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Abstract

We consider convex optimization with non-smooth objective function and log-concave
sampling with non-smooth potential (negative log density). In particular, we study two
specific settings where the convex objective/potential function is either Holder smooth
or in hybrid form as the finite sum of Holder smooth components. To overcome the
challenges caused by non-smoothness, our algorithms employ two powerful proximal
frameworks in optimization and sampling: the proximal point framework for opti-
mization and the alternating sampling framework (ASF) that uses Gibbs sampling
on an augmented distribution. A key component of both optimization and sampling
algorithms is the efficient implementation of the proximal map by the regularized
cutting-plane method. We establish its iteration-complexity under both Hélder smooth-
ness and hybrid settings using novel convergence analysis, yielding results that are
new to the literature. We further propose an adaptive proximal bundle method for
non-smooth optimization that employs an aggressive adaptive stepsize strategy, which
adjusts stepsizes only when necessary and never rejects iterates. The proposed method
is universal since it does not need any problem parameters as input. Additionally, we
provide an exact implementation of a proximal sampling oracle, analogous to the prox-
imal map in optimization, along with simple complexity analyses for both the Holder
smooth and hybrid cases, using a novel technique based on a modified Gaussian inte-
gral. Finally, we combine this proximal sampling oracle and ASF to obtain a Markov
chain Monte Carlo method with non-asymptotic complexity bounds for sampling in
Holder smooth and hybrid settings.
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1 Introduction

We are interested in convex optimization problems

min f(x) (1

xeRd

as well as log-concave sampling problems

sample v(x) o exp(—f(x)), 2)

where f : RY — R is convex but not necessarily smooth. In sampling, a potential
of the distribution v(x) is defined as the negative log-density, which is f(x) up to a
constant.

Optimization and sampling are two of the most important algorithmic tools at
the interface of data science and computation. Optimization has been extensively
studied across a wide range of fields, including machine learning, communications,
and supply chain management. Over the past two decades, particular attention has
been devoted to gradient-based first-order methods. Many classical ideas have been
revisited and extended to large-scale optimization, such as the randomized coordinate
descent method [52], the primal—dual hybrid gradient method [5], and the extragradient
method [30]. Drawing samples from a given (often unnormalized) probability density
plays a crucial role in many scientific and engineering problems that face uncertainty
(either physically or algorithmically). Sampling algorithms are widely used in many
areas such as statistical inference/estimation, operations research, physics, biology, and
machine learning, etc [2, 11, 12, 16, 25,26, 31, 63]. For instance, in Bayesian inference,
one draws samples from the posterior distribution to infer its mean, covariance, or other
important statistics. Sampling is also heavily used in molecular dynamics to discover
new molecular structures.

This work is along the recent line of research that lies in the interface of sampling
and optimization [10, 61]. Indeed, sampling is closely related to optimization. On
the one hand, optimization can be viewed as the limiting case of sampling from the
distribution exp(— f(x)/T) as the temperature parameter 7 (which represents the
level of randomness) approaches zero. In this limit, the probability mass increasingly
concentrates around the minimizers of f(x). On the other hand, sampling v(x) has an
optimization interpretation [24, 66, 68]: the Langevin dynamics in space corresponds
to the Fokker-Planck equation, which is the gradient flow of the relative entropy
functional (with respect to v) in the space of measures with the Wasserstein metric.
The popular gradient-based Markov chain Monte Carlo (MCMC) methods such as
Langevin Monte Carlo (LMC) [7, 20, 55, 57], Metropolis-adjusted Langevin algorithm
(MALA) [3, 56, 57], and Hamiltonian Monte Carlo (HMC) [49] resemble the gradient-
based algorithms in optimization and can be viewed as the sampling counterparts of
them.
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The goal of this paper is to develop efficient proximal algorithms to solve optimiza-
tion problems (1) as well as to draw samples from potentials (2), where both f in (1)
and (2) lack smoothness (i.e., when f does not have Lipschitz continuous gradient).
In particular, we consider two settings where the convex objective/potential function
f is either Holder smooth (i.e., the (sub)gradient f’ is Holder-continuous with expo-
nent o € [0, 1]) or a hybrid function with multiple Holder smooth components. The
core of both proximal optimization and sampling algorithms lies in the proximal map
of f. We first develop a generic and efficient implementation of this proximal map.
Building on it, we design an adaptive proximal bundle method to solve problem (1).
Furthermore, by combining the proximal map of f with rejection sampling, we pro-
pose a highly efficient approach to realize a proximal sampling oracle, which is used
in a proximal sampling framework [6, 33] in the same spirit as the proximal point
method for optimization. With those proximal oracles for optimization and sampling
in hand, we are finally able to establish the complexity to sample from densities with
non-smooth potentials.

We summarize our contributions as follows.

i) We analyze the complexity bounds for implementing the proximal map of f using
the regularized cutting-plane method in both Holder smooth and hybrid settings
(Sect.3). The complexity analyses for both Holder smooth and hybrid cases, pre-
sented in Subsections 3.1 and 3.2, respectively, are novel contributions to the
literature and employ proof techniques distinct from existing works such as [9, 27,
41, 42, 69].

ii) We develop an adaptive proximal bundle method (APBM) using the regular-
ized cutting-plane method and a novel adaptive stepsize strategy in the proximal
point method, and establish the complexity bound for Holder smooth optimization
(Sect.4). APBM is a universal method as it does not need any problem-dependent
parameters as input. In contrast to standard universal methods based on conser-
vative line searches on stepsizes, such as the universal primal gradient method of
[53], APBM has the benefit of adjusting stepsizes only when necessary and never
rejects iterates.

iii) We propose an efficient scheme to realize the proximal sampling oracle that lacks
smoothness and establish novel techniques to bound its complexity. Combining
the proximal sampling oracle and the proximal sampling framework, we obtain
a general proximal sampling algorithm for convex Holder smooth and hybrid
potentials. Finally, we establish complexity bounds for the proximal sampling
algorithm in both cases (Sect.5). The complexity bounds presented in Sect.5 are
similar to those in [13]; however, they are derived under the assumption of an exact
proximal sampling oracle, whereas [13] considers an inexact implementation of
the oracle. The contributions of Sect. 5 lie in providing much simpler complexity
analyses for the exact realization of the proximal sampling oracle in both the
Holder smooth and hybrid cases, compared to the existing analyses in [37, 38].

It is worth noting that this paper does not aim to establish the optimal complexity
of universal methods or to improve the complexity of proximal sampling algorithms.
Instead, it develops a regularized cutting-plane method as an efficient implementa-
tion of the proximal oracle used in both proximal optimization and sampling, and
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demonstrates its interesting applications in universal methods and proximal sampling
algorithms.

2 Proximal Optimization and Sampling

The proximal point framework (PPF), proposed in [44] and further developed in [58,
59] (see [54] for a modern and comprehensive monograph), is a general class of
optimization algorithms that involve solving a sequence of subproblems of the form

1
Xk4+1 < argmin {f(x)—i—zﬂx—xknz T X E]Rd}, 3)

where n > 0 is a prox stepsize and <— means the subproblem can be solved either
exactly or approximately. When the exact solution is available, we denote

X1 = Prox, ¢ (xx),

where prox ¢ (-) is called a proximal map of f and defined as

proxf(y) 1= argmin {f(x) + %Hx — y||2 1X € Rd} . “4)

If the subproblem (3) does not admit a closed-form solution, it can usually be solved
with standard or specialized iterative methods.

Many classical first-order methods in optimization, such as the proximal gradient
method, the proximal subgradient method, the primal-dual hybrid gradient method
of [5] (also known as the Chambolle-Pock method), the extra gradient method of
[30] are instances of PPF. It is worth noting that, by showing that the alternating
direction method of multipliers (ADMM) as an instance of PPF, [47] gives the first
iteration-complexity result of ADMM for solving a class of linearly constrained convex
programming problems.

Another example of PPF is the proximal bundle method, which was first proposed
in [34, 35, 45, 67] and further developed in [8, 9, 14, 27, 41, 42, 60, 64, 69]. Notably,
inspired by the PPF viewpoint, papers [41, 42] develop a variant of the proximal
bundle method and establish the optimal iteration-complexity, which is the first optimal
complexity result for proximal bundle methods.

Recent works [28, 29, 40, 43] have also applied PPF to solve weakly convex opti-
mization and weakly convex-concave min-max problems.

Proximal map in sampling. Sampling shares many similarities with optimization.
An interesting connection between the two problems is through the algorithm design
and analysis from the perspective of PPF. The alternating sampling framework (ASF)
introduced in [33] is a generic framework for sampling from a distribution 7% (x) o
exp(—f(x)). Analogous to PPF in optimization, ASF with stepsize n > 0 repeats the
two steps as in Algorithm 1.

@ Springer



Journal of Optimization Theory and Applications (2026) 208:110 Page50f34 110

Algorithm 1 Alternating Sampling Framework [33]

1. Sample y ~ 71X (3 | x0) o exp (=5 v = v12)

2. Sample g1 ~ 71 (& | ) o exp (= £ () =l = )

ASF is a special case of Gibbs sampling [17] of the joint distribution

1
m(x,y) o exp (—f(x) —~ E”x - y||2) .

Starting from the original paper [33] that proposes ASF, subsequent works have refined
and extended this framework. In particular, [6] provides an improved theoretical anal-
ysis of ASF, and [70] studies Gibbs sampling based on ASF for structured log-concave
distributions over networks. In Algorithm 1, sampling y; given x in step 1 can be eas-
ily done since 7YX (y | xx) = N (xx, nI) is a simple Gaussian distribution. Sampling
Xk+1 given yg in step 2 is however a nontrivial task; it corresponds to the so-called
restricted Gaussian oracle (RGO) for f introduced in [33], which is defined as follows.

Definition 2.1 Given a point y € R? and stepsize n > 0, the RGO for f : R — R
is a sampling oracle that returns a random sample from a distribution proportional to

exp(—f () — Il - —ylI>/(2n)).

RGO is an analog of the proximal map (4) in optimization. To use ASF in practice,
one needs to efficiently implement RGO. Some examples of f that admit a compu-
tationally efficient RGO have been presented in [48, 62]. These instances of f have
simple structures such as coordinate-separable regularizers, £1-norm, and group Lasso.
To apply ASF on a general potential function f, developing an efficient implementa-
tion of the RGO is essential.

A rejection sampling-based implementation of RGO for a general convex nons-
mooth potential function f with bounded Lipschitz constant is given in [37].

If the stepsize n is small enough, then it only takes a constant number of rejection
steps to generate a sample according to RGO in expectation. Another exact realization
of RGO is provided in [38] for nonconvex hybrid potential f satisfying Holder contin-
uous conditions. It is also shown that the expected number of rejections to implement
RGO is a small constant if 7 is small enough. Other inexact realizations of RGO based
on approximate rejection sampling are studied in [13, 18]. See Table 1 for a clear com-
parison. In all these implementations, a key step is realizing the proximal map (4).
It is worth noting that [38] also connects ASF with other well-known Langevin-type
sampling algorithms such as Langevin Monte Carlo (LMC) and Proximal Langevin
Monte Carlo (PLMC) via RGO. In a nutshell, [38] shows that both LMC and PLC
are instances of ASF but with approximate implementations of RGO, which always
accept the sample from the proposal distribution without rejection. Hence, this pro-
vides an alternative interpretation of why the samples generated by LMC are biased,
while those produced by ASF are unbiased.

Based on the cutting-plane method, this paper develops a generic and efficient
implementation of the proximal map (4) and applies the proximal map in both opti-
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Table 1 Comparison of different

P RGO impl tati Stepsi
RGO implementations and apers _mp ementation epszen
corresponding stepsizes [37, 38] Exact Small

[13, 18] Approximate Large

mization and sampling. For optimization, we use this proximal map and an adaptive
stepsize rule to design a universal bundle method. For sampling, we combine this
proximal map and rejection sampling to realize the RGO, and then propose a practical
and efficient proximal sampling algorithm based on it.

For both optimization and sampling, we consider two specific scenarios: (1) f is
Holder smooth, i.e., f satisfies

If' @) = £ < Lollu —v[*, Vu,veR?, %)
where f’ denotes a subgradient of f, @ € [0, 1], and L, > 0; and (2) f is a hybrid
function of Holder smooth components, i.e., f satisfies

n
1f'@) = f' @) <D Lo llu —vl|*, Vu,v e RY, (6)
i=1
where ; € [0, 1] and Ly, > O forevery 1 <i < n. When o = 0, (5) reduces to a

Lipschitz continuous condition, and when & = 1, itreduces to a smoothness condition.
It follows from (5) and (6) that for every u, v € RY,

4 Lo a+1
@) — f) = (f (W), u—v) < ——[u—v||*", (7
a+1
and .
F@) = f) = (f@u—v)y <> aL+ e — ] ®)

i=1

The proof is given in Appendix A.

Example. Consider the £, regression problem with data {(a;, b;)}_; where a; € R4
and b; e Rfori =1,...,n,

n

_! T p
f(x)—nZIa,-x bilP, 1<p<2. ©)
Deﬁne¢(t) == |t|p, then (f)/([) =p Sign(t) |t|p—1 and
o = LS ey — boa
f(x)—nlgcb(a,-x bi)a;.

@ Springer



Journal of Optimization Theory and Applications (2026) 208:110 Page70f34 110

It is shown in Lemma A.4 of Appendix A that ¢’ is Holder continuous with exponent
p — 1 and constant p22>~7. Forany x, y € R?, letu; = al.Tx —b;j and v; = a,.Ty — b;,
using the Holder continuity of ¢, we derive

1@ = POl == 30 6w ¢ wn)ay
i=1

n 9 .
<3 10w — 'l il = 2 p(§||a,~||f’)||x—y||ﬂ—l.

i=1

Hence, f satisfies the Holder smoothness condition (5) with

2—p M
p2
a=p-1, Lo=""—D3 lal’
i=1
The £, regression can be extended to mixed-exponent regression as an example of the
hybrid case (6), where

1 .
f(x):;Z|aiTx—bi|p', 1<p <2 (10)

and 5
. Qe Pi
o =pi— 1, La,~=pl—

llai |7

The above objective functions f in (9) and (10) can also appear as the potential
energy in Bayesian inference. Instead of minimizing f(x) to obtain a point estimate
(e.g., the maximum a posteriori or MAP solution), one may consider sampling v(x) o
exp(— f(x)) for quantifying uncertainty around the MAP solution.

Throughout the analysis in this paper, we use the following notation. When pre-
senting complexity results, O(-) denotes the standard “big-O” notation, while o)
suppresses polylogarithmic factors. We also write a < b to indicate that a and b are of
the same order, i.e., there exist positive constants c1, ¢ > O such thatcia < b < c2a.

3 Algorithm and Complexities for the Proximal Subproblem

The proximal subproblem (3) generally does not admit a closed-form solution. We
design an iterative method that approximately solves (3) and derive the corresponding
iteration-complexities for Holder smooth and hybrid f in Subsections 3.1 and 3.2,
respectively.

Given a point y € R?, we consider the optimization problem

1
f](x*) = min {f;7(x) = f@)+ gl P ixe R"} (1)
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and aim at obtaining a §-solution, i.e., a point x such that f;’ x) — f;’ x*) < 4. In
both Holder smooth and hybrid settings, we use a regularized cutting-plane method
(Algorithm 2), which is usually used in the proximal bundle method [41, 42] for
solving convex non-smooth optimization problems.

We remark that though Algorithm 2 is widely used in the proximal bundle method
and is not new, the complexity analyses (i.e., Theorems 3.1 and 3.2) for Hélder smooth
and hybrid functions f are lacking.

Since the prox center y is fixed throughout this section, we simplify the notation
by writing fv’7 as f" in this section to ease readability.

Algorithm 2 Regularized Cutting-plane Method

Require: Let y € ]Rd, n > 0,and § > 0 be given, and set xo = Xg =y, j = 1, and fon(xo) = —o0.
while f7(%;_1) — f}’fl(xj_l) > §do

fi) =max {£0) + (f/ (), x —x;): 0<i < j— 1}, (12)
1
Xj = argmin {f}?(x) = fi)+ %Hx —y||2 X € ]Rd}, (13)
%j =argmin {f7(x) : x € {xj, %j_1}}, (14)
j<—Jj+1L

end while
return J = — 1, x;,and X;.

The basic idea of Algorithm 2 is to approximate f with piece-wise affine functions
constructed by a collection of cutting-planes and solve the resulting simplified problem
(13). As the approximation becomes more and more accurate, the best approximate
solution X; converges to the solution x™ to (11).

Subproblem (13) can be reformulated into convex quadratic programming with j
affine constraints and hence is solvable.

The following technical lemma summarizes basic properties of Algorithm 2. It is
useful in the complexity analysis for both optimization and sampling.

Lemma 3.1 Assume f is convex.
For every j > 1, define
8j = [ — f] (x)). 15)
Let J, xj, Xj be the outputs of Algorithm 2, then the following statements hold:

a) {fj} serves as a sequence of non-decreasing lower approximations of f: f;j(x) <
fiv1(x) and fj(x) < f(x), Vx € R andVj > 1;

b) direct consequence of (13): fj(xj) + |lx — xj||2/(2n) < fjn(x), Vx € R? and
Vj>1;

¢) {8} is a decreasing sequence: §5 < 8 and §j 1+ %ijﬂ —xj||2 <6, Vji=1;

d) solution guarantee for xj andxy: f1(xy) — f(x) <8 — %ij —x]||3, Vx € RY;
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e) optimality condition of (11): —%(x* —y) € 3f(x*) where d f denotes the subd-
ifferential of f.

Proof a) The first inequality follows from the definition of f; in step 2 of Algorithm
2. The second inequality directly follows from the definition of f; and the convexity

of f.
b) Noting that f ;7 as the objective function of (13)is (1/n)-strongly convex, it thus
follows from Theorem 5.25 of [1] that

fjn(x) f (xj) = IIx—x 1%, Vx eR?.

Hence, this statement follows.
c) This first inequality immediately follows from (15) and step 4 of Algorithm 2.
Using the first inequality in 3.1(a) and 3.1(b) with x = x4, we obtain

1
f]+l(xj+l)>f (X;+1)>f (xj) + n||X/+1—X A%

This inequality, the definition of x; in (14), and the definition of §; in (15) imply that

1
Bt = 1) = Sl () < 1E) = S G = e = x; I

2
=6 — Z||xj+l —xjl°.

d) Using the second inequality in (a), (b) with j = J, and the first inequality in (c),
we have
- 1 s @ 1 5
Q&) —fx)+ E”x —xy7 = fGp) = fr(x) + EII)C —xs

(b) B 1 (c) 1 1
< fGEND = 1D+ —lx —ylII> <8 — — % — yI* + —Ilx — ylI*.
2n 2n 2n

This statement then follows from rearranging the terms and the definition of f" in

an.
e) This statement directly follows from the first-order optimality condition of (11).
O

Clearly, when Algorithm 2 terminates, the output x; is a é-solution to (11). To
see this, note that, using the first inequality in Lemma 3.1(c), (13), and the fact that
f7() < £7(), we have

(13)
TG <8+ fl(xy) < 8+ f](x*) <8+ f1(x*).

It is also easy to see that §; is computable upper bound on the gap f"(X;) — f"(x™).
Hence, Algorithm 2 terminates when 6; < 6.
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3.1 Complexity for Holder Smooth Optimization

This subsection is devoted to the complexity analysis of Algorithm 2 for solving (11)
where f is Holder smooth, i.e., satisfying (5). The following lemma provides basic
recursive formulas and is the starting point of the analysis of Algorithm 2.

Lemma 3.2 Assume f is convex and Ly-Holder smooth. Then, for every j > 1, the
following statements hold:

L 1.
a) 8 < gl —xj—all*h
2

b) §j41+ 2%] (%8j+1)r+1 <94j.
Proof a) It follows from the definition of §; in (15) and the definition of X; in (14) that
(15) Hes 0 (14) n 0
§j = [T =[x = [ = [ () = fxp) = fi(x))
< fxj) = flxjm) = (f'(xj=), xj — xj—1)

Lo

|Ol+1
o+ 1 ’

IA

lxj —xj—1l

where the second inequality is due to the definition of f; in the step 2 of Algorithm
2, and the third inequality is due to (7) with (u, v) = (xj, x;_1).

b) This statement directly follows from a) and the second inequality in Lemma
3.1(c). O

We know from Lemma 3.1(c) that {§;} ;> is non-increasing. The next proposition
gives a bound on j so that §; < 4, i.e., the termination criterion in step 4 of Algorithm

2 is satisfied.

Proposition 3.1 Define

2
1 fa+1\aT 1o 1+8 81
[ pp— 80(1 :1 —1 - . 16
P 277<La> e JJ/‘/’ Og<5>—‘ (10

Then, the following statements hold:

a) if(Sj > 6, then (1 + B <681,
b) §; < 6 forevery j > jo.

As a consequence, the iteration count J in Algorithm 2 satisfies J < jo.

Proof a) Using the definition of 8 in (16), the assumption that §; > &, and Lemma
3.2(b), we obtain

2 2

A+ B8 =8+ () sits <5+ L (215 ) <
J =9 2n L. Jj =9 2n L. J =0j—1-
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b) Since {4} j>1 is non-increasing, it suffices to prove that §;, < §. We prove this
statement by contradiction. Suppose that §;, > §, then we have §; > 6 for j < jo.
Hence, statement (a) holds for j < jg. Using this conclusion repeatedly and the fact
that T < exp(r — 1) with r = 1/(1 + B), we have

d) <exp (— (o — 1)) 81 <6,

% = T I+ p

where the last inequality is due to the definition of jy in (16). This contradicts with
the assumption that §, > 4, and hence we prove this statement. O

The following result shows that §; is bounded from above, and hence the bound in
Proposition 3.1 is meaningful.

Lemma 3.3 Fora given y € R?, we have

1
oﬂ?“+

L
8 < / Ol-'r].
ST I DI

Proof Following the optimality condition of (13) with j = 1, we have xog — x; =
nf'(x9) = nf’(y). This identity and Lemma 3.2(a) with j = 1 then imply that the
lemma holds. o

We now conclude the iteration-complexity bound for Algorithm 2.

~ 2 l—a
Theorem 3.1 Algorithm 2 takes O (r]LS“ (%) ofl 4 1) iterations to terminate.
Proof This theorem follows directly from Proposition 3.1 and Lemma 3.3. O

3.2 Complexity for Hybrid Optimization

This subsection is devoted to the complexity analysis of Algorithm 2 for solving (11)
where f is a hybrid function satisfying (6). The following lemma is an analogue of
Lemma 3.2 and provides key recursive formulas for §;, which is defined in (15).

Lemma 3.4 Assume f is convex and satisfies (6). For § > 0, define

_2

Lot{'+l

M=) — an
= [ + Da1!

n

Then, for every j > 1, the following statements hold:
a) 8j < Hllxj —xj1l? + 0 (1 — )
b) (14 77) (601 = Ti (1 —ad) <8, — X1 (1 —ap
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Proof a) Following a similar argument as in the proof of Lemma 3.2(a) with (7)
replaced by (8), we have

n

L,. )
8 SZaiilllu—vH“l“. (18)
i=l1

Using the Young’s inequality ab < a”/p + b?/q with

L 7& 2 2
a_—a”x x__1||01+1’ b:(SlT, p= 5 q= 5
1 a ] J _
@+ 157 a+1 l—«
we obtain
2
L LT (1—a)s
"‘lnx,- —xj )t s ———— I —x P+ —
o+ 2[(ar + )81+t

Combining the above inequality and (18), and using the definition of M in (17), we
prove the statement.
b) It immediately follows from (a) and the second inequality in Lemma 3.1(c) that

1 2
6+1+ (j+l Z(l—a, )S(SJ—H—'—ZHXJ—H_XJH S(Sj,

and hence the statement follows. O
The following lemma gives an upper bound on §; similar to Lemma 3.3.

Lemma 3.5 Fora given y € R?, we have

5 < Ol,-l—l
I ; ,+1”f(y)”

Proof This lemma follows from a similar argument as in the proof of Lemma 3.3. O

The following proposition is the key result in establishing the iteration-complexity
of Algorithm 2.

Proposition 3.2 We have §; < 6, for every j such that

. 261
Jj =0 +nM)log 5 ) (19)
Proof Let
nM
=—, (20)
1+nM
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then Lemma 3.4(b) becomes

n n
1) 1)
dj+1— E (1 _Oli)i <t <tj - E (1 _O‘z’)§> :
i=1 i=1

Using the above inequality repeatedly and the fact that t < exp(r — 1), we have for
every j > 1,

5; @ <! (51 - @) < 718, < expl(z — D(j — D31

Hence, it is easy to see that §; < §if j > ﬁ log <25ﬂ) Using the definition of 7 in

(20), we have if j is as in (19), then §; < 4. O
We are ready to present the complexity bound for Algorithm 2.

Theorem 3.2 Algorithm 2 takes @) (nM + 1) iterations to terminate, where M is as in
17).

Proof This theorem follows directly from Proposition 3.2 and Lemma 3.5. O

3.3 Implementation of Algorithm 2

This subsection presents the simulation results of Algorithm 2 on solving the regular-
ized subproblem (11) for two objective functions f: quadratic programming (QP) and
£, regression. In both cases, the subgradient f” is computed by automatic differenti-
ation via Zygote.jl [22], and the subproblem (13) is reformulated as a QP and solved
using Clarabel.jl [19]. Numerical simulations are conducted on an i9-13900k desktop
with 64 GB of RAM

Quadratic Programming We first consider the unconstrained QP problem

fx) = %xTQx + (¢, x)

where O € S? and ¢ € RY. We generate Q = AAT/|AAT || where A € R¥*4
has normally distributed entries and ||[AAT |, = max; 1 [(AAT); i1 is the entrywise
infinity norm. The linear term ¢ and point y are also entrywise normally distributed.
The dimension d is set to be 1000.

Note that (11) for QP has the closed-form solution

ar-lT L_z_ —1p—1, -1
gmin ) o Qx+(c,x>+2n||x yITr =@+ Dy —o),

xeR”

hence we can compare the progress of Algorithm 2 against the true minimum. We run
Algorithm 2 until the condition §; < 107 is satisfied. Figure 1 shows the function
value decrease of the minimum value iterate f;? (x;) versus the optimal value f;? (x™*)

@ Springer



110  Page 14 of 34 Journal of Optimization Theory and Applications (2026) 208:110

Fig. 1 Proximal subproblem Quadratic Objective
progress of Algorithm 2 in 103
quadratic programming = _'7 0.05
q? 10" — 0.1
14‘; - 0.5
\'{,‘ 10—] — 1.0
a - 50
<
O 103
[}
5
8 10734
=
o T T T T T
0 20 40 60 80
Iteration j
Fig.2 Proximal subproblem fp Regression (r[ =1.0)
progress of Algorithm 2 in £,
regression

Model Gap §;

0 500 1000
Iteration j

with varying n. Noting that Algorithm 2 requires more iterations as 7 increases, this
observation is consistent with the complexity bound (proportional to 1) stated in The-
orem 3.1.

£ Regression We next consider £, regression, where the objective f is of the form

f@) = IlAx = bllp,

where A € R"*¢ and b € R” have normally distributed entries and A is again
divided by its entrywise infinity norm. We set d = 100 and n = 500 for testing.
The point y € R? is entrywise normally distributed, and is identical for all p values
tested. Algorithm 2 is terminated when §; < 10~°. Fixing n = 1.0, Fig. 2 shows the
trajectory of the gap §; for varying p values.

4 Adaptive Proximal Bundle Method

As discussed in Sect. 3, the cutting-plane method (i.e., Algorithm 2) is widely used
in the proximal bundle method as a subroutine to repeatedly solve the proximal sub-
problem (3). Since the proximal bundle method uses a more accurate cutting-plane
model f; rather than a linearization as an approximation of the objective function f,
it generalizes the subgradient method and is able to work with weaker regularization,
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namely larger stepsize 1. This explains why both methods have optimal complexity
bounds [41, 42], but the proximal bundle method is always more efficient in practice.

For both the subgradient method and the proximal bundle method to have the
optimal performance, one needs to carefully select the stepsize 1, namely, being small
enough for the subgradient method and within a certain (but relatively large) range for
the proximal bundle method. In both cases, we need to know the problem-dependent
parameters such as « and L, which are unknown or hard to estimate in practice. In
this section, we develop the APBM based on an adaptive stepsize strategy for (3) and
using Algorithm 2 to solve each subproblem (3). We also discuss variants of adaptive
subgradient methods and compare them with APBM. For simplicity, we only present
the analysis of Holder smooth functions satistfying (5), while the hybrid functions
satisfying (6) can be similarly analyzed using results from Subsection 3.2.

From practical observations [39], the proximal bundle method works well when the
number of inner iterations (i.e., those of Algorithm 2 to solve (3)) stays as a constant
much larger than 1 (i.e., that of the subgradient method), say 10. Recall from Theorem

- 2 1-a
3.1 that inner complexity is O <77L§,‘+l ($)*™" + 1. Since we do not know  and Ly,

we cannot choose a constant stepsize 7 so that the number of inner iterations is close
to a desired number such as 10. Hence, an adaptive stepsize rule is indeed needed.
By carefully examining Proposition 3.1 and Theorem 3.1, we find that the inner
complexity is O(B~! + 1) where 8 is as in (16). Suppose we want to prescribe the
number of inner iterations to be close to ! for some Bo € (0, 1], if By < B, then by
Proposition 3.1(a), we have
(1+ Bo)d; < 8-1. 1)

Hence, it suffices to begin with a relatively large n, check (21) to determine whether the
n is small enough (i.e., § is large enough), and adjust n (if necessary) by progressively
halving it.

Algorithm 3 below is a formal statement of APBM based on the above intuition.

Algorithm 3 Adaptive Proximal Bundle Method

Require: Let yg € RY, no > 0, o € (0, 1], and ¢ > 0 be given.
fork=1,2,--- do
Call Algorithm 2 with (y, n, 8) = (yk—1, nk—1, €/2) and output (yg, yx) = (x7,X7).
if (21) is always true in the execution of Algorithm 2, then

set g = Nk—1;
else
set Mg = Ng—1/2.
end if
end for

The following lemma provides basic results of Algorithm 2 and is the starting point
of the analysis of APBM.

Lemma 4.1 Assume f is convex and Lg-Holder smooth. The following statements
hold for APBM:
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a) foreveryk > 1 and u € R?, we have
201 f (i) = fAOT < Nyk—t = ul® = Iy —ull® + me—re; - (22)

b) foranyk > 1, if

2

1 (a4 1\ e\ i
< — — , 23
=55 (20) 7 G) =

then 77k = T’k—l;
c) {nk} is a non-increasing sequence;
d) foreveryk > 0,

2
T A=
nkza:mm{%(L ) () “,no}. 24
o

Proof a) It follows from Lemma 3.1(d) that for every u € R4

L) — FOOT <208 + u — v = llxs —ull?.

Noting from step 2 of Algorithm 3 that (8, 1, y, xs, X7) = (6/2, Nk—1, Yk—1 Yk» Yk)s
which together with the above inequality, implies that (22) holds.

b) It follows from Proposition 3.1(a) and (23) that (21) always holds in the execution
of Algorithm 2. In view of step 3 of Algorithm 3, there holds nx = nx—1.

c) This statement clearly follows from step 3 of Algorithm 3.

d) This statement immediately follows from (b) and step 3 of Algorithm 3. O

The following theorem gives the total iteration-complexity of APBM.

Theorem 4.1 Assume f is convex and Lq-Hélder smooth. If ng < |yo — x«|%/e,
then the iteration-complexity to obtain an g-solution to (1) (i.e., a point x such that

S(X) —min,pa f(x) <€) is given by

2

5 La+l _ 2 2 1\ eF1

oL Mo —xl” 0 eh <_) log (22 41 (25)
gatl € Q

where 1 is as in (24).

Proof Noting from Lemma 4.1 (d) that n; is bounded from below, we know there
exists some 1) € [Q, no] such that for some kg > 1, nx = 1 for k > k¢. Thus, it follows

from the assumption that no < ||yo — X« |2/e that

llvo — x« 1

== (26)
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We consider the worst-case scenario where APBM keeps halving the stepsize until it
is stable at 77 and the convergence relies on the conservative stepsize 7. Summing (22)
from k = 1 to n, we have

2D k- <lr<nkil<1n FG0 = f(u)> <2 m-ilf GO — f@w)]
k=1 - k=1

n
2 2
<lyo—ull® = llyn —ul®>+&)_m1.
k=1

The above inequality with u = x,, the fact that nr < no, and the assumption that
nk = 7 for k > ko imply that

lyn — xll? < llyo — xll* + nnoe (27)
and ) 5
o lyo —x:l®> & llyo—x? e
min — i< =t =<+ —.
) TR e Ty s

In order to have min; <x<, f (Jx) — f« < €, we need

_ 2
n—k0=o<u+1>. (28)
ne

Moreover, it follows from the way 7y is updated in step 3 and Lemma 4.1(d) that

ko= O (log (%) + 1) —0 <log <%) + 1) . (29)

Indeed, (27) holds with n replaced by any k < n and

vk = x:1? < llyo — xlI” + nnoe.
It thus follows from (28) and (29) that {yx} is bounded. As a result, using Lemma 3.3,

we can derive a uniform bound on §; for every call to Algorithm 2. Now, using Theorem
3.1, we have the iteration-complexity of every call to Algorithm 2 is uniformly bounded

by
5 2 71\
& (7Le™ (—) i (30)
£

for every cycle k > ko and by

3 21 (1 it
O | noLe - +1 (31)

@ Springer



110 Page 18 of 34 Journal of Optimization Theory and Applications (2026) 208:110

for every cycle k < kg — 1. Hence, multiplying (28) and (30) and using (26) and the
definition of 7 in (24), we obtain the iteration-complexity

2

» Loc+l _ 2
oL —wl® |

ga+l

for cycles k > ko, and multiplying (29) and (31), we obtain the iteration-complexity

l—a
s 2 N\t
O (noL&’“ (—) log <@> + 1)
€ n

for cycles k < ko — 1. Finally, the total iteration-complexity (25) clearly follows from
the above two bounds. O

We note that the final e-solution produced by Algorithm 3 is the point y; that
achieves minj<x<, f (k). This differs from the last-iterate convergence observed in
the smooth case, since the objective function f here is Holder smooth and may include
the nonsmooth case (i.e., @ = 0).

Discussion on other universal methods Several universal methods based on the
backtracking line-search procedure have been studied in the literature. Paper [53]
considers the same Holder smooth problem (with an additional hybrid function /)
as in this paper. To finds an e-solution of (1), the universal primal gradient method
proposed in [53] starts from an initial pair (Xo, 70) and in the (j + 1)-th iteration
searches for a pair (x,, n) satisfying a condition

~ 1 A 12 £
f(xn)—ef(xn;xj)—ZHXn—XjH SE’ (32)
where £y (u; v) = f(v) + (f'(v,u — v) and
. A 1 A2
xy = argmin 1€ (u; X;) +h) + —|lu — X" ¢ . (33)
ueR” 2n

If the condition (32) is not satisfied, then the method rejects the pair, sets n < /2,
and updates x; as in (33) with the new 7, otherwise, it accepts the pair and sets
(%41, nj+1) = (x, n). Two other universal methods are developed in [53], namely,
the universal dual gradient method and the universal fast gradient method. Following
[53], paper [21] extends the universal fast gradient method to the case of hybrid
functions (6). Motivated by the bundle-level method of [36], paper [32] proposes
two accelerated variants, i.e., the accelerated bundle-level method and the accelerated
prox-level method. The parallel bundle method of [9] is also shown to be universal at
the price of running multiple threads.
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Paper [42] proposes an adaptive composite subgradient (A-CS) method for solving
(1) where f satisfies

If' ) = f'OI <2My + Lyllx —yll. Vx,y e RY (34)
It is shown in Proposition 2.1 of [42] that any function f that satisfies
LF/G) = /DI < 2M + Lllx — yII*, Vx,y € RY,

for some « € [0, 1] also satisfies (34) with

L0 l—a) «
My (6) := My + — L(0) := Ly J

for any 6 > 0. Hence, the Holder smooth functions (5) considered in this paper are
included in the class of functions satisfying (34). More interestingly, a careful look at
A-CS of [42] and the universal primal gradient method of [53] reveals that the two
methods are identical.

The universal primal gradient method is essentially an adaptive subgradient method
and the convergence of subgradient methods relies on small enough stepsizes, so it
is natural to enforce (32) to make the method adaptive. However, the bundle method
converges with any constant stepsize 7 since it guarantees the condition §; < ¢/2,
which is in the same spirit of (32), by the cutting-plane approach (i.e., Algorithm 2)
but not by small 5. Therefore, it is not necessary to use a small 5 in every iteration of
each call to Algorithm 2. Instead of frequently reducing n, by the introduction of S,
APBM develops a way to regulate the complexity of Algorithm 2 and adjust n only
when (21) is not always true in the previous call to Algorithm 2. Another difference
between APBM and the universal primal gradient method is that the latter rejects all the
pairs (x,, 1) until (32) is satisfied, but APBM always accepts the output of Algorithm 2
even if (21) is not true for every iteration in Algorithm 2. Therefore, APBM potentially
employs a larger stepsize n than the universal primal gradient method and is thus a
more relaxed adaptive method.

Discussion on optimal universal methods The lower complexity bound for solving
(1) is shown in [50] to be

2
o (Lanyo —x*n“a)

&

The well-known Nesterov’s accelerated gradient method has been shown in [51] to
match the above complexity bound and hence is an optimal method. The accelerated
bundle-level method of [32], the universal fast gradient method of [53], and a follow-up
work [21] all establish optimal complexity bounds.

On the other hand, the dominant term of bound (25) is its first term and it is
only optimal when o = 0, i.e., f is Lo-Lipschitz continuous. Motivated by [51], it
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is possible to develop optimal universal methods based on the accelerated gradient
method. This requires accelerated schemes in both PPF and Algorithm 2. Paper [46]
proposes an accelerated variant of PPF, which is extended by [4, 15, 23] to obtain
optimal p-th order methods with convergence rate O(k~3P+D/2) for p > 2.

We finally note that this paper does not aim to develop the optimal complexity
of universal methods; rather, it presents an interesting application of our analysis of
Algorithm 2 in the context of universal methods.

5 Proximal Sampling Algorithm

Assuming the RGO in the ASF can be realized, the ASF exhibits remarkable conver-
gence properties. It was shown in [33] that Algorithm 1 converges linearly when f
is strongly convex. This convergence result is recently improved in [6] under various
weaker assumptions on the target distribution 7% o¢ exp(— f). Below we present
several convergence results established in [6] that will be used in this paper, under
the assumptions that 7% is log-concave, or satisfies the log-Sobolev inequality or
Poincaré inequality (PI). Recall that a probability distribution v satisfies PI with con-
stant Cpy > 0 (1/Cpr-P]) if for any smooth bounded function i : RY > R,

Eu[(¥ — Ey(¥))°] < CpiEy [ VY17

To this end, for two probability distributions p < v, we denote by

2
o P
H,(p) :=[plog;, X5 (p) :=f7—1

the KL divergence and the Chi-squared divergence, respectively. We denote by W5 the
Wasserstein-2 distance

W2(v, p) = min / Ix — yl2dy (x. ).
y€ll(v,p)

where IT(v, p) represents the set of all couplings between v and p.

Theorem 5.1 ([6, Theorems 2 & 4]) We denote by p,ff the law of xi of Algorithm 1
starting from any initial distribution ,05( . Then, the following statements hold:

a) if 7% exp(—f) is log-concave (i.e., f is convex), then an(p,f() <
W3 (o3¢ %)/ ()
b) if 1% o exp(—f) satisfies h-PI, then Xix(p,f() < xj%x(,o(;()/(l + an)?k.

As discussed earlier, to use ASF in sampling problems, we need to realize the
RGO with efficient implementations. In the rest of this section, we develop efficient
algorithms for RGO associated with the two scenarios of sampling we are interested in,
and then combine them with the ASF to establish a proximal algorithm for sampling.
The complexity of the proximal algorithm can be obtained by combining the above
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convergence results for ASF and the complexity results we develop for RGO. The
rest of the section is organized as follows. In Subsection 5.1 we develop an efficient
algorithm for RGO associated with Holder smooth potentials via rejection sampling.
This is combined with ASF to obtain an efficient sampling algorithm from Holder
smooth potentials. In Subsection 5.2, we further extend results to the second setting,
i.e., hybrid potentials.

5.1 Sampling from Holder Smooth Potentials

The bottleneck of using the ASF (Algorithm 1) in sampling tasks with general dis-
tributions is the availability of RGO implementations. In this subsection, we address
this issue for convex Holder smooth potentials by developing an efficient algorithm
for the corresponding RGO.

Our algorithm of RGO for f is based on rejection sampling. We use a special
proposal, namely a Gaussian distribution centered at the §-solution of (11), which is
obtained by invoking Algorithm 2. With this proposal and a sufficiently small n > 0,
the expected number of rejection sampling steps to obtain one effective sample turns
outto be bounded from above by a dimension-free constant. To bound the complexity of
the rejection sampling, we develop a novel technique to estimate a modified Gaussian
integral (see Proposition 5.1).

To this end, let J, X7, x; be the outputs of Algorithm 2 and define

1 N

hy = E||.—xj||2+f;7(x1) -4, (35a)

M= oI ) (35b)
2 a+1 Y

Note that /5 is only used for analysis and thus the fact it depends on x* is not an issue.
Algorithm 4 describes the implementation of RGO for f based on Algorithm 2 and
rejection sampling.

Algorithm 4 RGO Implementation based on Rejection Sampling

1.Lety e R4, n > 0, and § > 0 be given, and run Algorithm 2 to compute xy and X .
2. Generate X ~ exp(—hy(x)).
3. Generate U ~ U[0, 1].
if U < exp (—fy/(X) +h1(X)), then
accept/return X;
else
reject X and go to step 2.
end if

Lemma 5.1 Assume f is convex and Ly-Holder smooth. Let f;7 be as in (11) and h
and hy be as in (35). Then, for every x € R?, we have

(@) < f1() < o). (36)
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Proof The first inequality in (36) immediately follows from Lemma 3.1(d) and the
definition of /1 in (35a). By the definition of fy" in (11) we get

1 1
Y = 6 =F0) = f60) 4 5l yIP - it yI?
1 1
=f@) = fOM) + ol =P+ =t at =) (37)
n n

It follows from Lemma 3.1(e) and (7) with (u, v) = (x, x*) that

Lo

|Ol+1
+1 '

flx — x|

1
fO) = fO&") + - —y,x—x") <
n o

which together with (37) implies that

L 1
L L o _ xqpatl . %2
R0 = 67 = Sl =21 =P,

Using the above inequality and the definition of %5 in (35b), we conclude that the
second inequality in (36) holds. O

From the expression of & in (35a), it is clear that the proposal distribution
exp(—h1(x)) is a Gaussian centered at x;. To achieve a tight bound on the expected
runs of the rejection sampling, we use a function 4, which is not quadratic; the stan-
dard choice of quadratic function does not give as tight results due to the lack of
smoothness. To use this 47 in the complexity analysis, we need to estimate the inte-
gral [ exp(—h2), which turns out to be a highly nontrivial task. Below we establish
a technical result on a modified Gaussian integral, which will be used later to bound
the integral [ exp(—h,) and hence the complexity of the RGO rejection sampling in
Algorithm 4.

Proposition5.1 Letrax € [0,1], n >0,a > 0andd > 1. If

2a(nd)@tH/? <1, (38)

1 2 dj2
/ exp (=== lx]? — aflxt ) dx = ST (39)
]Rd 27’] 2

then

Proof Denote r = || x||, then
dx = r¥'drds?!,

where dS¢~! is the surface area of the (d — 1)-dimensional unit sphere.
It follows that

1 © 1
/ exp (——||x||2—sa||x||°‘+]) dx=/ /exp <——r2 — ar““) rd=1drdsd—!
R4 2n 0 2n
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27Td/2 0 1
= — / exp [ ——r? —ar®t! ) rd-dr.
rs) Jo 21

In the above equation, we have used the fact that the total surface area of a (d — 1)-
dimensional unit sphere is 272/ T’ (%) where I'(+) is the gamma function, i.e.,

o0
re) = / el dr, (@1)
0
Defining
oo 1
Fyp(a) = / exp (——r2 — ar““) rddr, (42)
0 2n

to establish (39), it suffices to bound Fy_1 ;(a) from below.
It follows directly from the definition of Fy ; in (42) that

dF,_ o 1
d l,ﬂ(a) _ / exp ——I"2 _ arot+1 (_roH-l)rd—ldr — _Fd—i-ot ﬂ(a)'
da 0 2n ’

This implies Fy ; is monotonically decreasing and thus Fy4« ,(a) < Fgqq,7(0). Asa
result,

dFy—1,(a)
T" > —Fi4a.4(0)
and therefore,
Fy—1y(a) = F4-1,7(0) — aFa1q,,(0). (43)

Setting r = r2/(2n), we can write

= LA R =t
Fq,0) = exp| —=—r" | rfdr = e '(2nt) 2 ndt
0 2n 0
a1 dap1 [0 a1
=277p2 e 't 7 dr. (44)
0
In view of the definition of the gamma function (41), we obtain

_ d+1
Fyn(0) =2T p3'T <%) . (45)

Applying the Wendel’s double inequality (56)
yields

d+a+l el

I (#) - (g) 2

— = = .
r(s) 2

Using (43), (45), the above inequality and the assumption (38), we have
Fag—1y(a) = Fg—1,4(0) —aFgia,,(0)
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I g _a2d+g—1nd+g+1r d+a+1
2 2
dtatl
(2) (1t T2
2 r(g)
a_y 4 (d atl 1 a4 (d
> 29 7721“<§) (1-ata )ZZ(Zn)ﬂ“(E)-

The result (39) then follows from the above inequality and (40). O

We now proceed to show that the number of rejections in Algorithm 4 is bounded
from above by a small constant when § is properly chosen. In particular, as shown in
Proposition 5.2, it only gets worse by a factor of exp(8) and the factor does not depend
on the dimension d. Hence, the implementation of RGO for f is computationally
efficient in practice.

Proposition 5.2 Assume f is convex and Ly-Holder smooth. If

2
_ ((x + 1)a+l

s 46
T QLo #d o

then the expected number of iterations in the rejection sampling of Algorithm 4 is at
most 2 exp(8).

Proof Tt is a well-known result for rejection sampling that X ~ XY (x | y) and the
probability that X is accepted is

P <U - eXP(—fy"(X)))  Jpaexp(= £y (x))dx @7

~exp(—h1(X)) ) Jgaexp(—hi(x))dx’

If follows directly from the definition of /> in (35b) that

1 L
/R , €Xp(=ha(0)dx = exp(=fy/ (x*)) /R L &P (_E llx — x*)1? — a—fl llx — x*n““) dx

Applying Proposition 5.1 to the above yields

27 n)d/2
/ exp(—ha(x))dx = exp(—f;’(x*))%.
R4 2

Note that the condition (38) in Proposition 5.1 holds thanks to (46). By Lemma 5.1,
the above inequality leads to

Q)2

/ eXp(—fV”(X))dxz/ exp(—ha(x))dx > exp(— fy/(x) ———.  (48)
R4 7 R4 2
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Using the definition of % in (35a) and Lemma A.1, we have

/R exp(—h (0))dx = exp (= ]/ E) + ) @), (49)
Using (47), (48) and the above identity, we conclude that

. <U _ P £ (X)

1 . 3 |
B exp(_hl(xn) > S exp(— £ () + f]1(E)) = ) = 5 exp(=9),

and the expected number of the iterations is

1
< 2exp(d).

exp(—fy (X)) ~
P (U = exp(—h1<X)>)

]

We finally bound the total complexity to sample from alog-concave distribution v in
(2) with a Holder smooth potential f. We combine our efficient algorithm (Algorithm
4) of RGO for Holder smooth potentials and the convergent results for ASF, namely
Theorem 5.1, to achieve this goal.

Theorem 5.2 Assume f is convex and L-Holder smooth, then Algorithm 1, initialized
2

with pé( and stepsize n =< 1/(L&™" d), using Algorithm 4 as an RGO has the iteration-
complexity bound

2
L& dwW3 (o, v)
£

0

to achieve ¢ error to the target v  exp(— f) in terms of KL divergence. Each RGO
~ l-a
requires O (é (%) e+tl 4+ 1) subgradient evaluations of f and 2 exp(8) rejection steps

in expectation. Moreover, if v satisfies PI with constant Cpy > 0,
then the iteration-complexity bound to achieve ¢ error in terms of Chi-squared

divergence is
~ 2
O (CPIL&"Jrl d) .

Proof The results follow directly from Theorem 5.1, Theorem 3.1 and Proposition 5.2
2

with the choice of stepsize n < 1/ (LF d). O

5.2 Sampling from Hybrid Potentials
In this subsection, we consider sampling from a log-concave distribution v

exp(— f (x)) associated with a hybrid potential f satisfying (6). This setting is a gen-
eralization of the Holder smooth setting studied in the previous sections. It turns out
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that both Algorithm 1 and the implementation for RGO, Algorithm 4, developed for
Holder smooth sampling can be applied directly to this general setting with properly
chosen stepsizes. Below, we extend the analysis in Subsection 5.1 to the hybrid setting
and establish corresponding complexity results.

The following lemma is a counterpart of Lemma 5.1 in the hybrid setting. Its proof
is given in Appendix B.

Lemma 5.2 Assume f is convex and satisfies (6). Define
ha(x) = = 5|12 + Z Loy et 4 e (50)
’ 2n Pl +1 Y ’

Then, hy(x) > f;f (x) for every x € RY.
The next result is an analogue of the modified Gaussian integral in Proposition 5.1.

Proposition5.3 Lera; € [0,1],a; >0, n >0, andd > 1. If

n 2
ndy a <1, (51)
then
1 - _ d 1 " —1)
/Rd exp (—%lell2 - Z%IIxII""“) dx > (27r1) 2 exp (_E + Z_+> '
i=1
(52)

Proof Using the Young’s inequality st < s”/p + t9/q with

—a 1 2 2
s=a2 Tt = g p= o g=
27 Ol+1 1—0{
we obtain
2 - l—«o 2 -«
allx | < (@ + DasT2E  x |2 + —— < @ x]® + ——,

—2a
where the second inequality is due to the fact that (o 4+ 1)2«+1 < 1 for @ € [0, 1].
Hence, the above inequality generalizes to

Za e+t < Za x> +Z

This inequality and Lemma A.1 imply that

_ o+l
/Rde"p< lxl® Zanxn )
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n

1 2 a-2+1 2 Gy o
> - — St — d
_/Rd eXP( 7 llx |l E a;" x|l E ) x

i=1 i=1

(-1 I
=exp <%> /ﬂ;{d exp <_2_ﬁ”x“2> dx

"1 ;] 1 da
—exp (%) Qri)? (53)
where
1 1 & 24
—-—=—-+ a’m . 54)
non Z '

It follows from (51) that
n>(1+ %)_1 1. Plugging this inequality into (53), we have

1
/ exp (——nxn2 —~ a||x||““> dx
Rd 2n
" — 1
exp (—lel(al ))

d 1
>(2mn)? (1 + Z) )

2(271'7])% exp (_l + M) ’

[

2 4

where in the second inequality, we use the fact that

d

()’ zen(l).

With Lemma 5.2 and Proposition 5.3 in hand, we can bound the complexity of
Algorithm 4 as follows. The proof is postponed to Appendix B.

O

Proposition 5.4 [f stepsize n satisfies

n L 721
o+
d i <1, 55
n ;_1 (aiJrl) = (55)

then rejection steps in Algorithm 4 take at most exp (8 + % + M) iterations

in expectation.

Through the above arguments, we show that Algorithm 4 designed for Holder
smooth potentials is equally effective for hybrid potentials satisfying (6). Combining
Proposition 5.4 and Theorem 3.2 with the convergence results for ASF, we obtain the
following iteration-complexity bounds for sampling from hybrid potentials. The proof
is similar to that of Theorem 5.2 and is thus omitted.
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Theorem 5.3 Assume f is a convex and satisfies (6). Consider Algorithm 1, ini-
tialized with pé( and stepsize n satisfies (55), using Algorithm 4 as a RGO.
Each RGO requires (5( L+ 1) subgradient evaluations of f and in expectation

exp<8+ +Z, ‘(1 il

achieve ¢ error in terms of KL divergence is

) rejection steps. The total complexity of Algorithm 1 to

Lg;

S () awd v

&

O

Moreover, if v satisfies PI with constant Cpy > 0, then total complexity to achieve &
error in terms of Chi-squared divergence is

2

n e

~ La_ a;+1
- dCpr | .
(B (az) ™ )

6 Conclusions

In this paper, we study proximal algorithms for both optimization and sampling lacking
smoothness. We first establish the complexity bounds of the regularized cutting-plane
method for solving proximal subproblem (3), where f is convex and satisfies either (5)
(Holder smooth) or (6) (hybrid). This efficient implementation gives an approximate
solution to the proximal map in optimization, which is the core of both proximal
optimization and sampling algorithms.

For optimization, we develop APBM using a novel adaptive stepsize strategy in
the proximal point method and the approximate proximal map to solve each proximal
subproblem. The proposed APBM is a universal method as it does not requuire any
problem-dependent parameters as input.

For sampling, we propose an efficient method based on rejection sampling and the
approximate proximal map to realize the RGO, which is a proximal sampling oracle.
Finally, combining the sampling complexity of RGO and the complexity bounds of
ASF, which is a counterpart of the proximal point method in sampling, we establish
the complexity bounds of the proximal sampling algorithm in both H6lder smooth and
hybrid settings.

This paper provides a unified perspective to study proximal optimization and sam-
pling algorithms, while many other interesting questions remain open. First, APBM is
only optimal when o = 0, i.e., f is Lipschitz continuous. We are interested in devel-
oping a universal method that is optimal for any o € [0, 1]. One possible direction
is to incorporate the acceleration technique into both the regularized cutting-plane
method and the PPF. Second, as acceleration methods are widely used in optimiza-
tion to obtain optimal performance, accelerated proximal sampling algorithms are
less explored. It is worth investigating a counterpart of the accelerated proximal point
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method [46] in sampling. Finally, we develop APBM as a universal method for non-
smooth optimization, and it would be equally important to design a universal method
for sampling.

A Technical Results

This section collects technical results that are useful in the paper.

Lemma A.1 (Gaussian integral) For any n > 0,

1
/ exp (——||x||2) dx = Qun)d/?.
Rd 2n

The following lemma provides both lower and upper bounds on the ratio of gamma
functions. Its proof can be found in [65].

Lemma A.2 (Wendel’s double inequality) For 0 < s < 1 and t > 0, the gamma
function defined as in (41) satisfies

( t )1 Y _T+s) -
t+s = sr(@)

I-s Fe+1)
STuxsn S0ts

or equivalently,
) 1—s X (56)

Lemma A.3 Assume f is convex and Lq-Holder smooth (i.e., satisfying (5), then (7)
holds for every u,v € R%. Assume f is convex and satisfies (6), then (8) holds for
everyu,v € R4,

Proof We first consider the case when f is convex and L,-Holder smooth. It is easy
to see that

fw) = f) +/Ol<f’(v +t(v—u)),u—v)dr
= [+ (f(v),u—v)+ /01 (f' 0+t —u) — f(v), u—v)dr.
Using the above identity, the Cauchy-Schwarz inequality, and (5), we have
@) = f@) = (f'@u—v) = /Ol<f’(v F = w) — £/, u - v)dr

1
5/0 |f'@+t@=u) = £ @] llu - vldz

||Ot+]

1
5/ Lot%lu — v||*Tdr = 1||u—v
0
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Hence, (7) holds. More generally, if f satisfies (6), then (8) follows the same argument.
O

LemmaA.4 Consider ¢(t) = |t|P and ¢'(t) = p sign(t) |t|P~! fort € R and some
p € [1,2]. Then, for any u, v € R, we have

19'w) = ¢' )] < p2277 fu— v~
Proof Letr := p — 1 € [0, 1]. We consider the following two cases and prove
6/ = ¢' )| < p2' " |u— v,
Case 1: uv > 0. Here, sign(u) = sign(v), so
16" () — &' ()| = p[lul” —[o]'].
Without loss of generality, assume a = |u| > b = |v| > 0. By the subadditivity of

the function x — x” with r € [0, 1], we have (a — b)" > a”" — b" foralla > b > 0.
Hence

Hul" =l | =a" —b" <(@=b)" = |lul —|v|| =|u—0|"
Therefore,
9" () — ¢’ (V)| < plu—vl".
Case 2: uv < 0. In this case, sign(u#) = — sign(v), so

¢ (u) — @' ()| = p (Jul" + [v]").
By the concavity of x — x”, we have
Jul” + Jol” < 27 (] + )" = 2" |u — ol
and thus

¢/ (u) — ¢’ ()| < p2' =" Ju —vl".

The conclusion immediately follows from the above two cases. O

B Missing Proofs in Subsection 5.2

Proof of Lemma 5.2 1t follows from the same argument as in the proof of Lemma 5.1
that (37) holds. Using (37), Lemma 3.1(e), and (8) with (u, v) = (x, x*), we conclude
that

n

Lai i+1
o) = flan <y ] A A

1
—[lx — x*|I%.
n

i=1
The lemma immediately follows from the above inequality and the definition of 4, in
(50). O
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Proof of Proposition 5.4 1If follows directly from the definition of /5 in (50) that
N (% 1 *12
exp(—ha(x))dx = exp(—fy/(x™)) | exp | ——[x —x7|
R4 R4 27]

n
La.
— 3 e — et d
oot

It is easy to see that (55) implies that (51) holds with a; = % Hence, by Proposi-

tion 5.3, we have (5.3) holds with a; = %, ie.,

n

1 %12 LO!' ko +1
R — — P S _ i d
/Rd eXP( 2 llx — X7 E a,-+1”x x| x

i=1

The above two inequalities and Lemma 5.2 imply that

f exp(—f;’(x))dx > / exp(—ha(x))dx > (271)7)%
R4 R4

exp (‘f>7(x*) - % + M) _

As in the proof of Proposition 5.2, (47) and (49) hold. Using (47), (49), and the above
inequality, we have

p <U _ &P A (X))

xp(—h = exp Xj) — X 1 Zr'l_—l(oli - 1)
Y T(x*) =6 — = == 7
€ P( 1(X))> z¢€ ( y(xJ) fy( ) 1) + )

2 4

The above inequality and the fact that £/ (¥;) > f)/ (x*) immediately imply that

1 1 (1 —
- Sexp<6+—+—21_1( oz,)).
P (U < 2L 2 4
— exp(—h1(X))
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