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Abstract
Weconsider convex optimizationwith non-smooth objective function and log-concave
sampling with non-smooth potential (negative log density). In particular, we study two
specific settings where the convex objective/potential function is either Hölder smooth
or in hybrid form as the finite sum of Hölder smooth components. To overcome the
challenges caused by non-smoothness, our algorithms employ two powerful proximal
frameworks in optimization and sampling: the proximal point framework for opti-
mization and the alternating sampling framework (ASF) that uses Gibbs sampling
on an augmented distribution. A key component of both optimization and sampling
algorithms is the efficient implementation of the proximal map by the regularized
cutting-planemethod.Weestablish its iteration-complexity under bothHölder smooth-
ness and hybrid settings using novel convergence analysis, yielding results that are
new to the literature. We further propose an adaptive proximal bundle method for
non-smooth optimization that employs an aggressive adaptive stepsize strategy, which
adjusts stepsizes only when necessary and never rejects iterates. The proposed method
is universal since it does not need any problem parameters as input. Additionally, we
provide an exact implementation of a proximal sampling oracle, analogous to the prox-
imal map in optimization, along with simple complexity analyses for both the Hölder
smooth and hybrid cases, using a novel technique based on a modified Gaussian inte-
gral. Finally, we combine this proximal sampling oracle and ASF to obtain a Markov
chain Monte Carlo method with non-asymptotic complexity bounds for sampling in
Hölder smooth and hybrid settings.
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1 Introduction

We are interested in convex optimization problems

min
x∈Rd

f (x) (1)

as well as log-concave sampling problems

sample ν(x) ∝ exp(− f (x)), (2)

where f : Rd → R is convex but not necessarily smooth. In sampling, a potential
of the distribution ν(x) is defined as the negative log-density, which is f (x) up to a
constant.

Optimization and sampling are two of the most important algorithmic tools at
the interface of data science and computation. Optimization has been extensively
studied across a wide range of fields, including machine learning, communications,
and supply chain management. Over the past two decades, particular attention has
been devoted to gradient-based first-order methods. Many classical ideas have been
revisited and extended to large-scale optimization, such as the randomized coordinate
descentmethod [52], the primal–dual hybrid gradientmethod [5], and the extragradient
method [30]. Drawing samples from a given (often unnormalized) probability density
plays a crucial role in many scientific and engineering problems that face uncertainty
(either physically or algorithmically). Sampling algorithms are widely used in many
areas such as statistical inference/estimation, operations research, physics, biology, and
machine learning, etc [2, 11, 12, 16, 25, 26, 31, 63]. For instance, inBayesian inference,
one draws samples from the posterior distribution to infer itsmean, covariance, or other
important statistics. Sampling is also heavily used in molecular dynamics to discover
new molecular structures.

This work is along the recent line of research that lies in the interface of sampling
and optimization [10, 61]. Indeed, sampling is closely related to optimization. On
the one hand, optimization can be viewed as the limiting case of sampling from the
distribution exp(− f (x)/T ) as the temperature parameter T (which represents the
level of randomness) approaches zero. In this limit, the probability mass increasingly
concentrates around the minimizers of f (x). On the other hand, sampling ν(x) has an
optimization interpretation [24, 66, 68]: the Langevin dynamics in space corresponds
to the Fokker-Planck equation, which is the gradient flow of the relative entropy
functional (with respect to ν) in the space of measures with the Wasserstein metric.
The popular gradient-based Markov chain Monte Carlo (MCMC) methods such as
LangevinMonteCarlo (LMC) [7, 20, 55, 57],Metropolis-adjustedLangevin algorithm
(MALA) [3, 56, 57], andHamiltonianMonte Carlo (HMC) [49] resemble the gradient-
based algorithms in optimization and can be viewed as the sampling counterparts of
them.
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The goal of this paper is to develop efficient proximal algorithms to solve optimiza-
tion problems (1) as well as to draw samples from potentials (2), where both f in (1)
and (2) lack smoothness (i.e., when f does not have Lipschitz continuous gradient).
In particular, we consider two settings where the convex objective/potential function
f is either Hölder smooth (i.e., the (sub)gradient f ′ is Hölder-continuous with expo-
nent α ∈ [0, 1]) or a hybrid function with multiple Hölder smooth components. The
core of both proximal optimization and sampling algorithms lies in the proximal map
of f . We first develop a generic and efficient implementation of this proximal map.
Building on it, we design an adaptive proximal bundle method to solve problem (1).
Furthermore, by combining the proximal map of f with rejection sampling, we pro-
pose a highly efficient approach to realize a proximal sampling oracle, which is used
in a proximal sampling framework [6, 33] in the same spirit as the proximal point
method for optimization. With those proximal oracles for optimization and sampling
in hand, we are finally able to establish the complexity to sample from densities with
non-smooth potentials.

We summarize our contributions as follows.

i) We analyze the complexity bounds for implementing the proximal map of f using
the regularized cutting-plane method in both Hölder smooth and hybrid settings
(Sect. 3). The complexity analyses for both Hölder smooth and hybrid cases, pre-
sented in Subsections 3.1 and 3.2, respectively, are novel contributions to the
literature and employ proof techniques distinct from existing works such as [9, 27,
41, 42, 69].

ii) We develop an adaptive proximal bundle method (APBM) using the regular-
ized cutting-plane method and a novel adaptive stepsize strategy in the proximal
point method, and establish the complexity bound for Hölder smooth optimization
(Sect. 4). APBM is a universal method as it does not need any problem-dependent
parameters as input. In contrast to standard universal methods based on conser-
vative line searches on stepsizes, such as the universal primal gradient method of
[53], APBM has the benefit of adjusting stepsizes only when necessary and never
rejects iterates.

iii) We propose an efficient scheme to realize the proximal sampling oracle that lacks
smoothness and establish novel techniques to bound its complexity. Combining
the proximal sampling oracle and the proximal sampling framework, we obtain
a general proximal sampling algorithm for convex Hölder smooth and hybrid
potentials. Finally, we establish complexity bounds for the proximal sampling
algorithm in both cases (Sect. 5). The complexity bounds presented in Sect. 5 are
similar to those in [13]; however, they are derived under the assumption of an exact
proximal sampling oracle, whereas [13] considers an inexact implementation of
the oracle. The contributions of Sect. 5 lie in providing much simpler complexity
analyses for the exact realization of the proximal sampling oracle in both the
Hölder smooth and hybrid cases, compared to the existing analyses in [37, 38].

It is worth noting that this paper does not aim to establish the optimal complexity
of universal methods or to improve the complexity of proximal sampling algorithms.
Instead, it develops a regularized cutting-plane method as an efficient implementa-
tion of the proximal oracle used in both proximal optimization and sampling, and
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demonstrates its interesting applications in universal methods and proximal sampling
algorithms.

2 Proximal Optimization and Sampling

The proximal point framework (PPF), proposed in [44] and further developed in [58,
59] (see [54] for a modern and comprehensive monograph), is a general class of
optimization algorithms that involve solving a sequence of subproblems of the form

xk+1 ← argmin

{
f (x) + 1

2η
‖x − xk‖2 : x ∈ R

d
}

, (3)

where η > 0 is a prox stepsize and ← means the subproblem can be solved either
exactly or approximately. When the exact solution is available, we denote

xk+1 = proxη f (xk),

where prox f (·) is called a proximal map of f and defined as

prox f (y) := argmin

{
f (x) + 1

2
‖x − y‖2 : x ∈ R

d
}

. (4)

If the subproblem (3) does not admit a closed-form solution, it can usually be solved
with standard or specialized iterative methods.

Many classical first-order methods in optimization, such as the proximal gradient
method, the proximal subgradient method, the primal-dual hybrid gradient method
of [5] (also known as the Chambolle-Pock method), the extra gradient method of
[30] are instances of PPF. It is worth noting that, by showing that the alternating
direction method of multipliers (ADMM) as an instance of PPF, [47] gives the first
iteration-complexity result ofADMMfor solving a class of linearly constrained convex
programming problems.

Another example of PPF is the proximal bundle method, which was first proposed
in [34, 35, 45, 67] and further developed in [8, 9, 14, 27, 41, 42, 60, 64, 69]. Notably,
inspired by the PPF viewpoint, papers [41, 42] develop a variant of the proximal
bundlemethod and establish the optimal iteration-complexity,which is the first optimal
complexity result for proximal bundle methods.

Recent works [28, 29, 40, 43] have also applied PPF to solve weakly convex opti-
mization and weakly convex-concave min-max problems.

Proximal map in sampling. Sampling shares many similarities with optimization.
An interesting connection between the two problems is through the algorithm design
and analysis from the perspective of PPF. The alternating sampling framework (ASF)
introduced in [33] is a generic framework for sampling from a distribution π X (x) ∝
exp(− f (x)). Analogous to PPF in optimization, ASF with stepsize η > 0 repeats the
two steps as in Algorithm 1.
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Algorithm 1 Alternating Sampling Framework [33]

1. Sample yk ∼ πY |X (y | xk ) ∝ exp
(
− 1

2η ‖xk − y‖2
)

2. Sample xk+1 ∼ π X |Y (x | yk ) ∝ exp
(
− f (x) − 1

2η ‖x − yk‖2
)

ASF is a special case of Gibbs sampling [17] of the joint distribution

π(x, y) ∝ exp

(
− f (x) − 1

2η
‖x − y‖2

)
.

Starting from the original paper [33] that proposesASF, subsequentworks have refined
and extended this framework. In particular, [6] provides an improved theoretical anal-
ysis of ASF, and [70] studies Gibbs sampling based on ASF for structured log-concave
distributions over networks. In Algorithm 1, sampling yk given xk in step 1 can be eas-
ily done since πY |X (y | xk) = N (xk, ηI ) is a simple Gaussian distribution. Sampling
xk+1 given yk in step 2 is however a nontrivial task; it corresponds to the so-called
restricted Gaussian oracle (RGO) for f introduced in [33], which is defined as follows.

Definition 2.1 Given a point y ∈ R
d and stepsize η > 0, the RGO for f : Rd → R

is a sampling oracle that returns a random sample from a distribution proportional to
exp(− f (·) − ‖ · −y‖2/(2η)).

RGO is an analog of the proximal map (4) in optimization. To use ASF in practice,
one needs to efficiently implement RGO. Some examples of f that admit a compu-
tationally efficient RGO have been presented in [48, 62]. These instances of f have
simple structures such as coordinate-separable regularizers, �1-norm, and groupLasso.
To apply ASF on a general potential function f , developing an efficient implementa-
tion of the RGO is essential.

A rejection sampling-based implementation of RGO for a general convex nons-
mooth potential function f with bounded Lipschitz constant is given in [37].

If the stepsize η is small enough, then it only takes a constant number of rejection
steps to generate a sample according to RGO in expectation. Another exact realization
of RGO is provided in [38] for nonconvex hybrid potential f satisfying Hölder contin-
uous conditions. It is also shown that the expected number of rejections to implement
RGO is a small constant if η is small enough. Other inexact realizations of RGO based
on approximate rejection sampling are studied in [13, 18]. See Table 1 for a clear com-
parison. In all these implementations, a key step is realizing the proximal map (4).
It is worth noting that [38] also connects ASF with other well-known Langevin-type
sampling algorithms such as Langevin Monte Carlo (LMC) and Proximal Langevin
Monte Carlo (PLMC) via RGO. In a nutshell, [38] shows that both LMC and PLC
are instances of ASF but with approximate implementations of RGO, which always
accept the sample from the proposal distribution without rejection. Hence, this pro-
vides an alternative interpretation of why the samples generated by LMC are biased,
while those produced by ASF are unbiased.

Based on the cutting-plane method, this paper develops a generic and efficient
implementation of the proximal map (4) and applies the proximal map in both opti-
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Table 1 Comparison of different
RGO implementations and
corresponding stepsizes

Papers RGO implementation Stepsize η

[37, 38] Exact Small

[13, 18] Approximate Large

mization and sampling. For optimization, we use this proximal map and an adaptive
stepsize rule to design a universal bundle method. For sampling, we combine this
proximal map and rejection sampling to realize the RGO, and then propose a practical
and efficient proximal sampling algorithm based on it.

For both optimization and sampling, we consider two specific scenarios: (1) f is
Hölder smooth, i.e., f satisfies

‖ f ′(u) − f ′(v)‖ ≤ Lα‖u − v‖α, ∀u, v ∈ R
d , (5)

where f ′ denotes a subgradient of f , α ∈ [0, 1], and Lα > 0; and (2) f is a hybrid
function of Hölder smooth components, i.e., f satisfies

‖ f ′(u) − f ′(v)‖ ≤
n∑

i=1

Lαi ‖u − v‖αi , ∀u, v ∈ R
d , (6)

where αi ∈ [0, 1] and Lαi > 0 for every 1 ≤ i ≤ n. When α = 0, (5) reduces to a
Lipschitz continuous condition, andwhen α = 1, it reduces to a smoothness condition.
It follows from (5) and (6) that for every u, v ∈ R

d ,

f (u) − f (v) − 〈 f ′(v), u − v〉 ≤ Lα

α + 1
‖u − v‖α+1, (7)

and

f (u) − f (v) − 〈 f ′(v), u − v〉 ≤
n∑

i=1

Lαi

αi + 1
‖u − v‖αi+1. (8)

The proof is given in Appendix A.

Example. Consider the �p regression problem with data {(ai , bi )}ni=1 where ai ∈ R
d

and bi ∈ R for i = 1, . . . , n,

f (x) = 1

n

n∑
i=1

|a

i x − bi |p, 1 ≤ p ≤ 2. (9)

Define φ(t) = |t |p, then φ′(t) = p sign(t) |t |p−1 and

f ′(x) = 1

n

n∑
i=1

φ′(a

i x − bi ) ai .
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It is shown in Lemma A.4 of Appendix A that φ′ is Hölder continuous with exponent
p − 1 and constant p22−p. For any x, y ∈ R

d , let ui = a

i x − bi and vi = a


i y − bi ,
using the Hölder continuity of φ′, we derive

‖ f ′(x) − f ′(y)‖ =
∥∥∥1
n

n∑
i=1

(
φ′(ui ) − φ′(vi )

)
ai

∥∥∥

≤1

n

n∑
i=1

|φ′(ui ) − φ′(vi )| ‖ai‖ ≤ p 22−p

n

( n∑
i=1

‖ai‖p
)
‖x − y‖p−1.

Hence, f satisfies the Hölder smoothness condition (5) with

α = p − 1, Lα = p 22−p

n

n∑
i=1

‖ai‖p.

The �p regression can be extended to mixed-exponent regression as an example of the
hybrid case (6), where

f (x) = 1

n

n∑
i=1

|a

i x − bi |pi , 1 ≤ pi ≤ 2, (10)

and

αi = pi − 1, Lαi = pi 22−pi

n
‖ai‖pi .

The above objective functions f in (9) and (10) can also appear as the potential
energy in Bayesian inference. Instead of minimizing f (x) to obtain a point estimate
(e.g., the maximum a posteriori or MAP solution), one may consider sampling ν(x) ∝
exp(− f (x)) for quantifying uncertainty around the MAP solution.

Throughout the analysis in this paper, we use the following notation. When pre-
senting complexity results, O(·) denotes the standard “big-O” notation, while Õ(·)
suppresses polylogarithmic factors. We also write a � b to indicate that a and b are of
the same order, i.e., there exist positive constants c1, c2 > 0 such that c1a ≤ b ≤ c2a.

3 Algorithm and Complexities for the Proximal Subproblem

The proximal subproblem (3) generally does not admit a closed-form solution. We
design an iterative method that approximately solves (3) and derive the corresponding
iteration-complexities for Hölder smooth and hybrid f in Subsections 3.1 and 3.2,
respectively.

Given a point y ∈ R
d , we consider the optimization problem

f η
y (x∗) = min

{
f η
y (x) = f (x) + 1

2η
‖x − y‖2 : x ∈ R

d
}

(11)
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and aim at obtaining a δ-solution, i.e., a point x̄ such that f η
y (x̄) − f η

y (x∗) ≤ δ. In
both Hölder smooth and hybrid settings, we use a regularized cutting-plane method
(Algorithm 2), which is usually used in the proximal bundle method [41, 42] for
solving convex non-smooth optimization problems.

We remark that though Algorithm 2 is widely used in the proximal bundle method
and is not new, the complexity analyses (i.e., Theorems 3.1 and 3.2) for Hölder smooth
and hybrid functions f are lacking.

Since the prox center y is fixed throughout this section, we simplify the notation
by writing f η

y as f η in this section to ease readability.

Algorithm 2 Regularized Cutting-plane Method

Require: Let y ∈ R
d , η > 0, and δ > 0 be given, and set x0 = x̃0 = y, j = 1, and f η

0 (x0) = −∞.

while f η(x̃ j−1) − f η
j−1(x j−1) > δ do

f j (x) = max
{
f (xi ) + 〈 f ′(xi ), x − xi 〉 : 0 ≤ i ≤ j − 1

}
, (12)

x j = argmin

{
f η
j (x) := f j (x) + 1

2η
‖x − y‖2 : x ∈ R

d
}

, (13)

x̃ j = argmin
{
f η(x) : x ∈ {x j , x̃ j−1}

}
, (14)

j ← j + 1.

end while
return J = j − 1, xJ , and x̃ J .

The basic idea of Algorithm 2 is to approximate f with piece-wise affine functions
constructed by a collection of cutting-planes and solve the resulting simplified problem
(13). As the approximation becomes more and more accurate, the best approximate
solution x̃ j converges to the solution x∗ to (11).

Subproblem (13) can be reformulated into convex quadratic programming with j
affine constraints and hence is solvable.

The following technical lemma summarizes basic properties of Algorithm 2. It is
useful in the complexity analysis for both optimization and sampling.

Lemma 3.1 Assume f is convex.
For every j ≥ 1, define

δ j := f η(x̃ j ) − f η
j (x j ). (15)

Let J , xJ , x̃ J be the outputs of Algorithm 2, then the following statements hold:

a) { f j } serves as a sequence of non-decreasing lower approximations of f : f j (x) ≤
f j+1(x) and f j (x) ≤ f (x), ∀x ∈ R

d and ∀ j ≥ 1;

b) direct consequence of (13): f η
j (x j ) + ‖x − x j‖2/(2η) ≤ f η

j (x), ∀x ∈ R
d and

∀ j ≥ 1;

c) {δ j } is a decreasing sequence: δJ ≤ δ and δ j+1 + 1
2η‖x j+1 − x j‖2 ≤ δ j , ∀ j ≥ 1;

d) solution guarantee for xJ and x̃J : f η(x̃ J )− f η(x) ≤ δ − 1
2η‖xJ − x‖2, ∀x ∈ R

d;
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e) optimality condition of (11): − 1
η
(x∗ − y) ∈ ∂ f (x∗) where ∂ f denotes the subd-

ifferential of f .

Proof a) The first inequality follows from the definition of f j in step 2 of Algorithm
2. The second inequality directly follows from the definition of f j and the convexity
of f .

b) Noting that f η
j as the objective function of (13) is (1/η)-strongly convex, it thus

follows from Theorem 5.25 of [1] that

f η
j (x) − f η

j (x j ) ≥ 1

2η
‖x − x j‖2, ∀x ∈ R

d .

Hence, this statement follows.
c) This first inequality immediately follows from (15) and step 4 of Algorithm 2.
Using the first inequality in 3.1(a) and 3.1(b) with x = x j+1, we obtain

f η
j+1(x j+1) ≥ f η

j (x j+1) ≥ f η
j (x j ) + 1

2η
‖x j+1 − x j‖2.

This inequality, the definition of x̃ j in (14), and the definition of δ j in (15) imply that

δ j+1 = f η(x̃ j+1) − f η
j+1(x j+1) ≤ f η(x̃ j ) − f η

j (x j ) − 1

2η
‖x j+1 − x j‖2

= δ j − 1

2η
‖x j+1 − x j‖2.

d) Using the second inequality in (a), (b) with j = J , and the first inequality in (c),
we have

f (x̃ J ) − f (x) + 1

2η
‖x − xJ‖2

(a)≤ f (x̃ J ) − f J (x) + 1

2η
‖x − xJ‖2

(b)≤ f (x̃ J ) − f η
J (xJ ) + 1

2η
‖x − y‖2 (c)≤ δ − 1

2η
‖x̃ J − y‖2 + 1

2η
‖x − y‖2.

This statement then follows from rearranging the terms and the definition of f η in
(11).

e) This statement directly follows from the first-order optimality condition of (11).
��

Clearly, when Algorithm 2 terminates, the output x̃ J is a δ-solution to (11). To
see this, note that, using the first inequality in Lemma 3.1(c), (13), and the fact that
f η
J (·) ≤ f η(·), we have

f η(x̃ J ) ≤ δ + f η
J (xJ )

(13)≤ δ + f η
J (x∗) ≤ δ + f η(x∗).

It is also easy to see that δ j is computable upper bound on the gap f η(x̃ j ) − f η(x∗).
Hence, Algorithm 2 terminates when δ j ≤ δ.
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3.1 Complexity for Hölder Smooth Optimization

This subsection is devoted to the complexity analysis of Algorithm 2 for solving (11)
where f is Hölder smooth, i.e., satisfying (5). The following lemma provides basic
recursive formulas and is the starting point of the analysis of Algorithm 2.

Lemma 3.2 Assume f is convex and Lα-Hölder smooth. Then, for every j ≥ 1, the
following statements hold:

a) δ j ≤ Lα

α+1‖x j − x j−1‖α+1;

b) δ j+1 + 1
2η

(
α+1
Lα

δ j+1

) 2
α+1 ≤ δ j .

Proof a) It follows from the definition of δ j in (15) and the definition of x̃ j in (14) that

δ j
(15)= f η(x̃ j ) − f η

j (x j )
(14)≤ f η(x j ) − f η

j (x j ) = f (x j ) − f j (x j )

≤ f (x j ) − f (x j−1) − 〈 f ′(x j−1), x j − x j−1〉
≤ Lα

α + 1
‖x j − x j−1‖α+1,

where the second inequality is due to the definition of f j in the step 2 of Algorithm
2, and the third inequality is due to (7) with (u, v) = (x j , x j−1).

b) This statement directly follows from a) and the second inequality in Lemma
3.1(c). ��

We know from Lemma 3.1(c) that {δ j } j≥1 is non-increasing. The next proposition
gives a bound on j so that δ j ≤ δ, i.e., the termination criterion in step 4 of Algorithm
2 is satisfied.

Proposition 3.1 Define

β := 1

2η

(
α + 1

Lα

) 2
α+1

δ
1−α
α+1 , j0 = 1 +

⌈
1 + β

β
log

(
δ1

δ

)⌉
. (16)

Then, the following statements hold:

a) if δ j > δ, then (1 + β)δ j ≤ δ j−1;
b) δ j ≤ δ for every j ≥ j0.

As a consequence, the iteration count J in Algorithm 2 satisfies J ≤ j0.

Proof a) Using the definition of β in (16), the assumption that δ j > δ, and Lemma
3.2(b), we obtain

(1 + β)δ j = δ j + 1

2η

(
α + 1

Lα

) 2
α+1

δ
1−α
α+1 δ j ≤ δ j + 1

2η

(
α + 1

Lα

δ j

) 2
α+1 ≤ δ j−1.
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b) Since {δ j } j≥1 is non-increasing, it suffices to prove that δ j0 ≤ δ. We prove this
statement by contradiction. Suppose that δ j0 > δ, then we have δ j > δ for j ≤ j0.
Hence, statement (a) holds for j ≤ j0. Using this conclusion repeatedly and the fact
that τ ≤ exp(τ − 1) with τ = 1/(1 + β), we have

δ j0 ≤ 1

(1 + β) j0−1 δ1 ≤ exp

(
− β

1 + β
( j0 − 1)

)
δ1 ≤ δ,

where the last inequality is due to the definition of j0 in (16). This contradicts with
the assumption that δ j0 > δ, and hence we prove this statement. ��

The following result shows that δ1 is bounded from above, and hence the bound in
Proposition 3.1 is meaningful.

Lemma 3.3 For a given y ∈ R
d , we have

δ1 ≤ Lαηα+1

α + 1
‖ f ′(y)‖α+1.

Proof Following the optimality condition of (13) with j = 1, we have x0 − x1 =
η f ′(x0) = η f ′(y). This identity and Lemma 3.2(a) with j = 1 then imply that the
lemma holds. ��

We now conclude the iteration-complexity bound for Algorithm 2.

Theorem 3.1 Algorithm 2 takes Õ
(

ηL
2

α+1
α

( 1
δ

) 1−α
α+1 + 1

)
iterations to terminate.

Proof This theorem follows directly from Proposition 3.1 and Lemma 3.3. ��

3.2 Complexity for Hybrid Optimization

This subsection is devoted to the complexity analysis of Algorithm 2 for solving (11)
where f is a hybrid function satisfying (6). The following lemma is an analogue of
Lemma 3.2 and provides key recursive formulas for δ j , which is defined in (15).

Lemma 3.4 Assume f is convex and satisfies (6). For δ > 0, define

M =
n∑

i=1

L
2

αi+1
αi

[(αi + 1)δ]
1−αi
αi+1

. (17)

Then, for every j ≥ 1, the following statements hold:

a) δ j ≤ M
2 ‖x j − x j−1‖2 + ∑n

i=1(1 − αi )
δ
2 ;

b)
(
1 + 1

ηM

) (
δ j+1 − ∑n

i=1(1 − αi )
δ
2

) ≤ δ j − ∑n
i=1(1 − αi )

δ
2 .
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Proof a) Following a similar argument as in the proof of Lemma 3.2(a) with (7)
replaced by (8), we have

δ j ≤
n∑

i=1

Lαi

αi + 1
‖u − v‖αi+1. (18)

Using the Young’s inequality ab ≤ a p/p + bq/q with

a = Lα

(α + 1)δ
1−α
2

‖x j − x j−1‖α+1, b = δ
1−α
2 , p = 2

α + 1
, q = 2

1 − α
,

we obtain

Lα

α + 1
‖x j − x j−1‖α+1 ≤ L

2
α+1
α

2[(α + 1)δ] 1−α
α+1

‖x j − x j−1‖2 + (1 − α)δ

2
.

Combining the above inequality and (18), and using the definition of M in (17), we
prove the statement.

b) It immediately follows from (a) and the second inequality in Lemma 3.1(c) that

δ j+1 + 1

ηM

(
δ j+1 −

n∑
i=1

(1 − αi )
δ

2

)
≤ δ j+1 + 1

2η
‖x j+1 − x j‖2 ≤ δ j ,

and hence the statement follows. ��
The following lemma gives an upper bound on δ1 similar to Lemma 3.3.

Lemma 3.5 For a given y ∈ R
d , we have

δ1 ≤
n∑

i=1

Lαi

αi + 1
‖ f ′(y)‖αi+1.

Proof This lemma follows from a similar argument as in the proof of Lemma 3.3. ��
The following proposition is the key result in establishing the iteration-complexity

of Algorithm 2.

Proposition 3.2 We have δ j ≤ δ, for every j such that

j ≥ (1 + ηM) log

(
2δ1
δ

)
. (19)

Proof Let

τ = ηM

1 + ηM
, (20)
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then Lemma 3.4(b) becomes

δ j+1 −
n∑

i=1

(1 − αi )
δ

2
≤ τ

(
t j −

n∑
i=1

(1 − αi )
δ

2

)
.

Using the above inequality repeatedly and the fact that τ ≤ exp(τ − 1), we have for
every j ≥ 1,

δ j − (1 − α)δ

2
≤ τ j−1

(
δ1 − (1 − α)δ

2

)
≤ τ j−1δ1 ≤ exp{(τ − 1)( j − 1)}δ1.

Hence, it is easy to see that δ j ≤ δ if j ≥ 1
1−τ

log
(
2δ1
δ

)
. Using the definition of τ in

(20), we have if j is as in (19), then δ j ≤ δ. ��
We are ready to present the complexity bound for Algorithm 2.

Theorem 3.2 Algorithm 2 takes Õ (ηM + 1) iterations to terminate, where M is as in
(17).

Proof This theorem follows directly from Proposition 3.2 and Lemma 3.5. ��

3.3 Implementation of Algorithm 2

This subsection presents the simulation results of Algorithm 2 on solving the regular-
ized subproblem (11) for two objective functions f : quadratic programming (QP) and
�p regression. In both cases, the subgradient f ′ is computed by automatic differenti-
ation via Zygote.jl [22], and the subproblem (13) is reformulated as a QP and solved
using Clarabel.jl [19]. Numerical simulations are conducted on an i9-13900k desktop
with 64 GB of RAM

Quadratic Programming We first consider the unconstrained QP problem

f (x) = 1

2
x
Qx + 〈c, x〉

where Q ∈ S
d+ and c ∈ R

d . We generate Q = AA
/‖AA
‖∞ where A ∈ R
d×d

has normally distributed entries and ‖AA
‖∞ = maxi j |(AA
)i j | is the entrywise
infinity norm. The linear term c and point y are also entrywise normally distributed.
The dimension d is set to be 1000.

Note that (11) for QP has the closed-form solution

argmin
x∈Rn

{
1

2
x
Qx + 〈c, x〉 + 1

2η
‖x − y‖2

}
= (Q + η−1 I )−1(η−1y − c),

hence we can compare the progress of Algorithm 2 against the true minimum. We run
Algorithm 2 until the condition δ j < 10−6 is satisfied. Figure 1 shows the function
value decrease of the minimum value iterate f η

y (x̃ j ) versus the optimal value f η
y (x∗)
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Fig. 1 Proximal subproblem
progress of Algorithm 2 in
quadratic programming

Fig. 2 Proximal subproblem
progress of Algorithm 2 in �p
regression

with varying η. Noting that Algorithm 2 requires more iterations as η increases, this
observation is consistent with the complexity bound (proportional to η) stated in The-
orem 3.1.

�p RegressionWe next consider �p regression, where the objective f is of the form

f (x) = ‖Ax − b‖p
p,

where A ∈ R
n×d and b ∈ R

n have normally distributed entries and A is again
divided by its entrywise infinity norm. We set d = 100 and n = 500 for testing.
The point y ∈ R

d is entrywise normally distributed, and is identical for all p values
tested. Algorithm 2 is terminated when δ j < 10−6. Fixing η = 1.0, Fig. 2 shows the
trajectory of the gap δ j for varying p values.

4 Adaptive Proximal Bundle Method

As discussed in Sect. 3, the cutting-plane method (i.e., Algorithm 2) is widely used
in the proximal bundle method as a subroutine to repeatedly solve the proximal sub-
problem (3). Since the proximal bundle method uses a more accurate cutting-plane
model f j rather than a linearization as an approximation of the objective function f ,
it generalizes the subgradient method and is able to work with weaker regularization,
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namely larger stepsize η. This explains why both methods have optimal complexity
bounds [41, 42], but the proximal bundle method is always more efficient in practice.

For both the subgradient method and the proximal bundle method to have the
optimal performance, one needs to carefully select the stepsize η, namely, being small
enough for the subgradient method and within a certain (but relatively large) range for
the proximal bundle method. In both cases, we need to know the problem-dependent
parameters such as α and Lα , which are unknown or hard to estimate in practice. In
this section, we develop the APBM based on an adaptive stepsize strategy for (3) and
using Algorithm 2 to solve each subproblem (3). We also discuss variants of adaptive
subgradient methods and compare them with APBM. For simplicity, we only present
the analysis of Hölder smooth functions satisfying (5), while the hybrid functions
satisfying (6) can be similarly analyzed using results from Subsection 3.2.

From practical observations [39], the proximal bundle method works well when the
number of inner iterations (i.e., those of Algorithm 2 to solve (3)) stays as a constant
much larger than 1 (i.e., that of the subgradient method), say 10. Recall from Theorem

3.1 that inner complexity is Õ
(

ηL
2

α+1
α

( 1
δ

) 1−α
α+1 + 1

)
. Since we do not know α and Lα ,

we cannot choose a constant stepsize η so that the number of inner iterations is close
to a desired number such as 10. Hence, an adaptive stepsize rule is indeed needed.

By carefully examining Proposition 3.1 and Theorem 3.1, we find that the inner
complexity is Õ(β−1 + 1) where β is as in (16). Suppose we want to prescribe the
number of inner iterations to be close to β−1

0 for some β0 ∈ (0, 1], if β0 ≤ β, then by
Proposition 3.1(a), we have

(1 + β0)δ j ≤ δ j−1. (21)

Hence, it suffices to beginwith a relatively large η, check (21) to determinewhether the
η is small enough (i.e., β is large enough), and adjust η (if necessary) by progressively
halving it.

Algorithm 3 below is a formal statement of APBM based on the above intuition.

Algorithm 3 Adaptive Proximal Bundle Method

Require: Let y0 ∈ R
d , η0 > 0, β0 ∈ (0, 1], and ε > 0 be given.

for k = 1, 2, · · · do
Call Algorithm 2 with (y, η, δ) = (yk−1, ηk−1, ε/2) and output (yk , ỹk ) = (xJ , x̃ J ).
if (21) is always true in the execution of Algorithm 2, then
set ηk = ηk−1;

else
set ηk = ηk−1/2.

end if
end for

The following lemma provides basic results of Algorithm 2 and is the starting point
of the analysis of APBM.

Lemma 4.1 Assume f is convex and Lα-Hölder smooth. The following statements
hold for APBM:
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a) for every k ≥ 1 and u ∈ R
d , we have

2ηk−1[ f (ỹk) − f (u)] ≤ ‖yk−1 − u‖2 − ‖yk − u‖2 + ηk−1ε; (22)

b) for any k ≥ 1, if

ηk−1 ≤ 1

2β0

(
α + 1

Lα

) 2
α+1 (ε

2

) 1−α
α+1

, (23)

then ηk = ηk−1;
c) {ηk} is a non-increasing sequence;
d) for every k ≥ 0,

ηk ≥ η := min

{
1

4β0

(
α + 1

Lα

) 2
α+1 (ε

2

) 1−α
α+1

, η0

}
. (24)

Proof a) It follows from Lemma 3.1(d) that for every u ∈ R
d

2η[ f (x̃ J ) − f (x)] ≤ 2ηδ + ‖u − y‖2 − ‖xJ − u‖2.

Noting from step 2 of Algorithm 3 that (δ, η, y, xJ , x̃ J ) = (ε/2, ηk−1, yk−1, yk, ỹk),
which together with the above inequality, implies that (22) holds.

b) It follows fromProposition 3.1(a) and (23) that (21) always holds in the execution
of Algorithm 2. In view of step 3 of Algorithm 3, there holds ηk = ηk−1.

c) This statement clearly follows from step 3 of Algorithm 3.
d) This statement immediately follows from (b) and step 3 of Algorithm 3. ��

The following theorem gives the total iteration-complexity of APBM.

Theorem 4.1 Assume f is convex and Lα-Hölder smooth. If η0 ≤ ‖y0 − x∗‖2/ε,
then the iteration-complexity to obtain an ε-solution to (1) (i.e., a point x̂ such that
f (x̂) − minx∈Rd f (x) ≤ ε) is given by

Õ
⎛
⎝ L

2
α+1
α ‖y0 − x∗‖2

ε
2

α+1

+ η0L
2

α+1
α

(
1

ε

) 1−α
α+1

log

(
η0

η

)
+ 1

⎞
⎠ (25)

where η is as in (24).

Proof Noting from Lemma 4.1 (d) that ηk is bounded from below, we know there
exists some η̃ ∈ [η, η0] such that for some k0 ≥ 1, ηk ≡ η̃ for k ≥ k0. Thus, it follows
from the assumption that η0 ≤ ‖y0 − x∗‖2/ε that

η ≤ η̃ ≤ ‖y0 − x∗‖2
ε

. (26)
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We consider the worst-case scenario where APBM keeps halving the stepsize until it
is stable at η̃ and the convergence relies on the conservative stepsize η̃. Summing (22)
from k = 1 to n, we have

2
n∑

k=1

ηk−1

(
min
1≤k≤n

f (ỹk) − f (u)

)
≤ 2

n∑
k=1

ηk−1[ f (ỹk) − f (u)]

≤ ‖y0 − u‖2 − ‖yn − u‖2 + ε

n∑
k=1

ηk−1.

The above inequality with u = x∗, the fact that ηk ≤ η0, and the assumption that
ηk ≡ η̃ for k ≥ k0 imply that

‖yn − x∗‖2 ≤ ‖y0 − x∗‖2 + nη0ε (27)

and

min
1≤k≤n

f (ỹk) − f∗ ≤ ‖y0 − x∗‖2
2

∑n
k=1 ηk−1

+ ε

2
≤ ‖y0 − x∗‖2

2(n − k0)η̃
+ ε

2
.

In order to have min1≤k≤n f (ỹk) − f∗ ≤ ε, we need

n − k0 = O
(‖y0 − x∗‖2

η̃ε
+ 1

)
. (28)

Moreover, it follows from the way ηk is updated in step 3 and Lemma 4.1(d) that

k0 = O
(
log

(
η0

η̃

)
+ 1

)
= O

(
log

(
η0

η

)
+ 1

)
. (29)

Indeed, (27) holds with n replaced by any k ≤ n and

‖yk − x∗‖2 ≤ ‖y0 − x∗‖2 + nη0ε.

It thus follows from (28) and (29) that {yk} is bounded. As a result, using Lemma 3.3,
we can derive a uniformbound on δ1 for every call toAlgorithm2.Now, usingTheorem
3.1,we have the iteration-complexity of every call toAlgorithm2 is uniformly bounded
by

Õ
(

η̃L
2

α+1
α

(
1

ε

) 1−α
α+1 + 1

)
(30)

for every cycle k ≥ k0 and by

Õ
(

η0L
2

α+1
α

(
1

ε

) 1−α
α+1 + 1

)
(31)
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for every cycle k ≤ k0 − 1. Hence, multiplying (28) and (30) and using (26) and the
definition of η in (24), we obtain the iteration-complexity

Õ
⎛
⎝ L

2
α+1
α ‖y0 − x∗‖2

ε
2

α+1

+ 1

⎞
⎠

for cycles k ≥ k0, and multiplying (29) and (31), we obtain the iteration-complexity

Õ
(

η0L
2

α+1
α

(
1

ε

) 1−α
α+1

log

(
η0

η

)
+ 1

)

for cycles k ≤ k0 − 1. Finally, the total iteration-complexity (25) clearly follows from
the above two bounds. ��

We note that the final ε-solution produced by Algorithm 3 is the point ỹk that
achieves min1≤k≤n f (ỹk). This differs from the last-iterate convergence observed in
the smooth case, since the objective function f here is Hölder smooth andmay include
the nonsmooth case (i.e., α = 0).

Discussion on other universal methods Several universal methods based on the
backtracking line-search procedure have been studied in the literature. Paper [53]
considers the same Hölder smooth problem (with an additional hybrid function h)
as in this paper. To finds an ε-solution of (1), the universal primal gradient method
proposed in [53] starts from an initial pair (x̂0, η0) and in the ( j + 1)-th iteration
searches for a pair (xη, η) satisfying a condition

f (xη) − � f (xη; x̂ j ) − 1

2η
‖xη − x̂ j‖2 ≤ ε

2
, (32)

where � f (u; v) = f (v) + 〈 f ′(v, u − v〉 and

xη = argmin
u∈Rn

{
� f (u; x̂ j ) + h(u) + 1

2η
‖u − x̂ j‖2

}
. (33)

If the condition (32) is not satisfied, then the method rejects the pair, sets η ← η/2,
and updates xη as in (33) with the new η, otherwise, it accepts the pair and sets
(x̂ j+1, η j+1) = (xη, η). Two other universal methods are developed in [53], namely,
the universal dual gradient method and the universal fast gradient method. Following
[53], paper [21] extends the universal fast gradient method to the case of hybrid
functions (6). Motivated by the bundle-level method of [36], paper [32] proposes
two accelerated variants, i.e., the accelerated bundle-level method and the accelerated
prox-level method. The parallel bundle method of [9] is also shown to be universal at
the price of running multiple threads.
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Paper [42] proposes an adaptive composite subgradient (A-CS) method for solving
(1) where f satisfies

‖ f ′(x) − f ′(y)‖ ≤ 2M f + L f ‖x − y‖, ∀x, y ∈ R
d . (34)

It is shown in Proposition 2.1 of [42] that any function f that satisfies

‖ f ′(x) − f ′(y)‖ ≤ 2Mα + Lα‖x − y‖α, ∀x, y ∈ R
d ,

for some α ∈ [0, 1] also satisfies (34) with

M f (θ) := Mα + Lαθ

2
, L f (θ) := Lαα

(
1 − α

θ

) 1−α
α

for any θ > 0. Hence, the Hölder smooth functions (5) considered in this paper are
included in the class of functions satisfying (34). More interestingly, a careful look at
A-CS of [42] and the universal primal gradient method of [53] reveals that the two
methods are identical.

The universal primal gradient method is essentially an adaptive subgradient method
and the convergence of subgradient methods relies on small enough stepsizes, so it
is natural to enforce (32) to make the method adaptive. However, the bundle method
converges with any constant stepsize η since it guarantees the condition δ j ≤ ε/2,
which is in the same spirit of (32), by the cutting-plane approach (i.e., Algorithm 2)
but not by small η. Therefore, it is not necessary to use a small η in every iteration of
each call to Algorithm 2. Instead of frequently reducing η, by the introduction of β0,
APBM develops a way to regulate the complexity of Algorithm 2 and adjust η only
when (21) is not always true in the previous call to Algorithm 2. Another difference
betweenAPBMand the universal primal gradientmethod is that the latter rejects all the
pairs (xη, η) until (32) is satisfied, but APBMalways accepts the output of Algorithm 2
even if (21) is not true for every iteration in Algorithm 2. Therefore, APBMpotentially
employs a larger stepsize η than the universal primal gradient method and is thus a
more relaxed adaptive method.

DiscussiononoptimaluniversalmethodsThe lower complexity bound for solving
(1) is shown in [50] to be

O
⎛
⎝(

Lα‖y0 − x∗‖1+α

ε

) 2
1+3α

⎞
⎠ .

The well-known Nesterov’s accelerated gradient method has been shown in [51] to
match the above complexity bound and hence is an optimal method. The accelerated
bundle-levelmethod of [32], the universal fast gradientmethod of [53], and a follow-up
work [21] all establish optimal complexity bounds.

On the other hand, the dominant term of bound (25) is its first term and it is
only optimal when α = 0, i.e., f is L0-Lipschitz continuous. Motivated by [51], it
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is possible to develop optimal universal methods based on the accelerated gradient
method. This requires accelerated schemes in both PPF and Algorithm 2. Paper [46]
proposes an accelerated variant of PPF, which is extended by [4, 15, 23] to obtain
optimal p-th order methods with convergence rate O(k−(3p+1)/2) for p ≥ 2.

We finally note that this paper does not aim to develop the optimal complexity
of universal methods; rather, it presents an interesting application of our analysis of
Algorithm 2 in the context of universal methods.

5 Proximal Sampling Algorithm

Assuming the RGO in the ASF can be realized, the ASF exhibits remarkable conver-
gence properties. It was shown in [33] that Algorithm 1 converges linearly when f
is strongly convex. This convergence result is recently improved in [6] under various
weaker assumptions on the target distribution π X ∝ exp(− f ). Below we present
several convergence results established in [6] that will be used in this paper, under
the assumptions that π X is log-concave, or satisfies the log-Sobolev inequality or
Poincaré inequality (PI). Recall that a probability distribution ν satisfies PI with con-
stant CPI > 0 (1/CPI-PI) if for any smooth bounded function ψ : Rd → R,

Eν[(ψ − Eν(ψ))2] ≤ CPIEν[‖∇ψ‖2].

To this end, for two probability distributions ρ � ν, we denote by

Hν(ρ) :=
∫

ρ log
ρ

ν
, χ2

ν (ρ) :=
∫

ρ2

ν
− 1

theKL divergence and theChi-squared divergence, respectively. We denote byW2 the
Wasserstein-2 distance

W 2
2 (ν, ρ) := min

γ∈�(ν,ρ)

∫
‖x − y‖2dγ (x, y),

where �(ν, ρ) represents the set of all couplings between ν and ρ.

Theorem 5.1 ([6, Theorems 2 & 4]) We denote by ρX
k the law of xk of Algorithm 1

starting from any initial distribution ρX
0 . Then, the following statements hold:

a) if π X ∝ exp(− f ) is log-concave (i.e., f is convex), then Hπ X (ρX
k ) ≤

W 2
2 (ρX

0 , π X )/(kη);
b) if π X ∝ exp(− f ) satisfies λ-PI, then χ2

π X (ρX
k ) ≤ χ2

π X (ρX
0 )/(1 + λη)2k .

As discussed earlier, to use ASF in sampling problems, we need to realize the
RGO with efficient implementations. In the rest of this section, we develop efficient
algorithms for RGO associatedwith the two scenarios of samplingwe are interested in,
and then combine them with the ASF to establish a proximal algorithm for sampling.
The complexity of the proximal algorithm can be obtained by combining the above
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convergence results for ASF and the complexity results we develop for RGO. The
rest of the section is organized as follows. In Subsection 5.1 we develop an efficient
algorithm for RGO associated with Hölder smooth potentials via rejection sampling.
This is combined with ASF to obtain an efficient sampling algorithm from Hölder
smooth potentials. In Subsection 5.2, we further extend results to the second setting,
i.e., hybrid potentials.

5.1 Sampling fromHölder Smooth Potentials

The bottleneck of using the ASF (Algorithm 1) in sampling tasks with general dis-
tributions is the availability of RGO implementations. In this subsection, we address
this issue for convex Hölder smooth potentials by developing an efficient algorithm
for the corresponding RGO.

Our algorithm of RGO for f is based on rejection sampling. We use a special
proposal, namely a Gaussian distribution centered at the δ-solution of (11), which is
obtained by invoking Algorithm 2. With this proposal and a sufficiently small η > 0,
the expected number of rejection sampling steps to obtain one effective sample turns
out to bebounded fromabovebyadimension-free constant. Tobound the complexity of
the rejection sampling, we develop a novel technique to estimate a modified Gaussian
integral (see Proposition 5.1).

To this end, let J , x̃ J , xJ be the outputs of Algorithm 2 and define

h1 := 1

2η
‖ · −xJ‖2 + f η

y (x̃ J ) − δ, (35a)

h2 := 1

2η
‖ · −x∗‖2 + Lα

α + 1
‖ · −x∗‖α+1 + f η

y (x∗). (35b)

Note that h2 is only used for analysis and thus the fact it depends on x∗ is not an issue.
Algorithm 4 describes the implementation of RGO for f based on Algorithm 2 and
rejection sampling.

Algorithm 4 RGO Implementation based on Rejection Sampling

1. Let y ∈ R
d , η > 0, and δ > 0 be given, and run Algorithm 2 to compute xJ and x̃ J .

2. Generate X ∼ exp(−h1(x)).
3. Generate U ∼ U [0, 1].
if U ≤ exp

(− f η
y (X) + h1(X)

)
, then

accept/return X ;
else
reject X and go to step 2.

end if

Lemma 5.1 Assume f is convex and Lα-Hölder smooth. Let f η
y be as in (11) and h1

and h2 be as in (35). Then, for every x ∈ R
d , we have

h1(x) ≤ f η
y (x) ≤ h2(x). (36)
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Proof The first inequality in (36) immediately follows from Lemma 3.1(d) and the
definition of h1 in (35a). By the definition of f η

y in (11) we get

f η
y (x) − f η

y (x∗) = f (x) − f (x∗) + 1

2η
‖x − y‖2 − 1

2η
‖x∗ − y‖2

= f (x) − f (x∗) + 1

2η
‖x − x∗‖2 + 1

η
〈x − x∗, x∗ − y〉. (37)

It follows from Lemma 3.1(e) and (7) with (u, v) = (x, x∗) that

f (x) − f (x∗) + 1

η
〈x∗ − y, x − x∗〉 ≤ Lα

α + 1
‖x − x∗‖α+1,

which together with (37) implies that

f η
y (x) − f η

y (x∗) ≤ Lα

α + 1
‖x − x∗‖α+1 + 1

2η
‖x − x∗‖2.

Using the above inequality and the definition of h2 in (35b), we conclude that the
second inequality in (36) holds. ��

From the expression of h1 in (35a), it is clear that the proposal distribution
exp(−h1(x)) is a Gaussian centered at xJ . To achieve a tight bound on the expected
runs of the rejection sampling, we use a function h2 which is not quadratic; the stan-
dard choice of quadratic function does not give as tight results due to the lack of
smoothness. To use this h2 in the complexity analysis, we need to estimate the inte-
gral

∫
exp(−h2), which turns out to be a highly nontrivial task. Below we establish

a technical result on a modified Gaussian integral, which will be used later to bound
the integral

∫
exp(−h2) and hence the complexity of the RGO rejection sampling in

Algorithm 4.

Proposition 5.1 Let α ∈ [0, 1], η > 0, a ≥ 0 and d ≥ 1. If

2a(ηd)(α+1)/2 ≤ 1, (38)

then ∫
Rd

exp

(
− 1

2η
‖x‖2 − a‖x‖α+1

)
dx ≥ (2πη)d/2

2
. (39)

Proof Denote r = ‖x‖, then

dx = rd−1drdSd−1,

where dSd−1 is the surface area of the (d − 1)-dimensional unit sphere.
It follows that

∫
Rd

exp

(
− 1

2η
‖x‖2−sa‖x‖α+1

)
dx=

∫ ∞

0

∫
exp

(
− 1

2η
r2 − arα+1

)
rd−1drdSd−1
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= 2πd/2

�
( d
2

)
∫ ∞

0
exp

(
− 1

2η
r2 − arα+1

)
rd−1dr .

(40)

In the above equation, we have used the fact that the total surface area of a (d − 1)-
dimensional unit sphere is 2πd/2/�

( d
2

)
where �(·) is the gamma function, i.e.,

�(z) =
∫ ∞

0
t z−1e−tdt . (41)

Defining

Fd,η(a) :=
∫ ∞

0
exp

(
− 1

2η
r2 − arα+1

)
rddr , (42)

to establish (39), it suffices to bound Fd−1,η(a) from below.
It follows directly from the definition of Fd,η in (42) that

dFd−1,η(a)

da
=

∫ ∞

0
exp

(
− 1

2η
r2 − arα+1

)
(−rα+1)rd−1dr = −Fd+α,η(a).

This implies Fd,η is monotonically decreasing and thus Fd+α,η(a) ≤ Fd+α,η(0). As a
result,

dFd−1,η(a)

da
≥ −Fd+α,η(0)

and therefore,
Fd−1,η(a) ≥ Fd−1,η(0) − aFd+α,η(0). (43)

Setting t = r2/(2η), we can write

Fd,η(0) =
∫ ∞

0
exp

(
− 1

2η
r2

)
rddr =

∫ ∞

0
e−t (2ηt)

d−1
2 ηdt

= 2
d−1
2 η

d+1
2

∫ ∞

0
e−t t

d−1
2 dt . (44)

In view of the definition of the gamma function (41), we obtain

Fd,η(0) = 2
d−1
2 η

d+1
2 �

(
d + 1

2

)
. (45)

Applying the Wendel’s double inequality (56)
yields

�
( d+α+1

2

)
�

( d
2

) ≤
(
d

2

) α+1
2

.

Using (43), (45), the above inequality and the assumption (38), we have

Fd−1,η(a) ≥ Fd−1,η(0) − aFd+α,η(0)
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= 2
d
2 −1η

d
2 �

(
d

2

)
− a2

d+α−1
2 η

d+α+1
2 �

(
d + α + 1

2

)

= 2
d
2 −1η

d
2 �

(
d

2

) (
1 − a2

α+1
2 η

α+1
2

�
( d+α+1

2

)
�

( d
2

)
)

≥ 2
d
2 −1η

d
2 �

(
d

2

) (
1 − a(ηd)

α+1
2

)
≥ 1

4
(2η)

d
2 �

(
d

2

)
.

The result (39) then follows from the above inequality and (40). ��
We now proceed to show that the number of rejections in Algorithm 4 is bounded

from above by a small constant when δ is properly chosen. In particular, as shown in
Proposition 5.2, it only gets worse by a factor of exp(δ) and the factor does not depend
on the dimension d. Hence, the implementation of RGO for f is computationally
efficient in practice.

Proposition 5.2 Assume f is convex and Lα-Hölder smooth. If

η ≤ (α + 1)
2

α+1

(2Lα)
2

α+1 d
, (46)

then the expected number of iterations in the rejection sampling of Algorithm 4 is at
most 2 exp(δ).

Proof It is a well-known result for rejection sampling that X ∼ π X |Y (x | y) and the
probability that X is accepted is

P

(
U ≤ exp(− f η

y (X))

exp(−h1(X))

)
=

∫
Rd exp(− f η

y (x))dx∫
Rd exp(−h1(x))dx

. (47)

If follows directly from the definition of h2 in (35b) that

∫
Rd

exp(−h2(x))dx = exp(− f η
y (x∗))

∫
Rd

exp

(
− 1

2η
‖x − x∗‖2 − Lα

α + 1
‖x − x∗‖α+1

)
dx

Applying Proposition 5.1 to the above yields

∫
Rd

exp(−h2(x))dx ≥ exp(− f η
y (x∗)) (2πη)d/2

2
.

Note that the condition (38) in Proposition 5.1 holds thanks to (46). By Lemma 5.1,
the above inequality leads to

∫
Rd

exp(− f η
y (x))dx ≥

∫
Rd

exp(−h2(x))dx ≥ exp(− f η
y (x∗)) (2πη)d/2

2
. (48)
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Using the definition of h1 in (35a) and Lemma A.1, we have

∫
Rd

exp(−h1(x))dx = exp
(
− f η

y (x̃ J ) + δ
)

(2πη)d/2. (49)

Using (47), (48) and the above identity, we conclude that

P

(
U ≤ exp(− f η

y (X))

exp(−h1(X))

)
≥ 1

2
exp(− f η

y (x∗) + f η
y (x̃ J ) − δ) ≥ 1

2
exp(−δ),

and the expected number of the iterations is

1

P

(
U ≤ exp(− f η

y (X))

exp(−h1(X))

) ≤ 2 exp(δ).

��
Wefinally bound the total complexity to sample from a log-concave distribution ν in

(2) with a Hölder smooth potential f . We combine our efficient algorithm (Algorithm
4) of RGO for Hölder smooth potentials and the convergent results for ASF, namely
Theorem 5.1, to achieve this goal.

Theorem 5.2 Assume f is convex and Lα-Hölder smooth, then Algorithm 1, initialized

with ρX
0 and stepsize η � 1/(L

2
α+1
α d), using Algorithm 4 as an RGO has the iteration-

complexity bound

O
⎛
⎝ L

2
α+1
α dW 2

2 (ρX
0 , ν)

ε

⎞
⎠

to achieve ε error to the target ν ∝ exp(− f ) in terms of KL divergence. Each RGO

requires Õ
(

1
d

( 1
δ

) 1−α
α+1 + 1

)
subgradient evaluations of f and 2 exp(δ) rejection steps

in expectation. Moreover, if ν satisfies PI with constant CPI > 0,
then the iteration-complexity bound to achieve ε error in terms of Chi-squared

divergence is

Õ
(
CPIL

2
α+1
α d

)
.

Proof The results follow directly from Theorem 5.1, Theorem 3.1 and Proposition 5.2

with the choice of stepsize η � 1/(L
2

α+1
α d). ��

5.2 Sampling fromHybrid Potentials

In this subsection, we consider sampling from a log-concave distribution ν ∝
exp(− f (x)) associated with a hybrid potential f satisfying (6). This setting is a gen-
eralization of the Hölder smooth setting studied in the previous sections. It turns out
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that both Algorithm 1 and the implementation for RGO, Algorithm 4, developed for
Hölder smooth sampling can be applied directly to this general setting with properly
chosen stepsizes. Below, we extend the analysis in Subsection 5.1 to the hybrid setting
and establish corresponding complexity results.

The following lemma is a counterpart of Lemma 5.1 in the hybrid setting. Its proof
is given in Appendix B.

Lemma 5.2 Assume f is convex and satisfies (6). Define

h2(x) := 1

2η
‖x − x∗‖2 +

n∑
i=1

Lαi

αi + 1
‖x − x∗‖αi+1 + f η

y (x∗). (50)

Then, h2(x) ≥ f η
y (x) for every x ∈ R

d .

The next result is an analogue of the modified Gaussian integral in Proposition 5.1.

Proposition 5.3 Let αi ∈ [0, 1], ai ≥ 0, η > 0, and d ≥ 1. If

ηd
n∑

i=1

a
2

αi+1

i ≤ 1, (51)

then

∫
Rd

exp

(
− 1

2η
‖x‖2 −

n∑
i=1

ai‖x‖αi+1

)
dx ≥ (2πη)

d
2 exp

(
−1

2
+

∑n
i=1(αi − 1)

4

)
.

(52)

Proof Using the Young’s inequality st ≤ s p/p + tq/q with

s = a2
1−α
2 ‖x‖α+1, t = 1

2
1−α
2

, p = 2

α + 1
, q = 2

1 − α
,

we obtain

a‖x‖α+1 ≤ (α + 1)a
2

α+1 2
−2α
α+1 ‖x‖2 + 1 − α

4
≤ a

2
α+1 ‖x‖2 + 1 − α

4
,

where the second inequality is due to the fact that (α + 1)2
−2α
α+1 ≤ 1 for α ∈ [0, 1].

Hence, the above inequality generalizes to

n∑
i=1

ai‖x‖αi+1 ≤
n∑

i=1

a
2

αi+1

i ‖x‖2 +
n∑

i=1

1 − αi

4
.

This inequality and Lemma A.1 imply that

∫
Rd

exp

(
− 1

2η
‖x‖2 −

n∑
i=1

ai‖x‖αi+1

)
dx
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≥
∫
Rd

exp

(
− 1

2η
‖x‖2 −

n∑
i=1

a
2

αi+1

i ‖x‖2 −
n∑

i=1

1 − αi

4

)
dx

= exp

(∑n
i=1(αi − 1)

4

)∫
Rd

exp

(
− 1

2η̃
‖x‖2

)
dx

= exp

(∑n
i=1(αi − 1)

4

)
(2πη̃)

d
2 (53)

where
1

η̃
= 1

η
+

n∑
i=1

a
2

αi+1

i . (54)

It follows from (51) that
η̃ ≥ (

1 + 1
d

)−1
η. Plugging this inequality into (53), we have

∫
Rd

exp

(
− 1

2η
‖x‖2 − a‖x‖α+1

)
dx

≥(2πη)
d
2

(
1 + 1

d

)− d
2

exp

(∑n
i=1(αi − 1)

4

)

≥(2πη)
d
2 exp

(
−1

2
+

∑n
i=1(αi − 1)

4

)
,

where in the second inequality, we use the fact that

(
1 + 1

d

) d
2 ≤ exp

(
1

2

)
.

��
With Lemma 5.2 and Proposition 5.3 in hand, we can bound the complexity of

Algorithm 4 as follows. The proof is postponed to Appendix B.

Proposition 5.4 If stepsize η satisfies

ηd
n∑

i=1

(
Lαi

αi + 1

) 2
αi+1 ≤ 1, (55)

then rejection steps in Algorithm 4 take at most exp
(
δ + 1

2 +
∑n

i=1(1−αi )

4

)
iterations

in expectation.

Through the above arguments, we show that Algorithm 4 designed for Hölder
smooth potentials is equally effective for hybrid potentials satisfying (6). Combining
Proposition 5.4 and Theorem 3.2 with the convergence results for ASF, we obtain the
following iteration-complexity bounds for sampling from hybrid potentials. The proof
is similar to that of Theorem 5.2 and is thus omitted.
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Theorem 5.3 Assume f is a convex and satisfies (6). Consider Algorithm 1, ini-
tialized with ρX

0 and stepsize η satisfies (55), using Algorithm 4 as a RGO.
Each RGO requires Õ ( 1

dδ
+ 1

)
subgradient evaluations of f and in expectation

exp
(
δ + 1

2 +
∑n

i=1(1−αi )

4

)
rejection steps. The total complexity of Algorithm 1 to

achieve ε error in terms of KL divergence is

O

⎛
⎜⎜⎝

∑n
i=1

(
Lαi

αi+1

) 2
αi+1

dW 2
2 (ρX

0 , ν)

ε

⎞
⎟⎟⎠ .

Moreover, if ν satisfies PI with constant CPI > 0, then total complexity to achieve ε

error in terms of Chi-squared divergence is

Õ
(

n∑
i=1

(
Lαi

αi + 1

) 2
αi+1

dCPI

)
.

6 Conclusions

In this paper,we study proximal algorithms for both optimization and sampling lacking
smoothness. We first establish the complexity bounds of the regularized cutting-plane
method for solving proximal subproblem (3), where f is convex and satisfies either (5)
(Hölder smooth) or (6) (hybrid). This efficient implementation gives an approximate
solution to the proximal map in optimization, which is the core of both proximal
optimization and sampling algorithms.

For optimization, we develop APBM using a novel adaptive stepsize strategy in
the proximal point method and the approximate proximal map to solve each proximal
subproblem. The proposed APBM is a universal method as it does not requuire any
problem-dependent parameters as input.

For sampling, we propose an efficient method based on rejection sampling and the
approximate proximal map to realize the RGO, which is a proximal sampling oracle.
Finally, combining the sampling complexity of RGO and the complexity bounds of
ASF, which is a counterpart of the proximal point method in sampling, we establish
the complexity bounds of the proximal sampling algorithm in both Hölder smooth and
hybrid settings.

This paper provides a unified perspective to study proximal optimization and sam-
pling algorithms, while many other interesting questions remain open. First, APBM is
only optimal when α = 0, i.e., f is Lipschitz continuous. We are interested in devel-
oping a universal method that is optimal for any α ∈ [0, 1]. One possible direction
is to incorporate the acceleration technique into both the regularized cutting-plane
method and the PPF. Second, as acceleration methods are widely used in optimiza-
tion to obtain optimal performance, accelerated proximal sampling algorithms are
less explored. It is worth investigating a counterpart of the accelerated proximal point
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method [46] in sampling. Finally, we develop APBM as a universal method for non-
smooth optimization, and it would be equally important to design a universal method
for sampling.

A Technical Results

This section collects technical results that are useful in the paper.

Lemma A.1 (Gaussian integral) For any η > 0,

∫
Rd

exp

(
− 1

2η
‖x‖2

)
dx = (2πη)d/2.

The following lemma provides both lower and upper bounds on the ratio of gamma
functions. Its proof can be found in [65].

Lemma A.2 (Wendel’s double inequality) For 0 < s < 1 and t > 0, the gamma
function defined as in (41) satisfies

(
t

t + s

)1−s

≤ �(t + s)

t s�(t)
≤ 1,

or equivalently,

t1−s ≤ �(t + 1)

�(t + s)
≤ (t + s)1−s . (56)

Lemma A.3 Assume f is convex and Lα-Hölder smooth (i.e., satisfying (5), then (7)
holds for every u, v ∈ R

d . Assume f is convex and satisfies (6), then (8) holds for
every u, v ∈ R

d .

Proof We first consider the case when f is convex and Lα-Hölder smooth. It is easy
to see that

f (u) = f (v) +
∫ 1

0
〈 f ′(v + τ(v − u)), u − v〉dτ

= f (v) + 〈 f ′(v), u − v〉 +
∫ 1

0
〈 f ′(v + τ(v − u)) − f ′(v), u − v〉dτ.

Using the above identity, the Cauchy-Schwarz inequality, and (5), we have

f (u) − f (v) − 〈 f ′(v), u − v〉 =
∫ 1

0
〈 f ′(v + τ(v − u)) − f ′(v), u − v〉dτ

≤
∫ 1

0

∥∥ f ′(v + τ(v − u)) − f ′(v)
∥∥ ‖u − v‖dτ

≤
∫ 1

0
Lατα‖u − v‖α+1dτ = Lα

α + 1
‖u − v‖α+1.
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Hence, (7) holds.More generally, if f satisfies (6), then (8) follows the same argument.
��

Lemma A.4 Consider φ(t) = |t |p and φ′(t) = p sign(t) |t |p−1 for t ∈ R and some
p ∈ [1, 2]. Then, for any u, v ∈ R, we have

|φ′(u) − φ′(v)| ≤ p 22−p |u − v|p−1.

Proof Let r := p − 1 ∈ [0, 1]. We consider the following two cases and prove

|φ′(u) − φ′(v)| ≤ p 21−r |u − v|r .

Case 1: uv ≥ 0. Here, sign(u) = sign(v), so

|φ′(u) − φ′(v)| = p
∣∣|u|r − |v|r ∣∣.

Without loss of generality, assume a = |u| ≥ b = |v| ≥ 0. By the subadditivity of
the function x �→ xr with r ∈ [0, 1], we have (a − b)r ≥ ar − br for all a ≥ b ≥ 0.
Hence

| |u|r − |v|r | = ar − br ≤ (a − b)r = ∣∣|u| − |v|∣∣r = |u − v|r .
Therefore,

|φ′(u) − φ′(v)| ≤ p |u − v|r .
Case 2: uv < 0. In this case, sign(u) = − sign(v), so

|φ′(u) − φ′(v)| = p (|u|r + |v|r ).

By the concavity of x �→ xr , we have

|u|r + |v|r ≤ 21−r (|u| + |v|)r = 21−r |u − v|r ,

and thus
|φ′(u) − φ′(v)| ≤ p 21−r |u − v|r .

The conclusion immediately follows from the above two cases. ��

B Missing Proofs in Subsection 5.2

Proof of Lemma 5.2 It follows from the same argument as in the proof of Lemma 5.1
that (37) holds. Using (37), Lemma 3.1(e), and (8) with (u, v) = (x, x∗), we conclude
that

f η
y (x) − f η

y (x∗) ≤
n∑

i=1

Lαi

αi + 1
‖x − x∗‖αi+1 + 1

2η
‖x − x∗‖2.

The lemma immediately follows from the above inequality and the definition of h2 in
(50). ��
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Proof of Proposition 5.4 If follows directly from the definition of h2 in (50) that

∫
Rd

exp(−h2(x))dx = exp(− f η
y (x∗))

∫
Rd

exp

(
− 1

2η
‖x − x∗‖2

−
n∑

i=1

Lαi

αi + 1
‖x − x∗‖αi+1

)
dx .

It is easy to see that (55) implies that (51) holds with ai = Lαi
αi+1 . Hence, by Proposi-

tion 5.3, we have (5.3) holds with ai = Lαi
αi+1 , i.e.,

∫
Rd

exp

(
− 1

2η
‖x − x∗‖2 −

n∑
i=1

Lαi

αi + 1
‖x − x∗‖αi+1

)
dx

≥ (2πη)
d
2 exp

(
−1

2
+

∑n
i=1(αi − 1)

4

)
.

The above two inequalities and Lemma 5.2 imply that

∫
Rd

exp(− f η
y (x))dx ≥

∫
Rd

exp(−h2(x))dx ≥ (2πη)
d
2

exp

(
− f η

y (x∗) − 1

2
+

∑n
i=1(αi − 1)

4

)
.

As in the proof of Proposition 5.2, (47) and (49) hold. Using (47), (49), and the above
inequality, we have

P

(
U ≤ exp(− f η

y (X))

exp(−h1(X))

)
≥ exp

(
f η
y (x̃ J ) − f η

y (x∗) − δ − 1

2
+

∑n
i=1(αi − 1)

4

)
.

The above inequality and the fact that f η
y (x̃ J ) ≥ f η

y (x∗) immediately imply that

1

P

(
U ≤ exp(− f η

y (X))

exp(−h1(X))

) ≤ exp

(
δ + 1

2
+

∑n
i=1(1 − αi )

4

)
.

��
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30. Korpelevič, G.M.: An extragradient method for finding saddle points and for other problems. Èkonom.
i Mat. Metody 12(4), 747–756 (1976)

31. Krauth,W.: StatisticalMechanics: Algorithms and Computations, vol. 13. OUPOxford, Oxford (2006)
32. Lan,G.: Bundle-level typemethods uniformly optimal for smooth and nonsmooth convex optimization.

Math. Program. 149(1–2), 1–45 (2015)
33. Lee,Y.T., Shen,R., Tian,K.: Structured logconcave sampling with a restricted gaussian oracle. In:

Mikhail Belkin., Samory Kpotufe. (eds.) Proceedings of Thirty Fourth Conference on Learning Theory
of Proceedings of Machine Learning Research, vol.134, pp. 2993–3050. PMLR, (2021)

34. Lemaréchal, C.: An extension of davidon methods to non differentiable problems. In: Balinski, M.L.,
Wolfe, P. (eds.) Nondifferentiable Optimization, pp. 95–109. Springer, Berlin (1975)

35. Lemaréchal,C.: Nonsmooth optimization and descent methods. Technical Report, (1978)
36. Lemaréchal, C., Nemirovski, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–

3), 111–147 (1995)
37. Liang,J., Chen,Y.: A proximal algorithm for sampling from non-smooth potentials. In: 2022 Winter

Simulation Conference (WSC), pp. 3229–3240, IEEE, (2022)
38. Liang,J. Chen,Y.: A proximal algorithm for sampling. Transactions on Machine Learning Research,

(2023)
39. Liang, J., Guigues, V., Monteiro, R.D.C.: A single cut proximal bundle method for stochastic convex

composite optimization. Math. Program. 208(1), 173–208 (2024)
40. Liang,J., Monteiro,R.D. C.: A doubly accelerated inexact proximal point method for nonconvex com-

posite optimization problems. Available on arXiv:1811.11378, (2018)
41. Liang, J., Monteiro, R.D.C.: A proximal bundle variant with optimal iteration-complexity for a large

range of prox stepsizes. SIAM J. Optim. 31(4), 2955–2986 (2021)
42. Liang, J., Monteiro, R.D.C.: A unified analysis of a class of proximal bundle methods for solving

hybrid convex composite optimization problems. Math. Oper. Res. 49(2), 832–855 (2024)
43. Liang,J., Monteiro,R.D. C., Zhang,H.: Proximal bundle methods for hybrid weakly convex composite

optimization problems. Avilale on arXiv:2303.14896, (2023)
44. Martinet, B.: Regularisation d’inequations variationelles par approximations successives. Revue Fran-

caise d’informatique et de Recherche operationelle 4, 154–159 (1970)
45. Mifflin,R.: A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization.

In: Nondifferential and Variational Techniques in Optimization, pp. 77–90, Springer, Berlin,(1982)
46. Monteiro, R.D.C., Svaiter, B.F.: An accelerated hybrid proximal extragradient method for convex

optimization and its implications to second-order methods. SIAM J. Optim. 23(2), 1092–1125 (2013)
47. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alter-

nating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)
48. Mou, W., Flammarion, N., Wainwright, M.J., Bartlett, P.L.: An efficient sampling algorithm for non-

smooth composite potentials. J. Mach. Learn. Res. 23(233), 1–50 (2022)
49. Neal, R.M.: MCMC using Hamiltonian dynamics. Handbook Markov Chain Monte Carlo 2(11), 2

(2011)
50. Nemirovski, A., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Wiley,

USA (1983)
51. Nemirovskii, A.S., Nesterov, Y.E.: Optimal methods of smooth convex minimization. USSR Comput.

Math. Math. Phys. 25(2), 21–30 (1985)
52. Nesterov, Yu.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

J. Optim. 22(2), 341–362 (2012)
53. Nesterov, Yu.: Universal gradient methods for convex optimization problems. Math. Program. 152(1–

2), 381–404 (2015)
54. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)
55. Parisi, G.: Correlation functions and computer simulations. Nucl. Phys. B 180(3), 378–384 (1981)
56. Roberts, G.O., Stramer, O.: Langevin diffusions andMetropolis-Hastings algorithms. Methodol. Com-

put. Appl. Probab. 4(4), 337–357 (2002)

123

http://arxiv.org/abs/1811.11378
http://arxiv.org/abs/2303.14896


  110 Page 34 of 34 Journal of Optimization Theory and Applications          (2026) 208:110 

57. Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete
approximations. Bernoulli 2(4), 341–363 (1996)

58. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Math. Oper. Res. 1(2), 97–116 (1976)

59. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim.
14(5), 877–898 (1976)
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