fourth state
4 decreases as . n is increased. (Note that since the initial state is the same for
all components, they have the same transient probabilities; hence we use . Y (t)
without specifying the component.)

In Fig. 3, we observe that for Case 3, where the failure state is reached with
higher probability, we obtain greater absolute error and ARE of the approxi-
mation. Similarly to Fig. 1, the error decreases as we increase the number of
components. In Fig. 4, we can see that (as expected) the errors in the state
probabilities and ARE of the failure state are also higher.

Fig. 3. Case 3: Exact .FT (t) and approximate .F̂T (t) (top); approximation ARE
(bottom).

As a comparison of the three cases, in Fig. 5, we depicted for .n = 4 the ARE of
.F̂T (t) and the ARE of the probability of the fourth state. In the range .t ∈ [0, 2], as
expected, the higher the probability of the failure state, the worse approximation
we obtain. For the third considered case, after .t = 2 the approximation gets
better. This is due to the fact that .FT (t) is getting closer and closer to one
making it easier to obtain good ARE values. In the other two cases, we have
.FT (10) < 0.2 and the approximation error remains stable.

82 A. Horváth et al.

Fig. 4. Case 3: Approximate and exact state probabilities with .n = 2 (top); ARE of the
probability of the fourth state (i.e., the failure state) for different values of . n (bottom).

Fig. 5. ARE of .F̂T (t) (top) and ARE of the probability of the fourth state (bottom)
with .n = 4 for all three considered cases.

4.2 Different Components with Large State Spaces

In order to describe the components, we use the Petri net (PN) depicted in Fig. 6
which models a rejuvenation mechanism [8]. The system is in one of four states:

First Passage Distributions of Compositions of Independent Markov Chains 83

Fig. 6. PN model of a rejuvenation mechanism.

Ok is a safe operational state; Error corresponds to an aged operational state
that may lead to a failure; in state Ko the system is down due to a failure; the
fact that a failure has been detected is modeled by state Detected. Transitions
among these four states are modeled by PN transitions error, fail, detect,
and repair. The system is complemented by a rejuvenation mechanism with a
timer that controls when the next rejuvenation takes place. The rejuvenation
mechanism is either in state Wait, where it waits for the timer to run out, or
in state Rejuv, where rejuvenation is carried out. The transition from Wait to
Rejuv is called startRej. Rejuvenation can be completed while the system is
in state Ok or Error and it takes the system back to its initial state through
either transition rejOk or rejErr, respectively. In state Ko rejuvenation is
not possible but the timer is stopped only when a failure is detected. When
rejuvenation is in progress, the system cannot degrade, that is, transitions error
and fail are inhibited when place Rejuv has a token.

The time to fire distribution of the transitions will be defined through PH
distributions [18]. An order . r PH distribution is given through the time to absorp-
tion in a CTMC with . r transient states, called phases, and one absorbing state.
Accordingly, it is determined by the initial probability vector, denoted by . a, and
the infinitesimal generator of its CTMC, denoted by . A. We will use two sub-
classes of PH distributions. The first one is the family of Erlang distributions. In
terms of PH distributions, an Erlang distribution with shape parameter 1 . r and
mean equal to .m is obtained by

.a = (1 0 ... 0), A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

− r
m

r
m

− r
m

r
m

.

− r
m

r
m

− r
m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 The shape parameter is equal to the number of phases, that is, the number of tran-
sient states.

84 A. Horváth et al.

where only the parameters of the transient states are given in . a and .A (the
others can be deduced from these). An Erlang distribution with . r phases and
mean equal to .m will be denoted by Erl.(r,m). The second subclass is a mixture
of Erlang distributions with common intensity and uniform mixing probability.
In terms of PH distributions, this subclass has

. a =
(

1
k

1
k

...
1
k︸ ︷︷ ︸

k

0 ... 0
︸ ︷︷ ︸
r−k

)
, A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ

−λ λ

.

−λ λ

−λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which are determined by three parameters: the total number of phases, . r, the
number of phases with non-zero initial probability, . k, and the intensities in . A
denoted by . λ. We will refer to this family of distributions as Erlang mixture
(EM); an EM distribution will be denoted by EM.(r, k, λ). In Fig. 7 we show a
few examples of Erlang and EM distributions through their probability density
functions (pdf).

When time to fire distributions in a PN are PH distributions, the underlying
stochastic process is a CTMC whose infinitesimal generator can be built by
Kronecker operations (see, e.g., [7]). The CTMC is subject to the so-called state
space explosion problem. This is due to the fact that, given a marking, the
number of states corresponding to the marking in the underlying CTMC is equal
to the product of the number of phases of the PH distributions of the enabled
transitions in the marking.

As Case 1, we consider a system composed of three components. Their PH
distributions together with the number of states of the resulting CTMC are
reported in Table 1. Note that the components are not identical. Every state of
the CTMC corresponding to a marking in which there is a token in place Ko
or Detected is considered as a failure state. These markings are (Ko,Wait),
(Ko,Rejuv), (Detected,Wait), and (Detected,Rejuv). For example, for
what concerns the second component, the above four markings correspond to 600,

Fig. 7. Pdf of Erlang and EM distributions with various parameters.

First Passage Distributions of Compositions of Independent Markov Chains 85

Table 1. PH distributions of the components of Case 1, the number of states of the
resulting CTMC and the number of up states in the CTMC.

error fail detect repair startRej rejErr rejOk # st. # up st.
comp. 1 Erl(2,40) Erl(2,50) EM(4,2,1) EM(40,20,1) Erl(100,60) EM(8,6,1) EM(6,3,1) 898 414
comp. 2 Erl(2,40) Erl(2,25) EM(4,2,1) EM(40,20,1) Erl(150,50) EM(8,6,2) EM(6,3,1) 1298 614
comp. 3 Erl(2,40) Erl(2,50) EM(4,2,2) EM(40,20,2) Erl(100,50) EM(8,6,2) EM(6,3,1) 898 414

4, 40 and 40 states, respectively, for a total of 684 failure states. In Table 1 we
reported also the number of up states for each component. The product of these
numbers provides the number of states of the CTMC that we should analyze in
order to calculate the first passage time distribution exactly. For Case 1, it is
105,237,144 (i.e., approximately .108).

Fig. 8. Total probability of failure states as function of time for the three components
of Case 1 in isolation.

To give an idea of the behavior of the components in isolation, in Fig. 8 we
show the probability of being in a failure state as function of time for the three
components.

The approximate first passage time distribution calculated by the proposed
method is depicted in Fig. 9 together with an empirical cdf obtained by simula-
tion. The number of simulation runs was set to .5 · 105. The figure also shows
the 95% confidence band constructed around the empirical, simulation-based
cdf using the Dvoretzky-Kiefer-Wolfowitz inequality [10, 21]. The approximate
first passage time distribution cannot be distinguished from the one obtained
by simulation. The width of the confidence band is 0.00384. Figure 10 shows the
function .G(t) defined in Eq. (4) which is used to obtain the approximation . F̂T (t)
through numerical integration of Eq. (6).

As Case 2, we consider a system obtained by small modifications of the system
of Case 1 in such a way that failure probabilities become smaller. Specifically, the
time to fire distribution of transition repair of components 1 and 2 of Case 2 is
EM(40,20,5) (instead of EM(40,20,1)) which means that these two components
get back to state Ok from state Detected five times faster. This change does

86 A. Horváth et al.

Fig. 9. Case 1: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation.

Fig. 10. Case 1: The function .G(t) defined in Eq. (4) which is the base of the approxi-
mation procedure.

not modify the state space, that is, the number of states and the number of
up states is the same as in Case 1, reported in Table 1. The approximate first
passage time distribution together with results obtained by .106 simulation runs
are provided in Fig. 11. The approximate cdf deviates very slightly from the
simulation-based cdf from about .t = 150. Note however that, as indicated by
the confidence band whose width is 0.00272, a much larger number of simulation
runs would be necessary to estimate such small probabilities with high confidence.
That is, the visible but very small difference can be due to chance.

Case 3 is obtained from Case 2 by increasing the number of phases of the
applied Erlang distributions. Specifically, we double the number of phases of
transition wait and change the number of phases of transitions error and fail
to 5 (in the two cases before it was 2). These modifications have a twofold impact.
First, failure probabilities become even smaller because the Erlang distribution
with shape parameter equal to 5 has a smaller variability and it becomes less
likely that transitions error and fail fire before a rejuvenation. Second, the
state space becomes larger. The number of states of the three components is
2,898, 4,298 and 2,898, respectively. The number of up states in the components
is 2,014, 3,014 and 2,014, respectively, meaning that exact analysis would require
dealing with a CTMC with .12, 225, 374, 744 ≈ 1.2 ·1010 states. Results are shown
in Fig. 12 with .2 · 106 simulations runs. Also in this case there is a small but

First Passage Distributions of Compositions of Independent Markov Chains 87

Fig. 11. Case 2: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation.

Fig. 12. Case 3: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation.

visible difference between the approximation and the simulation-based empirical
cdf but, as indicated by the confidence band with width equal to 0.00192, it can
very well be due to chance and only an extremely large number of simulation
traces could verify the precision of the approximation.

The intended use of the proposed approximation is the analysis of reliability
of systems composed of independent components. Consequently, we are inter-
ested in approximating relatively small probabilities. In Fig. 13 we show that
the approximation can result in good precision even in case of much larger prob-
abilities by evaluating Case 1 up to .t = 10000.

4.3 Implementation Issues

The presented numerical results were calculated by a prototype implementation
of the method using Wolfram Mathematica [14]. The transient probabilities of
the components, which are necessary to compute .G(t) defined in Eq. (4), were
determined by uniformization (see, e.g., [20]) with precision .10−8, representing
the infinitesimal generators of the components by sparse matrices. The approx-
imate first passage time distribution was calculated by numerical integration of
the differential equation Eq. (6) applying the NDSolve function of Mathemat-
ica. The sought relative precision was set to .10−8. NDSolve evaluates .G(t) at
several time points in order to compute .F̂T (t). Calculation of the transient prob-

88 A. Horváth et al.

Fig. 13. Case 1: First passage time distribution by approximation and by simulation
with 95% confidence bounds based on simulation up to .t = 10000.

abilities of the components by uniformization is efficient if these time point are
in increasing order. This is however not always the case since NDSolve, in order
to guarantee precision, takes steps also backward in time. For this reason, for a
time-efficient computation it is convenient to store the transient probabilities at
a few recently used time points, allowing for not starting uniformization from
.t = 0.

The execution time of calculating the approximation for the complex system
referred to as Case 1 in Sect. 4.2 (described in Table 1) up to .t = 200 took 0.7 s.
Case 2 required the same amount of time. Case 3 required instead about 4 s.
This is because in this system both the state spaces and the intensities in the
infinitesimal generators are larger (meaning that more steps are required for the
uniformization to guarantee the same precision).

Simulation was also carried out in Mathematica based on the Petri net (that
is, not the underlying CTMC) generating firing times according to the PH dis-
tributions of the transitions. A standard laptop was used parallelizing the gener-
ation of the simulation traces among 14 processor cores. Generating the . 5 · 105
traces for Case 1 required around 30 min of computation. Case 2 required about
an hour because generating a trace requires roughly the same amount of time
but we generated twice as many traces. Simulation of Case 3 took about 5 h
because a single trace requires more time and we also generated more traces.

5 Conclusions

We presented an approximate solution to compute the cdf of the first passage
time of a combination of component states without enumerating system states.
The approximation achieves high accuracy when failures are rare or when the
system includes many components. In future work, we plan to extend the app-
roach to analyze systems with .m-out-of-. n failure conditions. We also plan to
investigate how far .{X ′(t)} is from a product form.

First Passage Distributions of Compositions of Independent Markov Chains 89

References

1. Amparore, E.G.: Stochastic modelling and evaluation using GreatSPN. SIGMET-
RICS Perform. Evaluation Rev. 49(4), 87–91 (2022)

2. Barlow, R.E., Proschan, F.: Theory of maintained systems: distribution of time to
first system failure. Math. Oper. Res. 1(1), 32–42 (1976)

3. Bobbio, A., Cumani, A.: ML estimation of the parameters of a PH distribution in
triangular canonical form. Comp. Perf. Eval. 22, 33–46 (1992)

4. Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic
phase type distributions. Stoch. Models 21, 303–326 (2005)

5. Brown, M.: The first passage time distribution for a parallel exponential system
with repair. In: Proceedings of the Conference on Reliability and Fault Tree Anal-
ysis, pp. 365–396. Society for Industrial and Applied Mathematics (1975)

6. Buchholz, P., Katoen, J., Kemper, P., Tepper, C.: Model-checking large structured
Markov chains. J. Log. Algebraic Methods Program. 56(1–2), 69–97 (2003)

7. Buchholz, P., Kemper, P.: Kronecker based matrix representations for large Markov
models. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M.
(eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 256–295. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_8

8. Carnevali, L., Paolieri, M., Reali, R., Scommegna, L., Vicario, E.: A Markov regen-
erative model of software rejuvenation beyond the enabling restriction. In: Pro-
ceedings of IEEE ISSRE Workshops (WOSAR), pp. 138–145. IEEE (2022)

9. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras.
In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_4

10. Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator. Ann. Math.
Stat. 27(3), 642–669 (1956)

11. Feldman, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions
to analyze network performance models. Perf. Eval. 31, 245–279 (1998)

12. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)

13. Horváth, A., Telek, M.: Approximating heavy tailed behavior with phase-type
distributions. In: Proceedings of 3rd International Conference on Matrix-Analytic
Methods in Stochastic Models. Leuven, Belgium (2000)

14. Inc., W.R.: Mathematica, Version 14.0, Champaign, IL (2024). https://www.
wolfram.com/mathematica

15. Kleinrock, L.: Queueing Systems, Vol. 1: Theory. Wiley (1975)
16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

17. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets
for the performance evaluation of multiprocessor systems. ACM Trans. Comput.
Syst. 2(2), 93–122 (1984)

18. Neuts, M.: Probability distributions of phase type. In: Liber Amicorum Prof. Emer-
itus H. Florin, pp. 173–206. University of Louvain (1975)

19. Ross, S.M.: On the time to first failure in multicomponent exponential reliability
systems. Stochastic Process. Appl. 4(2), 167–173 (1976)

https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-24611-4_8
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://doi.org/10.1007/978-3-540-72522-0_4
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

90 A. Horváth et al.

20. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathe-
matical Basis of Performance Modeling. Princeton University Press (2009)

21. Wasserman, L.: All of Statistics. STS, Springer, New York (2004). https://doi.org/
10.1007/978-0-387-21736-9

https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9

Under the Space Threat: Quantitative
Analysis of Cosmos Blockchain

Daria Smuseva1 , Ivan Malakhov2(B) , Andrea Marin2 , Carla Piazza1 ,
and Sabina Rossi2

1 Università degli Studi di Udine, Udine, Italy
daria.smuseva@unive.it, carla.piazza@uniud.it

2 Università Ca’ Foscari Venezia, Venezia, Italy
{ivan.malakhov,marin,sabina.rossi}@unive.it

Abstract. Many contemporary blockchains are greatly dependent on
the Proof-of-Stake (PoS) consensus protocol. Among these, Cosmos is a
fairly new blockchain system that stands out as a prominent PoS exam-
ple thanks to its ecosystem designed to facilitate interoperability between
different blockchains through the Inter-Blockchain Communication pro-
tocol. Cosmos consensus protocol is called CosmosBFT and is based on
the definition of rounds for consensus on blocks. The agreement has to be
made by special users, namely validators, chosen among the participants
with the highest bonded stakes. This paper investigates the potential
new attacks that these design features can introduce. First, we show
that the current state of nearly every network in the Cosmos ecosystem
is prone to the unbalanced distribution of voting power (VP) of valida-
tors, as it is skewed towards a small group of already top-ranked ones.
Secondly, we introduce a base model reflecting the standard execution of
the consensus protocol of the Cosmos ecosystem. Then, we propose two
case studies to assess the effect of network performance due to (i) col-
luded behavior of the highest-ranked validators and (ii) partial absence
of the committee members. Our results suggest that a set of validators
holding one-third of the total VP (also known as a superminority), either
colluded or simultaneously unavailable, is able to drastically reduce the
network effectiveness of producing blocks, thereby damaging honest net-
work participants and network security.

Keywords: Blockchain · Proof-of-Stake · Performance Evaluation

1 Introduction

Blockchain technology, a decentralised and distributed peer-to-peer network that
stores immutable data, has emerged as a transformative force across various
sectors. Its ability to ensure transparency, security, and decentralisation has
prompted widespread interest and adoption. Blockchains can be categorised into
three primary groups: by access type, consensus mechanism, and smart contract
functionality.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 91–105, 2025.
https://doi.org/10.1007/978-3-031-80932-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_7&domain=pdf
http://orcid.org/0000-0002-5893-8259
http://orcid.org/0000-0002-1176-3543
http://orcid.org/0000-0002-5958-1204
http://orcid.org/0000-0002-2072-1628
http://orcid.org/0000-0002-1189-4439
https://doi.org/10.1007/978-3-031-80932-3_7

92 D. Smuseva et al.

Firstly, blockchains can be classified by access type into public and pri-
vate blockchains. Public blockchains are open to everyone, allowing unrestricted
participation and fostering inclusivity and transparency. In contrast, private
blockchains operate under restricted access policies, limiting participation to
designated entities. The distributed nature of public blockchain systems intro-
duces distinct security challenges, as the incentive structures often encourage
participants to prioritise personal financial gain to maximise rewards.

Secondly, blockchains are classified by their consensus mechanisms, of which
the two most popular are Proof of Work (PoW) and Proof of Stake (PoS). In
PoW blockchains, such as the original Bitcoin blockchain introduced by Satoshi
Nakamoto [14] in 2008, users called miners participate in the network by solv-
ing complex computational puzzles to obtain rewards. Miners receive rewards
whenever they successfully create a block that is accepted by the network. This
reward-driven participation model, however, brings several challenges, two of
which have been discussed in our previous works [10– 12,15]. In PoS systems,
nodes do not rely heavily on computational resources to create blocks. Instead,
consensus is achieved through a voting mechanism where the likelihood of becom-
ing a block proposer depends on the amount of currency, or stake, a validator
holds. For example, in Ethereum, the second largest blockchain after Bitcoin,
participants must stake 32 ETH to become validators 1.

Lastly, blockchains can either support or do not support the smart contract
functionality. The smart contracts are autonomous applications deployed on the
blockchain ledger, consisting of code that facilitates and regulates interactions
between parties without the need for intermediaries.

In this paper, we examine Cosmos 2 that is known to be a prominent example
of PoS networks. Indeed, the Cosmos ecosystem is not merely a single blockchain
network, but rather an entire ecosystem designed to facilitate interoperability
among different blockchains within. Moreover, the choice of Cosmos stems from
uniqueness of its consensus mechanism that is based on Tendermint protocol [7].

Validators play an important role in Cosmos networks, as well as in other
Proof-of-Stake networks. They validate transactions and create blocks, thus
maintaining the network’s security and integrity. Validators stake their cryp-
tocurrency as collateral, showcasing their dedication to the network’s reliability.
Unlike Ethereum, where each block is validated by a randomly chosen subset
of an unlimited number of validators, Cosmos operates with a fixed number of
validators. These validators are selected based on the highest stakes they hold.

The Cosmos ecosystem employs a common consensus mechanism that
requires multiple steps for block commitment: Propose, Prevote, and Precommit.
Each of these steps has default timeouts to manage the time required for block
agreement. If validators fail to reach a consensus on a new block, they initiate
a new round for the same block position until consensus is achieved. This app-
roach ensures there are no forks but may result in lower network performance.
A network experiencing multiple rounds for block approval would have reduced

1 At the time of writing, this corresponds approximately to .3, 300 USD.
2 https://cosmos.network.

https://cosmos.network
https://cosmos.network
https://cosmos.network

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 93

throughput since transactions in these blocks would face delays in acceptance
due to the protocol’s requirements.

The Cosmos ecosystem presents an intriguing case study for exploring the
dynamics of PoS blockchains and the existing challenges. One of them is Veri-
fier’s Dilemma which is based on the issue where the verification process lacks
incentivisation. This concept assumes that some validators can accept new blocks
without proper verification, undermining the integrity of the system [6]. We have
already studied the phenomenon in Ethereum PoW and PoS [15,16], where there
was a clear interest for users to behave unfair since they increase their reward.
The concept of Tendermint blockchains does not imply voting incentives making
the network even more exposed to the Verifier’s Dilemma. However, the nature
of Tendermint makes it difficult to evaluate the effect of the dilemma. The only
way is to see how delays in voting steps can affect the network throughput.

Another issue within the Cosmos ecosystem is the voting power distribution.
One-third of voting power is concentrated in the hands of a few validators. This
concentration poses a risk to the network’s integrity, as these validators, whether
through collusion or accidental absence, can significantly impact the network.

In this paper, we study how such validators affect the network. We exam-
ine the implications of voting power concentration and analyse the potential
risks associated with validator behavior. Our findings contribute to a deeper
understanding of the dynamics within the Cosmos ecosystem and offer recom-
mendations for improving its governance model.
Contribution. In this paper, (i) we provide a base analytical model that
reflects the validation process using the Performance Evaluation Process Algebra
(PEPA) tool presented in [8]. (ii) We introduce a scenario that extend the base
model and study the case of colluded validators holding . 13 of the network voting
power to discard proposed blocks of the target group. Finally, (iii) we describe
another scenario which allows us to examine the case of partially absent valida-
tors that would be eventually unavailable in the network.
Paper structure. The paper is structured, as follows: Sect. 2 delves into Cosmos
blockchain. Next, Sect. 3 introduces a set of analytical models based on the PEPA
tool and covers assessment of the models. The experimental part is also included
in this section. Finally, Sect. 4 concludes the paper and builds a basement for
future work.

2 Background on Cosmos Blockchain

In this section, we provide a brief description of Cosmos network delving into
the protocol underlying it.

Generally speaking, Cosmos serves as a platform enabling users to establish
their own blockchains within its ecosystem. These blockchains, interconnected
through Inter-blockchain Communication (IBC), maintain autonomy while facili-
tating communication. Operating on the CometBFT protocol, which is fully inte-
gral to Tendermint protocol, they retain flexibility for customization, although
many projects adopt the default protocol settings. Additionally, the Cosmos

94 D. Smuseva et al.

platform hosts the Cosmos Hub, an early blockchain implementation often ref-
erenced as a model of their network protocol. In this context, we refer to Cosmos
as a network instance rather than solely a platform.

In the network, anyone can attempt to become a validator, provided they
stake a substantial amount of tokens to compete with the largest stakeholders.
For instance, in Cosmos blockchain, the top five validators hold together more
than .400 millions USD in fiat equivalent. An aspiring validator can achieve this
stake not only by using their own tokens but by attracting users not involved in
validation to delegate their funds to the validator in exchange for passive rewards
(these users are known as delegators). It is known that the majority of the val-
idators including top-ranked ones bond just bare minimum of tokens themselves,
while the rest is aggregated thanks to the attracted delegators. Although valida-
tors can bond their own assets through delegation from accounts they control,
this highlights the crucial role that delegators play within the network.
Network Consensus. The consensus process of CometBFT consists of several
steps [1] that can be visualized as follows:

. NewHeight → (Propose → Prevote → Precommit)≥1 → Commit → ...

In turn, three special steps, namely Propose, Prevote, and Precommit form a
single Round. The round steps are repeated until more than . 23 of the total voting
power precommits for the same block, which is then committed and added to
the blockchain. If this does not occur within a timeout period, the next round is
started with a new proposer but for the same height. Any PoS protocol including
CometBFT ensures that the validators can reach consensus on a unique block as
long as up to .

1
3 of the voting power is controlled by malicious or faulty validators.

Regarding the remaining steps, NewHeight serves for incrementing the height
and assuring that most of the participants execute a commit step by waiting.
Next, Commit is needed to perform a commit and move again to NewHeight step
repeating the validation process.
Incentivisation. In Cosmos ecosystem, validators are mainly incentivised with
block and transactions’ fee rewards lacking any incentivisation for actual vali-
dation of blocks. Recall that in Cosmos all active validators bond their funds to
form a stake. The reward that is accumulated during a certain reward period
(mainly for each new block consolidation but also transaction fees from the
accepted blocks of the period) is then distributed strictly proportional to the
fraction of the stake the validators hold. Consequently, some validators who
are not interested in full commitment to the validation process may decide to
save their resources by not performing any of the steps described above without
essentially any drawback. Moreover, considering the existing downtime penalty
of .0.01% that implies missing more than .95% of the last .10, 000 blocks which
is approximately .19 hours of absence, malicious validators may decide to stay
offline for exactly .10, 000∗0.95−1 = 9499 blocks saving the real-world resources
and still stay fully paid as the received reward is independent of the time spent
on performing the validation process [3].

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 95

Fig. 1. Distribution of VP among all validators in the chosen networks.

There are few more ways to get reward as a validator. First, validators usually
set a commission rate for all the reward received from using extra assets that
were given by the delegators. The commission can have arbitrary value, however,
it is quite common to see the rate of .10%. Although some committee members
may retain all rewards from delegators with .100% commission (e.g., Kraken [5]).
Thus, it is highly favorable for validators to attract more delegators.

Second, each block proposer has an opportunity to receive .5% of extra fee
reward by including all the votes for the previous block into the one that they
are entitled to propose. In simple terms, including just above two-thirds of the
validators’ votes the proposer would receive only .95% of the total fee in their
block. The collection of all give them .4% of additional reward. Note that such
reward is linked to the risk for a proposer. If they would wait too long to collect
all the votes a proposer can simply miss their time and lose all the fee reward [3].
Voting Power Distribution. Figure 1 shows the voting power distribution among
the leading blockchains within Cosmos ecosystem starting from Fetch.AI 3.
Clearly, among all the represented networks the supermajority, over two-thirds
of network voting power, is held by a small group of top validators, leaving the
rest of the network with minimal fractions of VP. Moreover, this concentration
implies that if even a few members of this dominant groups become unavail-
able, as can be easily seen in Fetch.AI network where only two validators hold

3 https://fetch.ai.

https://fetch.ai
https://fetch.ai
https://fetch.ai

96 D. Smuseva et al.

a superminority of voting power (one-third of the total), the network cannot
achieve consensus, resulting in its shutdown. Furthermore, it is not necessary
that only top-ranked validators become unavailable but generally any combi-
nation of validators holding the third of total VP can interrupt the consensus
process just being absent at the same time. We use this reasoning to investigate
the performance and reliability of the system in the scenarios described in the
following section.

3 Model Descriptions and Examination

In this section, we introduce and describe some PEPA [8, 9,13] models that reflect
the consensus processes and two scenarios of interest in Cosmos ecosystem. Next,
in the experimental part, we study the outcomes of the models and provide our
educated interpretation.

3.1 Base Model

We first present a PEPA model (base model) that formally describes the con-
sensus protocol. In the following sub-sections, we show the refined models for
further analysis. Table 1 shows the model of a Cosmos blockchain within Cosmos
ecosystem by using the process algebra language.

Upon a successfully created block the new consensus process starts at a step
.NewHeight , triggering .Round that performs .Propose, consequently. If successful,
it progresses to .Prevote or .NilPrevote, depending on the success parameter . w1

of the Propose step where .w1 ∈ [0, 1]. From .Prevote, it moves to . Precommit
or .Unsuccess, that again linked to the success parameter .w2 ∈ [0, 1] this time
for the Prevote step. In turn, .NilPrevote never progresses to .NewHeight , but to
.Unsuccess with the rate . β that always starts a .Round again. .Precommit step
either leads to .Commit with a success probability .w3 ∈ [0, 1] or initiates a new
.Round with the complementary probability .1 − w3.

Table 1. Base PEPA model of consensus protocol in Cosmos ecosystem.

.NewHeight .
def
= . (nh,n).Round

.Round .
def
= . (r ,n).Propose

.Propose .
def
= . (p,w1γ).Prevote + (p, (1 − w1)γ).NilPrevote

.Prevote .
def
= . (pv ,w2β).Precommit + (pv , (1 − w2)β).Unsuccess

.NilPrevote .
def
= . (npv , β).Unsuccess

.Unsuccess .
def
= . (pc, δ).Round

.Precommit .
def
= . (pc,w3 δ).Commit + (pc, (1 − w3)δ).Round

.Commit .
def
= . (ci , η).NewHeight

where. γ = max

(
1

t1
,
1

T1

)
, β = max

(
1

t2
,
1

T2

)
, δ =

1

T3
, η =

1

T4
.

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 97

Regarding the probabilities of success for the Propose and Prevote steps,
namely .w1 and .w2, we assume that they represent the probabilities that two
independent exponential random variables .X1 and .X2 with means .t1 and .t2 are
less than the corresponding timeouts .T1 and . T2. Consequently, we obtain:

.w1 = Pr[X1 ≤ T1] = 1 − e− 1
t1

T1 , w2 = Pr[X2 ≤ T2] = 1 − e− 1
t2

T2 . (1)

Parameters . t1, .t2 are the ones of the exponential random variables modeling
the actual processing time of the Propose and Prevote steps, while . T1, .T2 refer
to the standard step timeouts specified in the protocol configuration of a given
blockchain. More precisely, to model the system behaviour we make the following
assumptions:

– Duration of steps. The durations of steps are exponentially distributed with
an expected duration equal to the timeout parameter associated with that
step. The probability of successfully terminating that step before the timeout
is computed as described by Equations (1). The introduction of deterministic
timeouts is known to be challenging to be modeled in a Markovian model
and although it could be approximated with the method of phases, this com-
plicates the analysis. In this context, this assumption has a relatively small
impact, since the goal of the model is not that of an accurate prediction of
some performance indices rather that of comparing different scenarios created
by malicious behaviours of some validators.

– Fixed steps’ timeout. We assume that all successive rounds possess the same
timeout values as the first round of the block height.

– Successful Precommit step. Given the negligible impact of the success proba-
bility at the Precommit step (.w3), we simplify our models by fixing its value
at .w3 → 1. Consequently, our focus shifts from the speed of node vote propa-
gation through the network to the block processing steps, specifically .w1 and
.w2.

Such assumptions remain true also for the models in the following subsection.
Note that for the sake of simplicity, we assume that the processing times of the
consensus steps, and hence the step rates, are computed with respect to their
corresponding timeouts. Table 2 shows the values of such parameters used in
Cosmos (Hub) network. The timeouts are derived from the default CometBFT
protocol configuration and can be also seen in numerous blockchain instances
within Cosmos ecosystem. We can then safely choose these settings for our study.

3.2 Model with Colluded Superminority

In this experiment, we are interested in studying the scenario in which the small-
est achievable group of validators that holds the superminority, i.e., the top-
ranked validators, colludes to prevent network from committing blocks of certain
validators. In this way, the malicious behavior of colluded validators reduces the
attractiveness of the affected validators to their delegators due to a lower rate of
successful block proposals. Consequently, the delegators are likely to distribute

98 D. Smuseva et al.

Table 2. Default round step limits for a network in Cosmos ecosystem.

Step name Timeout parameter Duration
Propose .T1 . 3s
Prevote .T2 . 1s
Precommit.T3 . 1s
Commit .T4 . 1s

Table 3. PEPA model of consensus protocol with the colluded validators in Cosmos
ecosystem.

.NewHeight .
def
= . (nh,n).Round

.Round .
def
= . (r , dCn).ProposeC + (r , dTn).ProposeT + (r , dRn).ProposeR

.ProposeC .
def
= . (p,w1γ).PrevoteC + (p, (1 − w1)γ).NilPrevote

.PrevoteC .
def
= . (pv ,w2β).PrecommitC + (pv , (1 − w2)β).Unsuccess

.PrecommitC .
def
= . (pc,w3 δ).CommitC + (pc, (1 − w3)δ).Round

.CommitC .
def
= . (cC , η).NewHeight

.ProposeT .
def
= . (p,w1γ).PrevoteT + (p, (1 − w1)γ).NilPrevote

.PrevoteT .
def
= . (pv , β).Unsuccess

.ProposeR .
def
= . (p,w1γ).PrevoteR + (p, (1 − w1)γ).NilPrevote

.PrevoteR .
def
= . (pv ,w2β).PrecommitR + (pv , (1 − w2)β).Unsuccess

.PrecommitR .
def
= . (pc,w3 δ).CommitR + (pc, (1 − w3)δ).Round

.CommitR .
def
= . (c, η).NewHeight

.NilPrevote .
def
= . (npv , β).Unsuccess

.Unsuccess .
def
= . (pc, δ).Round

where .γ = max

(
1

t1
,
1

T1

)
, β = max

(
1

t2
,
1

T2

)
, δ =

1

T3
, η =

1

T4
, and

.dC =
1

3
, dT ∈ [0 ,

2

3
], dR = 1 − (dC + dT), with .dR ≥ 0 .

their assets to validators with higher ratings, such as to the colluded validators,
thereby increasing the colluders’ revenue from delegators’ commissions.

To this aim, we extend the model from the Table 1 in order to model such
validators’ shift and assess the impact of the network performance and fairness.

In this context, we state that a network is fair if its validators receive an
amount of reward equal to their VP. Thus, the corresponding coefficient of fair-
ness can be defined as a relationship between the fraction of the throughput
produced by given validator(s) and the fraction of their possessed voting power.
In general, the coefficient of fairness can be written as follows:

.φv =
Xv

X
VPv

VP

,

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 99

where .Xv

X refers to a fraction of throughput produced by a validator or set of
validators . v, while .VPv

VP stands for fraction of VP possessed by . v. For instance,
the coefficient of fairness .φv = 1 would refer to the ideal case or the fair share
of expended work among validators, while the values greater than . 1 such that
.φv > 1 would indicate extra efforts that such validator(s) have to put to maintain
the network growth. Note that the coefficient of fairness greater than . 1 can be a
useful indicator that is capable of revealing such anomalies in the network and
help with finding the source of the problem.

In the model, we introduce three new categories of validators, namely:

– Attackers. Attacking actors are the group of colluded validators possessing the
superminority of VP. Their aim is to neglect the blocks of their target group
by omitting the voting steps or voting for nil. Further, since they control the
superminority of voting power, the network will fail to find consensus on the
target blocks and would be required to move to new rounds.

– Target. Target actors are fair validators who will struggle to see their blocks
accepted due to malicious behaviour of the attackers. Every time any target
validator would propose a block at some round . r, the rest of the validators’
set do not reach the supermajority vote to commit it leading to the next
round .r + 1.

– Rest. Such validators act honestly and are not affected by the actions of the
attackers despite the decreased network performance due to the unnecessary
extra rounds required to approach a new block height as a consequence of the
attack.

Table 3 illustrates the model with the colluded validators. Recall that when
the system starts .Round a chosen validator has to perform a block proposal.
Since we now have various types of actors in the system with the probability
.dC = 1

3 one of the colluded validators becomes a block proposer starting a
round with .ProposeC . Otherwise, either one of the validators from the group
under attack or remaining validators perform the proposal of a block with the
probabilities .dT and .dR, respectively. Parameter .dT changes with respect to the
interval .[0, 2

3] that agrees with the limit such that probabilities of moving to
any of the actors is .dC + dT + dR = 1. All the probabilities correspond to the
possessed VP of the introduced actors. For better visualisation, the underlying
derivation graph of the model is depicted in Fig. 2.

The goal of the colluded validators is to intentionally ignore blocks proposed
by the target validators (.ProposeT component). Thus, even successful block
proposals leading to .PrevoteT always end up at .Unsuccess, i.e., validators do
not reach consensus on this block. Further steps for all validators follow the
description of the Base Model (see Table 1). The idea of the division of the
validators into three groups is to make the model perform analysis comparing
validators’ throughput.

Figure 4a and 4c show performance of the networks as functions of the VP
fraction possessed by the attacked validators. The former plot demonstrates the
network with standard consensus times correlating with the default timeouts, i.e.,

100 D. Smuseva et al.

Fig. 2. Derivation graph of the model in Table 3 with colluded validators.

with average . 6s per committed block like in Cosmos and many other blockchains
within the ecosystem [2]. Such values of actual step times let us obtain the
default probability for .Propose and .Prevote steps .w1,2 = 0.63. Instead, the latter
reflects the faster processing times than can be seen in Injective network with
the average block time of .0.67s where .w1,2 → 1 that corresponds to . w1,2 = 0.99
in our model [4]. Naturally, at the target VP fraction . 0 (no attack is performed)
the networks have the highest throughput of .0.08 and .1.5 blocks/s, respectively,
that agrees with the intuition of the faster block times. Next, they gradually
decrease up to a point when the colluded superminority vote only for blocks of
themselves, thus the network throughput equals to the one of the attackers.

Figure 4b and 4d demonstrate the coefficients of fairness of the colluded val-
idators, again, as functions of the VP fraction possessed by the affected valida-
tors. Initially, the plots show the ideal case when the networks are fair, so that
.φC = 1 as there is no target for the attack. Later, we can see that the colluded
validators start to notice the decrease of their effectiveness for both cases such
that they have to perform more than they would normally do without running
attack. When all honest validators become the target of the colluded ones the
fairness of the latter group reaches the lowest point of one-third, i.e., they have
to perform . 3 times more to keep the network functionality, while drastically
reducing throughput. Note that the plots for two configurations are identical,
this is due to the fact that the proportional changes remain fixed for all variants.
Thus, we can state that Fig. 4b (or 4d) is universal representation of the attack
in terms of coefficient of fairness and fraction of target VP.

3.3 Model with Partially Absent Superminority

In the experiment, we focus on the scenario in which at each moment of time
there is an arbitrary set of validators with the aggregated VP of one-third that
are absent, i.e., they cannot or simply do not want to propose blocks themselves
as well as verify blocks of other validators. Moreover, the validators’ set is, in
general, not fixed and can consist of different validators over time.

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 101

Table 4. PEPA model of consensus protocol with absent validators in Cosmos
ecosystem.

.NewHeight .
def
= . (nh,n).Round

.Round .
def
= . (r , dAn).ProposeA + (r , (1 − dA)n).ProposeR

.ProposeA .
def
= . (p, aw1γ).PrevoteA + (p, (1 − aw1)γ).NilPrevote

.PrevoteA .
def
= . (pv ,w2β).PrecommitA + (pv , (1 − w2)β).Unsuccess

.PrecommitA .
def
= . (pc,w3 δ).CommitA + (pc, (1 − w3)δ).Round

.CommitA .
def
= . (cA, η).NewHeight

.ProposeR .
def
= . (p,w1γ).PrevoteR + (p, (1 − w1)γ).NilPrevote

.PrevoteR .
def
= . (pv , aw2β).PrecommitR + (pv , (1 − aw2)β).Unsuccess

.PrecommitR .
def
= . (pc,w3 δ).CommitR + (pc, (1 − w3)δ).Round

.CommitR .
def
= . (c, η).NewHeight

.NilPrevote .
def
= . (npv , β).Unsuccess

.Unsuccess .
def
= . (pc, δ).Round

where . γ = max

(
1

t1
,
1

T1

)
, β = max

(
1

t2
,
1

T2

)
, δ =

1

T3
, η =

1

T4
,

.dA =
1

3
, and .a ∈ [0, 1] .

Fig. 3. Derivation graph of the model in Table 4 with partially absent validators.

We utilise the model from the Table 1 to reflect the absent validators in the
new model of Table 4. It follows the similar logic of the model with colluded
validators, however it has some differences. First, in this model there are only
two types of actors, namely absent validators and the rest. Like in the previ-
ous model, they have their own probability parameters to start a round with

102 D. Smuseva et al.

Fig. 4. Performance evaluation of two network scenarios using PEPA model.

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 103

.Propose, namely .dA = 1
3 (the superminority) and .dR = 1 − dA, respectively.

Next, we redefine the probabilities of .ProposeA and .PrevoteR steps of absent
validators and the rest, respectively, such that the likelihood of .ProposeA to suc-
cessfully proceed to .PrevoteA and the probability to collect more than two-thirds
of VP at .PrevoteR directly connects to the absence probability of such validators.
We define an absence probability as complementary parameter to coefficient . a
introduced in the model such that .ā = 1 − a. For instance, if in the network
.20% of time the validators holding the superminority VP are absent we say
that the partially absent validators have the probability parameter .ā = 0.8 of
proposing their blocks in time. With the same probability they have chance to
prevote for blocks of all other validators within the proposal timeout and tran-
sit to .PrecommitR. Note that the success probabilities for Propose and Prevote
steps (.w1 and .w2) stay untouched.

The remaining model components inherit their behaviour from the Base
model. The corresponding derivation graph is presented in Fig. 3.

Figure 4e and 4g show the dynamics of the networks’ throughput with respect
to the absence probability of the validators holding the superminority of VP.
Clearly, for both configurations a descending pattern reassembles and at . 50%
chance of inactivity (.ā = 0.5) we observe the half drop of the performance where
the always absent validators cause complete stale of the network.

Figure 4f and 4h demonstrate the correlations between the performance inef-
ficiency and the absence probability of the superminority validators. We define
the loss coefficient as a proportion of the throughput of all proposed blocks
and the blocks that were actually committed to the network. Using logarithmic
scale for y-axis, we observe that both figures tend to exponentially grow with
the increase of absence probability. Furthermore, at the absence probability . 0
Fig. 4h shows non-zero performance loss due to probabilities .w1 and .w2 that are
lower . 1. Note that the figures can be also used to tell how many blocks the
network has to offer to commit a single one of them. The higher the ratio, the
more ineffective the network would be.

4 Conclusion

In this paper, we have explored the vulnerabilities inherent in the Proof-of-Stake
consensus protocol within the Cosmos blockchain ecosystem. Our investigation
centered on the CosmosBFT consensus protocol, which aims to provide fast
finality and seamless interoperability among diverse blockchains via the Inter-
Blockchain Communication protocol. Despite these advanced features, we iden-
tified significant security concerns related to the distribution of voting power
among validators.

Our analysis demonstrates that the Cosmos network is susceptible to cen-
tralization risks where a small group of top-ranked validators holds a dispro-
portionate amount of voting power. This unbalanced distribution creates poten-
tial vectors for attacks that could severely disrupt the network’s functionality.
Specifically, our quantitative case studies based on PEPA modelling technique

104 D. Smuseva et al.

revealed that a superminority, comprising validators with one-third of the total
voting power, can significantly impair the network’s block production if they
engage in malicious behavior. Moreover, the latter scenario reveals that the net-
work can tolerate the relatively low probability of absence of the superminority
validators, while approaching .100% the network suffers from lack of the block
throughput.

These findings highlight the need for further research on mitigating risks of
validator centralization in PoS networks. Future work will explore approaches
like Ethereum’s random sub-committees to strengthen consensus protocols and
preserve blockchain security and decentralization against emerging threats.

Acknowledgements. This study was carried out within the PE0000014 - Security
and Rights in the CyberSpace (SERICS) and received funding from the European
Union Next-GenerationEU - National Recovery and Resilience Plan (NRRP) - MIS-
SION 4 COMPONENT 2, INVESTIMENT 1.3 - CUP N. H73C22000890001. This work
has been also partially supported by the Research Project INDAM GNCS 2024 - CUP
E53C23001670001 “Modelli composizionali per l’analisi di sistemi reversivili distribuiti
(MARVEL)” and by the Project PRIN 2020 - CUP N. 20202FCJMH “NiRvAna -
Noninterference and Reversibility Analysis in Private Blockchains”. This manuscript
reflects only the authors’ views and opinions, neither the European Union nor the
European Commission can be considered responsible for them.

References

1. CometBFT: consensus algorithm. https://docs.cometbft.com/main/spec/
consensus/consensus. Accessed 15 Oct 2024

2. Cosmos blockchain dashboard on official cosmos explorer. https://www.mintscan.
io/cosmos/. Accessed 15 Oct 2024

3. Cosmos network: validator incentives. https://hub.cosmos.network/validators/
validator-faq.html#incentives. Accessed15 Oct 2024

4. Injective blockchain dashboard on official cosmos explorer. https://www.mintscan.
io/injective/. Accessed 15 Oct 2024

5. Kraken validator in Cosmos blockchain. https://www.mintscan.io/cosmos/
validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7. Accessed 15
Oct 2024

6. Alharby, M., Lunardi, R.C., Aldweesh, A., Van Moorsel, A.: Data-driven model-
based analysis of the Ethereum verifier’s dilemma. In: 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 209–220. IEEE (2020)

7. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938 (2018)

8. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

9. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Persistent stochastic non-interference.
Fund. Inform. 181(1), 1–35 (2021)

10. Malakhov, I., Marin, A., Rossi, S.: Analysis of the confirmation time in proof-of-
work blockchains. Future Gener. Comput. Syst. 147, 275–291 (2023)

https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://docs.cometbft.com/main/spec/consensus/consensus
https://www.mintscan.io/cosmos/
https://www.mintscan.io/cosmos/
https://www.mintscan.io/cosmos/
https://www.mintscan.io/cosmos/
https://www.mintscan.io/cosmos/
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://hub.cosmos.network/validators/validator-faq.html#incentives
https://www.mintscan.io/injective/
https://www.mintscan.io/injective/
https://www.mintscan.io/injective/
https://www.mintscan.io/injective/
https://www.mintscan.io/injective/
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
https://www.mintscan.io/cosmos/validators/cosmosvaloper1z8zjv3lntpwxua0rtpvgrcwl0nm0tltgpgs6l7
http://arxiv.org/abs/1807.04938

Under the Space Threat: Quantitative Analysis of Cosmos Blockchain 105

11. Malakhov, I., Marin, A., Rossi, S., Menasché, D.S.: Confirmed or dropped? Reli-
ability analysis of transactions in PoW blockchains. IEEE Trans. Netw. Sci. Eng.
11(4), 3276–3288 (2024)

12. Malakhov, I., Marin, A., Rossi, S., Smuseva, D.: On the use of proof-of-work in
permissioned blockchains: security and fairness. IEEE Access 10, 1305–1316 (2022)

13. Marin, A., Piazza, C., Rossi, S.: Proportional lumpability. In: André, É., Stoelinga,
M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 265–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29662-9 16

14. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://www.
bitcoin.org/bitcoin.pdf

15. Smuseva, D., Malakhov, I., Marin, A., van Moorsel, A., Rossi, S.: Verifier’s dilemma
in Ethereum blockchain: a quantitative analysis. In: International Conference on
Quantitative Evaluation of Systems, pp. 317–336. Springer (2022). https://doi.org/
10.1007/978-3-031-16336-4 16.pdf

16. Smuseva, D., Malakhov, I., Marin, A., Rossi, S.: Crisis of trust: analyzing the veri-
fier’s dilemma in Ethereum’s proof-of-stake blockchain. In: 2023 IEEE International
Conference on Blockchain (Blockchain), pp. 332–339. IEEE (2023)

https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/978-3-030-29662-9_16
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf
https://doi.org/10.1007/978-3-031-16336-4_16.pdf

A Lumped CTMC for Modular Rewritable
PN

Lorentzo Capra1(B) and Marco Gribaudo2

1 Dip. di Informatica, Università di Milano, Milan, Italy
capra@di.unimi.it

2 Dip. di Elettronica, Informatica e Bioingeneria, Politecnico di Milano, Milan, Italy

Abstract. Petri Nets (PN) are extensively employed as a robust formal-
ism for modelling concurrent and distributed systems, yet they struggle
to model adaptive reconfigurable systems effectively. In response, we have
developed a formalization for “rewritable” PT nets (RwPT) using Maude,
a declarative language that upholds consistent rewriting logic semantics.

In this work we extend a recently introduced modular approach based
on composite node labelling, to incorporate stochastic parameters, and
we present an automated process to obtain a lumped CTMC from the
quotient graph generated by a modular RwPT model. To demonstrate
the efficacy of our method, we utilize a fault-tolerant manufacturing sys-
tem as a case study.

Keywords: Maude · Reconfigurable systems · SPN · Lumped CTMC

1 Introduction

Despite their power, traditional formalisms such as Petri Nets, Automata, and
Process Algebra do not offer designers a straightforward method to define
dynamic system changes and assess their impact on performance and reliabil-
ity. In most of cases, a modeler must explicitly define all the possible configu-
rations with different sub-models, and add some logic to switch among them
when needed. However, many fault-tolerant systems are equipped with self-
reconfiguration capabilities to ensure the desired quality of service. Therefore,
various extensions to these classical models have been made. have been proposed.
Rewritable PT nets (RwPT) were presented in [8] as a versatile formalism for the
modeling and analysis of adaptive distributed systems. The steps of RwPT were
defined using the Maude declarative language, which employs Rewriting Logic to
provide both operational and mathematical semantics, thus creating a scalable
model for self-adapting PT nets. Unlike similar approaches [16], which translate
a simpler type of PNs into Maude, the RwPT formalism streamlines data abstrac-
tion, is concise and efficient, and circumvents the limitations imposed by the use
of push-out typical in graph transformation systems. Other approaches include,
for instance, exception mechanisms, which are very complex to handle [2].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 106–120, 2025.
https://doi.org/10.1007/978-3-031-80932-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-80932-3_8

A Lumped CTMC for Modular Rewritable PN 107

RwPT is an extension of Graph Transform Systems (GTS). Considering
graph isomorphism (GI) when identifying equivalent states within the model
dynamics is essential: this feature is highly advantageous for scaling up the
model’s size or parallelism degree, especially when integrating a Stochastic Pro-
cess into the model’s state space. Recent studies have shown that GI has a
quasi-polynomial complexity [1]. Graph Canonization (GC) can(G), which is at
least as complex as GI, involves finding a canonical form for any graph such that
for any two graphs G and G′, if G � G′, then can(G) = can(G′).

We developed a general canonization method [7] to be used with RwPT,
which is integrated into Maude. In [9], the approach is extended for constructing
extensive RwPT models using algebraic operators. By employing composite node
labeling, we detect symmetries and preserve a hierarchical structure through net
rewrites. By merely permuting labels, we achieve a normal form for PT net
terms. The ideas proposed here are not limited to PT net, and can be used in
generic frameworks, supporting multi-formalism modeling, such as [14] and [15].

In this paper, we utilize a case study, taken from the literature, to intro-
duce an automated method for constructing a Lumped Continuous-Time Markov
Chain (CTMC) from the quotient graph of an RwPT model, after incorpo-
rating stochastic parameters into the system. Section 2 provides background
information, which is followed by a detailed example in Sect. 3. The modular
RwPT formalism, now enhanced with stochastic parameters, is discussed in
Sect. 4. In Sect. 5, we describe the procedure to derive a lumped CTMC from an
RwPT model and validate its effectiveness with experimental results on classical
dependability metrics. We conclude with a discussion of ongoing research.

2 (Stochastic) PT Nets and Maude

The implementation of the PT formalsim is based on multisets. For a given set
D, a multiset (or bag) b over D is a function b : D → N, where b(d) represents the
multiplicity of an element d in b. The collection of all multisets on D is denoted
as Bag[D]. A stochastic PT (or SPN) net [12, 17] is a 6-tuple (P, T, I, O, H, λ)
representing a bipartite graph, where: P , T are finite, non-empty, disjoint sets
holding places and transitions; the functions {I, O, H} : T → Bag[P] describe
the input, output, and inhibitor edges as transition incidence matrices; λ : T →
R

+ assigns each transition a negative exponential firing rate.
A PT net marking (state) is a multiset m ∈ Bag[P]. The PT net dynamics

is defined by firing rule: t ∈ T is enabled in the marking m if and only if:

I(t) ≤ m ∧ ∀p ∈ P H(t)(p) = 0 ∨ H(t)(p) > m(p)

If t is enabled in m it may fire, leading to marking m′ (we denote this m[t〉m′)

m′ = m + O(t) − I(t)

A PT-system is a pair (N, m0), where N is a PT net and m0 is a marking of
N . The interleaving semantics of (N, m0) is specified by the reachability graph

108 L. Capra and M. Gribaudo

(RG), an edge-labelled, directed graph (V, E) whose nodes are markings. It is
defined inductively: m0 ∈ V ; if m ∈ V and m[t〉m′ then m′ ∈ V , m t−→ m′ ∈ E.

The timed semantics of a stochastic PT system is a CTMC isomorphic to
the RG. For any two mi,mj ∈ V , the transition rate from mi to mj is ri,j :=∑

t:mi[t〉mj
λ(t). The CTMC infinitesimal generator is a |V | × |V | matrix Q such

that Q[i, j] = ri,j if i
= j, Q[i, i] = 1 − ∑
j,j �=i ri,j .

The Maude system Maude [13] is a highly expressive, purely declarative language
characterized by a rewriting logic semantics [4]. Statements consist of (condi-
tional) equations and rules. Each side of a rule or equation represents terms of
a specific kind that might include variables. The semantics of rules and equa-
tions involve straightforward rewriting, where instances of the left-hand side are
substituted by corresponding instances of the right-hand side. The expressivity
of Maude is realized through the use of matching modulo operator equational
attributes, sub-typing, partiality, generic types, and reflection. A Maude func-
tional module comprises only equations and functions as a functional program
defining one or more operations through equations, utilized as simplification
rules. A functional module details an equational theory within membership equa-
tional logic [3]. Formally, such a theory is a tuple (Σ, E∪A), with Σ representing
the signature, which includes the declaration of all sorts, subsorts, kinds 1, and
operators; E being the set of equations and membership axioms; and A as the
set of operator equational attributes (e.g., assoc). The model of (Σ, E ∪ A) is
the initial algebra TΣ/E∪A, which mathematically corresponds to the quotient
of the ground-term algebra TΣ . Provided that E and A satisfy nonrestrictive
conditions, the final (or canonical) values of ground terms form an algebra iso-
morphic to the initial algebra, ensuring that the mathematical and rewriting
semantics are identical.

A Maude system module includes rewrite rules and, potentially, equations.
These rules illustrate local transitions in a concurrent system. In formal language,
a system module outlines a generalized rewrite theory [4], symbolized as a four-
tuple R = (Σ, E∪A, φ, R), where (Σ, E∪A) constitutes a membership equational
theory; φ identifies the frozen arguments for each operator in Σ; and R contains
a set of rewrite rules 2. This rewrite theory models a concurrent system. (Σ, E ∪
A) establishes the algebraic structure of the states, while R and φ define the
concurrent transitions of the system. The initial model of R assigns to each
kind k a labeled transition system (TS) where the states are the elements of
TΣ/E∪A,k, and the state transitions occur as [t] [α] → [t′], with [α] representing
a class of rewrites of equivalent. The property of coherence guarantees that a
strategy that reduces terms to their canonical forms before applying the rules is
sound and complete. A Maude system module is also an executable specification
of distributed systems.

1 Kinds are implicit equivalence classes defined by connected components of sorts (as
per subsort partial order). Terms in a kind without a specific sort are error terms.

2 Rewrite rules do not apply to frozen arguments.

A Lumped CTMC for Modular Rewritable PN 109

3 Running Example: A Fault-Tolerant MS

The illustrative example in this paper depicts a distributed production system
that gracefully degrades, shown by the two PT systems in Fig. 1. Although it is
a literature example, it has been used as a reference [6, 9] due to its challenging
adaptation issues involving both the structure and the state of a system.

The left net represents a Production Line (denoted PL) which is divided
into K lines (robots) that handle raw pieces (a multiple of K). These branches
({wi, lni, ai}, i : 0 . . . K − 1) are fully interchangeable. An assembly component
(transition as) converts the processed pieces K into an artifact. A loader (ld)
collects K pieces from a storage facility (place s) on the lines. In this study,
K = 2. The initial count of pieces (tokens) in s is K · M , where M ∈ N+ is
another parameter of the model. For each artifact produced, K new pieces are
introduced. A branch might fail (transitions fti). When that occurs, the PL
restructures to continue functioning, but with reduced capacity. Simple static
analysis can show that the PL system reaches a deadlock after a failure.

The net on the right of Fig. 1 shows the development of PL after a fault
occurs (considering scenario K = 2). This process involves moving pieces from
the faulted branch to the remaining branch(es) to maintain the production cycle.
Traditional PN frameworks (including high-level PN variants) cannot model this
operation. The items left on the faulty line (represented as place w1 here) are
transferred to the remaining functional line (w0): The marking of the PT net at
the bottom demonstrates the state after adaptation. We assume that a PL that
fails twice is beyond repair.

We will examine a situation in which N PL replicas function simultaneously
and degrade gracefully, as shown in Fig. 2. This behavior can be extended to a
PT system that incorporates N PLs, each operating K parallel lines that handle
K · M raw items, denoted by the term NPLsys(N, K, M). The development
proceeds in two phases: i) when a fault impacts a PL, it autonomously adjusts to
continue functioning in a reduced capacity, ii) when a fault occurs in a degraded
PL, the entire system disconnects it (the final step in Fig. 2), and the remaining
items are then relocated to the warehouse.

Fig. 1. Production Line (PL) and adaptation after a fault.

110 L. Capra and M. Gribaudo

Fig. 2. A possible path of the Gracefully Degrading Production System.

Describing the system’s structural changes and the concurrent transfer of
items from a malfunctioning line to a functioning one using classical PN for-
malisms, even in their high-level versions, poses a challenging task for expert
modellers.

4 Compositional Rewritable PT and their Symmetries

This section introduces the concept of rewritable stochastic PT nets (RwSPT),
which extend the modular rewritable PT nets described in [9] by incorporating
transitions with stochastic parameters. An RwSPT serves as an algebraic model
of a stochastic PN [12], combining the rewrite of rules with the PT firing mech-
anism. The definition of RwSPT includes a hierarchy of Maude modules (e.g.,
BAG, PT-NET, PT-SYSTEM) most of which are described in [9]. The Maude sources
can be found in https://github.com/lgcapra/rewpt/tree/main/modSPT.

The RwSPT definition uses structured annotations to underline the sym-
metry of the model. It features a concise place-based encoding to aid in state
canonization and is based on the functional module BAG{X}, which introduces

https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT
https://github.com/lgcapra/rewpt/tree/main/modSPT

A Lumped CTMC for Modular Rewritable PN 111

multisets as a complex data type. Specifically, the commutative/associative _+_
operator provides an intuitive way to describe a multiset as a weighted sum. For
example, 3. a + 1. b is a multiset with 3 instances of a and one of b.
The sort Pbag contains multisets of places. Each place label (a term of sort
Plab) is a nonempty list of pairs built of String and a Nat. Places are uniquely
identified by their labels. These pairs represent a symmetric component within
a nested hierarchy. Compositional operators annotate places incrementally from
right to left, with the label suffix representing the root of a hierarchy. For exam-
ple, the ‘assembly’ place of line 1 in Production Line 2 would be encoded as:
p(< "a"; 0 > < "L"; 1 >) .

We describe net transitions (terms Tran) through their incidence matrix
(a triplet of terms Pbag) and associated tags. A tag includes a String, a Nat
(indicating a priority), and a Float (interpreted as a firing rate).

[I,O,H] |-> << S, P, R >>

When using the associative composition operator _;_ and the subsort rela-
tion Tran < Net, nets are defined in a modular way. For example, the subnet
containing transitions ld and ln0 in Fig. 1 (left) become the Net term in the
Listing 1.1 (the zero-arity operator nilP represents an empty multi-set).

Listing 1.1. A (sub)net
[2 . p(< ’’s’’ ; 0 >), 1 . p(< ’’w’’ ; 0 >) + 1 . p(< ’’w’’ ; 1 >), nilP] |->
<< ’’ld’’, 0, 0.5 >> ;
[1 . p(< ’’w’’ ; 0 >), 1 . p(< ’’a’’ ; 0 >), 1 . p(< ’’f’’ ; 0 >] |-> << ’’ln’’, 0, 0.1 >>

A System term is the empty juxtaposition (__) of a Net and a Pbag (repre-
senting the net marking). The conditional rewrite rule firing specifies the PT
firing rule 3, as shown in the Listing 1.2.

Listing 1.2. PT Firing Rule
vars N N’ : Net . var T : Tran . var M : Pbag .
crl [firing] : N M => N fire(T, M) if T ; N’ := N /\ enabled(T, N M) .

The predicate enabled takes concession into account and is based on
hasConcession, which determines the ‘topological’ aspect of enabling:

Listing 1.3. PT Firing operators
vars I O H M : Pbag . var L : Tlab .
op hasConcession : Tran Pbag -> Bool .
eq hasConcession([I,O,H] |-> L, M) = I <= M and-then H > B .
op fire : Tran Pbag -> Pbag .
eq fire([I,O,H] |-> L, M) = M + O - I .

3 Notice the use of a matching equation: The free variables T, N’, are matched (:=)
against the canonical ground term bound to the variable N.

112 L. Capra and M. Gribaudo

A RwSPT is defined by a system module that contains two constant opera-
tors, used as for aliasing: op net : -> Net and op m0 : -> Pbag.

Two equations define their bindings. This module includes rewriting rules
R of System type incorporating firing. In this study, we use a fully non-
deterministic approach (interleaving semantics). Rewrites are given equal prior-
ity and have an exponential rate (indicated in the rule label except for firing),
such that for the state transition system, the following holds (⊆ denotes the
subgraph relation): TS(net m0, {firing}) ⊆ TS(net m0, R). Note that TS on
the left corresponds to the standard RG.

We have provided net-algebra and net-rewriting operators [9] with a twofold
intent: to ease the modeler’s task and to enable the construction and modifi-
cation of large-scale models with nested components by implicitly highlighting
their symmetry. A TS quotient is built through a simple permutation of node
labels. This method shows better performance compared to [7] (with similar
state reduction) and is more effective than a well-known framework that utilizes
symmetries, such as symmetric nets [10].

In a context where nets have a mutable structure, identifying behavioral
equivalences reduces to a graph morphism. PT system morphism must maintain
the edges and the marking: In our encoding, a morphism between PT systems
(N m) and (N’ m’) is a bijection φ : places(N) → places(N’) such that,
considering the homomorphic extension of φ on multisets, φ(N) = N’ and φ(m) =
m’. Moreover, φ must retain the textual annotations of the place labels and
the transition tags. If N’ = N we speak of automorphism, in which case φ is a
permutation in the set of places. We refer to a normal form that principally
involves identifying sets of automorphic (permutable) places. Two markings m,
m’ of a net N are said automorphic, m ∼= m’, if there is an automorphism φ in
N that maps m into m’. The equivalence relation ∼= is a congruence, that is, it
preserves the transition firings and rates.

Definition 1 (Symmetric Labeling). A Net term is symmetrically labeled
if any two maximal sets of places whose labels have the same suffix (possibly
empty), which is preceded by pairs with the same tag, are permutable. A System
term is symmetrically labeled if its Net subterm is.

In other words, if a Net term N meets Definition 1, then for any two maximal
subsets of places P, P ′, if L, L’, L” : Plab, w: String, i, j : Nat :
P := {p(L’ < w ; i > L)}, P ′ := {p(L’’ < w ; j > L)} ,
there exists an automorphism (permutation) φ such that φ(P) = P ′, φ(P ′) = P ,
which is extended as an identity to the rest of places.

If a System term respects the previous definition, it can be transformed into
a ‘normal’ form by merely swapping indices on the place labels (e.g., i ↔ j),
while still complying with Definition 1. This normal form is the most minimal
according to a lexicographic order within the automorphism class (∼=) implicitly
defined by Definition 1. However, in contrast to general graph canonization, there
is no need for any pruning strategy or backtracking. In simple terms, a monotone
procedure is used where the sequence of index swaps does not matter (see [9]
for full details). Efficiency is achieved as the normalized form of the subterm

A Lumped CTMC for Modular Rewritable PN 113

Net is derived through basic “name abstraction“, where at each hierarchical
level the indices of structured place labels continuously span from 0 to k ∈ N.

The approach offers a streamlined set of operators that maintain the sym-
metric labeling of nets. This set features compositional operators and operators
for modifying nets, such as adding or removing components. Rewriting rules
necessitate these operators to handle System terms constructed in a modular
fashion. Furthermore, the rules must comply with parametricity conditions (not
detailed here) that constrain the use of non-variable terms. Rewriting rules that
meet these conditions are referred to as symmetric [9].
Under these assumptions, we get a quotient TS from a System term that retains
reachability and meets strong bisimulation. Let t, t′, u, u′ be (final) terms of sort
System, r a System rule r : s =⇒ s′. The notation t r(σ)

=⇒ t′ (t is rewritten into
t′ through r) means that there is a ground substitution σ of r’s variables such
that σ(s) = t and σ(s′) = t′.

Property 1. Let t meet Definition 1 and r be a symmetric rule.
If t r(σ) =⇒ t′ then ∀u, φ, t ∼=φ u: u r(φ(σ)) =⇒ u′, t′ ∼= u′ (u′, t′ meet the Definition 1)

The TS quotient produced by a term t̂ is achieved by applying the (over-
loaded) operator normalize to the right-hand side of the rewriting rules.
op normalize : System -> System . op normalize : Pbag -> Pbag .
When a System is rewritten using the firing rule, only the marking sub-
term obtained applying the operator normalize to fire(T, M) in Listing 1.2 is
needed.

According to Property 1, if the morphism (index exchange) φ preserves the
transition rates and the rules are parameterized, we can map the TS quotient of
t̂ onto a “lumped” CTMC. In a Markov process’s state space, an equivalence rela-
tion is considered “strong lumpability” if the cumulative transition rates between
any two states within a class to any other class remain consistent. Despite the
possibility of establishing “exact lumpabability” [5], our attention is primarily
focused on aggregated probability. Let us focus on system described in Sect. 3.
It is composed of N Production Lines (PL) that share raw materials, with each
PL split into K interchangeable lines (see Listing 1.4).

Listing 1.4. Modular Specification of a Fault Tolerant Production System
fmod FTPL is
pr NET-OP{SPTlab} .
ops PL PLA nomPL faultyPL NfaultyPL : NzNat -> Net .
op faultySys : NzNat -> System .
op NPL : NzNat NzNat -> Net [memo].
op NPLsys : NzNat NzNat NzNat -> System .
ops loadLab asLab failLab workLab : -> Tlab [memo] .
eq loadLab = << ’’ld’’,0, 0.5 >> .
eq asLab = << ’’as’’,0, 2.0 >> .
eq workLab = << ’’ln’’,0, 0.1 >> .
eq failLab = << ’’ft’’,0, 0.001 >> .
var I : Nat .
vars N K M : NzNat .
eq line = [1 . p(< ’’w’’ ; 0 >),1 . p(< ’’a’’ ; 0 >),1 . p(< ’’f’’ ; 0 >)] |-> workLab .
eq fault = [1 . p(< ’’o’’ ; 0 >) , 1 . p(< ’’f’’ ; 0 >), nilP] |-> failLab .

114 L. Capra and M. Gribaudo

eq load = [1 . p(< ’’s’’ ; 0 >) , 1 . p(< ’’w’’ ; 0 >) , nilP] |-> loadLab .
eq ass = [1 . p(< ’’a’’ ; 0 >) , 1 . p(< ’’s’’ ; 0 >) , nilP] |-> asLab .
eq cycle = load ; line ; ass ; fault .
eq PL(K) = repl&share(cycle, K, ’’L’’, p (< ’’o’’ ; 0 >) U p(< ’’s’’ ; 0 >), asLab U

loadLab) .
eq NPL(N, K) = repl&share(PL(K), N, ’’PL’’, p(< ’’s’’ ; 0 >), emptyStlab) .
eq NPLsys(N, K, M) = setMark(setMark(NPL(N, K), ’’o’’ ’’PL’’, 1), ’’s’’, K * M) .
endfm

We start by defining the net transitions. Then we build a Production Line
using the repl&share operator: The term PL(K) represents a line with K sym-
metric branches, similar to the one shown in Fig. 1 (left). The structure of the
submodel is expressed by adding a pair with the tag "L" to the place labels. For
example, p(< "w" ; 0 > < "L" ; 1 >) describes the “working” place of line
1 of the Production Line. We can also choose to exclude places to share among
replicas: In this case, we exclude those representing the “warehouse” (tag “s”) and
faults (tag “o”). Additionally, we can indicate transitions to share: For instance,
“load” and “assembly” are shared.

The term NPL(N, K) of the type Net consists of N PLs, each of which contains
K branches. This net was generated using the repl&share operator, which adds
the "PL" tag to place labels to indicate an additional nesting level. The sharing
mechanism ensures each PL gathers K raw pieces. The PT net represented by
NPL(2,2) can be seen in Fig. 2, top-left (basic, unadorned labels are used in
that representation). Furthermore, the term NPLsys(N, K, M) in System sort
is a PT system that holds K*M tokens in the “warehouse” place, with a single
token in each place tagged with "o" to trigger fault occurrences within a PL.
We can build an identical model using the “symmetric” version of the process
algebra ALT operator. The System term generated using the above operators
possesses symmetrical labeling, and its Net subterm has already been normal-
ized. Consider, e.g., NPLsys(2, 2, 1). When firing either of the conflicting “ld”
transitions, the resulting markings are as follows:

m1 p(< "o"; 0 > < "PL"; 0 >) + p(< "o"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 1 > < "PL"; 1 >)

m2 p(< "o"; 0 > < "PL"; 0 >) + p(< "o"; 0 > < "PL"; 1 >) +
p(< "w"; 0 > < "L"; 0 > < "PL"; 0 >) +
p(< "w"; 0 > < "L"; 1 > < "PL"; 0 >).

These are automorphic (one can be converted into the other by interchanging
< "PL"; 1 > ↔ < "PL"; 0 >), but the second marking is the smallest in lexico-
graphic order and hence corresponds to the normalized form. The rewrite rule in
Listing 1.5 encapsulates the self-adjustment of a PL with K = 2 in response to a
fault, enabling it to function in a diminished capacity. This rule deviates slightly
from [9], as it is locally activated by a breakdown, leading to a significantly
larger TS. The rule only employs operators that uphold the Definition 1, such
as join , detach , setMark , reatining the symmetrical labeling (Definition
1). A similar rule removes a faulty and degraded PL from the system.

A Lumped CTMC for Modular Rewritable PN 115

Listing 1.5. Rewrite rule of a PL (the label contains the rule’s exponential rate)
vars S S’ S’’ : Pbag . vars I J : Nat . vars Sys Sys’ : System . var L : Lab .
crl [r1-0.005] : N S => normalize(join(Sys, setMark(setMark(
Sys’, ’’w’’ ’’fPL’’, | match(S’, ’’w’’) |), ’’a’’ ’’fPL’’, | match(S’, ’’a’’) |)))
if S’’ + 1 . p(< ’’f’’ ; J > L < ’’PL’’ ; I >) := S /\ N’ := nomPL(I) /\ dead (N’ S) /\
S’ := subag(S’’, < ’’PL’’ ; I >) /\ Sys := detache(N, N’) S’’ - S’ /\
Sys’ := faultySys(notIn(N,’’fPL’’)).

With the model-checking facilities of Maude (in this case, the search com-
mand), we can demonstrate that for any given N , the quotient transition system
has two absorbing states: Every state comprises a deteriorated PL that contains
all 2 · M parts (unprocessed, except possibly one). This is equivalent to the
command below, which yields the same results as its unconditioned counterpart.

search NPLsys(N,2,M) =>! F:System such that
net(F:System) == faultyPL /\ B:Pbag := marking(F:System)
/\ | match(B:Pbag, "w") | + | match(B:Pbag, "a") | == 2 * M

5 Getting the Lumped CTMC Generator from RwPT

The CTMC generator entry Q[i, j] is defined as:
∑

r∈R λr · |Sr
i,j |, where λr ∈ �+

is a given rate, and Sr
i,j = {σ | t̂i r(σ)

=⇒ tj , tj ∼= t̂j} represents the matches of
r resulting in equivalent states. Therefore, to obtain the CTMC infinitesimal
generator, it is necessary to quantify instances that correspond to a specific
state transition. Our solution uses two operators: the first identifies potential
matches for each rule based on the subset of independent variables involved,
and the second simulates the rewriting process. These two operators can be
“mechanically” defined from the syntax of a rule.

To gain a clearer understanding of the concept, let us examine a simplified
scenario that encompasses the vast majority of cases and to which any case
can be reduced. We suppose that for every rule r ∈ R: i)r is “injective”: if
t r(σ)
=⇒ t′ ∧ t r(σ′)

=⇒ t′ then σ = σ′, ii) if r is conditional (r : s =⇒ s′ if cond)
the condition does not contain rewrite expressions (u =⇒ u′). Based on these
assumptions, we can automatically extend a stochastic RwPT specification to
generate a redundant quotient TS that contains all the necessary information to
construct the lumped CTMC generator.

The list 1.6, which is related to the running example, has a universal struc-
ture. To avoid overly technical details of Maude syntax, we outline an operator,
rule, which encodes all rewriting rules except for firing (handled separately
for efficiency). This operator defines a partial mapping where, given a label
(defined using a Tlab) and a System term, it determines the corresponding
term-rewriting if feasible: each rewrite rule is tied to an equation. The operator
ruleApp builds upon rule: it computes all potential outcomes of rewriting that
term using the rule. It does not execute term normalization. As is typical in
Maude, the ruleApp definition is optimized via tail-recursion. Lastly, ruleExe,
which extends ruleApp, partitions the results of a rule application to a term into

116 L. Capra and M. Gribaudo

“equivalence classes” (sort Rset) through normalization: each class is represented
by a pair System <-| Float , that is the aggregate rate towards a normalized
state. The operator ruleApp serves as the bulk form of ruleExe.

The excerpt in the Listing 1.7 illustrates the augmented state representation
which contains detailed information on the normalized state transition. The state
structure defined by the mixfix constructor StateTranSys comprises four fields.

Listing 1.6. rule encoding for the lumped CTMC
vars N N’ N’’ : Net . vars S S’ S’’ : Pbag . vars I Imin J : Nat .
vars Sys Sys’ : System . var L : Lab . var Sp : Pset . var TL : Tlab .

op rule : Tlab System -> [System] . *** one equation for rule
ceq rule(<< ’’r1’’,0, 0.005 >>, N S) = join(Sys, setMark(setMark(Sys’, ’’w’’ ’’

fPL’’, | match(S’, ’’w’’) |), ’’a’’ ’’fPL’’, | match(S’, ’’a’’) |))
if S’’ + 1 . p(< ’’f’’ ; J > L < ’’PL’’ ; I >) := S /\ N’ := nomPL(I) /\
dead (N’ S) /\ S’ := subag(S’’, < ’’PL’’ ; I >) /\
Sys := detache(N, N’) S’’ - S’ /\ Sys’ := faultySys(minNotIn(N, ’’fPL’’)) .

ceq rule(<< ’’r2’’,0, 0.01 >> , N S) = N’’ set(S’’ - S’, p(< ’’s’’ ; 0 >),
S[p(< ’’s’’ ; 0 >)] + | S’ |) if S’’ + 1 . p(< ’’f’’ ; J > L < ’’fPL’’ ; I >)

:= S
/\ N’ := faultyPL(I) /\ dead(N’ S) /\ N’’ := detache(N, N’) /\
N’’ =/= emptyN /\ S’ := subag(S’’, < ’’fPL’’ ; I >) .

*** ’’rule application’’ (without normalization)
var SS : Set{System} . var TS : [System] . vars R F : Float .
ops ruleApp : Tlab System -> Set{System} .
eq ruleApp(TL, Sys) = $ruleApp(TL, Sys, emptySS) .
op $ruleApp : Tlab System Set{System} -> Set{System} .
ceq $ruleApp(TL, Sys, SS) = $ruleApp(TL, Sys, SS U TS) if TS := rule(TL, Sys)

/\ TS :: System /\ not(TS in SS) .
eq $ruleApp(TL, Sys, SS) = SS [owise] .
*** ’’aggregate’’ rates calculation (with normalization)
op rulexe : Tlab System -> Rset .
eq rulexe(TL, Sys) = $rulexe(rate(TL), ruleApp(TL, Sys), emptyRset) .
op $rulexe : Float Set{System} Rset -> Rset .
eq $rulexe(F, emptySS, RS) = RS .
ceq $rulexe(F, Sys U SS, RS ; Sys’ <-| R) = $rulexe(F, SS, RS ; Sys’ <-| R + F

) if Sys’ := normalize(Sys) .
eq $rulexe(F, Sys U SS, RS) = $rulexe(F, SS, RS ; normalize(Sys) <-| F)
[owise] .

op allRew : System -> Rset [memo] . *** bulk application
eq allRew(Sys) = rulexe(labr1, Sys) U rulexe(labr2, Sys) .

The initial pair describes the PT system, while the remaining two fields
detail the state transitions caused by the firing rule and other rewrites, in that
order. As explained, we collect state transitions (rule applications) that share
the target for calculating aggregated rates. Let us consider the firing rule: it
has two associated operators, namely enabSet, which gives the set of possible
transitions, and fire, which provides the reached markings, each associated with
the corresponding cumulative rate. The operator toStateTran converts the con-
ventional state representation into a structured one which highlights aggregate

A Lumped CTMC for Modular Rewritable PN 117

transition rates. The implementation of the firing rule and other rewriting rules
is straightforward, as their impact is directly reflected in the state information.

Listing 1.7. TS encoding for the lumped CTMC
vars B B’ M M’ : Pbag . var N : Net . var TS : TagSet . var FS : Fset . var RS : Rset .
var R : Float .
*** description of a system pointing out (aggregate) state-transition rates
op NET:_ M:_ FIRING:_REW:_ : Net Pbag Fset Rset -> StateTranSys [ctor] .
op toStateTran : System -> StateTranSys .
eq toStateTran(N M) = NET: N M: M FIRING: fire(enabSet(N M), M) REW: allRew(N M) .
*** caculates the cumulative firing effect of a net (set of transitions)
op fire : Net Pbag -> Fset .
*** definition of fire
*** firing rule
rl [firing] : NET: N M: B FIRING: (B’ <-| R ; FS) REW: RS => toStateTranSPN(N B’) .
*** structural rewrites
rl [rew] : NET: N M: B FIRING: FS REW: (Sys <-| R ; RS) => toStateTranSPN(Sys) .

When considering toStateTran(NPLsys(2,2,2)), which aligns with the PT
net at the top of Fig. 2, the resulting quotient TS comprises 295 states compared
to the 779 states in the standard TS. The quotient graph’s state transitions often
correspond to multiple matches. For instance, the initial state (the term above)
includes two ‘load’ instances and four ‘fault’ instances that lead to markings
with identical normal forms. Consequently, the combined rates are 2 · 0.5 and
4 · 0.001. Equivalent rewrites of the net structure are observed when N > 2.

5.1 Experimental Evidence

We conclude by showcasing the experimental validation of the method alongside
a straightforward demonstration for calculating standard performance metrics.
The results of the final-state location command are shown in Table 1 (above).
This was carried out using Linux WSL on an 11th-gen Intel Core i5 with 40GB
RAM. The state spaces align with those of the corresponding lumped CTMC. It
is evident that analysis of large models is achievable by leveraging the model’s
symmetry. Note that the number of absorbing states in the TS quotient remains
unchanged with N . Although a redundant state representation was used to con-
struct the lumped CTMC directly, the efficiency of the Maude rewriting engine
allowed us to estimate a time overhead of no more than 80%.

According to [9], the performance of modular RwPT was evaluated against
symmetric nets (SN, previously referred to as well-formed nets) [11], which are
colored Petri nets that produce a symbolic reachability graph (SRG) comparable
(in its stochastic extension) to a lumped CTMC. As the values of N and K rise,
the state aggregation level in modular RwSPT significantly surpasses that of SN.
For instance, when N = 10, K = 3, and M = 3, the state aggregation level is
about 45 times higher than SN. Furthermore, when N = 10, K = 4, and M = 3,
it is roughly 200 times higher. This is due to the inherent hierarchical symmetry
captured by modular RwPT, in contrast to the horizontal symmetry identified
by SRG. You can replicate the experiments following the guidelines at https://
github.com/lgcapra/rewpt/tree/main/modSPT/readme.

https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme
https://github.com/lgcapra/rewpt/tree/main/modSPT/readme

118 L. Capra and M. Gribaudo

Table 1. Ordinary vs Quotient TS of NPLsys(N,2,2) † search timed out after 10 h

N Ordinary Quotient
states(final) time (sec) states(final) time (sec)

1 60(2) 0 42(2) 0
2 779(4) 0.1 295(2) 0.1
3 6101(6) 4.8 1059(2) 0.9
4 37934(8) 69 2764(2) 3.6
5 204362(10) 818 5970(2) 10
6 1000187(12) 13930 11367(2) 47
7 - † 19775(2) 85
10 - † 73215(2) 2450

Fig. 3. System Throughput.

Figure 3 shows the system throughput, while Fig. 4 shows its reliability as
a time function. As expected, both metrics decrease with time; additionally,
the scenario that involves more replicas demonstrates increased throughput and
enhanced reliability. To evaluate the system’s performance, Fig. 5 shows the
throughput while the system is operational, which is the ratio between the graphs
in Figs. 3 and 4. It can be seen that the throughput is close to that of a single
line, which, given the parameters, is 1/202.5 = 4.98E − 03. The inflection point
at around time 800 in both curves represents the system’s reconfiguration time.
The increased execution time of the job is a result of a system failure.

A Lumped CTMC for Modular Rewritable PN 119

Fig. 4. System Reliability.

Fig. 5. System Throughput conditioned to its reliability.

6 Conclusion and Future Work

We have established a Lumped Markov process for modular, rewritable stochas-
tic Petri nets (RwPT), a potent methodology for examining adaptive distributed
systems encoded in Maude. RwPT models, constructed and manipulated with a
concise set of (algebraic) operators, highlight structural symmetries leading to
an efficient quotient state transition graph. Through an example of a gracefully
degrading system, we have sketched a semi-automatic procedure for extracting
the CTMC infinitesimal generator from the RwPT quotient graph.

References

1. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC 2016, pp. 684–697. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2897518.2897542

2. Barbierato, E., Gribaudo, M., Iacono, M., Marrone, S.: Performability modeling of
exceptions-aware systems in multiformalism tools. In: Al-Begain, K., Balsamo, S.,

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542

120 L. Capra and M. Gribaudo

Fiems, D., Marin, A. (eds.) ASMTA 2011. LNCS, vol. 6751, pp. 257–272. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21713-5_19

3. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoret. Comput. Sci. 236(1), 35–132 (2000). https://doi.
org/10.1016/S0304-3975(99)00206-6

4. Bruni, R., Meseguer, J.: Generalized rewrite theories. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 252–
266. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_22

5. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31(1), 59–75 (1994). http://www.jstor.org/stable/3215235

6. Camilli, M., Capra, L.: Formal specification and verification of decentralized self-
adaptive systems using symmetric nets. Discrete Event Dyn. Syst. 31(4), 609–657
(2021). https://doi.org/10.1007/s10626-021-00343-3

7. Capra, L.: Canonization of reconfigurable PT nets in Maude. In: Lin, A.W., Zet-
zsche, G., Potapov, I. (eds.) Reachability Problems, pp. 160–177. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19135-0_11

8. Capra, L.: Rewriting logic and petri nets: a natural model for reconfigurable dis-
tributed systems. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds.) ICDCIT
2022. LNCS, vol. 13145, pp. 140–156. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-94876-4_9

9. Capra, L., Köhler-Bußmeier, M.: Modular rewritable petri nets: an efficient model
for dynamic distributed systems. Theoret. Comput. Sci. 990, 114397 (2024).
https://doi.org/10.1016/j.tcs.2024.114397

10. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993). https://doi.org/10.1109/12.247838

11. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability
graph for coloured petri nets. Theoret. Comput. Sci. 176(1), 39–65 (1997). https://
doi.org/10.1016/S0304-3975(96)00010-2

12. Chiola, G., Marsan, M.A., Balbo, G., Conte, G.: Generalized stochastic Petri nets:
a definition at the net level and its implications. IEEE Trans. Software Eng. 19,
89–107 (1993)

13. Clavel, M., et al.: All about maude - a high-performance logical framework: how to
specify, program, and verify systems in rewriting logic. Lecture Notes in Computer
Science. Springer (2007). https://doi.org/10.1007/978-3-540-71999-1

14. Iacono, M., Barbierato, E., Gribaudo, M.: The simthesys multiformalism modeling
framework. Comput. Math. Appl. 64(12), 3828–3839 (2012). https://doi.org/10.
1016/J.CAMWA.2012.03.009

15. Iacono, M., Gribaudo, M.: Element based semantics in multi formalism perfor-
mance models. In: MASCOTS 2010, 18th Annual IEEE/ACM International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, Miami, Florida, USA, 17–19 August 2010, pp. 413–416. IEEE
Computer Society (2010). https://doi.org/10.1109/MASCOTS.2010.54

16. Padberg, J., Schulz, A.: Model checking reconfigurable petri nets with maude. In:
Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 54–70. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40530-8_4

17. Reisig, W.: Petri Nets: An Introduction. Springer, New York (1985). https://doi.
org/10.1007/978-3-642-69968-9

https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1007/978-3-642-21713-5_19
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/3-540-45061-0_22
http://www.jstor.org/stable/3215235
http://www.jstor.org/stable/3215235
http://www.jstor.org/stable/3215235
http://www.jstor.org/stable/3215235
http://www.jstor.org/stable/3215235
http://www.jstor.org/stable/3215235
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/s10626-021-00343-3
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1016/S0304-3975(96)00010-2
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1016/J.CAMWA.2012.03.009
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1109/MASCOTS.2010.54
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9

Analytical Modelling of Asymmetric
Multi-core Servers

M. Gribaudo1(B) and T. Phung-Duc2

1 Politecnico di Milano, Milano, Italy
marco.gribaudo@polimi.it

2 University of Tsukuba, Tsukuba, Japan

Abstract. Asymmetric Multi-core systems are the current way in which
both embedded systems and data-centers are organized to obtain the
best trade-off between the conflicting goals of saving energy and obtain-
ing high performances. The idea is to have two different execution envi-
ronments, capable of running exactly the same set of applications, but
one tailored for energy efficiency at the expense of performance, and
the other fast but more demanding in terms of resources. Such systems
become even more interesting when combined with intermittent renew-
able energy sources, such as solar panels, that can reduce the impact of
high performance cores, increasing the opportunities for their usage. In
this work we will present a simple, yet effective, queuing network model
that can expose and explain many of the critical aspects of these systems.

Keywords: Performance evaluation · Data Center · Asymmetric
CPUs · Energy Efficiency

1 Introduction

Nowadays, ICT (Information and Communication Technology) is indispensable
in our society and ICT is build in various systems from micro to macro ones.
These ICT systems also consume a large amount of energy, and their workload
is time dependent: it is high during the working hours, while it decreases during
nighttime. The Asymmetric Multi-core processors (AMPs) or systems are pro-
posed as a solution to cope with the problems mentioned above. From a system
point of view, we also observe the same phenomenon in data centers where the
traffic has a peak-on and peak-off nature. Motivated by these applications, we
present in this paper several queuing systems which reflect key features of AMPs
as well as power-saving data centers. On the other hand, energy consumption
is not the only issue that ICT supported applications must face: many of the
scenario where value is extracted from data, such as Big Data applications [1],
require answers to be produced in relatively short amount of time [2]. The tools
presented in this work, can be used to find the best tradeoff between energy
consumption and performance.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 121–136, 2025.
https://doi.org/10.1007/978-3-031-80932-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-80932-3_9

122 M. Gribaudo and T. Phung-Duc

This paper is organized as follows. In Sect. 2, we present in detail some related
work. Section 3, the asymmetric multi-core servers are presented and in Sect. 4,
queueing models with and without energy-harvesting for these systems are pre-
sented. Performance evaluation results are presented in Sect. 5.

2 Related Work

Nowadays, data centers are the core infrastructure of our information era. On
the other hand, data centers are also responsible for a large portion of carbon
emissions, since they consume a huge amount of energy. However, not all the
servers in data centers are fully operated due to the peak-on and peak-off nature
of Internet’s traffic [3]: even when the server (or a core) is idle not serving a
job, it still consumes about 60–70% of energy while processing a job [3]. Thus,
studies on turning on/off servers to save energy have been extensively carried
out, recently. One of the problems in these On/Off policies is that an off server
cannot be active immediately when jobs arrive. In order to be active serving
a job, a server needs some setup time during which it cannot serve a job but
consumes quite a large amount of energy [4]. Thus, in some situation where the
traffic intensity is relatively large, it is better to keep all the servers on forever [5].
Mitrani [6, 7] proposed some models where a group of servers is turned on and
off according to thresholds on the number of jobs in the system. Algorithms
for calculating the thresholds were presented in [8]. Related models with energy
harvesting or energy packets can be found in [9,10].

Motivated by this situation, a natural idea is that we use a good mix of both
high and low performance servers. These servers are kept on all the time so they
can immediately serve a job. It is clear that a high performance server (core)
can process at high speed but also consumes more energy. On the other hand,
low performance server can process only at slow speed but also consumes less
energy. However, as long as these servers are idle, they can serve jobs immediately
and thus do not need setup times. This is similar to the multi-core architecture
presented in Sect. 3. Our research question is the following “does the asymmetric
core architecture outperform the symmetry one?”.

In order to answer this research question, we propose four queueing models
with heterogeneous servers for both asymmetric multi-core CPUs, as well as for
power-saving data centers. In our models, there are two types of servers with
low and high service rates. We consider several cases where a jobs in slow servers
can or cannot be migrated immediately to fast servers once they are available.
The former case is easily analyzed using a birth-death process while the latter
needs a quasi-birth-and-death formulation.

Performance evaluation for asymmetric multi-core systems has been exten-
sively studied [11– 14]. In these studies, power-consumption was the main perfor-
mance measure and waiting time or queue-length was not studied. However, in
reality both power-consumption and queuing performance should be considered
concurrently because these two performance measures have a trade-off relation.
A scenario where servers using different technologies, for example Intel or ARM,

Analytical Modelling of Asymmetric Multi-core Servers 123

was also considered in [15]. Models with heterogeneous servers of different service
rates are also considered in [16,17] for 5G systems.

3 Asymmetrical Multi-core Servers

The type of systems we consider in this work are typical implemented in two
main different flavours: Big-Little multi-core CPU architectures and data centers
equipped with both performance oriented and energy efficient of servers.

Fig. 1. The architecture of a typical asymmetrical Big-Little multi core CPU.

The architecture of a typical Big-Little architecture is shown in Fig. 1. The
CPU is composed of two clusters of cores: the “Big” ones usually occupy a
larger area on the processor, and can offer a better performance due to the
way in which their pipeline is implemented and unrolled; the “Little” cores are
grouped in another cluster, and due to their smaller footprint, are generally more
numerous. Each cluster has its own L2 cache, which must be synchronized with
the one of the other using an important cache-coherence interface. This com-
ponent is usually the bottleneck in applications that migrate from one cluster
to the other, limiting the applicability of this feature. In some software / hard-
ware architectures, migration is not even possible, and the type of cores must be
selected at the beginning of the computation. Usually, this type of CPU is also
equipped with a GPU, which however is not considered in this work.

The infrastructure, of the typical data-center considered in this work, is
shown in Fig. 2. In this case, the servers, which are usually distributed into
corridors, with hot and cold aisles to allow a better cooling of the devices, can
be grouped into two clusters: High Performance Servers, and Energy Efficient
Servers. The two types of nodes can differ in terms of CPU, GPU or other accel-
erator units, disks and network devices. In some cases, CPUs can even have
different architectures, like ARM or Intel, and migration might only be possible
when specific types of software / storage infrastructures are employed.

124 M. Gribaudo and T. Phung-Duc

4 Queues with Asymmetrical Servers

In this section, we present several queueing models for AMPs. To keep the dis-
cussion as general as possible, we will not refer to the processors as fast or slow,
energy efficient or power intensive, but simply as “type 1” and “type 2”. Figure 3
represents a model with .n1 servers of type 1 with service rate .μ1 and .n2 servers
of type 2 with service rate . μ2, modulated by two states which alternate at rates
.γ1 and . γ2, which are depicted as a sun and a cloud icon.

Fig. 2. The architecture of a data-center employing both performance-oriented and
energy-efficiency-oriented servers.

We consider several cases where jobs can or cannot migrate from one type of
server to the other one. Jobs arrive a the system according to a Poisson process
with rate . λ. In this model, servers of type 1 are used first, meaning that unless
all servers of type 1 are fully occupied, a job will be allocated to an idle server
of type 1. If all servers of type 1 are occupied, the job will be allocated to a type
2 server. In case all servers are busy, the job is placed in the buffer. When a job
completes, two different scenarios are possible. With the Migration approach,
when a job in a type 1 server completes, a job from a type 2 server (if present)
migrates to occupy its position, and the type 2 server is occupied by a waiting
job in the buffer if any. Due to migration, the number of jobs in the system forms
a Birth-and-Dearth process as shown in Fig. 4.

The second scenario, does not allow migration, as shown in Fig. 5. In this
model, a job is served by the same server until departure. In this case, we need a
two-dimensional Markov chain representing the number of busy servers of type
1 and of type 2, whenever the number of jobs in the system is not greater than

Analytical Modelling of Asymmetric Multi-core Servers 125

Fig. 3. The proposed Markov-modulated multiple-server queuing station, with asym-
metrical cores.

Fig. 4. The CTMC of the model with no modulation, and server migration.

.(n1 +n2). When the number of jobs in the system is greater than .(n1 +n2), only
a single dimension (birth-death-process) is needed as .n1 jobs are served by the
type 1 servers and .n2 jobs are served by the type 2 servers, while the remaining
jobs are waiting at the buffer. The departure rate in these states (death rate) is
constant .(n1μ1 + n2μ2), as shown in Fig. 5.

Figure 6 shows the transition diagram for the case of modulation and migra-
tion. In this case, the energy is harvested from the environment. When the
environment is good (representing by green circles), the servers of type 1 are
prioritized to be used first. Once the environment changes to a bad state (repre-
sented in orange) servers of type 2 are given priority. We assume that jobs can be
migrated from one server type to the other. We can observe that Fig. 6 consists
of two birth-and-death processes which are interchanged according to the state
of the environment. It should be noted that the exact transition rates in Fig. 6
depend on the values of .n1 and . n2, since migration might not be possible for
some jobs when .n1 �= n2 due to the unavailability of servers of the different type.

126 M. Gribaudo and T. Phung-Duc

Fig. 5. The CTMC of the model with no modulation, and no server migration.

Fig. 6. The CTMC of the model with modulation, and server migration.

Finally, Fig. 7 shows the most complex case, where there is modulation with-
out migration. We can see that Fig. 7 is a combination of two models described
in Figs. 5, with interchanged rates, which are swapped according to the state of
the environment. The main difference of the two blocks occurs when the number
of jobs in the system is less than .min(n1, n2). In this case, depending on the
macro block, an arrival will cause either a horizontal or a vertical transition: a
red arrow emphasizes the main transition direction in which arrivals are routed
starting from an empty system.

4.1 Evaluation

In this section we describe the performance metrics of the presented systems are
evaluated. First, for the transition diagram in Fig. 4, the stationary distribution
is easily obtained because it is simply a birth-death-process with homogeneous
structure for states with at least .n1 + n2 jobs. From the stationary distribution,
we compute the mean sojourn time (response time) of jobs and the mean power
consumption . Pc.

Analytical Modelling of Asymmetric Multi-core Servers 127

Fig. 7. The CTMC of the model with modulation, and no server migration.

In particular, let as call .P (i, j, k) the probability of having . i jobs of type 1, . j
jobs of type 2 in service, and . k jobs in the queue. Due to the particular structure
of this model, .j > 0 =⇒ i = n1, and .k > 0 =⇒ i = n1 ∧j = n2. We then have

. P (i, 0, 0) = p0 · λi

i!μi
1

P (n1, j, 0) = p0 · λn1

n1!μn1
1

·
j∏

l=1

(
λ

n1 · μ1 + l · μ2

)

P (n1, n2, k) = p0 · λn1

n1!μn1
1

·
(

n2∏

l=1

(
λ

n1 · μ1 + l · μ2

))
·
(

λ

n1 · μ1 + n2 · μ2

)k

(1)

with .p0 = p(0, 0, 0) chosen such that:

.p0 +
n1∑

i=1

p(i, 0, 0) +
n2∑

j=1

p(n1, j, 0) +
∞∑

k=1

p(n1, n2, k) = 1 (2)

Although the summation in the last term goes to infinity, this can be computed
since:

.

∞∑

k=1

p(n1, n2, k) =
p(n1, n2, 1)

1 − λ
n1·μ1+n2·μ2

(3)

The average number of jobs in the system .N can be computed as:

.N =
n1∑

i=1

i · p(i, 0, 0)+
n2∑

j=1

(n1 + j) · p(n1, j, 0)+
∞∑

k=1

(n1 +n2 +k) · p(n1, n2, k) (4)

128 M. Gribaudo and T. Phung-Duc

We then used Eq. 4 together with Little’s law, and we determined the average
System Response Time .R = N/λ.
For what concerns power consumption . Pc, we ignore the idle consumption and
we focus on the component determined by the utilization of the resource. In
particular, we suppose that each node of type 1 and type 2 cause respectively
an increase of power consumption .c1 and . c2. We then compute .Pc as:

. Pc =
n1∑

i=1

i · c1 · p(i, 0, 0) +
n2∑

j=1

(n1 · c1 + j · c2) · p(n1, j, 0) +

∞∑

k=1

(n1 · c1 + n2 · c2) · p(n1, n2, k) (5)

Although an explicit closed form expression, with a finite number of terms, could
be derived for both Eq. 4 and Eq. 5, due to the speed at which .p(n1, n2, k) → 0 as
.k → ∞ in the considered scenario, we compute both expressions via truncation
of the solution at a suitably large value of . k.

The model from Fig. 5 has a birth-and-death structure for the states with at
least .n1 + n2 jobs and a two-dimensional one for states with less than or equal
to .n1 + n2 jobs. In this case we only have the following restriction on states,
.k > 0 =⇒ i = n1 ∧ j = n2, since queueing can only take place when both
Types of servers are full. Since the birth-and-death part can be solved explicitly,
we resort to finding the steady-state probabilities for states in the part with
less than .n1 + n2 jobs in the system. In particular, following [18] we create a
.(n1 + 1) × (n2 + 1) defective infinitesimal generator matrix .B00, whose elements
corresponds to the probabilities .p(i, j, 0) of having .0 ≤ i ≤ n1 jobs served by
nodes of type one, and .0 ≤ j ≤ n2 of type one. Let us call .q[i,j][i′,j′] the elements
of .B00 corresponding to a jump from a state with . i jobs served by type 1 and . j
by type 2, to a state with . i′ and . j′ jobs of the two types. We have:

.q[i,j][i′,j′] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ if i′ = i − 1 ∧ i < n1

λ if j′ = j − 1 ∧ i = n1 ∧ i < n2

i · μ1 if i′ = i + 1 ∧ i > 0
j · μ2 if j′ = j + 1 ∧ j > 0
0 otherwise

(6)

The element in the diagonal, .q[i, j][i, j] is defined as usual as negative sum of
the elements in the row:

.q[i, j][i, j] = −
∑

[i′,j′] �=[i,j]

q[i, j][i′, j′] (7)

except for the element corresponding to .[n1, n2] that is:

.q[n1, n2][n1, n2] = −λ −
∑

[i′,j′] �=[n1,n2]

q[i, j][i, j] (8)

which makes matrix .B00 defective. We then define the column vector .b01 with
all the elements equal to zero, except the one corresponding to state .[i, j], which

Analytical Modelling of Asymmetric Multi-core Servers 129

is set to . λ, and row vector .b10 again with all the elements equal to zero, except
for the one corresponding to state .[i, j] that is set to .n1 ·μ1 +n2 ·μ2. We also set
the last diagonal element .b11 = −n1 · μ1 − n2 · μ2. These matrices are arranged
in a .(n1 + 1) · (n2 + 1) + 1 square matrix . Q:

.Q =
B00 b01

b10 b11
(9)

This is then used to find a solution of the following matrix equation with the
given normalizing condition:

.

⎧
⎪⎨

⎪⎩

|. . . p(i, j, 0) . . . , p(n1, n2, 1)|·Q = 0
n1∑

i=0

n2∑

j=0

p(i, j, 0) +
p(n1, n2, 1)

1 − ρ
= 1 (10)

with:
.ρ =

λ

n1 · μ1 + n2 · μ2
(11)

In this context, the probability of having .k > n1 + n2 jobs in queue becomes:

.p(n1, n2, k) = p(n1, n2, 1)ρk−1 (12)

Performance metrics can be computed again using a slight modification of Eq. 4
and Eq. 5:

.N =
n1∑

i=0

n2∑

j=0

(i + j) · p(i, j, 0) +
∞∑

k=1

(n1 + n2 + k) · p(n1, n2, k) (13)

Pc =
n1∑

i=0

n2∑

j=0

(i · c1 + j · c2) · p(i, j, 0) +

(n1 · c1 + n2 · c2) ·
∞∑

k=1

p(n1, n2, k) (14)

The transition diagram in Fig. 6 exhibits a Quasi-birth-and-death structure,
for which the stationary distribution can be obtained in a similar way. In this
case, however, .B01 and .B10 will be respectively a .2(n1+n2) and a . 2(n1+n2)×2
matrix. In particular, they are defined as follows. First we have to note that
the system state, when all the servers are not full, can be in three different
configurations. To simplify the discussion, let us suppose that .n2 = n1 + E,
with .E > 1 (i.e. we have strictly more type 2 servers than type 1). If in the
system there are a total of . n jobs, and .n ≤ n1, whenever the modulating process
switches, jobs are simply transferred from one type to the other. If we have
.n1 < n < n2 jobs in the system, when the modulating process switches, we jump
from a state with .i = n1, j = n − n2 to one with .i = 0, j = n, where . i and
. j represent respectively the number of servers of type 1 and type 2. Finally, if
.n2 < j ≤ n1 + n2, we jump from a state with .i = n1, j = n − n2 to one with

130 M. Gribaudo and T. Phung-Duc

.i = n−n1, j = n2. For space constraints, we skip the precise definition of matrix

. Q, which can be derived directly from Fig. 6.
In addition, we do not have a simple term . ρ to characterize the states with

queue .k > 0, but a matrix . R, solution of the following equation:

.A0 + R · A1 + R2 · A2 = 0 (15)

with:

.A0 =
λ 0
0 λ

A1 =
−λ − μT − γ1 γ1

γ2 −λ − μT − γ2
A2 =

μT 0
0 μT

(16)

where
.μT = n1 · μ1 + n2 · μ2 (17)

and the probability of having . k jobs defined as:

.p(n1, n2, k) = p(n1, n2, 1) · R(k−1) · 1
1 (18)

The rate matrix .R can be calculated using various existing algorithms [18].
Because in states with more than .(n1 + n2) jobs, the transition structure is

homogeneous, the generating function approach is also convenient to find the
stationary probabilities as well as the mean response time. However, because all
elements of matrix .A1 are non-zero, we cannot have explicit solutions for the
stationary distribution as in [19] via the generating function method. From the
stationary probabilities, we can evaluate the power consumption of the system,
in a way similar to what was presented earlier in this section.

Finally, the transition diagram in Fig. 7 can also be solved with a Matrix
Analytical technique: in this case, it exhibits the same regular structure as the
previous case, but a more complex initial part. So basically, we can obtain the sta-
tionary distributions for all four models and calculate the performance measures
such as mean response time and mean power-consumption. These performance
measures can be used to optimize the design of the system, allowing to choose
the best number of type 1 and type 2 servers, for a particular scenario.

5 Results

Let us first focus on the case in which we do not take into account renewable
sources. Figure 8 shows the queue length distribution when there are .n1 = 8 fast
machines and .n2 = 16 slow machines, where the fast ones are two time faster
than the slow ones and the total system capacity is .n1μ1 + n2μ2 = 16 job per
second, for three different arrival rates .λ ∈ [1.5, 8.5, 15.5] jobs per sec. In Fig. 8a)
fast nodes are chosen first, while in Fig. 8b) priority is given to the slow ones.
As expected, giving priority to the fast nodes reduces the average queue length
for low loads, while in high load regimes the differences between the two priority
schemes become negligible.

Analytical Modelling of Asymmetric Multi-core Servers 131

Fig. 8. Distribution of the number of jobs in the queue: a) priority to performance
node, b) priority to efficiency nodes.

We then study the impact on the number of available resources. We keep the
total computational power of the system constant, and we change the proportion
. α between machines of type . 1, with respect to the the total number of nodes,
that is: .α = n1

n1+n2
. Figure 9 shows the average queue length, while considering

.n1 + n2 = 24, and .n1μ1 + n2μ2 = 16 jobs per second, varying the arrival rate

. λ, ranging from the case .n1 = 4 and .n2 = 20, to the case .n1 = 20 and .n2 = 4.
Priority is always given to nodes of type . 1, which works two times faster than
the servers of type . 2. Please note that since the total capacity of the system is
fixed, each scenario will have different values for the service rates of both types
of nodes, .μ1 and . μ2. As expected, having a large number of fast nodes reduces
the queue when this system load is low. However, to maintain a constant total
capacity of the system, their actual speed is slower with respect to the case in
which there is a larger number of type . 2 nodes. This becomes evident as the load
increases: when the load is very high, it becomes better to have a larger number
of type . 2 nodes to better handle the extra demand.

We then study the average queue length when we keep the number of
resources of type . 1 fixed , (in particular .n1 = 8), and we increase the resources of
type . 2. Again, the total capacity is fixed to .n1μ1+n2μ2 = 16 jobs per second, and
type . 1 servers are considered to be two times faster than the ones of type . 2, which
means the actual speed of each individual server decreases with the growth of
. n2. Figure 10 shows that the effect of increasing the total number of cores, keep-
ing the total capacity constant, has a negative impact on performance, because
it reduces the speed of the available resources, letting the increased number of
servers have an impact only when the total population of the system raises.

132 M. Gribaudo and T. Phung-Duc

Fig. 9. Average number of jobs in the queue, for different proportions of the considered
servers . α.

Fig. 10. Effect of increasing .n2, the number of servers of type . 2, to the number of jobs
in the queue.

We finally fix the number of resources to .n1 = 8 plus .n2 = 16, and we study
the impact on the speed difference. In particular, let us call . β the speedup of
servers of type . 1 with respect to the one of type . 2, that is: .μ1 = βμ2.

Again, the total service rate of the system is kept constant. Figure 11a) shows
the average queue length, for .β ∈ [1.25, 3]. The impact of faster servers is not
too evident, even if the use of faster type . 1 machines tends to provide better
performance. However this comes at a cost: as Fig. 11b) shows, a small increase
of performances is matched by a much larger increase in energy consumption.

Analytical Modelling of Asymmetric Multi-core Servers 133

Fig. 11. Effect of increasing . β, the speed of servers of type . 1, with respect to the one
of type . 2: a) average number of jobs, b) energy consumption.

Fig. 12. System Response time for the considered scenario under variable load.

Energy consumption is computed ignoring the idle term, with a maximum power
consumption that is proportional to the square of the server’ speed, that is:
.ci = 20 μ2

i W.

5.1 Renewable Sources

We now take into account the use of renewable sources, which changes the pri-
ority in selecting resources from type . 1 to type . 2. Figure 12 shows the evolution
of the response time, as function of the arrival rate, for a case with .n1 = 8

134 M. Gribaudo and T. Phung-Duc

Fig. 13. Power Consumption for the considered scenario under variable load.

and .n2 = 16, with .μ1 = 0.8 jobs/sec. and .μ2 = 0.4 job/sec. for the four dif-
ferent cases. The renewable energy source alternates at speed .γ1 = 0.1 sec.. −1

and .γ2 = 0.125 sec.. −1, and it is supposed to be powerful enough to completely
sustain the functioning of the servers. The energy consumption in Watt (W) is
shown in Fig. 13, where the maximum power absorbed by one core is respectively
.c1 = 12.8 W and .c2 = 3.2 W. As seen in Figs. 12 and 13, taking into account the
availability of the renewable energy source produces a non-monotonic behaviour
in the response time, but allows a reduction in the power consumption. Instead,
migration reduces the response time, at the expense of an increased energy
consumption.

6 Conclusion

Although the considered model is very simple, it has some interesting features,
that makes the considered system quite unique. Indeed asymmetric systems can
provide a good trade-off between performance and energy consumption, and the
ability to take into account the availability of renewable sources can improve the
effectiveness of the technique: simple modelling results such as the ones proposed
in this paper can help to fine-tune the system and choose the more appropriate
configurations to achieve a given objective.

Future work will consider more classes of jobs and decide which type of servers
is assigned based on the this extra information. Moreover, validation using simple
edge computing based implementations will provide a better assessment of the
considered scenario.

Analytical Modelling of Asymmetric Multi-core Servers 135

References

1. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Perfor-
mance evaluation of NoSQL databases. In: Horváth, A., Wolter, K. (eds.) EPEW
2014. LNCS, vol. 8721, pp. 16–29. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10885-8 2

2. Barbierato, E., Gribaudo, M., Iacono, M.: A performance modeling language for
big data architectures. In: ECMS 2013, pp. 511–517 (2013)

3. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer
40(12), 33–37 (2007)

4. Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact analysis of
the M/M/k/setup class of Markov chains via recursive renewal reward, in: Pro-
ceedings of the ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems, pp. 153–166 (2013)

5. Phung-Duc, T.: Exact solutions for M/M/c/setup queues. Telecommun. Syst. 64,
309–324 (2017)

6. Mitrani, I.: Service center trade-offs between customer impatience and power con-
sumption. Perform. Eval. 68, 1222–1231 (2011)

7. Mitrani, I.: Managing performance and power consumption in a server farm. Ann.
Oper. Res. 202, 121–134 (2013)

8. Tournaire, T., Castel-Taleb, H., Hyon, E.: Service center trade-offs between cus-
tomer impatience and power consumption. ACM Trans. Model. Perform. Eval.
Comput. Syst. 8, 1–31 (2023)

9. Politaki, D., Alouf, S.: Stochastic models for solar power. In: Reinecke, P., Di
Marco, A. (eds.) EPEW 2017. LNCS, vol. 10497, pp. 282–297. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66583-2 18

10. Gelenbe, E.: A sensor node with energy harvesting. ACM SIGMETRICS Perform.
Eval. Rev. 42, 37–39 (2014)

11. Gomatheeshwari, B., Selvakumar, J.: Appropriate allocation of workloads on per-
formance asymmetric multicore architectures via deep learning algorithms. Micro-
process. Microsyst. 73, 102996 (2020)

12. Balakrishnan, S., Rajwar, R., Upton, M., Lai, K.: The impact of performance asym-
metry in emerging multicore architectures. In: In 32nd International Symposium
on Computer Architecture (ISCA 2005), pp. 506–517. IEEE. (2005)

13. Mittal, S.: A survey of techniques for architecting and managing asymmetric mul-
ticore processors. ACM Comput. Surv. (CSUR) 48, 1–38 (2016)

14. Pricopi, M., Muthukaruppan, T.S., Venkataramani, V., Mitra, T., Vishin, S.:
Power-performance modeling on asymmetric multi-cores. In: 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), pp. 1-10. IEEE. (2013)

15. Barbierato, E., Manini, D., Gribaudo, M.: A multiformalism-based model for per-
formance evaluation of green data centres Electronics 12(10), 2169 (2023)

16. Ren, Y., Phung-Duc, T., Liu, Y.K., Chen, J.C., Lin, Y.H.: ASA: Adaptive VNF
scaling algorithm for 5G mobile network. In: 2018 IEEE 7th International Confer-
ence on Cloud Networking (CloudNet), pp. 1–4 (2018)

17. Sato, M., Kawamura, K., Kawanishi, K., Phung-Duc, T.: Modeling and perfor-
mance analysis of hybrid systems by queues with setup time, Performance Evalu-
ation 162 (2023)

https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18
https://doi.org/10.1007/978-3-319-66583-2_18

136 M. Gribaudo and T. Phung-Duc

18. Neuts, M.F.: Matrix-analytic methods in queuing theory. Eur. J. Oper. Res. 15(1),
2–12 (1984)

19. Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV).
Perform. Eval. 50(1), 41–52 (2002)

Robust Streaming Benchmark Design
in the Presence of Backpressure

Iain Dixon(B) , Matthew Forshaw , and Joe Matthews

Newcastle University, Newcastle upon Tyne NE4 5TG, UK
{iain.dixon,matthew.forshaw,joe.matthews}@ncl.ac.uk

Abstract. Replicability and reproducibility are critical challenges in
systems research, particularly in evaluating systems that experience
performance variability due to hardware and complex self-regulating
behaviours. This paper investigates performance evaluation practices for
stream processing systems, focusing on the impact of backpressure. Back-
pressure occurs when data is received faster than it can be processed,
leading to cascading delays and potential data loss. Through empirical
analysis, we demonstrate where popular closed-loop benchmark designs
used in benchmarks such as NEXMark and YCSB under backpressure
conditions may fail to meet target arrival rates, leading to unreliable
benchmarking results. Our study provides recommendations for metrics
to better understand system behavior, and proposes best practices for
reliable performance evaluation in the presence of backpressure.

Keywords: Stream Processing · Benchmarking · Backpressure

1 Introduction

Replicability and reproducibility [34] are contemporary challenges in the area of
systems research [37, 40]. These challenges are greatest in the evaluation of sys-
tems which exhibit complex performance characteristics [8] and experience per-
formance variability due to underlying hardware [12, 22]. The potential deploy-
ment design space for these systems may also limit our ability to explore possible
configurations within reasonable experimental cost [4]. There have been efforts
in the literature to establish robust experimental methodologies [13, 26], includ-
ing ordering of experiments in cloud environments [7] and randomised multiple
interleaved trials [1]. Nevertheless, ongoing scrutiny of benchmarking practices
is essential.

In this study, we explore performance evaluation practices for stream process-
ing systems (SPSs). A preliminary study of open-source benchmarks, including
NEXMark [35] and YCSB [6], found common practices using closed-loop [30]
workload generators to provide a more controllable benchmark environment.
Inspired by previous works [27, 36], e.g. Gil Tene’s work on coordinated omis-
sion, which found interaction effects between the system under test and the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, pp. 137–152, 2025.
https://doi.org/10.1007/978-3-031-80932-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80932-3_10&domain=pdf
http://orcid.org/0009-0007-1342-4135
http://orcid.org/0000-0001-7014-9837
http://orcid.org/0000-0002-9193-847X
https://doi.org/10.1007/978-3-031-80932-3_10

138 I. Dixon et al.

benchmark, we explore the implications of closed-loop benchmark designs for
SPSs.

We specifically evaluate the impact of a common flow control mecha-
nism, backpressure, on benchmarking practices. Backpressure occurs when a
stream processing system receives data faster than it can be processed, causing
operators to slow or halt, and processing delays propagate through the pipeline
to upstream operators. Through a systematic literature survey, we identify that
while backpressure is a well-documented self-regulating feature of Flink, it is
currently underrepresented in the performance evaluation practices of academic
literature.

We empirically evaluate the impacts of backpressure and demonstrate that
self-regulating mechanisms such as backpressure may be difficult to observe
through conventional metrics such as end-to-end latency and throughput alone.
We present the implications of the backpressure mechanism on the design of
streaming benchmarks and suggest improvements to overcome present deficien-
cies which challenge the robustness and reliability of benchmarking efforts.

The remainder of the paper is organised as follows. We first introduce prelim-
inaries of stream benchmarking and backpressure (. § 2), and present our system-
atic literature review of backpressure in performance evaluation of SPSs (. § 3).
We present our model of benchmarking (. § 4) and empirically evaluate the impact
of backpressure (. § 5). We introduce a mechanism to overcome these challenges
(. § 6). We conclude by highlighting threats to validity for the work (. § 7) before
concluding and motivating future work (. § 8).

2 Preliminaries

We first establish the required knowledge for the remainder of this work. We
introduce a high-level model of streaming systems, introduce the benchmarking
practices and considerations for streaming systems and introduce backpressure.

2.1 Streaming

Stream processing systems (SPS) comprise a pipeline of chained operators that
ingest tuples from an upstream system, and process them sequentially until they
reach a downstream sink. Stream tuples are comprised of the data to be pro-
cessed and a timestamp representing the order in which data was collected and
transmitted. The source and sink may be remote systems streaming and receiv-
ing data (e.g., Kafka, IoT sensors) or databases feeding and storing data. SPS
performance is typically measured with end-to-end tuple latency and throughput
to assess the speed and volume of data processed.

2.2 Stream Benchmarking

Benchmarking SPS requires a framework which can produce and consume tuples
similar to a source and sink. SPS benchmarks are either open or closed-loop, but

Robust Streaming Benchmark Design in the Presence of Backpressure 139

the prevailing implementations of popular benchmarks like NEXMark and YCSB
are closed [15, 18]. Closed-loop benchmarks do not require formal isolation of the
generator and system under test [18, 31], which makes implementations simpler
to distribute and utilise. From our preliminary literature search, the dominant
approach appears to be closed-loop; therefore, in this work, we look specifically
at closed-loop stream benchmarks.

Fig. 1. SPS benchmark simulates an upstream source and downstream sink

Stream benchmarks are comprised of three parts: a generator that simulates
the upstream source, the SPS under test, and a sink that simulates a downstream
sink (as seen in Fig. 1). The generator creates streams of tuples and loads the
SPS following an arrival process. The sink collects metrics on the output stream
of tuples, which are then stored or discarded. This allows us to test the SPS while
minimising the impact of network and contention characteristics a deployed SPS
might experience.

2.3 Backpressure

Backpressure is a mechanism which throttles upstream operators to match the
speed of an overburdened downstream operator (see Fig. 2). This effect propa-
gates backwards through the pipeline until it reaches the ingestion operator. In
deployment, backpressure results in load shedding, where incoming tuples that
cannot be processed are dropped randomly [2].

Fig. 2. Backpressure propagates through a deployed SPS and sheds load

140 I. Dixon et al.

Fig. 3. Backpressure in closed-loop SPS can propagate to the generator

In a closed-loop stream benchmark, backpressure can propagate up to the
generator and throttle the generation of new tuples (see Fig. 3). The mismatch
of how SPS react to backpressure in deployment and benchmarking means that
benchmark results may have no bearing on how an SPS performs in deployment.

3 Related Work

Backpressure flow control was first proposed in the context of packet network
traffic by Tassiulas and Ephremides [33]. It has since been implemented in reac-
tive systems such as Akka Streams and RxJava, as well as stream processing
systems such as Storm, Spark Streaming, and Flink. Flink’s backpressure mecha-
nism is well documented within documentation and grey literature, yet it receives
extremely limited attention in the literature.

Table 1 summarises our systematic literature review of backpressure within
articles mentioning our target system, Apache Flink. We first conducted a search
on Scopus for 1 all papers containing “Apache Flink” in the title, abstract, descrip-
tion or full text of papers, which returned 2,240 documents. A revised search of
articles mentioning backpressure 2 returned only 36 (1.61%) documents.

Several papers mention the importance of backpressure outside of the exper-
imental findings [5, 10, 11, 16, 19, 21, 28, 39], but only a small minority account for
backpressure within their experimental findings [20, 23]. Several articles specif-
ically address the performance implications of backpressure, but rather than
presenting backpressure figures for operators within their pipelines, they use
proxy measures such as throughput and end-to-end latency [3, 9, 15, 17, 29].

ContTune [20] specifically leverages Flink’s backPressuredTimeMsPerSecond
metric within its model and results. However, more could be done to specifically
demonstrate the causal link between performance phenomena and the perfor-
mance results and variability observed in their findings. The work of Ntoulias et al.
on fleet monitoring [23] specifically acknowledges the implication of backpressure
and demonstrates its effects in relation to operator parallelism.

1 Query for all Apache Flink papers: (ALL (“apache flink”)).
2 Query for Flink papers mentioning Backpressure: (ALL (“apache flink”) AND
ALL (“backpressure” OR “back pressure” OR “back-pressure")).

Robust Streaming Benchmark Design in the Presence of Backpressure 141

Table 1. Analysis of Flink and backpressure literature by year and article type.

Query One Query Two
Year Total Conference Article Book Chapter Review Total

2013 1 – – – – –
2015 21 – – – – –
2016 75 1 – – – 1 (1.33%)
2017 166 3 – – – 3 (1.81%)
2018 275 4 – – – 4 (1.45%)
2019 322 2 2 1 1 6 (1.86%)
2020 333 2 1 – – 3 (0.9%)
2021 335 2 2 – – 4 (1.19%)
2022 311 3 5 – – 8 (2.57%)
2023 279 3 1 – – 4 (1.43%)
2024 122 1 2 – – 3 (2.46%)

All 2240 21 13 1 1 36 (1.61%)

4 Stream Generators

Stream benchmark generators have slight differences based on their implemen-
tation or the SPS use case. After analysing implementations of NEXMark and
YCSB [6, 15] we have abstracted the commonalities between them into the Basic
Loop as seen in Algorithm 1. Stream benchmark generators create and transmit
tuples following an arrival rate .λ = n

δ , where . n tuples arrive every . δ seconds.

Algorithm 1: Basic Loop
input: W, δL, λ
for w := 0 to W − 1 do

nw := λw ∗ δL/1000;
tstart := TIME();
for i := 0 to nw − 1 do

tuple:=GEN();
SEND(tuple);

δtransmit := TIME() −tstart;
δremain := δL − δtransmit;
δw := δtransmit + δremain;
if δremain > 0 then

WAIT_MS(δremain)

W Number of windows
δL Target window duration
w Window index
λw Target arrival rate
nw Target arrival load
tstart Window start time
δtransmit Transmit duration
δremain Reamining duration
δw Window duration

Algorithm 1 achieves a target arrival rate . λ by transmitting tuples and wait-
ing until the next transmission. A benchmark run is comprised of .W transmis-

142 I. Dixon et al.

sion windows where .λw can change every window. In a transmission window, . nw
tuples are generated and transmitted into our SPS over .δtransmit ms.

Fig. 4. Example arrival rates for uniform and spike processes

For example, if a practitioner wanted to generate a 60-second process with a
uniform arrival rate of 10,000 tuples per second, the generator would set the tar-
get window arrival rate to 10000 for all windows (. λw = 10000|∀w ∈ [0, 59], L =
1000). If, instead, that practitioner wanted to generate a 60-second process with
an arrival rate of 10,000 tuples per second with a spike to 100,000 tuples per
second for the middle 10 s, the generator would set the target arrival rate accord-
ingly ((.λw = 10000|∀w ∈ [0, 24] ∧ [35, 59]), L = 1000). ∧(. λw = 100000|∀w ∈
[25, 34]), L = 1000)). Figure 4 displays the arrival rates for both cases. Through-
out the remainder of this paper, we focus on uniform and spike workloads as the
most parsimonious workloads capable of inducing sought-after behaviours in our
system under test. Our approach is readily extensible to broader categories of
the arrival process, such as step, sine and envelope-guided workloads [14].

Through our review of YCSB and NEXMark implementations, we have found
that arrival rates change by modifying the arrival load . n rather than the arrival
duration . δ. Often, . δ is implicitly assumed to be 1 s. An implication of the assump-
tion that a transmission window is analogous to 1 s is that a deviation from the
target would violate the arrival rate the generator is simulating. As the arrival
load is still generated and only the arrival duration is exceeded, a simple check
for the total generated load at the end of an experiment would not detect this
failure of achieved and target arrival rates.

Transmission windows can underrun, perfectly meet, or overrun the target
window duration. In the case of underruns, Algorithm 1 waits for the remainder
of the window (.δremain = δL − δtransmit), ensuring that no windows are shorter
than the target duration (.δw ≈ δL) (see Fig. 5). Without this, the arrival load
.nw for all windows would be transmitted one after another, resulting in higher-
than-expected arrival rates (. nw

δw
> λw) in a benchmark run and a shorter-than-

expected benchmark run (.
∑W −1

w=0 δw < W ∗ δL). While Algorithm 1 has logic

Robust Streaming Benchmark Design in the Presence of Backpressure 143

Fig. 5. Algorithm 1 maintains .δL sized transmissions

to prevent a window underrun from occurring, there is nothing to prevent the
window from overrunning (Fig. 6).

Fig. 6. High rates and backpressure induce window overruns

An overrun occurs when the time it takes to generate the load exceeds the tar-
get window duration (.δtransmit > δL). The window transmit duration . δtransmit
is a product of the number of transmitted tuples .nw and the per-tuple transmit
time. As window overruns occur when .δtransmit > δL in . §5, we will experi-
mentally demonstrate how .nw and tuple transmit time influence .δtransmit and,
thereby, window overruns.

5 Experimentation

Here we outline our experimental setup 3 (. § 5.1), before presenting experiments
exploring the impact of high target arrival rates (. § 5.2) and pipeline backpressure
(. § 5.3). We then provide concluding remarks and recommendations (. § 5.4).

5.1 Experimental Design

We implemented a closed-loop stream benchmark with three operators: a gen-
erator, a pipeline workload simulator, and a sink (see Fig. 7).

Generator: follows the basic loop from Algorithm 1, generating . nw = λw

L/1000

tuples for different target arrival rates .λw, and waiting until the end of the
transmission window.
3 To support our work’s broader uptake, we are developing a replication package com-

prising our experimental results, analysis scripts, and instructions to replicate these
findings across other systems. This will be made available alongside the full paper.

144 I. Dixon et al.

Fig. 7. Experimental benchmark simulates the system under test

Pipeline Workload Simulator: as modelled in Algorithm 2. For every . ω
tuples, we wait for . ε ms to slow down the speed at which tuples pass through
the pipeline. The wait frequency . ω and amount of per-tuple wait time . ε can be
changed to model the compute intensity of different SPS configurations.

Sink: captures metrics including end-to-end tail latency (at the 99th percentile),
and per-window and per-second throughput.

The experimental benchmark was developed in Apache Flink 1.17.1 and ran
on a 2023 Macbook Pro with an Apple M2 Pro processor and 16GB RAM.

Algorithm 2: Pipeline Workload
Inputω, ε

i := 0;
while RECIEVE(tuple) do

if i mod ω = 0 then
WAIT_MS(ε);

SEND(tuple);
i := i + 1;

i Tuple index
ω Sleep frequency
ε Sleep amount

This experimental benchmark allows us to observe the effect of the generator
on the benchmark run for configurable numbers of windows . W , target arrival
rates .λw, and target window durations . L. Similarly, we can observe the effect of
the pipeline by setting the wait frequency . ω and per-tuple wait time . ε.

For the remainder of this work, set benchmark parameters are used unless
otherwise specified. Generators run for 60 s with a target arrival rate of 10,000
and a target window duration of 1 sec (.Gen(W = 60, L = 1000, λ = 10000)).
We have selected the number of windows as it provides a 1-minute experiment
and a target duration of 1 s as it’s the most prevalent duration found in our
code review (. §3). The target rate was selected as a rate that can be met by
this generator without overrunning (see Fig. 4). The pipeline simulator will be
turned off unless otherwise stated (.Sim(ω = 0, ε = 0)).

5.2 Effect of High Target Arrival Rate on Window Duration

If a window overruns, the target arrival rate is not met as the arrival load . n
is not transmitted within the target transmission duration (. nw

δw
< λw). This

deviation between the target and achieved window arrival rate means that a
system being benchmarked may not behave as it would in deployment under the
same circumstances. To examine how window overruns occur, we must isolate

Robust Streaming Benchmark Design in the Presence of Backpressure 145

changes to .nw and the time to transmit a tuple. Algorithm 1 states that the
number of transmitted tuples in a window .nw is a function of the target arrival
rate .λw. By modifying .λw we can increase .nw and observe the effects of high
arrival rate on inducing window overruns.

In this experiment, we will observe the effects of high target arrival rates
on window duration. If .λw is large, the .δtransmit will surpass . δL, inducing a
window overrun. We can configure the benchmark to run progressively higher
target arrival rates and observe the window duration .δw to see this effect. The
generator has been shown to handle arrival rates of 10,000 and 100,000 (see
Fig. 4). so to induce an overrun .λw must be set higher. By generating three
processes where the middle ten windows (.w ∈ [25, 34]) spike to 50x, 100x, and
150x of the baseline arrival rate of 10,000, we will see at what threshold the
generator fails to meet the target arrival rate.

Fig. 8. High .λw induces window overruns

In Fig. 8, the top left panel shows the window duration (. δw), the bottom left
panel shows the target and achieved window rates (.λw, nw

δw
), the top right panel

shows the pipeline throughput, and the bottom right panel shows the pipeline’s
end-to-end per-tuple latency.

In Fig. 8, we can see that a process with a spike of 50x can be generated
without inducing window overruns. The processes which spike at 100x and 150x
do not reach their target arrival rates and are, on average, overrun by a factor
of 1.1x and 1.7x, respectively. In the latter two processes, the overrun tuples are
transmitted in subsequent windows, resulting in higher achieved arrival rates
than expected. The benchmark run then overruns by the aggregate amount each
window overran, with the 100x process overrunning by 1 s (100 ms * 10) and the
150x process overrunning by 7 s (700ms * 10). Throughput is almost identical to
the achieved arrival rate and fails to meet the desired throughput. The pipeline
latency doesn’t change when the windows overrun, as the speed of generation is
not affected.

146 I. Dixon et al.

By escalating the target arrival rate past what the generator can produce
within the desired window duration, we have demonstrated that high target
arrival rates induce window overruns. Benchmarking practitioners should ensure
that the target arrival rate provided to a generator is within that generator’s
capacity to produce, or else the failure to achieve the desired throughput will
partially result in the generator rather than the system under test.

5.3 Effect of Pipeline Backpressure on Window Duration

In . §2, we state that closed-loop stream generators can be influenced by the
system under test. Backpressure can propagate up the pipeline and throttle the
rate at which tuples are transmitted into the pipeline, increasing the per-tuple
transmit time. By increasing the pipeline workload, we can induce backpressure
and observe the effects of tuple transmit time on window overruns.

In this experiment, we will observe the effect of pipeline backpressure on
window duration. Given a .λw that we have observed the generator meet, if
the per-tuple transmit time increases, the .δtransmit will surpass . δL, inducing a
window overrun. We can configure the benchmark to run progressively higher
simulated pipeline workload to trigger backpressure and observe the window
duration .δw to see this effect. By generating a process with pipeline workloads
of 0, 1, 2, 4, 8, and 16 ms of sleep per 1000 tuples (.ω = 1000, ε ∈ 0, 1, 2, 4, 8, 16),
we will see at what threshold the generator fails to meet the target arrival rate.

Fig. 9. Backpressure from pipeline workload induces window overruns

In Fig. 9, we can see that under a low pipeline workload (.ε ∈ 0, 1, 2, 4), the
process can be generated without inducing window overruns. Under higher work-
loads .ε ∈ 8, 16), the processes do not reach their target arrival rates and are,
on average, overrun by a factor of 1.1x and 2x, respectively. Similarly to the
high target arrival rates, the higher workloads process overran by the aggre-
gate amount of each window overrun, with the .ε = 8 process overrunning by

Robust Streaming Benchmark Design in the Presence of Backpressure 147

1 s (100ms * 10) and the .ε = 16 process overrunning by 10 s (1000ms * 10).
Throughput matches the achieved arrival rate and fails to meet the desired
throughput. Latency increases with increased pipeline workload, which, as the
workload increases the time it takes for a tuple to pass through the pipeline,
logically follows.

By escalating the pipeline workload we have demonstrated that backpressure
propagates to the generator and throttles the rate at which tuples are generated.
If the degradation in throughput was due to the workload itself and not the back-
pressured generator, then the degradation would only be seen in the throughput
metric and not in the achieved arrival rate. Benchmarking practitioners should
ensure that backpressure is not affecting the generator, or else the failure to
achieve the desired throughput will partially be the result of backpressure rather
than the system under test.

5.4 Key Takeaways

High target arrival rates and backpressure from pipeline workload can increase
.δtransmit and cause a window to overrun. Overruns cause the achieved win-
dow arrival rate to fall short of the target and underload the system, leading
to the system being tested to perform differently to deployment. Additionally,
tuples that the generator is not able to generate in an overran window spill over
into subsequent windows, resulting in further arrival rate mismatches. Without
understanding the interplay of high arrival rates or backpressure, the effects of
window overruns can pass unnoticed.

In our experiments, we isolate these effects, but in a benchmark, they can
be explained by the performance of the system under test. This explainability
can be an issue - as it may not be clear that benchmarkers should check if the
benchmark itself is operating correctly. To avoid window overruns from influenc-
ing benchmark results, practitioners should determine the maximum achievable
arrival rates and monitor their systems for backpressure. Alternatively, simply
monitoring window duration provides a litmus check that the generator operated
correctly in a benchmark run.

Our findings highlight the need for practitioners to proactively measure the
effects of backpressure during benchmark runs, as is often done in established
benchmark suites [32]. A simple validation checklist for the loop in Algorithm
1 could be: a) Ensure transmission windows finish within 1% of target window
duration, b) Ensure achieved arrival rates are within 5% of target arrival rates.

6 Mitigating Overruns

We have demonstrated in Sect. 5 that current approaches to benchmarking are
susceptible to overruns due to high target arrival rates, and due to pipeline
backpressure. This leads to a mismatch between the achieved and target window
durations (.δw �= δL). Consequently, the effective generation rate observed by the
pipeline is lessened, and the total runtime for a benchmark increases.

148 I. Dixon et al.

We now seek to demonstrate the impact of terminating each window at the
end of the window duration target . δL. This mechanism is analogous to load
shedding, which is experienced in the open-loop deployment of an SPS system.
In Fig. 10 we implement the experiments from . § 5.2 and . § 5.3 but cutoff windows
when they exceed . δL. Figure 11 demonstrates that this mechanism is effective
at almost completely mitigating window overruns across a benchmark run. We
can see that the arrival rate mismatch does not propagate into the subsequent
windows, as in Figs. 9 and 8. Furthermore, the assumption from . §4 that a trans-
mission window is analogous to a second is now true, as the experiment now
runs for a total of 60 s without exceeding.

We believe our cutoff mechanism is a promising direction for benchmarking,
alongside proactive monitoring of transmit duration .δtransmit across an experi-
ment. Specifically, this mechanism allows us to not only measure the number of
windows that violate the target length but also establish thresholds of acceptable
behaviour based on our use case. Similar approaches are adopted by benchmark
consortia, such as SPEC, in their Run and Reporting rules [32], e.g. “Verify that
the elapsed time for each measurement interval is at least 99.5% but no more
than 101% of the configured interval length.”.

Fig. 10. Cutoff prevents overrun spillage and ends the benchmark on time

Fig. 11. Cutoff effectively prevents window overruns for all windows

Robust Streaming Benchmark Design in the Presence of Backpressure 149

7 Threats to Validity

Here, we frame the scope and limitations of this work with respect to con-
struct, internal and external validity [38].
Construct Validity: We evaluate system performance in relation to throughput
and latency. The performance of workload generator as the proportion of target
workload generated and window duration. Future work will explicitly model the
window cutoff’s impact on the trajectory and extent of backpressure.
Internal Validity: Ongoing work seeks to clearly distinguish the halting as
a consequence of the backpressure mechanism, from halting behaviours caused
by other external factors (e.g. IO contention or interrupts). Furthermore, our
system model does not currently capture that the computational cost of stateful
operators scales non-linearly with state size [24, 25].
External Validity: While our current experiments centre around a single work-
load for Apache Flink, our approach can be applied broadly across a range of
systems. The experimental work here relies only on measures which are provided
as standard by many contemporary streaming platforms [14, 15].

8 Conclusion

We have investigated benchmarking practices that underpin a large proportion
of performance studies on streaming systems. We have explored the implications
of benchmark designs, particularly with respect to their robustness in the pres-
ence of self-regulating mechanisms such as backpressure. We present empirical
findings which demonstrate that high generation rates and backpressure may
lead to window overruns in benchmarks, significantly threatening the validity of
results. We make several suggested amendments to benchmarking practices to
mitigate their impact, including the collection of more fine-grained metrics on
system performance, and the need for proactive validation checks.

We propose further work in the development of generator spacing algorithms,
analysing the impact of the frequency of checking for cutoff on benchmark runs,
and generalised metrics to measure backpressure. While the transmit all mes-
sages and wait behaviour in Algorithm 1 does produce a process with appropri-
ately spaced messages to meet the target arrival rate, the transmit utilisation
is limited to the beginning of the window. This behaviour does not accurately
reflect how tuples arrive at an SPS within a second, so developing methods
that space out transmit throughout a window provides a more realistic bench-
mark. Checking for overruns at every tuple introduces additional overhead to
the generator, and through experimentation we can determine the optimum cut-
off frequency to minimise window overruns whilst minimising overhead. Finally,
backpressure is a mechanism that we have demonstrated has a significant effect
on closed-loop benchmarks, but metrics to monitor backpressure are specific to
each SPS. A generalised metric to measure the presence of backpressure would
allow practitioners to quantify its impact on benchmark behaviour and respond
accordingly.

150 I. Dixon et al.

References

1. Abedi, A. and Brecht, T.: Conducting repeatable experiments in highly variable
cloud computing environments. In: ACM/SPEC ICPE, pp. 287–292 (2017)

2. Alves, L., Veiga, L.: Stream economics: resource efficiency in streams with
task over-allocation and load shedding. In: Martins, R., Selimi, M. (eds.) Dis-
tributed Applications and Interoperable Systems. DAIS 2024, pp. 1–17. Springer-
Verlag, Cham (2024). https://doi.org/10.1007/978-3-031-62638-8_1, ISBN 978-3-
031-62637-1

3. Bartolomeo, G., Cao, J., Su, X., Mohan, N.: Characterizing distributed mobile
augmented reality applications at the edge. pp. 9 – 18 (2023). Cited by: 0

4. Bouckaert, S., Gerwen, V.V., Moerman, I., Phillips, S., Wilander, J.: BONFIRE:
benchmarking computers and computer networks (2011)

5. Chantzialexiou, G., Luckow, A., Jha, S., Pilot-streaming: a stream processing
framework for high-performance computing, pp. 177–188 (2018). Cited by: 12. All
Open Access, Green Open Access (2018)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: ACM SoCC 2010, pp. 143–154 (2010). ISBN
9781450300360

7. Duplyakin, D., et al.: Avoiding the ordering trap in systems performance measure-
ment. In: 2023 USENIX Annual Technical Conference, pp. 373–386 (2023)

8. Eismann, S., et al.: A case study on the stability of performance tests for serverless
applications. J. Syst. Softw. 189, 111294 (2022)

9. Fu, X., Ghaffar, T., Davis, J.C., Lee, D.: Edgewise: a better stream processing
engine for the edge, pp. 929 – 945 (2019). Cited by: 54

10. Gautam, B., Basava, A.: Performance prediction of data streams on high-
performance architecture. Human-centric Comput. Inf. Sci. 9(1), 2 (2019). Cited
by: 9. All Open Access, Hybrid Gold Open Access (2019)

11. Huang, X., Shao, Z., Yang, Y.: POTUS: predictive online tuple scheduling for data
stream processing systems. IEEE Trans. Cloud Comput. 10(4), 2863–2875 (2022).
https://doi.org/10.1109/TCC.2020.3032577. Cited by: 4; All Open Access, Green
Open Access

12. Jamieson, S.: Dynamic scaling of distributed data-flows under uncertainty. In:
ACM DEBS, pp. 230–233 (2020)

13. Jamieson, S., Forshaw, M.: Measuring streaming system robustness using non-
parametric goodness-of-fit tests. In: Gilly, K., Thomas, N. (eds.) Computer Perfor-
mance Engineering. EPEW 2022, pp. 3–18. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-25049-1_1

14. Jamieson, S. and Forshaw, M.: On improving streaming system autoscaler
behaviour using windowing and weighting methods. In: ACM DEBS, pp. 68–79
(2023)

15. Kalavri, V., Liagouris, J., Hoffmann, M., Dimitrova, D., Forshaw, M., Roscoe,
T.: Three steps is all you need: fast, accurate, automatic scaling decisions for
distributed streaming dataflows. In: USENIX OSDI 2018, pp. 783–798 (2018)

16. Kallas, K., Niksic, F., Stanford, C., Alur, R.: DiffStream: differential output testing
for stream processing programs. In: Proceedings of the ACM on Programming
Languages 4(OOPSLA) (2020). https://doi.org/10.1145/3428221

17. Karimov, J., Rabl, T., Katsifodimos, A., Samarev, R., Heiskanen, H., Markl,
V.: Benchmarking distributed stream data processing systems. In: 2018 IEEE
34th International Conference on Data Engineering (ICDE), pp. 1507–1518. IEEE
(2018)

https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1007/978-3-031-62638-8_1
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1109/TCC.2020.3032577
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1007/978-3-031-25049-1_1
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221

Robust Streaming Benchmark Design in the Presence of Backpressure 151

18. Kogias, M., Mallon, S., Bugnion, E.: Lancet: a self-correcting latency measuring
tool. In: 2019 USENIX Annual Technical Conference, pp. 881–896 (2019). ISBN
978-1-939133-03-8

19. Li, B., Zhang, Z., Zheng, T., Zhong, Q., Huang, Q., Cheng, X.: Marabunta: con-
tinuous distributed processing of skewed streams. In 2020 20th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp.
252–261. IEEE. Marabunta: Continuous distributed processing of skewed streams.
In: IEEE/ACM International Symposium on Cluster, Cloud and Internet Comput-
ing, pp. 252 – 261 (2020). Cited by: 4

20. Lian, J., et al.: ContTune: continuous tuning by conservative Bayesian optimization
for distributed stream data processing systems. Proc. VLDB Endowment 16(13),
4282–4295 (2023). Cited by: 1. All Open Access, Green Open Access (2023)

21. Lu, P., Yue, Y., Yuan, L., Zhang, Y.: AutoFlow: hotspot-aware, dynamic load
balancing for distributed stream processing. LNCS 13157, pp. 133–151 (2022).
https://doi.org/10.1007/978-3-030-95391-1_9

22. Maricq, A., Duplyakin, D., Jimenez, I., Maltzahn, C., Stutsman, R., Ricci, R.:
Taming performance variability. In: USENIX OSDI, pp. 409–425 (2018)

23. Ntoulias, E., Alevizos, E., Artikis, A., Koumparos, A.: Online trajectory analysis
with scalable event recognition, vol. 2841 (2021). Cited by: 2

24. Omoregbee, P., Forshaw, M., Thomas, N.: A state-size inclusive approach to opti-
mizing stream processing applications. In: EPEW, pp. 325–339 (2023)

25. Omoregbee, P., Thomas, N., Forshaw, M.: Analyzing performance effects of window
size on streaming operator throughput. In: UKPEW, p. 18 (2023)

26. Papadopoulos, A.V., et al.: Methodological principles for reproducible performance
evaluation in cloud computing. IEEE Trans. Softw. Eng. 47(8), 1528–1543 (2019)

27. Prisyazhynyy, I.: On coordinated omission (2021). https://www.scylladb.com/
2021/04/22/on-coordinated-omission/

28. Prokopec, A.: Encoding the building blocks of communication, pp. 104–118 (2017).
https://doi.org/10.1145/3133850.3133865

29. Qu, W., Dessloch, S.: A lightweight elastic queue middleware for distributed
streaming pipeline. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017.
LNCS, vol. 10440, pp. 173–182. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-64283-3_13

30. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open Versus Closed: A Caution-
ary Tale. vol. 3. USENIX NSDI (2006)

31. SIGPLAN. SIGPLAN empirical evaluation checklist. https://www.sigplan.org/
Resources/EmpiricalEvaluation/

32. Standard performance evaluation corporation. Specpower_ssj2008 run and
reporting rules. https://www.spec.org/power/docs/SPECpower_ssj2008-Run_
Reporting_Rules.html#2.1

33. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. In:
29th IEEE Conference on Decision and Control, pp. 2130–2132. IEEE (1990)

34. The Turing Way: Definitions. https://the-turing-way.netlify.app/reproducible-
research/overview/overview-definitions.html

35. Tucker, P., Tufte, K., Papadimos, V., Maier, D.: Nexmark - a benchmark for queries
over data streams draft (2002)

36. Wakart, N.: Correcting YCSB’s coordinated omission problem (2015). https://psy-
lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html

37. Winter, S., et al.:A retrospective study of one decade of artifact evaluations. In:
ESEC, FSE, pp. page 145–156 (2022). ISBN 9781450394130,(2022)

https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://doi.org/10.1007/978-3-030-95391-1_9
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://www.scylladb.com/2021/04/22/on-coordinated-omission/
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://doi.org/10.1007/978-3-319-64283-3_13
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html#2.1
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html
https://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-coordinated-omission.html

152 I. Dixon et al.

38. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer Science & Business Media (2012).
https://doi.org/10.1007/978-3-662-69306-3

39. Ye, Q., Liu, W., Wu, C.Q.: NoStop: a novel configuration optimization scheme for
spark streaming (2021). https://doi.org/10.1145/3472456.3472515

40. Zilberman, N., Moore, A.W.: Thoughts about artifact badging. SIGCOMM Com-
put. Commun. Rev. 50(2), 60–63 (2020). ISSN 0146-4833

https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1007/978-3-662-69306-3
https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515

Author Index

B
Barbierato, Enrico 60
Bertocci, Nicola 14

C
Capra, Lorentzo 106
Carnevali, Laura 14

D
Dixon, Iain 137

E
Ezhilchelvan, Paul 1, 45

F
Forshaw, Matthew 137

G
Gatti, Alice 60
Gribaudo, M. 121
Gribaudo, Marco 60, 106

H
Horváth, András 75

I
Iacono, Mauro 60

L
Laghbi, Hassan 29
Liu, Ye 1

M
Malakhov, Ivan 91
Marin, Andrea 91
Matthews, Joe 137
Mitrani, Isi 1

P
Paolieri, Marco 75
Phung-Duc, T. 121
Piazza, Carla 91

R
Rossi, Sabina 91

S
Scommegna, Leonardo 14
Smuseva, Daria 91

T
Thomas, Nigel 29

V
Vicario, Enrico 14, 75

W
Wang, Yingming 45
Waudby, Jack 45
Webber, Jim 45

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2025
J. Doncel et al. (Eds.): EPEW 2024, LNCS 15454, p. 153, 2025.
https://doi.org/10.1007/978-3-031-80932-3

https://doi.org/10.1007/978-3-031-80932-3

	 Preface
	 Organization
	 Contents
	Design and Analysis of Distributed Message Ordering over a Unidirectional Logical Ring
	1 Introduction
	2 The Model
	3 Fixed-Point Approximation
	3.1 Special Cases

	4 Examples
	5 Conclusion
	References

	The Omnibus Java Library: Efficient Synthesis of Optimal Signal Schedules for Multimodal Intersections
	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Contribution

	2 The Omnibus Library
	3 Intersection Modeling
	4 Intersection Evaluation
	5 Efficient Derivation of Optimal Signal Schedules
	6 Conclusions and Future Extensions
	References

	Performance Evaluation of Beaconing Schemes for Vehicular Platooning
	1 Introduction
	2 Related Work
	3 Proposed Beaconing Schemes
	3.1 System Model
	3.2 PlatoonB
	3.3 PlatoonBE

	4 Evaluation
	4.1 Metrics
	4.2 Experiments and Results

	5 Conclusion and Future Work
	References

	Implementations Based Evaluation of No-Wait Approach for Resolving Conflicts in Databases
	1 Introduction
	2 No-Wait Under Read-Committed
	3 No-Wait Under Serializability
	4 Experiments
	4.1 Benchmarks and Workloads
	4.2 Read-Committed
	4.3 Serializability

	5 Conclusions
	References

	Performance Evaluation of Smart Bin Systems Using Markovian Agents for Efficient Garbage Collection
	1 Introduction
	2 Related Work
	3 Case Study and Model
	3.1 Solution

	4 Experiments and Discussions
	5 Conclusions
	References

	Approximation of First Passage Time Distributions of Compositions of Independent Markov Chains
	1 Introduction
	2 Background and Problem Definition
	3 Approximation Method
	4 Numerical Experiments and Implementation Issues
	4.1 Identical Components with Small State Space
	4.2 Different Components with Large State Spaces
	4.3 Implementation Issues

	5 Conclusions
	References

	Under the Space Threat: Quantitative Analysis of Cosmos Blockchain
	1 Introduction
	2 Background on Cosmos Blockchain
	3 Model Descriptions and Examination
	3.1 Base Model
	3.2 Model with Colluded Superminority
	3.3 Model with Partially Absent Superminority

	4 Conclusion
	References

	A Lumped CTMC for Modular Rewritable PN
	1 Introduction
	2 (Stochastic) PT Nets and Maude
	3 Running Example: A Fault-Tolerant MS
	4 Compositional Rewritable PT and their Symmetries
	5 Getting the Lumped CTMC Generator from RwPT
	5.1 Experimental Evidence

	6 Conclusion and Future Work
	References

	Analytical Modelling of Asymmetric Multi-core Servers
	1 Introduction
	2 Related Work
	3 Asymmetrical Multi-core Servers
	4 Queues with Asymmetrical Servers
	4.1 Evaluation

	5 Results
	5.1 Renewable Sources

	6 Conclusion
	References

	Robust Streaming Benchmark Design in the Presence of Backpressure
	1 Introduction
	2 Preliminaries
	2.1 Streaming
	2.2 Stream Benchmarking
	2.3 Backpressure

	3 Related Work
	4 Stream Generators
	5 Experimentation
	5.1 Experimental Design
	5.2 Effect of High Target Arrival Rate on Window Duration
	5.3 Effect of Pipeline Backpressure on Window Duration
	5.4 Key Takeaways

	6 Mitigating Overruns
	7 Threats to Validity
	8 Conclusion
	References

	Author Index

