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Right-preordered groups from a categorical
perspective
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Abstract. We study categorical properties of right-preordered groups, giv-
ing an explicit description of limits and colimits in this category, studying
some exactness properties, and showing that it is a quasivariety. We show
that, from an algebraic point of view, the category of right-preordered
groups shares several properties with the one of monoids. Moreover, we
describe split extensions of right-preordered groups, showing in partic-
ular that semidirect products of ordered groups always have a natural
right-preorder.
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1. Introduction

In [12] preordered groups have been studied from a categorical point of view.
A preordered group is a group equipped with a preorder (i.e. a reflexive and
transitive relation) which is compatible with the group operation both on the
left and on the right, in the sense that the group operation is monotone with
respect to such preorder. In particular, limits and colimits in the category
OrdGrp of preordered groups and monotone group homomorphisms have been
explicitly described, and some exactness properties of OrdGrp have been ex-
plored. From an algebraic point of view, OrdGrp does not share with the
category Grp of groups some strong properties, like being a protomodular [5]
or a Mal’tsev [9] category; such properties are important for several reasons,
one of which is that in such contexts several results are valid, like the clas-
sical homological lemmas, or the description of cohomology groups in terms
of extensions. From this perspective, OrdGrp turns out to be more similar
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to the category Mon of monoids, where such properties hold only “locally”,
i.e. for some “good” objects. In the case of OrdGrp, such good objects are
those preordered groups whose preorder is symmetric (and hence an equiv-
alence relation). Another interesting aspect of this relatively weak algebraic
context is that, on a split extension of groups whose kernel and codomain are
preordered groups, there may be many compatible preorders, turning it to a
split extension in OrdGrp, or none.

The wider class of the so-called right- (or left-)preordered groups is also
interesting for applications in various mathematical fields. These are groups
equipped with a preorder which is compatible with the group operation only
on the right (or on the left): if a ≤ b then, for all c, a + c ≤ b + c (we are
using the additive notation although our groups need not be abelian). In fact,
right-orders on a group are related to actions of the group on the real line (see,
e.g., [18,10]). Moreover, right-ordered groups are used to give a description of
the free lattice-ordered groups on given groups [16]. Following a similar spirit,
in [15] spaces of right-orders on partially ordered groups have been related to
spectral spaces of lattice-ordered groups. In [19] several important examples
of preorders on groups that are compatible with the group operation only on
one side are described.

The aim of this paper is to extend the study made in [12] to the cat-
egory ROrdGrp whose objects are the right-preordered groups and whose
arrows are the monotone group homomorphisms. In particular, we observe
that ROrdGrp is isomorphic to the category whose objects are pairs (G,M),
where G is a group and M is a submonoid of G, and whose arrows are group
homomorphisms that (co)restrict to the submonoids. Using the good proper-
ties of the forgetful functors from ROrdGrp to, on the one hand, Grp and, on
the other hand, the category Ord of preordered sets and monotone maps, as
well as the ones of the functor associating to every right-preordered group its
positive cone, we give a description of limits and colimits in ROrdGrp, and
we show that this category has the same exactness properties as OrdGrp.
Actually, ROrdGrp is shown to be a quasivariety. Moreover, we characterize
the “good” objects, from an algebraic point of view, proving that they are
still the groups equipped with a (right-compatible) equivalence relation, and
observing that they also form a quasivariety. Finally, we explore the possible
compatible right-preorders on split extensions, showing that, as for OrdGrp,
all such preorders are bounded by the product preorder (a pair is positive if
and only if both components are) and the so-called lexicographic preorder.
We prove that the existence of a compatible right preorder is equivalent to the
fact that the lexicographic one is compatible (extending a result of [14]). Using
the semidirect product construction, we exhibit examples of split extensions
which admit compatible right-preorders without admitting preorders that are
compatible on both sides.
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2. The category ROrdGrp of right-preordered groups

A right-preordered group is a group (X,+) together with a preorder (i.e. a
reflexive and transitive relation) ≤ such that

∀ x, y, z ∈ X, x ≤ y ⇒ x + z ≤ y + z.

A morphism of right-preordered groups is a monotone group homomorphism.
We denote the category of right-preordered groups and their morphisms by
ROrdGrp. We point out that, when the group is abelian, the seemingly
weaker condition of being right-preordered coincides with being a preordered
group.

A right-preorder on a group X determines a submonoid of X, namely
PX = {x ∈ X | x ≥ 0}, also known as the positive cone of X.

Proposition 2.1. For a group X, right-preorders on X are in bijective corre-
spondence with submonoids of X.

Proof. If ≤ is a right-preorder on X, then, if x ≥ 0 and y ≥ 0, x+y ≥ 0+y ≥ 0,
hence PX = {x ∈ X | x ≥ 0} is a submonoid of X.

Conversely, given a submonoid M of X, define ≤ on X by x ≤ y if
y − x ∈ M . Then ≤ is clearly reflexive and transitive: x ≤ y and y ≤ z implies
y − x ∈ M and z − y ∈ M , hence (z − y) + (y − x) = z − x ∈ M , that is,
x ≤ z. Moreover, for every x, y, z ∈ X, if y − x ∈ M then y + z − z − x =
(y + z) − (x + z) ∈ M ; that is, x ≤ y implies x + z ≤ y + z as claimed. �

Remark 2.2. Given two right-preordered groups X and Y , a group homo-
morphism f : X → Y is monotone exactly when f(PX) ⊆ PY . Hence the
category ROrdGrp is isomorphic to the category having as objects pairs
(X,M), where X is a group and M is a submonoid of X, and as morphisms
f : (X,M) → (Y,N) group homomorphisms f : X → Y that (co)restrict to
M → N . For simplicity, herein we will refer to both the right-preorder on X
and its positive cone as a right-preorder on X.

In order to study the behaviour of the category ROrdGrp, we compare it
with its full subcategory OrdGrp of preordered groups, whose objects are the
groups (X,+) equipped with a preorder which is compatible with the group
operation both on the left and on the right, namely

∀ x, y, z ∈ X, x ≤ y ⇒ x + z ≤ y + z and z + x ≤ z + y.

For a preordered group (X,+,≤) the positive cone PX is not just a submonoid,
but it must also be closed under conjugation. We refer to [12] for a detailed
study of the category OrdGrp.

We start by observing the following.

Proposition 2.3. The (full) inclusion of the category OrdGrp of preordered
groups into ROrdGrp has a left adjoint.

Proof. Given a right-preordered group X, with positive cone PX , form the
least submonoid ˜PX of X closed under conjugation and containing PX . Define
F : ROrdGrp → OrdGrp by F (X,PX) = (X, ˜PX) and F (f) = f ; it is
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easy to check that from f(PX) ⊆ PY it follows that f( ˜PX) ⊆ ˜PY . The identity
maps (X,PX) → (X, ˜PX) are, by construction of ˜PX , morphisms in ROrdGrp
which define pointwise the unit of the adjunction. As we will see below, the
unit morphisms are epimorphisms but they are not regular epimorphisms. �

The functor P : ROrdGrp → Mon, which sends a right-preordered
group to its positive cone, factors through the category Moncan of monoids
with cancellation, since every submonoid of a group satisfies both left- and
right-cancellation properties. The functor P0 : ROrdGrp → Moncan has a
left adjoint:

Moncan

roGp
��

⊥ ROrdGrp,
P0

��

which is constructed by considering the group completion Gp(M) of any can-
cellative monoid M , with the preorder determined by the image of M into
Gp(M) via the unit of the group completion adjunction. The verification that
this construction gives the left adjoint to P0 is essentially the same as the
one described in [12] for preordered groups. Composing this adjunction with
the one described in the previous proposition, we get precisely the adjunction
(A) in [12]. Following the same arguments as in [12, Proposition 3.1], we con-
clude that any monoid M which is embeddable in a group is embeddable in its
group completion, and this is enough to conclude that it is the positive cone
of roGp(M).

In order to continue our exploration, we recall some categorical notions.
The first one is the notion of monadic functor. Given an adjunction between
two functors F : C → D and G : D → C, with F left adjoint to G, the triple
(T, η, μ) where T is the composite functor GF , η is the unit of the adjunction,
and μ is the natural transformation GεF : T 2 → T , with ε the counit of the ad-
junction, is a monad over C, namely a monoid in the category of endofunctors
of C (η and μ are called unit and multiplication of the monad, respectively).
An Eilenberg-Moore algebra for a monad (T, η, μ) is a pair (X, ξ) where X is
an object of C and ξ : T (X) → X is an arrow in T such that ξη = 1X and
ξT (ξ) = ξμX . Eilenberg-Moore algebras for a monad (T, η, μ) form a category
Alg(T ). A functor G : D → C is monadic if it has a left adjoint F : C → D
and the category D is equivalent to the category Alg(T ) of the algebras for the
corresponding monad. The categories that are domain of a monadic functor
to the category Set of sets are precisely the (possibly infinitary) varieties of
universal algebras. For example, the forgetful functor Grp → Set is monadic.
A criterion for the monadicity of a functor is the following one, due to Beck:

Theorem 2.4. A functor G : D → C is monadic if and only if it has a left
adjoint, it reflects isomorphisms, and C has and G preserves coequalizers of
all G-contractible coequalizer pairs.

To explain the last condition of the criterion above, we recall that a pair of
parallel arrows f, g : X → Y is contractible if there exists an arrow j : Y → X
such that fj = 1Y and gjf = gjg. A parallel pair of arrows in C such that its
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image under G is a contractible pair which has a coequalizer is a G-contractible
coequalizer pair (see e.g. Section 2 of [22]).

The second notion we need to recall is the one of topological functor.
Given a functor F : C → D, an F -structured source is an object D ∈ D
together with a family of arrows (fi : D → F (Ci))i∈I . The functor F is topo-
logical if every F -structured source (D, (fi)i∈I) has a unique F -initial lifting,
i.e. a unique object C ∈ C, with arrows gi : C → Ci, such that F (C) = D and
F (gi) = fi. This definition captures the main features of the forgetful functor
from the category Top of topological spaces to Set, which is the prototypical
example of a topological functor (and this justifies the name). For more details
on this definition, see e.g. [1]. The forgetful functor Ord → Set, where Ord
is the category of preorders and monotone maps, is topological, too.

As for the case of OrdGrp (see [12, Proposition 2.3]) we have the follow-
ing results, whose proofs follow arguments similar to those used for OrdGrp.

Proposition 2.5. Consider the forgetful functors U1 : ROrdGrp → Grp and
U2 : ROrdGrp → Ord, with U1 forgetting the preorder and U2 the group
structure. The functor U1 is topological while U2 is monadic. We have therefore
the following commutative diagram

ROrdGrp
(topological) U1

�����
���

���
�

U2 (monadic)

����
���

���
��

Grp

(monadic) | | ����
���

���
��

Ord

| | (topological)�����
���

���
��

Set

Proof. U1 is a topological functor : let (fi : X → Xi)i∈I be a family of group
homomorphisms where each Xi, for i ∈ I, is a right-preordered group. Then
PX = {x ∈ X | fi(x) ∈ PXi

for every i ∈ I} is a submonoid of X such that
fi(PX) ⊆ PXi

, for all i ∈ I. This defines the U1-initial lifting for (fi).
U2 is a monadic functor : To prove this we will use Theorem 2.4.

(a) U2 has a left adjoint L2 : Ord → ROrdGrp: L2 assigns to each preorder
A the free group F(A) on the set A equipped with the right-preorder induced
by the submonoid of F(A) generated by the elements of the form b − a for all
a, b ∈ A with a ≤ b. It is easy to check that L2 is a functor which is left adjoint
to U2.
(b) U2 reflects isomorphisms: a morphism f : X → Y in ROrdGrp with U2(f)
an isomorphism in Ord is a bijective homomorphism whose inverse is both a
homomorphism and monotone, hence f is an isomorphism in ROrdGrp.
(c) ROrdGrp has and U2 preserves coequalizers of all U2-contractible coequal-
izer pairs. First of all ROrdGrp is cocomplete, since it is topological over
a cocomplete category [1, Theorem 21.16]. Given morphisms f, g : X → Y
in ROrdGrp with U2(f),U2(g) a contractible pair in Ord, their coequalizer
q : Y → Q in ROrdGrp is preserved by U1, and so also by | | ·U1 because | | is
monadic and |U1(f)|, |U1(g)| form a contractible pair in Set. Therefore U2(q)
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is the coequalizer of |U2(f)|, |U2(g)| in Ord, since it is a split epimorphism and
|U2(q)| is the coequalizer of U2(f),U2(g) in Set. �

The properties of U1 and U2 give important information on the categorical
behaviour of ROrdGrp.

Remark 2.6. (1) Topologicity of U1 : ROrdGrp → Grp guarantees that it
has both a left and a right adjoint. The former one equips a group X
with the discrete order, so that PX = {0}, while the latter one equips a
group with the total preorder (so that PX = X). Moreover, with Grp
complete and cocomplete, also ROrdGrp is complete and cocomplete.

(2) Both U1 : ROrdGrp → Grp and U2 : ROrdGrp → Ord preserve lim-
its, which gives us a complete description of limits in ROrdGrp: alge-
braically they are formed like in Grp, and then equipped with the limit
preorder.

(3) The forgetful functor P : ROrdGrp → Mon which assigns to each right-
preordered group its positive cone, and to each morphism its
(co)restriction to the positive cones, preserves limits and coproducts, but
not coequalizers. Indeed, as for OrdGrp, the positive cone of a prod-
uct of right-preordered groups is the product of their positive cones, and
analogously for equalizers. For coproducts the situation differs from what
happens in OrdGrp, because in general the coproduct of positive cones is
not closed under conjugation as a submonoid of the coproduct of the pre-
ordered groups (see, for instance, [12, Example 2.10]). On the contrary,
in ROrdGrp the positive cone of a coproduct is the coproduct of the pos-
itive cones, just because the coproduct of submonoids is a submonoid of
the coproduct.
We point out that the functor P does not preserve coequalizers; for in-
stance, the coequalizer of the pair of morphisms f, g : (Z, 0) → (Z, N),
with f(1) = 1 and g(1) = 2, is the constant morphism into {0}, while the
coequalizer of P(f),P(g) : {0} → N is the identity on N.

(4) Analogously to the case of OrdGrp (see [12, Remark 2.4]), given a mor-
phism f : (X,PX) → (Y, PY ) in ROrdGrp:
(a) f is an epimorphism if and only if f is surjective; epimorphisms are

stable under pullback;
(b) f is a regular epimorphism (i.e. a coequalizer of a parallel pair of

morphisms) if and only if both f and P(f) are surjective, and regular
epimorphisms are stable under pullback;

(c) f is a monomorphism if and only if f is injective;
(d) f is a regular monomorphism (i.e. an equalizer of a parallel pair of

morphisms) if and only if f is injective and PX = f−1(PY ).

The last part of the remark tells us that in ROrdGrp there are two
proper and stable factorization systems, (Epi, Reg Mono) and (Reg Epi, Mono),
factoring each morphism as outlined in the following diagram:
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(X,PX)
f ��

e
����

���
���

��
(Y, PY ) (X,PX)

f ��

e′
		�

��
��

��
��

(Y, PY )

(f(X), PY ∩ f(X))

m



����������
(f(X), f(PX))

m′

�����������

We recall that a factorization system in a category C is given by two classes
of arrows E and M that contain all isomorphisms and are closed under com-
position, and such that every arrow in C factor, uniquely up to isomorphisms,
as an arrow in E followed by one in M. A factorization system (E,M) is stable
when both classes are stable under pullbacks. It is proper when all arrows in
E are epimorphisms and all arrows in M are monomorphisms. The fact that
in a finitely complete category (Reg Epi, Mono), where Reg Epi is the class
of regular epimorphisms and Mono is the class of monomorphisms, is a stable
factorization system means that the category is regular. This is the case, in
particular, of every (quasi)variety, where the Reg Epi-Mono-factorization is
the usual image factorization.

From the observations above, we conclude that ROrdGrp is a regular
category. As observed in [12], the equivalence relation

(Z × Z,ΔN)
p1 ��

p2
�� (Z, N),〈1,1〉��

where ΔN = {(x, x); x ∈ N}, is not effective in ROrdGrp (i.e. it is not the
kernel pair of a morphism), since the morphism 〈p1, p2〉 : (Z × Z,ΔN) → (Z ×
Z, N × N), which is the identity map, is not a regular monomorphism. We
therefore conclude that ROrdGrp is not a Barr-exact category [3], hence it is
not a variety. Still, we will show next that ROrdGrp is a quasivariety. To do
it, we will use a sufficient condition described in [11].

Let I : Grp → Mon be the inclusion functor, and consider the comma
category Mon ↓ I; that is, an object of Mon ↓ I is a homomorphism of
monoids α : M → I(G), and a morphism from α : M → I(G) to α′ : M ′ →
I(G′) is a pair (f, g) where f : M → M ′ and g : G → G′ are homomorphisms
making the following diagram

M
f ��

α



M ′

α′


I(G)

I(g)
�� I(G′)

commute. Denote by Mon

�

I its full subcategory of monomorphisms (that
is, an object is a monomorphism M → I(G)).

Lemma 2.7. ROrdGrp is equivalent to Mon

�

I.

Proof. Straightforward. �

The following result will be fundamental in our proof.
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Theorem 2.8 [11, Theorem 1.8 and Remark 1.10]. If A and B are varieties
admitting at least one constant and I : B → A is a right adjoint functor, then
A ↓ I is a variety. Moreover, if A and B are finitary varieties, then A ↓ I is
a finitary variety.

Theorem 2.9. ROrdGrp is a finitary quasivariety.

Proof. The functor I : Grp → Mon is a right adjoint. Then, by Proposi-
tion 1.6 of [11], Mon

�

I is a regular epireflective subcategory of Mon ↓ I.
Hence, since Mon and Grp are finitary varieties with constants, by the Theo-
rem above we may conclude that Mon

�

I, and hence ROrdGrp, is a finitary
quasivariety. �

Remark 2.10. Instead of applying directly the results of [11] we could prove
directly that ROrdGrp is a regular category with a regular projective, regular
generator, which, for cocomplete categories, is equivalent to being a quasiva-
riety (see Corollaries 4.4 and 4.6 in [24]). In the Appendix we will use this
strategy to show that OrdGrp is a quasivariety. It is also finitary, as we show
there, but this result needs some extra effort.

Despite not being Barr-exact, ROrdGrp shares with OrdGrp the prop-
erty of being efficiently regular in the sense of [7]: a regular category is ef-
ficiently regular when effective equivalence relations are stable under regular
monomorphisms: if R is an effective equivalence relation over an object X and
T is another equivalence relation over X which is a regular subobject j : T � R
of R (i.e. j is a regular monomorphism), then T is itself effective. The proof of
this fact is the same as for the case of OrdGrp (see [12]): if R is effective and T
is a regular subobject of R, then T is a kernel pair of a morphism in Grp, since
Grp is Barr-exact. Moreover, being j a regular monomorphism in ROrdGrp,
PT = T ∩ PR. The equivalence relation R is effective in ROrdGrp, hence
PR = R ∩ PX×X , and so

PT = T ∩ R ∩ PX×X = T ∩ PX×X ,

which proves that T is effective in ROrdGrp. As outlined in [12, Proposi-
tions 2.7, 2.8], in every efficiently regular category the change-of-base functor
induced by a regular epimorphism is monadic. Therefore:

Corollary 2.11. In ROrdGrp a morphism is effective for descent if and only if
it is a regular epimorphism.

Another property that ROrdGrp shares with OrdGrp is normality in the
sense of [20]: a pointed regular category is normal if every regular epimorphism
is a normal epimorphism, i.e. the cokernel of a morphism. It was observed in
[20] that a pointed variety is normal if and only if it is a variety with ideals
in the sense of Fichtner [17]; such varieties are also called 0-regular. A variety
with a constant 0 is said to be 0-regular if every congruence in it is determined
by its 0-class, meaning that no different congruence has the same 0-class.

Proposition 2.12. ROrdGrp is a normal category.
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Proof. Following the same argument as in [12, Proposition 2.5] for OrdGrp,
given any regular epimorphism f : X → Y , U1(f) is a regular epimorphism in
Grp, hence a normal epimorphism in Grp. Then, since colimits in ROrdGrp
are built as in Grp thanks to the fact that U1 is topological (see Proposition
2.5), f is a normal epimorphism in ROrdGrp. �

In any regular category, a morphism f : X → Y in ROrdGrp is a regular
epimorphism if and only if it is an extremal epimorphism: if f factors through
a monomorphism m : Z → Y as f = me, m is necessarily an isomorphism.
In varieties, these morphisms are precisely the surjective morphisms. In the
next section we would need to consider the extension of this notion to families
of morphisms with the same codomain: a family (fi : Xi → X)i∈I of mor-
phisms is jointly extremally epimorphic if, whenever there is a monomorphism
m : Z → X such that, for all i, fi = mgi for arrows gi : Xi → Z, then m is
an isomorphism. In algebraic terms, this means that X is generated by the
images of the fi’s.

Remark 2.13. As observed in Remark 2.6, exactly as for OrdGrp, a morphism
f : X → Y in ROrdGrp is an extremal epimorphism (or regular epimorphism)
if and only if both f and its (co)restriction to the positive cones are surjective.

In [12, Remark 2.9] we pointed out that this does not extend to families
of morphisms in OrdGrp; that is, for a family of morphisms, to be jointly
extremally epimorphic in OrdGrp does not imply the family of (co)restrictions
to the positive cones to be jointly extremally epimorphic. The situation in
ROrdGrp differs from this one: a family of morphisms (fi : Xi → X)i∈I is
jointly extremally epimorphic in ROrdGrp if and only if

(1) (fi : Xi → X)i∈I is jointly extremally epimorphic in Grp;
(2) (fi : PXi

→ PX)i∈I is jointly extremally epimorphic in Mon.

Indeed, if (1) does not hold, given a factorization of (fi) through a monomor-
phism in Grp

Xi
fi ��

gi ���
��

��
��

X

Y

m

����������

we can equip Y with PY = m−1(PX), making this factorization live in
ROrdGrp. If (2) does not hold, so that we can obtain a factorization

PXi

P (fi) ��

P (gi) ���
��

��
��

PX

M

m

��								
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with m monic (and not an isomorphism), we can factor (fi) in ROrdGrp as
follows

(Xi, PXi
)

fi ��

fi ����
���

���
��

(X,PX)

(X,M)
1X














showing that (fi) is not jointly extremally epimorphic. The converse implica-
tion is obvious.

3. Algebraic properties of ROrdGrp

The notion of jointly extremally epimorphic family of morphisms allows to
express in categorical terms the varietal condition of being a Jónsson-Tarski
variety [21], namely a variety with a unique constant and a binary operation
+ such that for all x one has x + 0 = 0 + x = x. We say that a pointed,
finitely complete category is unital [6] if, for every pair of objects X,Y , the
canonical morphisms 〈1, 0〉 : X → X × Y and 〈0, 1〉 : Y → X × Y are jointly
extremally epimorphic. It was observed in [4] that a variety is a unital category
if and only if it is a Jónsson-Tarski-variety. In [12] it was shown that the
category OrdGrp of preordered groups is unital; the same argument works
for ROrdGrp, showing that the category of right-preordered groups is unital,
as well.

In a unital category the notions of commutative and abelian object have
a simple expression: an object A in a unital category C is commutative if there
exists a morphism ϕ : A×A → A making the following diagram commutative:

A
〈1,0〉 ��

��
��

��
��

�

��
��

��
��

� A × A

ϕ



A
〈0,1〉��

��
��
��
��
�

��
��
��
��
�

A.

The fact that 〈1, 0〉 and 〈0, 1〉 are jointly extremally epimorphic implies that
such ϕ is unique, making commutativity a property of the object A. Moreover,
in a Jónsson-Tarski-variety, the morphism ϕ is necessarily the binary operation
+: indeed, for any a, b ∈ A

ϕ(a, b) = ϕ((a, 0) + (0, b)) = ϕ(a, 0) + ϕ(0, b) = ϕ〈1, 0〉(a) + ϕ〈0, 1〉(b) = a + b

and so an object is commutative if and only if the operation + is a morphism.
This forces + to be commutative and associative, giving a structure of internal
commutative monoid (and this explains the name “commutative” for such
objects). An object A in C is abelian if it is an internal abelian group, meaning
that there is also an inversion − which is a morphism of C. For the same reason
as before, also the inversion is uniquely determined, making abelianness a
property of an object.

Both in OrdGrp and in ROrdGrp, given an object (A,+,≤), the op-
eration + is a morphism if and only if it is commutative and monotone. So,
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in both cases, the commutative objects are precisely the preordered abelian
groups. If, moreover, we require the inversion − to be monotone, the preorder
≤ becomes symmetric. Hence, in both categories, the abelian objects are the
abelian groups equipped with a congruence. These objects can be identified
with pairs (A,N) where A is an abelian group and N is a subgroup of A. So:

Proposition 3.1. The (full) subcategory of abelian objects in both OrdGrp and
ROrdGrp is equivalent to the category of monomorphisms of abelian groups.

Other important categorical-algebraic properties can be expressed by
means of jointly extremally epimorphic pairs of arrows. For example, a finitely
complete category C is a Mal’tsev category [9] if every internal reflexive rela-
tion in C is an equivalence relation. For varieties, this corresponds precisely
to the classical notion of Mal’tsev variety. It was shown in [6] that a finitely
complete category C is Mal’tsev if and only if, for every pullback of split
epimorphisms as in the following diagram

A ×Y C

πA



πC

�� C

g



〈sg,1C〉��

A

〈1A,tf〉

��

f
�� Y,

s��

t

��

the morphisms 〈1A, tf〉 and 〈sg, 1C〉 are jointly extremally epimorphic.
Similarly, a finitely complete category C is protomodular [5] if, for every

pullback of a split epimorphism f along any morphism g as in the following
diagram

A ×Y C

πA



πC

�� C

g



〈sg,1C〉��

A
f

�� Y,
s��

the morphisms πA and s are jointly extremally epimorphic. For pointed cate-
gories, this request is equivalent to the fact that, for every split epimorphism
f with section s, the section and the kernel of f are jointly extremally epimor-
phic. This is moreover equivalent to the validity of the Split Short Five Lemma
in C, opening the way to the development of non-abelian homological algebra
in categorical terms. Protomodular varieties of universal algebras have been
characterized in [8]. It is also known (see, e.g., [4]) that every protomodular
category is a Mal’tsev category.

It was observed in [12] that the category OrdGrp of preordered groups
is not protomodular nor Mal’tsev. The same arguments work for ROrdGrp,
showing that the category of right-preordered groups is not protomodular nor
Mal’tsev, too. In [23], in order to give a categorical characterization of groups
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among monoids, and more generally to describe the properties of “good” ob-
jects in categories with weak algebraic properties, local versions of the notions
of Mal’tsevness and protomodularity, relatively to an object, have been con-
sidered. Let us recall them.

Definition 3.2. A point A
f

�� B
s�� (i.e. a split epimorphism with a fixed sec-

tion) with kernel k : X → A in a pointed finitely complete category is strong if
k and s are jointly extremally epimorphic. It is stably strong if every pullback
of it along any morphism g : C → B is strong.

Definition 3.3 ([23]). An object Y of a pointed finitely complete category C is

(1) a strongly unital object if the point Y × Y
π2

�� Y
〈1,1〉�� is stably strong;

(2) a Mal’tsev object if, for every pullback of split epimorphisms over Y as
in the following diagram

A ×Y C

πA



πC

�� C

g



〈sg,1C〉��

A

〈1A,tf〉

��

f
�� Y,

s��

t

��

the morphisms 〈1A, tf〉 and 〈sg, 1C〉 are jointly extremally epimorphic;
(3) a protomodular object if every point over Y is stably strong.

As shown in [23], every protomodular object is a Mal’tsev one; in a regular
category, every Mal’tsev object is strongly unital. In a unital category, an
object is strongly unital if, and only if, it is gregarious in the sense of [4,
Definition 1.9.1]. Gregarious objects have been the first, unfortunate attempt
to characterize groups amongst monoids categorically. Indeed, strongly unital
objects in the category Mon of monoids are characterized in [4, Proposition
1.9.2]: a monoid M is strongly unital if and only if for any m in M there exist
u, v ∈ M such that u+m+v = 0. Clearly, every group satisfies this condition,
but there are gregarious monoids that are not groups ([4, Counterexample
1.9.3]). An important fact for us is that every cancellative, strongly unital
monoid is a group. The proof of this fact that we present here was suggested
to us by Alfredo Costa, to whom we are grateful.

Lemma 3.4. Every cancellative, strongly unital monoid M is a group.

Proof. Let m ∈ M and let u, v ∈ M be such that u + m + v = 0. We show
that v + u is the inverse of m. From u + m + v = 0 we get

u + m + v = 0 = u + m + v + u + m + v;

cancelling u on the left and v on the right we get

m = 0 + m = m + v + u + m.
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Now, cancelling m on the right we obtain m + v + u = 0. Similarly, one gets
v + u + m = 0. �

We observe that a finitely complete category is a Mal’tsev category if and
only if every object in it is a Mal’tsev object, and it is protomodular if and
only if every object is protomodular. In the category Mon of monoids, the
Mal’tsev and the protomodular objects are precisely the groups. The following
characterization of these kinds of objects in ROrdGrp extends the one we
obtained in [12] for OrdGrp.

Theorem 3.5. For a right-preordered group Y , the following conditions are
equivalent:

(i) Y is a protomodular object in ROrdGrp;
(ii) Y is a Mal’tsev object in ROrdGrp;
(iii) Y is a strongly unital object in ROrdGrp;
(iv) PY is a group;
(v) the preorder relation on Y is an equivalence relation.

Proof. The equivalence between (iv) and (v) is obvious.
(iv) ⇒ (i): since, in particular, every pair of morphisms in ROrdGrp

with the same codomain is jointly extremally epimorphic in ROrdGrp pro-
vided that it is jointly extremally epimorphic in Grp and its restriction to
the positive cones is jointly extremally epimorphic in Mon, we can use the
argument of [12, Theorem 4.6].

(i) ⇒ (ii) follows from [23, Proposition 7.2].
(ii) ⇒ (iii) follows from [23, Proposition 6.3], because ROrdGrp is a

regular category.
(iii) ⇒ (iv): according to Lemma 3.4, we only need to show that PY is

a gregarious monoid. Suppose there is an element b ∈ PY for which there
are no u, v ∈ PY with u + b + v = 0. Let X = 〈b〉 be the subgroup of Y
generated by b, with the induced preorder, and j : X ↪→ Y the inclusion. As
a (right-)preordered group, X is isomorphic to Z with its usual order, namely
PX = {nb | n ∈ N}. Consider then the following right-hand side pullback in
ROrdGrp:

Y
〈1,0〉 �� Y × X

1×j



π2
�� X

〈j,1〉��

j


Y

〈1,0〉 �� Y × Y
π2

�� Y.
〈1,1〉��

We show that the positive cone of Y ×X (which is PY ×PX) contains strictly
the submonoid P of Y ×X generated by 〈1, 0〉(PY ) and 〈j, 1〉(PX); this would
prove that the upper point in the pullback above is not strong, contradicting
the assumption. In particular, we show that (0, b) /∈ P . The elements of P are
of the form

(y1, 0) + (n1b, n1b) + (y2, 0) + (n2b, n2b) + · · · + (yk, 0) + (nkb, nkb)
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for some k, ni ∈ N, yi ∈ Y . If (0, b) ∈ P , then we should have
{

y1 + n1b + y2 + n2b + · · · + yk + nkb = 0
n1 + n2 + · · · + nk = 1

but this is possible only if there is a unique i ∈ {1, . . . k} such that ni = 1,
while all the other nj ’s are 0. So we would get

y1 + y2 + · · · + yi + b + yi+1 + · · · + yk = 0,

which is against our assumption on b. �

Therefore the (full) subcategory of protomodular objects of ROrdGrp is
equivalent to the category Grp

�

Id, where Id: Grp → Grp is the identity
functor. Using arguments similar to those used in Section 2 we can conclude
that:

Proposition 3.6. The (full) subcategories of abelian objects and of protomodu-
lar objects of ROrdGrp are finitary quasivarieties.

4. Split extensions in ROrdGrp

Any split extension

X
k �� A

p
�� B

s�� (4.i)

in ROrdGrp is in particular a split extension in Grp. Hence A, as a group,
is isomorphic to the semidirect product X �ϕ B w.r.t. the action ϕ of B on
X given by ϕb(x) = k−1(s(b) + k(x) − s(b)). Furthermore, in Grp the split

extension (4.i) is isomorphic to X
〈1,0〉 �� X �ϕ B

πB

�� B
〈0,1〉�� . Hence every split

extension (4.i) in ROrdGrp is isomorphic to a split extension of the form

X
〈1,0〉 �� X �ϕ B

πB

�� B
〈0,1〉�� (4.ii)

where X �ϕ B is equipped with a preorder which makes (4.ii) a split extension
in ROrdGrp. Given two right preordered groups (X,PX) and (B,PB), we
call compatible right preorders those preorders on X �ϕ B that turn X �ϕ B
into a right preordered group and (4.ii) a split extension in ROrdGrp. We
already know from [12, Section 5] that, given a split extension (4.ii) in Grp
with X and B preordered groups, there may be more than one compatible
preorder in X �ϕ B, and there may be none. It follows immediately that in
ROrdGrp there is no uniqueness of compatible right-preorders. We will see
next that, although existence is not guaranteed, the condition that guarantees
the existence of compatible right-preorders is much less restrictive than those
for preorders.

As in OrdGrp (see [12,14] for details), the positive cone P of a compat-
ible right-preorder must contain

Pprod = PX × PB = {(x, b) ∈ X �ϕ B | x ≥ 0 and b ≥ 0},
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and must be contained in

Plex = {(x, b) ∈ X �ϕ B | b > 0 or (b ∼ 0 and x ≥ 0)},

where b > 0 means b ≥ 0 and b �= 0, while b ∼ 0 means b ≤ 0 and b ≥ 0.

Proposition 4.1. If P is a compatible cone in X �ϕ B, then Pprod ⊆ P ⊆ Plex.

Proof. The morphism 〈1, 0〉 : X → X �ϕ B is a kernel in ROrdGrp if and
only if (x ∈ PX ⇔ (x, 0) ∈ P ), while 〈0, 1〉 : B → X �ϕ B is monotone if and
only if (0, b) ∈ P whenever b ∈ PB . Hence Pprod ⊆ P . Moreover, monotonicity
of πB gives that b ∈ PB whenever (x, b) ∈ P . If b ∼ 0 then −b ∈ PB, and so
(0,−b) ∈ P ; therefore, if (x, b) ∈ P , then (x, 0) = (x, b) + (0,−b) ∈ P , hence
x ∈ PX . �

Theorem 4.2. For a split extension (4.ii) in Grp with (X,PX) and (B,PB)
right-preordered groups, the following conditions are equivalent:

(i) Plex is a compatible right-preorder;
(ii) there is a compatible right-preorder P ;
(iii) (∀b ∈ B) b ∼ 0 ⇒ ϕb monotone.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii): suppose b ∈ PB , and let x ∈ PX ; then (0, b) + (x, 0) =

(ϕb(x), b) must belong to P . If b ∼ 0 then necessarily ϕb(x) ≥ 0 as claimed.
(iii) ⇒ (i): we need to show that Plex is a submonoid of X �ϕ B; let

(x, b), (y, b′) ∈ Plex (hence b, b′ ∈ PB); then (x, b) + (y, b′) = (x + ϕb(y), b + b′)
belongs trivially to Plex when b+b′ �∼ 0; if b+b′ ∼ 0 then b ≥ 0 and b ≤ −b′ ≤ 0,
hence b ∼ 0, and so, by (iii), ϕb(y) ≥ 0 and consequently x + ϕb(y) ≥ ϕb(y)
≥ 0. �

Corollary 4.3. If B is a right-ordered group (i.e., with an antisymmetric pre-
order), then the right-preorder Plex is compatible.

One can also identify the split extensions admitting Pprod as a compatible
cone.

Proposition 4.4. For a split extension (4.ii) in Grp, with (X,PX) and (B,PB)
right-preordered groups, the following conditions are equivalent:

(i) Pprod is a compatible right-preorder.
(ii) (∀b ∈ PB) ϕb is monotone.

Proof. (i) ⇒ (ii): If b ∈ PB and x ∈ PX , then (0, b)+(x, 0) = (ϕb(x), b) ∈ Pprod,
hence ϕb(x) ∈ PX and therefore ϕb is monotone.

(ii) ⇒ (i): Given x, y ∈ PX and a, b ∈ PB , (x, a)+ (y, b) = (x+ϕa(y), a+
b) ∈ Pprod since a + b ∈ PB and x + ϕb(y) ∈ PX by (ii). �

A comparison of Corollary 4.3 above with Theorem 3.2 of [14] gives us
the following

Corollary 4.5. When B is an ordered group and ϕb is not monotone for some
b ∈ B, then Plex – and every possible compatible right-preorder on X �ϕ B –
makes it a right-preordered group but not a preordered one.
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Examples 4.6(2–3) below are concrete instances of the situation described
in the previous corollary.

Examples 4.6. (1) As shown in [12, Example 5.8], the split extension

(Z, N)
〈1,0〉 �� Z × Z

π2
�� (Z, N)

〈0,1〉��

has an uncountable number of compatible (right-)preorders (here every
right-preorder is a preorder on Z × Z since the group is abelian).

(2) Consider the split extension

(Z, P )
〈1,0〉 �� Z �ϕ Z

π2
�� (Z, Z)

〈0,1〉�� (4.iii)

with ϕb(x) = (−1)bx.
When P = N then ϕb is not monotone when b is an odd number (al-
though every b ∼ 0), hence there is no right-preorder making (4.iii) a
split extension in ROrdGrp.
When P = {0}, ϕb is trivially monotone, hence Pprod, which coincides
with Plex, is a compatible right-preorder. Note that there is no compat-
ible preorder making Z �ϕ Z a preordered group, since the existence of
such compatible preorder would imply that ϕb ∼ id for every b ∈ Z (see
[14, Theorem 3.2]).

(3) We can extend the previous situation, providing plenty of examples of
right-(pre)ordered groups which are not (pre)ordered. Let us describe
explicitly some of them. We recall that an action of a group B on a
group X can be expressed as a group homomorphism from B to the au-
tomorphism group Aut(X). When X is the additive group of rationals,
Aut(X) = (Q\{0}, ·). Hence, an action of Z on Q, namely a group homo-
morphism Z → Q\{0}, is uniquely determined by the image of 1, i.e. by
a non-zero rational number q. Let us then consider the split extension

(Q, Q+)
〈1,0〉 �� Q �ϕ Z

π2
�� (Z, N)

〈0,1〉��

where ϕ is the action determined by the non-zero rational number q, i.e.
ϕb(x) = qbx. The lexicographic preorder (actually, order) on Q �ϕ Z is
always right-compatible, since (Z, N) is an ordered group (i.e. the preorder
is antisymmetric), but when q < 0 the map ϕb is not monotone for all
positive b, and so, according to [14, Theorem 3.2], there is no compatible
preorder on Q �ϕ Z.

5. Further comments

The passage from preordered groups to right-preordered groups as outlined
here can be carried out to the more general context of V -groups, when V is a
commutative and unital quantale, as studied in [13]. We take this opportunity
to point out that in the statement (ii) of Proposition 3.1 of our paper [13]
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a condition is missing. Indeed, a V -group is a group which has a V -category
structure both left- and right-invariant under shifting, and this is the notion
studied in [13]. Condition (ii) of Proposition 3.1 of [13] gives a notion of right-
invariant V -group, or simply right-V -group, that may be interesting to explore
in future work.
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Appendix A. OrdGrp is a finitary quasivariety

In this Appendix we show that the category OrdGrp is a finitary quasivariety.
We point out that, although by Proposition 2.3 OrdGrp is an epireflective sub-
category of ROrdGrp, it is not regular epireflective, hence we cannot conclude
immediately that OrdGrp is a quasivariety.

In the proof the coproduct of (Z, {0}) and (Z, N) will play a key role; for
simplicity we denote it by Z0 � ZN.
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Proposition A.1. The ordered group Z0 � ZN is a regular projective, regular
generator of OrdGrp.

Proof. Z0 � ZN is a regular generator: given a preordered group (X,PX), each
x ∈ X and a ∈ PX define morphisms ϕx : Z0 → (X,PX), with ϕx(1) = x, and
ψa : ZN → (X,PX), defined by ψa(1) = a, and thus a morphism Z0 � ZN →
(X,PX); and in fact every morphism Z0�ZN → (X,PX) is of this form. Hence
the morphism

∐

f (Z0 � ZN)f → (X,PX), indexed by the set of morphisms
f : Z0 � ZN → (X,PX), is clearly a regular epimorphism, that is, Z0 � ZN is a
regular generator of OrdGrp.

Z0�ZN is regular projective: as observed above, the representable functor

OrdGrp(Z0 � ZN,−) → Set (A.i)

is isomorphic to the functor which assigns to each (X,PX) the set PX × X,
and to each morphism f : (X,PX) → (Y, PY ) the map f × f : PX × X →
PY × Y , where f is the (co-)restriction of f to the positive cones. Hence, if
f : (X,PX) → (Y, PY ) is a regular epimorphism, so that both f and f are
surjective, then f × f is surjective as claimed. �

It was shown in [12, Proposition 2.5] that OrdGrp is a regular category.
Hence we may conclude that OrdGrp is a quasivariety via [24, Corollary 4.4].

Theorem A.2. OrdGrp is a finitary quasivariety.

Proof. In order to show that OrdGrp is finitary, we need to show that the
representable functor (A.i) preserves filtered colimits. As observed above, this
functor is isomorphic to the composite

OrdGrp G �� Mon × Grp U �� Set ,

where G(X,PX) = (PX ,X) and U(M,G) = M × G. The functor U preserves
filtered colimits because both Mon and Grp are finitary varieties and (filtered)
colimits are formed componentwise in Mon × Grp. It remains to be shown
that G preserves filtered colimits.

Let D be a filtered category and J : D → OrdGrp a functor. Let us
denote J(D) by (XD, PD). Consider the colimits

(PD
ρD �� P ) and (XD

σD �� X)

of Π1 · G · J : D → Mon and Π2 · G · J : D → Grp, respectively, where Π1,Π2

are the projections.

Note that (XD
σD �� X) is also a colimit in Mon, since the inclusion

Grp → Mon preserves filtered colimits. Therefore the inclusions ιD : PD →
XD of the positive cones induce a morphism ι : P → X making the following
diagram commute

PD
ρD ��

ιD



P

ι


XD σD

�� X
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which is necessarily a monomorphism, by Corollary 1.60 of [2]. Hence, without
loss of generality, we may assume P to be a submonoid of X. In order to check
that (X,P ) is the colimit of J in OrdGrp it remains to be checked that P
is closed under conjugation. Let x ∈ X and a ∈ P ; we want to show that
x + a − x ∈ P . Since U preserves filtered colimits, there exists D ∈ D and
xD ∈ XD such that x = σD(xD), and there exists D′ ∈ D and aD′ ∈ PD′

such that a = ρD′(aD′). Since the category D is filtered, there exist D′′ ∈ D
and morphisms α : D → D′′, β : D′ → D′′ in D, and so x = σD′′(Jα(xD)) and
a = ρD′′(Jβ(aD′)) = σD′′(Jβ(aD′)). Therefore

x + a − x = σD′′(Jα(xD) + Jβ(aD′) − Jα(xD)) ∈ P,

since Jβ(aD′) ∈ PD′′ and PD′′ is closed under conjugation in XD′′ . �

Remark A.3. The techniques used for OrdGrp may also be used to show that
ROrdGrp is a finitary quasivariety. For ROrdGrp the regular projective, regu-
lar generator will be again Z0 � ZN, but note that the coproduct in ROrdGrp
does not coincide with the coproduct in OrdGrp (the positive cones do not
coincide). Still, the same proof works.
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