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Understanding how the adult human brain learns novel categories is an important problem in neuro-
science. Drift-diffusion models are popular in such contexts for their ability to mimic the underlying neural
mechanisms. One such model for gradual longitudinal learning was recently developed in Paulon et al. (J
Am Stat Assoc 116:1114–1127, 2021). In practice, category response accuracies are often the only reliable
measure recorded by behavioral scientists to describe human learning. Category response accuracies are,
however, often the only reliable measure recorded by behavioral scientists to describe human learning.
To our knowledge, however, drift-diffusion models for such scenarios have never been considered in the
literature before. To address this gap, in this article, we build carefully on Paulon et al. (J Am Stat Assoc
116:1114–1127, 2021), but now with latent response times integrated out, to derive a novel biologically
interpretable class of ‘inverse-probit’ categorical probability models for observed categories alone. How-
ever, this newmarginal model presents significant identifiability and inferential challenges not encountered
originally for the joint model in Paulon et al. (J Am Stat Assoc 116:1114–1127, 2021). We address these
new challenges using a novel projection-based approach with a symmetry-preserving identifiability con-
straint that allows us to work with conjugate priors in an unconstrained space. We adapt the model for
group and individual-level inference in longitudinal settings. Building again on the model’s latent variable
representation, we design an efficient Markov chain Monte Carlo algorithm for posterior computation. We
evaluate the empirical performance of the method through simulation experiments. The practical efficacy
of the method is illustrated in applications to longitudinal tone learning studies.

Key words: category learning, B-splines, drift-diffusion models, functional models, inverse Gaussian
distributions, longitudinal mixed models, speech learning.

Scientific Background Categorization decisions are important in almost all aspects of our
lives—whether it is a friend or a foe, edible or non-edible, the word /bat/ or /hat/, etc. The
underlying cognitive dynamics are being actively studied through extensive ongoing research
(Glimcher & Fehr, 2013; Gold & Shadlen, 2007; Heekeren et al., 2004; Purcell, 2013; Schall,
2001; Smith & Ratcliff, 2004) .

In typical multi-category decision tasks, the brain accumulates sensory evidence in order to
make a categorical decision. This accumulation process is reflected in the increasing firing rates
at local neural populations associated with different decisions. A decision is taken when neural
activity in one of these populations reaches a particular threshold level. The decision category
that is finally chosen is the one whose decision threshold is crossed first (Brody & Hanks, 2016;
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Gold & Shadlen, 2007) . Changes in evidence accumulation rates and decision thresholds can be
induced by differences in task difficulty and/or cognitive function (Cavanagh et al., 2011; Ding
& Gold, 2013) . Decision-making is also regulated by demands on both the speed and accuracy
of the task (Bogacz et al., 2010; Milosavljevic et al., 2010) .

Understanding the brain activity patterns for different decision alternatives is a key scientific
interest in modeling brain mechanisms underlying decision-making. Statistical approaches with
biologically interpretable parameters that further allow probabilistic clustering of the parameters
(Lau &Green, 2007;Wade, 2023) associated with different competing choices can facilitate such
inference, the parameters clustering together indicating similar behavior and difficulty levels.

Drift-Diffusion Models A biologically interpretable joint model for decision response accuracies
and associated response times is obtained by imitating the underlying evidence accumulation
mechanisms using latent drift-diffusion processes racing toward their respective boundaries, the
process reaching its boundary first producing the final observed decision and the time taken to
reach this boundary giving the associated response time (Fig. 1a) (Usher & McClelland, 2001) .

The literature on drift-diffusion processes for decision-making is rather vast but is mostly
focused on simple binary decision scenarios with a single latent diffusion process with two bound-
aries, one for each of the two decision alternatives (Ratcliff, 1978; Ratcliff et al., 2016; Ratcliff &
Rouder, 1998; Ratcliff &McKoon, 2008; Smith & Vickers, 1988) . Multi-category drift-diffusion
models with multiple latent processes are mathematically more easily tractable (Brown&Heath-
cote, 2008; Dufau et al., 2012; Kim et al., 2017; Leite & Ratcliff, 2010; Usher & McClelland,
2001) but the literature is sparse and focused only on simple static designs.

Learning to make categorization decisions is, however, a dynamic process, driven by per-
ceptual adjustments in our brain and behavior over time. Category learning is thus often studied
in longitudinal experiments. To address the need for sophisticated statistical methods for such
settings, Paulon et al. (2021) developed an inverse Gaussian distribution-based multi-category
longitudinal drift-diffusion mixed model.

Data Requirements and Related Challenges Crucially, measurements on both the final decision
categories and the associated response times are needed to estimate the drift and the boundary
parameters from conventional drift-diffusion models, including the work by Paulon et al. (2021).
Unfortunately, however, researchers often only record the participants’ decision responses as their
go-tomeasure of categorization performance, ignoring the response times (Chandrasekaran et al.,
2014; Filoteo et al., 2010) .Additionally, eliciting accurate response times can bemethodologically
challenging, e.g., in the case of experiments conducted online, especially during the Covid-19
pandemic (Roark et al., 2021) , or when the response times from participants/patients are
unreliable due to motor deficits (Ashby et al., 2003) . Participants may also be asked to delay the
reporting of their decisions so that delayed physiological responses that relate to decision-making
can be accurately measured (McHaney et al., 2021) . In such cases, the reported response times
may not accurately relate to the actual decision times and hence cannot be used in the analysis.
As a result, conventional drift-diffusion analysis that requires data on both response accuracies
and response times, such as Paulon et al. (2021), cannot be used in such scenarios.

The Research Question The main research question addressed in this article is to see if a new class
of drift-diffusion models can be designed for such scenarios which will allow the biologically
interpretable drift-diffusion process parameters to be meaningfully recovered from data on input–
output category combinations alone.

The Inverse-Probit Model Categorical probability models that build on latent drift-diffusion pro-
cesses can be useful in providing biologically interpretable inference in data sets comprising
input–output categories but no response times. To our knowledge, however, the problem has
never been considered in the literature before. We aim to address this remarkable gap in this
article.



MINERVA MUKHOPADHYAY ET AL. 463

Figure 1.
Drift-diffusion model for tone learning. The tones {T1, T2, T3, T4} represent the different categories; s denotes an input
category, d ′ the different possible response categories, and d the final response category. Here we are illustrating a single
trial with input tone T1 (s = 1) that was eventually correctly identified (d = 1). a Shows a process whose parameters can
be inferred from data on both response categories and response times. Here, after an initial δs amount of time required
to encode an input category s (here T1), the evidence in favor of different possible response categories d ′ accumulates
according to latent Wiener diffusion processes Wd ′,s (τ ) (red, blue, green, and purple) with drifts μd ′,s . The decision d
(here T1) is eventually taken if the underlying process (here the red one) is the first to reach its decision boundary bd,s . b

shows a processwith additional identifiability restrictions (for all d ′ and s, δs = 0, bd ′,s = b fixed, and
∑d0

d ′=1 μd ′,s = d0)
considered in this article which can be inferred from data on response categories alone.
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By integrating out the latent response times from the joint inverse Gaussian drift-diffusion
model for response categories and associated response times in Paulon et al. (2021), we can arrive
at a natural albeit overparametrized model for the response categories. We refer to this as the
‘inverse-probit’ categorical probability model. This inverse-probit model serves as the starting
point for the methodology presented in this article but, as we describe below, it also comes with
significant and unique statistical challenges not encountered in the original drift-diffusion model.
Statistical Challenges While scientifically desirable, unfortunately, it is also mathematically
impossible to infer both the drifts and the boundaries in the inverse-probit model from data
only on the decision accuracies. We must thus have to keep the values of either the drifts or the
boundaries fixed and focus on inferring the other.

However, even when we fix either the drift or the decision boundaries, the problem of over-
parametrization persists. In the absence of response times, only the information on relative fre-
quencies, that is empirical probabilities of taking a decision is available. As the total probability
of observing any of the competing decisions is one, the identifiability problem remains for the
chosen main parameters of interest, and appropriate remedial constraints need to be imposed.

Setting an arbitrarily chosen category as the reference provides a simple solution widely
adopted in categorical probability models but comes with serious limitations, including breaking
the symmetry of the problem, potentially making posterior inference sensitive to the specific
choice of the reference category (Burgette & Nordheim, 2012; Johndrow et al., 2013) .

By breaking the symmetry of the problem, a reference category also additionally makes
it difficult to infer the potential clustering of the model parameters, especially across different
panels. To see this, consider a problemwithd0 categories,with a logisticmodel for the probabilities
ps,d ′ = logistic(βs,d ′), s, d ′ ∈ {1 : d0}, of choosing the d ′th output category for the sth input
category. For each input category s, by setting the sth output category as a reference, e.g., by
fixing βs,s = 0, one can then cluster the probabilities of incorrect decision choices, ps,d ′ , d ′ �= s.
However, it is not clear how to compare the probabilities across different input categories (i.e.,
across the four panels in Fig. 2), e.g., how to test the equality of p1,1 and p2,2.

Finally, while coming up with solutions for the aforementioned issues, we must also take into
consideration the complex longitudinal design of the experiments generating the data. Whatever
strategy we devise, it should be amenable to a longitudinal mixed model analysis that ideally
allows us to (a) estimate the smoothly varying longitudinal trajectories of the parameters as the
participants learn over time, (b) accommodate participant heterogeneity, and (c) compare the
estimates at different time points within and between different input categories.
Our Proposed Approach As a first step toward addressing the identifiability issues and related
modeling challenges, we keep the boundaries fixed but leave the drift parameters unconstrained.
The decision to focus on the drifts is informed by the existing literature on such models cited
above where the drifts have almost always been allowed more flexibility. The analysis of Paulon
et al. (2021) also showed that it is primarily the variations in the drift trajectories that explain
learning while the boundaries remain relatively stable over time.

As a next step toward establishing identifiability, we apply a ‘sum to a constant’ condition
on the drifts so that symmetry is maintained in the constrained model.

Implementation of this restriction brings in significant challenges. One possibility is to design
a prior on the constraint space, a challenging task in itself. Additionally, posterior computation for
such priors would also be extremely complicated in drift-diffusion models. Instead, we conduct
inference with an unconstrained prior on the drift parameters and project the samples drawn from
the corresponding posterior to the constrained space through a minimal distance mapping.

To adapt this categorical probability model to a longitudinal mixed model setting, we then
assume that the drift parameters comprise input-response-category-specific fixed effects and
subject-specific random effects, modeling them flexibly bymixtures of locally supported B-spline
bases (de Boor, 1978; Eilers &Marx, 1996) spanning the length of the longitudinal experiment.
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These effects are thus allowed to evolve flexibly as smooth functions of time (Morris, 2015;
Ramsay & Silverman, 2007; Wang et al., 2016) as the participants get more experience and
training in their assigned decision tasks.

We take a Bayesian route to estimation and inference. Carefully exploiting conditional prior-
posterior conjugacy as well as our latent variable construction, we design an efficient Markov
chain Monte Carlo (MCMC)-based algorithm for approximating the posterior, where sampling
the latent response times for each observed response category greatly simplifies the computations.

We evaluate the numerical performance of the proposed approach in extensive simulation
studies. We then apply our method to the PTC1 data set described below. These applications
illustrate the utility of our method in providing insights into how the drift parameters characterize
the rates of accumulation of evidence in the brain evolve over time, differ between input–output
category combinations, as well as between individuals.
Differences from Previous Works This article differs in many fundamental ways from all exist-
ing works on drift-diffusion models, including Paulon et al. (2021), where response categories
and response times were both observed and therefore the drift and boundary parameters could
be modeled jointly with no identifiability issues. In contrast, the current work is motivated by
scenarios where data on only response categories are available, leading us to the inverse-probit
categorical probability model which, with its complex identifiability issues, brings in new unique
challenges to performing statistical inference, confining us only to infer the drift parameters on a
relative scale, achieved via a novel projection-based approach. The introduction and analysis of
the inverse-probit model, addressing the significant new statistical challenges posed by it, ranging
across (a) identifiability issues, (b) assessment of intra- and inter-panel similarities, (c) extension
to complex longitudinal mixed effects settings to accommodate the motivating applications, (d)
computational implementation of these newmodels, etc. are the novel contributions of this article.
Outline of the Article Section1 describes our motivating tone learning study. Sections2 and
3 develop our longitudinal inverse-probit mixed model. Section4 outlines our computational
strategies. Section5 presents the results of simulation experiments. Section6 presents the results
of the proposed method applied to our motivating PTC1 study. Section7 concludes the main
article with a discussion. Additional details, including Markov chain Monte Carlo (MCMC)-
based posterior inference algorithms, are deferred to the supplementary material.

1. The PTC1 Data Set

The PTC1 (pupillometry tone categorization experiment 1) data set is obtained from a Man-
darin tone learning study conducted at the Department of Communication Science and Disorders,
University of Pittsburgh (McHaney et al., 2021) . Mandarin Chinese is a tonal language, which
means that pitch patterns at the syllable level differentiate word meanings. There are four lin-
guistically relevant pitch patterns in Mandarin that make up the four Mandarin tones: high-flat
(Tone 1), low-rising (Tone 2), low-dipping (Tone 3), and high-falling (Tone 4). For example, the
syllable /ma/ can be pronounced using the four different pitch patterns of the four tones, which
would result in four different word meanings. Adult native English speakers typically experience
difficulty differentiating between the four Mandarin tones because pitch contrasts at the syllable
level are not linguistically relevant to word meanings in English (Wang et al., 1999, 2003) .
Thus, Mandarin tones are valid stimuli to examine how non-native speech sounds are acquired,
which has implications for second language learning in adulthood. In PTC1, a group of native
English-speaking younger adults learned to categorize monosyllabic Mandarin tones in a train-
ing task. During a single trial of training, an input tone was presented over headphones, and the
participants were instructed to categorize the tone into one of the four tone categories via a button
press on a keyboard. Corrective feedback in the form of “Correct” or “Wrong” was then provided
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on screen. A total of n = 28 participants completed the training task across T = 6 blocks of
training, each block comprising L = 40 trials. Figure2 shows the middle 30% quantiles of the
proportion of times the response to an input tone was classified into different tone categories over
blocks across different subjects, each for the four input tones.

Pupillometrymeasurements were also taken during each trial. It is commonly used as ametric
of cognitive effort during listening because increases in pupil diameter are associated with greater
usage of cognitive resources (Parthasarathy et al., 2020; Peelle, 2018; Robison & Unsworth,
2019; Winn et al., 2018; Zekveld et al., 2011) . One issue with pupillary responses however is that
they unfold slowly over time. In view of that, unlike standard Mandarin tone training tasks, where
the participants hear the input tone, press the keyboard response, and are provided feedback all
within a few seconds (Chandrasekaran et al., 2016; Llanos et al., 2020; Reetzke et al., 2018;
Smayda et al., 2015) , in the PTC1 experiment, there was an intentional four-second delay from
the start of the input tone to the response prompt screen where participants made their category
decision via button press. This four-second delay allows the pupil to dilate in response to hearing
the tone and begin to return to baseline before the participant makes a motor response to the button
press. During this four-second period, participants have likely already made conscious category
decisions. As such, the response times that are recorded in the end are not meaningful measures
of their actual decision times.

This presents a critical limitation for using these response times for further analysis. Conven-
tional drift-diffusion analysis that requires data on response times, such as the one presented in
Paulon et al. (2021), can no longer be directly applied here. The focus of this article is to see if the
drift-diffusion parameters can still be meaningfully recovered from input–output tone categories
alone in the PTC1 data.

We found drift-diffusion analysis in the absence of reliable data on response times challeng-
ing enough to merit its separate treatment presented here. Relating drift-diffusion parameters to
measures of cognitive effort such as pupillometry is another challenging problem that we are
pursuing separately elsewhere.

2. Inverse-Probit Model

The starting point for the proposed inverse-probit categorical probability model follows
straightforwardly by integrating out the (unobserved) response times from the joint model for
response categories and associated response times developed in Paulon et al. (2021). The deriva-
tion of this original joint model illustrates its latent drift-diffusion process-based underpinnings
(Fig. 1a). Later such construction will also be crucial in understanding the diffusion process-based
foundations of themarginal categorical probability model modifiedwith identifiability constraints
proposed in this article (Fig. 1b). We therefore present the derivation from Paulon et al. (2021)
ditto here which also keeps the main paper self-contained.

To begin with, a Wiener diffusion process W (τ ) over domain τ ∈ (0,∞) can be specified as
W (τ ) = μτ + σ B(τ ), where B(τ ) is the standard Brownian motion, μ is the drift rate, and σ is
the diffusion coefficient (Cox & Miller, 1965; Ross et al., 1996) . The process has independent
normally distributed increments, i.e., �W (τ ) = {W (τ +�τ)−W (τ )} ∼ Normal(μ�τ, σ 2�τ),
independently from W (τ ). The first passage time of crossing a threshold b, τ = inf{τ ′ : W (0) =
0,W (τ ′) ≥ b}, is then distributed according to an inverse Gaussian distribution (Chhikara, 1988;
Lu, 1995; Whitmore & Seshadri, 1987) with mean b/μ and variance bσ 2/μ3.

Given a perceptual stimulus s and a set of decision choices d ′ ∈ {1 : d0}, the neurons in
the brain accumulate evidence in favor of the different alternatives. Modeling this behavior using
latent Wiener processes Wd ′,s(τ ) with unit variances, assuming that a decision d is made when
the decision threshold bd,s for the dth option is crossed first, as illustrated in Fig. 1a, a probability
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Figure 2.
Description of PTC1 data: The proportion of times the response to an input tonewas classified into different tone categories
over blocks across different subjects, each for the four input tones (indicated in the panel headers). The thick line represents
the median performance and the shaded region indicates the corresponding middle 30% quantiles across subjects.

model for the time τd to reach decision d is obtained as

f (τd | δs, μd,s, bd,s) = bd,s√
2π

(τd − δs)
−3/2 exp

[

−{bd,s − μd,s(τd − δs)}2
2(τd − δs)

]

, (1)

where μd,s denotes the rate of accumulation of evidence, bd,s the decision boundaries, and δs an
offset representing time not directly related to the underlying evidence accumulation processes
(e.g., the time required to encode the sth signal before evidence accumulation begins, etc.). We
let θd ′,s = (δs, μd ′,s, bd ′,s)T.

Joint model for (d, τ ): Since a decision d is reached at response time τ if the corresponding
threshold is crossed first, that is when {τ = τd}∩d ′ �=d {τd ′ > τd}, we have d = argmind ′∈{1:d0} τd ′ .
Assuming simultaneous accumulation of evidence for all decision categories, modeled by inde-
pendent Wiener processes, and termination when the threshold for the observed decision category
d is reached, the joint distribution of (d, τ ) is thus given by

f (d, τ | s, θ) = g(τ | θd,s)
∏

d ′ �=d

{1 − G(τ | θd ′,s)}, (2)

where, to distinguish from the generic notation f , we now use g(· | θ) and G(· | θ) to denote,
respectively, the probability density function (pdf) and the cumulative distribution function (cdf)
of an inverse Gaussian distribution, as defined in (1).
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Marginal model for d: When the response times τ are unobserved, the probability of taking
decision d given the stimulus s is thus obtained from (2) by integrating out the τ as

P(d | s, θ) =
∫ ∞

δs

g(τ | θd,s)
∏

d ′ �=d

{
1 − G(τ | θd ′,s)

}
dτ. (3)

The construction of model (3) is similar to traditional multinomial probit/logit regression models
except that the latent variables are now inverse Gaussian distributed as opposed to being normal
or extreme-value distributed, and the observed category is associated with the minimum of the
latent variables in contrast to being identified with the maximum of the latent variables. We thus
refer to this model as a ‘multinomial inverse-probit model’.

With data on both response categories d and response times τ available, the joint model (2)
was used to construct the likelihood function in Paulon et al. (2021). In the absence of data on the
response times τ , however, the inverse-probit model in (3) provides the basic building block for
constructing the likelihood function for the observed response categories. As mentioned in the
Abstract, discussed in the Introduction, and detailed in Sect. 2.1, themarginal inverse-probitmodel
(3) for observed categories brings in many new identifiability issues and inference challenges not
originally encountered for the joint model (2) developed in Paulon et al. (2021). Solving these
new challenges for the marginal model (3) to infer the underlying drift-diffusion parameters θd ′,s ,
for all d ′, is the focus of this current article.

2.1. Identifiability Issues and Related Modeling Challenges

To begin with, we note that model (3) in itself cannot be identified from data on only
the response categories. The offset parameters can easily be seen to not be identifiable since
P (τd ≤ ∧d ′τd ′) = P {(τd − δ) ≤ ∧d ′ (τd ′ − δ)} for any δ, where ∧d ′τd ′ denotes the minimum
of τd ′ , d ′ ∈ {1 : d0}. As is also well known in the literature, in categorical probability models,
the location and scale of the latent continuous variables are not also separately identifiable. The
following lemma establishes these points for the inverse-probit model.

Lemma 1. The offset parameters δs are not identifiable in model (3). The drift and the boundary
parameters, respectively μd ′,s and bd ′,s , are also not separately identifiable in model (3).

In the proof of Lemma 1 given in Appendix A, we have specifically shown that P (d | s, θ) =
P (d | s, θ	) , where the drift and boundary parameters in θ = {(

μd ′,s, bd ′,s
) ; d ′ = 1, . . . , d0

}

and θ	 =
{(

μ	
d ′,s, b

	
d ′,s

)
; d ′ = 1, . . . , d0

}
satisfy μ	

d ′,s = cμd ′,s and b	
d ′,s = c−1bd ′,s for some

constant c > 0. The result follows by noting that the transformation τ 	
d ′,s = c−2τd ′,s does not

change the ordering between the τd ′,s’s and hence the probabilities of the resulting decisions d =
argmind ′∈{1:d0} τd ′ = argmind ′∈{1:d0} τ 	

d ′ also remain the same. This has the simple implication
that if the rate of accumulation of evidence is faster, then the same decision distribution is obtained
if the corresponding boundaries are accordingly closer and conversely.

In fact, given the information on input and output categories alone, if d0 denotes the number
of possible decision categories, at most d0 − 1 parameters are estimable. To see this, consider the
probabilities P(d ′ | s, θ), d ′ = 1, . . . , d0, where θ is the m-dimensional vector of parameters,
possibly containing drift parameters and decision boundaries. Given the perceptual stimulus s
as input, the probabilities satisfy

∑d0
d ′=1 P(d ′ | s, θ) = 1. Thus, the function Ps(θ) = {P(1 |

s, θ), · · · , P(d0 | s, θ)}T lie on a d0 − 1-dimensional simplex, Ps(θ) : θ → �d0−1, and by
the model in (3) the mapping is continuous. Thus, it can be shown by the Invariance of Domain
theorem (see, e.g., Deo, 2018) that if Ps is injective and continuous, then the domain of Ps must
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belong to R
m , where m ≤ d0 − 1. Thus in order to ensure identifiabililty of {Ps(θ); θ}, we must

parametrize the probability vector with at most d0 − 1 parameters.
The existing literature on drift-diffusionmodels discussed in the Introduction has traditionally

put more emphasis on modeling the drifts (as their reference in the literature as ‘drift’-diffusion
models suggests). Previous research on joint models for response tones and associated response
times in Paulon et al. (2021) also suggest that the boundaries remain stable around a value of
2 and it is primarily the changes in the drift rates that explain longitudinal learning. In view
of this, we keep the boundaries fixed at the constant b = 2 and treat the drifts to be the free
parameters instead. In our simulations and real data applications, it is observed that the estimates
of the drift parameters and the associated cluster configurations are not very sensitive to small-
to-moderate deviations of b around 2. In our codes implementing our method, available as part
of the supplementary materials, we allow the practitioner to choose a value of b as they see fit for
their specific application. The latent drift-diffusion process based with these constraints, namely
δs = 0 and bd ′,s = b for all d ′, is shown in Fig. 1b.

While fixing δs = 0 andbd ′,s to someknownconstantb reduces the size of the parameter space
to d0, to ensure identifiability, we still need at least one more constraint on the drift parameters
μ1:d0,s . In categorical probability models, the identifiabily problem of the location parameter is
usually addressed by setting one category as a reference and modeling the probabilities of the
others (Agresti, 2018; Albert &Chib, 1993; Borooah, 2002; Chib&Greenberg, 1998) . However,
posterior predictions from Bayesian categorical probability models with asymmetric constraints
may be sensitive to the choice of reference category (see Burgette &Nordheim, 2012; Johndrow et
al., 2013). Further, as also discussed in the Introduction, the goal of clustering the drift parameters
μ1:d0,s across s can not be accomplished by this apparently simple solution.

The problem can be addressed by imposing a symmetric constraint on μ1:d0,s instead. A
symmetric identifiability constraint has been previously proposed by Burgette et al. (2021) in
the context of multinomial probit models, where they considered a sum-to-zero constraint on
the latent utilities. To implement the constraint, they introduced a faux base category indicator
parameter, which is assigned a discrete uniform prior and then learned via MCMC. Given this
faux base category indicator, the other parameters are adjusted so that the sum-to-zero restriction
is satisfied. However, the introduction of a base category, even if adaptively chosen, does not
facilitate the clustering of μ1:d0,s within and across the different input categories s.

2.2. Our Proposed Approach

In coming up with solutions for these challenges, we take into consideration the complex
design of our motivating tone learning experiments, so that our approach is easily extendable to
longitudinal mixed model settings, allowing us to (a) estimate the smoothly varying trajectories
of the parameters as the participants learn over time, (b) accommodate the heterogeneity between
the participants, and (c) compare between the estimates not just within but also crucially between
the different panels.

Similar to the sum-to-zero constraint in the multinomial probit model of Burgette et al.
(2021), we impose a symmetric sum to a constant constraint on the drift parameters μ1:d0,s to
identify our new class of inverse-probit models, although our implementation is quite different
from theirs. To conduct inference, we start with an unconstrained prior, then sample from the
corresponding unconstrained posterior, and finally project these samples to the constrained space
through a minimal distance mapping. Similar ideas have previously been applied to satisfy natural
constraints in other contexts. See, e.g., Dunson and Neelon (2003) and Gunn and Dunson (2005).

This approach is significantly advantageous both from a modeling and a computational per-
spective. On one hand, the basic building blocks are relatively easily extended to complex longi-
tudinal mixed model settings, on the other, posterior computation is facilitated as this allows the
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use of conjugate priors for the unconstrained parameters. Projection of the drift parameters onto
the same space further makes them directly comparable, allowing clustering within and across the
panels. The projected drifts can now be interpreted only on a relative scale but such compromises
are not avoidable given the challenges we face.

2.2.1. Minimal Distance Mapping As the drift parameters are positive, the sum to a constant
k constraint leads to constrained space Sk = {μ : 1Tμ = k, μ j > 0, j = 1, . . . , d0} on
which μ1:d0,s should be projected. The space Sk is semi-closed, and therefore, the projection
of any point μ onto Sk may not exist. As a simple one dimensional example, let x = −1 and
S = (0, 1], then argminy∈S |y − x | = 0 /∈ S. Further, from a practical perspective, a drift
parameter infinitesimally close to zero makes the distribution of the associated response times
very flat which is typically not observed in real data. Therefore, we choose a small ε > 0 and
project μ onto Sε,k = {μ : 1Tμ = k, μ j ≥ ε, j = 1, . . . , d0}. We then define the projection of
a point μ onto Sε,k through minimal distance mapping as

μ	 = ProjSε,k
(μ) := {

argminν‖μ − ν‖ : ν ∈ Sε,k
}
,

where ‖ · ‖ is the Euclidean norm. Note that for appropriate choices of (k, ε), Sε,k is non-empty,
closed and convex. Therefore, μ	 exists and is unique by the Hilbert projection theorem (Rudin,
1991) . The solution to this projection problem comes from the following result fromBeck (2017).

Lemma 2. Let Sε,k be as defined above, and Sε = {
μ : μ j ≥ ε, j = 1, . . . , d0

}
. Then,

ProjSε,k
(μ) = ProjSε

(μ − u	1), where u	 is a solution to the equation 1TProjSε
(μ − u	1) = k.

Although the analytical form of the solution is not available, as is evident from the above result, the
solution mainly relies on finding a root u	 of the non-increasing function φ(u	) = 1TProjSε

(μ −
u	1)−k. We apply an algorithm based on Duchi et al. (2008) to reach the solution. The algorithm
is described in “Appendix C”.

2.2.2. Identifiability Restrictions The projection approach solves the problem of identifiability
and maps the probability vector corresponding to an input tone s to the constraint space ofμ1:d0,s ,
Sε,k . The following theorem shows that the mapping from the constrained space of μ1:d0,s to the
probability vector P(μ1:d0,s) = {p1(μ1:d0,s), . . . , pd0(μ1:d0,s)}T is injective. To keep the ideas
simple, we consider the domain of the function to be S0,k (i.e., ε = 0) instead of Sε,k although a
very similar proof would follow if Sε,k were considered.

Theorem 1. Let pd(μ1:d0,s) be the probability of observing the output tone d given the input tone
s and the drift parameters μ1:d0,s , as given in (3), for each d = 1 : d0. Suppose μ1:d0,s lies on the
space S0,k . Then, the function from S0,k to the space of probabilities

{
pd(μ1:d0,s); d = 1 : d0

}
is

injective.

A proof is presented in “Appendix B”.

2.2.3. Conjugate Priors for the Unconstrained Drifts From (3), given τ1, . . . , τd0 , such
that τd ≤ min

{
τ1, . . . , τd0

}
, the posterior full conditional of μ1:d0,s is proportional to

π
(n)
μ ∝ π(μ1:d0,s) × ∏d0

d ′=1 g
(
τd ′ | μd ′,s

)
, where π(·) is the prior of μ1:d0,s . Observe that

∏d0
d ′=1 g

(
τd ′ | μd ′,s

)
is Gaussian in μ1:d0,s . A Gaussian prior on μ1:d0,s thus induces a condi-

tional posterior for μ1:d0,s that is also Gaussian and hence very easy to sample from. Importantly,
these benefits also extend naturally to multivariate Gaussian priors for any parameter vector βd ′,s
that relates to μd ′,s linearly. This will be crucial in allowing us to extend the basic building
block to longitudinal functional mixed model settings in Sect. 3 next, where we will be modeling
time-varying μd ′,s(t) as flexible mixtures of B-splines with associated coefficients βd ′,s .
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2.2.4. Justification as a Proper Bayesian Procedure Define the constrained conditional pos-
terior distribution, π̃ (n)

μ̃
, of the drift parameters μ as

π̃
(n)

μ̃
(B | ζ ) = π(n)

μ ({μ : Proj(μ) ∈ B} | ζ ) , B ⊆ Sε,k,

where π
(n)
μ is the unconstrained conditional posterior of μ1:d0,s , given the other variables ζ . The

analytic form of the constrained conditional posterior is not available.
Sen et al. (2018) established a proper Bayesian justification for the posterior projection

approach by showing the existence of a prior π̃
(
μ1:d0,s

)
on the constrained spaceSε,k such that the

resulting posterior is the same as the projected posterior π̃ (n)

μ̃
.WhenSε,k is non-empty, closed, and

convex, i.e., the projection operator ismeasurable, such a prior exists if the unconstrained posterior
is absolutely continuous with respect to the unconstrained prior (Sen et al., 2018, Corollary 1).
As the unconstrained induced prior and posterior of the drift parameters are both Gaussian, this
result holds in our case as well.

3. Extension to Longitudinal Mixed Models

In this section we adapt the inverse-probit model discussed in Sect. 2 to complex longitudinal
design of our motivating PTC1 data set described in the Introduction. Let si,�,t denote the input
tone for the i th individual in the �th trial of block t . Likewise, let di,�,t denote, respectively, the
output tone selected by the i th individual in the �th trial of block t . Setting the offsets at zero, and
boundary parameters to a fixed constant b, we now have

P{di,�,t = d | si,�,t = s, μ(i)
1:d0,s(t)} =

∫ ∞

0
g{τ | μ

(i)
d,s(t)}

∏

d ′ �=d

[
1 − G{τ | μ

(i)
d ′,s(t)}

]
dτ,

where g{τ | si,�,t = s, μ(i)
d ′,s(t) = μ} = b√

2πτ 3/2
exp

[

−{b − μτ }2
2τ

]

.

(4)

The drift rates μ
(i)
d ′,s(t) now vary with the blocks t . In addition, we accommodate random effects

by allowing μ
(i)
d ′,s(t) to also depend on the subject index i . We let d = {di,�,t }i,�,t , and d0 be the

number of possible decision categories (T1, T2, . . ., Td0). The likelihood function thus takes the
form

L(d | s, θ) =
d0∏

d=1

d0∏

s=1

T∏

t=1

n∏

i=1

L∏

�=1

[
P{di,�,t | si,�,t , μ(i)

1:d0,s(t)}
]1{di,�,t=d,si,�,t=s}

.

We reiterate that in deriving the identifiability conditions and designing their implementation
strategy in Sect. 2.2, we had to make sure that they would be applicable to the complex multi-
subject longitudinal design of the PTC1data set. Following those ideas,wemodel the time-varying
mixed effects drift parametersμ

(i)
d ′,s(t)without any constraints first, then project them to the space

satisfying the necessary identifying conditions.
For the unconstrained model, we follow the outline of Paulon et al. (2021) with necessary

likelihood adjustments. The details are deferred to Section S.1 of the supplementary material. We
present here a general outline.
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We decompose μ
(i)
d ′,s(t) = fd ′,s(t)+u(i)

d ′,s(t) where fd ′,s(t) and u
(i)
d ′,s(t) denote, respectively,

fixed and random effects components, which are both modeled using flexible mixtures of B-spline
bases. This allows us to cluster the fixed effects for different (d ′, s) combinations with similar
shapes by clustering the corresponding B-spline coefficients.

Given posterior samples of fd ′,s(t) and u(i)
d ′,s(t), unconstrained samples of μ

(i)
d ′,s(t) are

obtained. For every input tone s, these unconstrained μ
(i)
1:d0,s(t)’s are then projected to the space

Sε,k following the method described in Sect. 2.2.1.

4. Posterior Inference

Posterior inference for our proposed inverse-probit mixed model is carried out using samples
drawn from the posterior usingMCMCalgorithm. The algorithm carefully exploits the conditional
independence relationships encoded in the model as well as the latent variable construction of the
model.

Inference can be greatly simplified by sampling the passage times τ1:d0 and then conditioning
on them. However, it is not possible to generate τ1:d0 sequentially, e.g., by generating the passage
time of the d-th decision choice τd independently, and that of the other decision choices from a
truncated inverse-Gaussian distribution, left truncated at τd .1

We implement a simple accept-reject sampler instead which generates values from the joint
distribution of τ1:d0 and accepts the sample if τd ≤ τ1:d0 . It is fast and produces a sample from
the desired target conditional distribution. We formalize this result in the following lemma.

Lemma 3. Let g
(
τ1:d0 | μ1:d0

)
be the joint distribution of τ1:d0 . Consider the following accept-

reject algorithm:

Algorithm 1
Generating the passage times τ1:d0 given argmind ′∈{1:d0} τd ′ = d

1: Generate τ1:d0 from the joint distribution g
(
τ1:d0 |μ1:d0

)
.

2: Accept τ1:d0 if τd ≤ τ1:d0 .
3: Return to Step 1 otherwise.

Algorithm 1 generates samples from the conditional joint distribution of τ1:d0 , conditioned on the
event τd ≤ τ1:d0 .

Proof of Lemma 3 is provided in “Appendix D”.
It can be verified that the acceptance ratio of Algorithm 1 is M−1 = P

(
τd ≤ τ1:d0

)
(see

Robert & Casella, 2004) which depends on the drift parameters only. If the drift parameters are
ordered accordingly, so as to satisfy μd ≥ μ1:d0 , the acceptance ratios increase. The algorithm
thus becomes faster as the sampler converges.

As noted earlier, sampling the latent inverse-gaussian distributed response times τ1:d0 greatly
simplifies computation. Most of the chosen priors, including the priors on the coefficients β in

1We can see this in a simpler example. Suppose we are interested in generating a sample from the conditional
distribution of τ = (τ1, τ2) given d = argmin j τ j = 1, where τi ∼ Uniform(0, 1), i = 1, 2, independently. The
conditional density of τ given d = 1 is fτ |d (τ1, τ2) = 0.5 if 0 < τ1 ≤ τ2 < 1, and = 0 otherwise. However, if we
draw τ1 from Uniform(0, 1) first and let that realization be τ	, and draw τ2 from the truncated uniform distribution (left
truncated at τ	), then the pdf of the realization of (τ1, τ2) is τ	−1.
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the fixed and random effects, are conjugate. Due to space constraints, the details are deferred to
Section S.3 in the supplementary material.

5. Simulation Studies

In this section, we discuss the results of a synthetic numerical experiment. We simulate data
from a complex longitudinal design that mimics the real PTC1 data set. Our generating model
contains fixed effects components attributed to different input-response tone combinations and
random components attributed to individuals.

We recall that ourmain objective here is to identify the similarities and differences between the
underlying brainmechanisms associatedwith different input-response category combinations over
time while also assessing their individual heterogeneity, as characterized by latent drift-diffusion
processes whose parameters can be biologically interpreted. The estimation of the probability
curves for different input-response combinations, while a good indicator of our model’s fit, is not
themain purpose of this endeavor. Traditional categorical probabilitymodels, such asmultinomial
probit or logit, are thus not relevant to the scientific problem we are trying to address here. We
are also not aware of any other work in the drift-diffusion literature that attempts to estimate the
underlying parameters from category response data alone. In view of this, we restrict our focus to
evaluating the performance of the proposed biologically meaningful longitudinal inverse-probit
mixed model but do not present comparisons with any other model.
Design In designing the simulation scenario, we have tried to mimic our motivating category
learning data sets.Wechosen = 20 as the number of participants being trained over T = 10 blocks
to identify d0 = 4 tones. For each input tone and each block, there are L = 40 trials.We set the true
μd ′,s(t) values in such a way that they are far from satisfying the constraint

∑
d ′=1:d0 μd ′,s = k,

and the decision boundary is set to b = 2 for all (d ′, s). The true drift parameters and the true
probabilities, averaged over the participants of each input-response category combination, are
shown in Fig. 3.

There are four true clusters in total, two for correct categorizations, S1, S2, and two for
incorrect categorizations, M1, M2, as follows: S1 = {(1, 1), (2, 2)}, S2 = {(3, 3), (4, 4)}, M1 =
{(1, 2), (1, 3), (2, 1), (2, 3), (3, 4), (4, 3)}, M2 = {(1, 4), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)}. We
may interpret M1 as the cluster of difficult alternatives, and M2 as the cluster of easy alterna-
tives. Thus, there are similarities in overall trajectories of {T1, T2} and {T3, T4}, differentiating
between easy and hard category recognition problems. We experimented with 50 synthetic data
sets generated according to this design.
Results As the true drift parameters themselves do not satisfy the constraint, and the estimated
drift parameters are on the constrained space, we cannot validate our method by its predictive
performance of the drift parameters. Instead, the proposed method is validated in terms of the
estimated probabilities.

Figure4 shows the estimated posterior probability trajectories along with the 95% credible
interval and the underlying true probability curves for every combination (d ′, s) in a typical
scenario. The credible interval fails to capture the truth in two situations, when the true probability
is very close to zero, or it is very close to one. The former case corresponds to classes with very low
success probability, resulting in very few observations to estimate. The latter is underestimated
as a consequence of the former since the probabilities add up to one.

The results produced by our method are mostly stable and consistent across all synthetic data
sets. There are, however, a few cases of incorrect cluster assignments, resulting in some outliers
in each boxplot. Note that if an incorrect cluster assignment takes place, the probabilities of all
input-response combinations are affected by that. For example, if a component of M1 is wrongly
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Figure 3.
Description of the synthetic data: True values of the drift parameters averaged over the subjects, denoted by μd ′,s (t), and
true probabilities P{di,�,t | si,�,t , μ(i)

1:d0,s (t)} averaged over the subjects, denoted here by Pd ′,s (t). Here T1, T2, T3, and
T4 represent input categories 1 to 4, respectively. Some of the curves overlap according to the true clustering structure
described in Sect. 5.

assigned to M2, then not only the probabilities of input–output combinations in M1 and M2 are
affected, since the probabilities add up to one, those of S1 and S2 are also affected.

In estimating the probabilities, the overall mean squared error, i.e., the mean squared differ-
ence of the estimated and the true probabilities taking all combinations of (d, s, i, t) into account,
came out to be 0.0028. Figure5 provides a detailed description of the estimation of the probabil-
ities for two input categories (one from each similarity group). As described for the individual
simulation results, there are cases of under-estimation of the probabilities which are close to
one, and consequently, over-estimation of the probabilities close to zero. However, the amount of
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Figure 4.
Results for synthetic data: Posterior trajectories of the probabilities for each combination of (d ′, s) over blocks estimated
by the proposed model. The shaded areas represent the corresponding 95% point-wise credible intervals. The thick dashed
lines represent underlying true curves some of which overlap according to the true clustering structure described in Sect. 5.

departure from the true probability in each case is very small which can also be seen in the small
overall MSE.

Further, the overall efficiency in identifying the true clustering structure is validated using
Rand (Rand, 1971) and adjusted Rand (Hubert & Arabie, 1985) indices. The definitions of
Rand and adjusted Rand indices are provided in Section S.6 in the supplementary material. The
average Rand and adjusted Rand indices for our proposed method over 50 simulations 0.9105
and 0.8277, respectively, indicating high overall efficacy in correctly clustering the probability
curves.

6. Applications

Analysis of the PTC1 Data Set We present here the analysis of the PTC1 data set described in
Sect. 1 using our proposed longitudinal inverse-probit mixed model. We first demonstrate the
performance of the proposed method in estimating the probabilities associated with different
(d, s) pairs. Figure6 shows the 95% credible intervals for the estimated probabilities for different
input tones, along with the average proportions of times an input tone was classified into different
tone categories across subjects. The latter serves as the empirical estimate of the probabilities.

We observe that except for the input-response combination (1, 1) in block 3 and some cases
with a low number of data points, the 95% credible intervals include the corresponding empirical
probabilities. An explanation of the occasional under-performance is given later in this section.
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Figure 5.
Results of the synthetic data: Boxplots of the estimated probabilities over 50 simulations, and true probabilities (in red
dot) of each block and for two panels, one from each similarity group (panel T1 in the top and T3 in the bottom).

Next, we examine the clusters identified by the proposed model. Apart from the two
clusters obtained for the success combinations (d = s), three clusters are additionally iden-
tified in the incorrect input-response combinations (d �= s). The clusters of success com-
binations are S1 = {(1, 1), (2, 2), (4, 4)} and S2 = {(3, 3)}, and of wrong allocations are
M1 = {(1, 2), (1, 4), (2, 1), (2, 4), (3, 2), (4, 1), (4, 2)}, M2 = {(1, 3), (2, 3), (3, 4), (4, 3)}, and
M3 = {(3, 1)}. Figure7 shows the input-response tone combinations color-coded as per cluster
identity, and the proportion of times each pair of input-response tone combinations appeared in
the same cluster after burnin. Figure7 indicates that, while the clusters S1, S2, M1 are stable, there
is some instability among the other two clusters, namely M2 and M3.
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Figure 6.
Results for PTC1 data: Estimated probability trajectories compared with average proportions of times an input tone was
classified into different tone categories across subjects (in dashed line). The means across subjects are indicated by thick
lines and the shaded regions indicate corresponding 95% coverage regions.

Key Findings The clustering structure reveals that the low-dipping (T3) response trajectories
are different from the other three response categories. While for correct input–output tone com-
binations, S2 forms a separate singleton cluster, for incorrect combinations, M2 contains all the
low-dipping trajectories, indicating their similarities across the panels. Also for T3, faster increase
of the probabilities of correct identification, as well as faster decay of probabilities of incorrect
identification indicate that T3 is easily distinguishable from other alternatives.

On the other hand, the trajectories of high-flat (T1), low-rising (T2) and high-falling (T4)
response categories are quite similar across panels.While for correct input-response combinations,
these three form the cluster S1, the corresponding incorrect tone combinations are clustered in
M1. The slower rise of the observed empirical probabilities for the elements in S1 and the slower
decay of the same for M1 indicate that T1, T2 and T4 are difficult to distinguish. However, in block
3 the empirical probabilities of correct input-response combinations differ moderately. While T2
and T4 show a relative drop in the empirical probabilities at block 3, T1 shows a sudden pick in the
same. This local dissimilarity of the trajectories at block 3, leads to a departure of the empirical
probability of T1 from the estimated credible band.

Next, we consider the results concerning the estimation of the drift parameters μ
(i)
d ′,s(t). As

discussed in Sect. 2.2, given the identifiability constraints, the estimates of μ
(i)
d ′,s(t) can only be

interpreted on a relative scale. Figure8 shows the posterior mean trajectories and associated 95%
credible intervals for the projected drift rates.

Importantly, our proposedmixedmodel also allows us to assess individual-specific parameter
trajectories. Figure9 shows the posterior mean trajectories and the associated 95% credible inter-
vals for the drift ratesμ

(i)
d ′,s estimated by our method for the different success combinations (d ′, s)
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Figure 7.
Results for PTC1data:Network plot of similarity groups showing the intra- and inter-cluster similarities of tone recognition
problems. Each node is associated with a pair indicating the input-response tone category, (s, d). The number associated
with each edge indicates the proportion of times the pair in the two connecting nodes appeared in the same cluster after
burnin.

for two participants—one with the best accuracy averaged across all blocks, and the other with the
worst accuracy averaged across all blocks. These results suggest significant individual-specific
heterogeneity. For the well-performing participant, the drift parameters are much higher than
those for the poorly performing individual, indicating their ability to more quickly accumulate
evidence compared to the poorly performing adult. These differences persisted over all blocks
with a small gradual increase over time.
Analysis of Benchmark Data To validate the proposed method, we also analyzed tone learning
data which, in addition to response accuracies, included accurate measurements of the response
times. It was previously analyzed in Paulon et al. (2021) using the drift-diffusion model (2) which
allowed inference on both the drift and the boundary parameters. For our analysis with the method
proposed here, however, we ignored the response times. We observed that the estimates of the
drifts produced by our proposed methodology match well with the estimates obtained by Paulon
et al. (2021). A description of this ‘benchmark’ data set and other details of our analyses are
provided in Section S.5 of the supplementary material.

7. Discussion, Conclusion, Broader Utility, and Future Work

Summary In this article, we developed a novel longitudinal inverse-probit mixed categorical prob-
ability model. Our research was motivated by category learning experiments where scientists are
interested in using drift-diffusion models to understand how the decision-making mechanisms
evolve as the participants get more training and experience. However, unlike traditional drift-
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Figure 8.
Results for PTC1 data: Estimated posterior mean trajectories of the population level driftsμd ′,s (t) for the proposedmodel.
The shaded areas represent the corresponding 95% point-wise credible intervals.

diffusion analyses which require data on both response categories and response times, we only
had usable records of response categories but no response times. To our knowledge, biologically
interpretable latent drift-diffusion process-based categorical probability models had never been
considered for such scenarios in the literature before.We addressed this need. Building on a previ-
ous work on longitudinal drift-diffusion mixed joint models for response categories and response
times but now integrating out the response times, we obtained a new class of category probability
models which we referred to here as the inverse-probit model. We explored parameter recover-
ability in such models, showing, in particular, that the offset parameters can not be recovered and
drifts and boundaries both can not be recovered from data only on response categories. In our
analyses, we thus focused on estimating the biologically more important drift parameters but kept
the offsets and the boundaries fixed. We showed that with careful domain knowledge informed
choices for the boundaries, the general trajectories of the drift parameters can be recovered by
our proposed approach even in the complete absence of response times.

Conclusion Overall, when it comes to making scientific inferences about drift-diffusion model
parameters in the absence of data on response times, our work implies a mixed promise. On the
downside, our work shows that the detailed interplay between drifts and boundaries cannot be
captured. On the positive side, our results also suggest that, with our carefully designed model,
and the fixed value of the boundary parameters appropriately chosen by experts, the general
longitudinal trends in the drifts can still be estimated well from data only on response categories.
Caution should still be exercised not to over-interpret the results.

Broader Utility in Auditory Neuroscience The proposed model, we believe, has significant impli-
cations for auditory neuroscience. We focused here specifically on a pupillometry study for which
the experimental paradigms need to be adapted to prioritize slow pupillary response, rendering the
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Figure 9.
Results for PTC1data:Estimated posteriormean trajectories for individual specific driftsμ(i)

d ′,s (t) = exp{ fd ′,s (t)+u(i)
C (t)}

for successful identification (d ′ = s) for two different participants—one performingwell (dashed line) and one performing
poorly (dotted line). The shaded areas represent the corresponding 95% point-wise credible intervals.

behavioral response times useless. However, as discussed in the Introduction, there could be many
other situations where usable data on response times may not be available. The proposed model
can be useful in such scenarios to understand the perceptual mechanisms underlying auditory
decision-making.

Broader Utility Beyond Auditory Neuroscience While we focused here on studying auditory
category learning, the method proposed is applicable to other domains of behavioral neuroscience
research studying categorical decision-making when the response times measurements are either
not available or not reliable.

Broader Utility in Statistics On the statistical side, the projection-based approach proposed here
to impose non-standard identifiability conditions and address clustering problems within and
between different panels is not restricted to inverse-probit models introduced here. They can be
easily adapted to other classes of generalized linear models such as the widely popular logit and
probit models and hence may also be of interest to a much broader statistical audience.

Future Directions The models and the analyses of the PTC1 data set presented here excluded the
pupillometry measurements themselves. An important and challenging problem being pursued
separately elsewhere is to see how those measurements relate to drift-diffusion model parameters.
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Appendix

Appendix A: Proof of Lemma 1

Proof. It is easy to check that the offset parameters δs are not identifiable since

P(d | s, δs, μ1:d0,s,b1:d0,s) =
∫ ∞

δs

g(τ | δs, μd,s, bd,s)
∏

d ′ �=d

{
1 − G(τ | δs, μd ′,s, bd ′,s)

}
dτ

=
∫ ∞

0
g(τ | 0, μd,s, bd,s)

∏

d ′ �=d

{
1 − G(τ | 0, μd ′,s, bd ′,s)

}
dτ

= P(d | s, 0, μ1:d0,s,b1:d0,s).

Next wewill show that the drift parameters and decision boundaries are not separately identifiable,
even if we fix offset parameters to a constant.
First note that Eq. (3) can also be represented as

∫ ∞

δs

. . .

∫ ∞

δs

∏

d ′ �=d

g(τd ′ | θd ′,s)
∫ ∧d �=d′ τd′

δs

g(τd | θd,s)dτd
∏

d ′ �=d

dτd ′ . (A.1)

First observe that τ 	 = ∧d ′ �=dτd ′ = τ 	−1 ∧ τ1, where τ 	−1 = ∧d ′ �={1,d}τd ′ . Thus the integral above
can be written as

∫ ∞

δs

. . .

∫ ∞

δs

∏

d ′ �={1,d}
g(τd ′ | θd ′,s)

{∫ ∞

δs

g(τ1 | θ1,s)

∫ τ	−1∧τ1

δs

g(τd | θd,s)dτd

}
∏

d ′ �={1,d}
dτd ′

=
∫ ∞

δs

. . .

∫ ∞

δs

∏

d ′ �={1,d}
g(τd ′ | θd ′,s)

{∫ τ	−1

δs

g(τd | θd,s)

∫ ∞

τd

g(τ1 | θ1,s)dτ1dτd

}
∏

d ′ �={1,d}
dτd ′ .

Proceeding sequentially one can show that the integral above is the same as in (3).
Using the above we express the probability in (3) as in (A.1). As the offset parameter δs is already
shown to be not identifiable, we need to fix the same. Without loss of generality, we fix the offset
parameter at 0. The probability density function of inverse Gaussian distribution, with parameters
θd ′,s = (μd ′,s, bd ′,s) evaluated at τd ′ , g(τd ′ | θd ′,s) can be obtained from (1) by replacing δs = 0
and d = d ′.
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Consider the transformation of τd ′ to τ 	
d ′ as τd ′ = c2τ 	

d ′ , for some constant c > 0, and for all d ′.
Further, define b	

d ′,s = bd ′,s/c and μ	
d ′,s = cμd ′,s , for all d ′. Then observe that

g(τd ′ | θd ′,s)dτd ′ = (2π)−1/2b	
d ′,s(τ

	
d ′)−3/2 exp

{

−(2τ 	
d ′)−1

(
b	
d ′,s − μ	

d ′,sτ
	
j

)2
}

dτ 	
d ′

= g(τ 	
d ′ | θ	

d ′,s)dτ 	
d ′ ,

where g(τ 	
d ′ | θ	

d ′,s) is the pdf of inverse Gaussian distribution with parameters μ	
d ′,s and b	

d ′,s ,
evaluated at the point τ 	

d ′ .
Applying the transformation on τd ′ for all d ′ we get that the integral in (A.1) with δs = 0 is same
as

∫ ∞

0
. . .

∫ ∞

0

∏

d ′ �=d

g(τ 	
d ′ | θ	

d ′,s)
∫ ∧d′ �=dτ	

d′

0
g(τ 	

d | θ	
d,s)dτ 	

d

∏

d ′ �=d

dτ 	
d ′ .

As c is arbitrary, this shows that the drifts and boundaries are not separately estimable. ��

Appendix B: Proof of Theorem 1

Proof. Let P(μ1:d0,s) = {p1(μ1:d0,s), . . . , pd0(μ1:d0,s)}T be the function, given by (4), from
S0,k to unit probability simplex �d0−1. For notational simplicity, we write μ1:d0,s = μ =
(μ1, . . . , μd0)

T. We first find the matrix of partial derivative ∇P with respect to μ.
For μ ∈ S0,k , 1Tμ = k, and hence the probability reduces to

pd (μ) =
(
beb

)d0

(2π)d0/2

∫ ∞

0

∫ ∞

τd

· · ·
∫ ∞

τd

|τ |−3/2 exp

{

−1

2

(
1T τ−11 + μT τμ

)}

dτ−ddτd ,

for d = 1, . . . , d0, where τ = diag(τ1, . . . , τd0), and τ−d is the sub-vector of τ excluding the
d-th element. Next, differentiating pd (μ) with respect to μ, we get

∂ pd (μ)

∂μ
=

(
beb

)d0

(2π)d0/2

∫ ∞

0

∫ ∞

τd

· · ·
∫ ∞

τd

|τ |−3/2 (−τμ) exp

{

−1

2

(
1T τ−11 + μT τμ

)}

dτ−ddτd ,

= [
μ1η2 · · · μd−1η2 μdη1 μd+1η2 · · · μd0η2

]T
,

whereη1 = −E
{
τ1I

(
τ2 > τ1, . . . , τd0 > τ1

) |μ}
, andη2 = −E

{
τ2I

(
τ2 > τ1, . . . , τd0 > τ1

) |μ}
,

and I(A) is the indicator function of the event A. Here the expectation is considered under the
joint distribution of (τ1, . . . , τd), which is independent inverse Gaussian. Clearly η1 > η2 > 0.
From the above derivation, it is easy to obtain that

∇P (μ) =

⎡

⎢
⎢
⎢
⎣

μ1η1 μ2η2 · · · μd0η2
μ1η2 μ2η1 · · · μd0η2

...
... · · · ...

μ1η2 μ2η2 · · · μd0η1

⎤

⎥
⎥
⎥
⎦

= M
{
(η1 − η2) I + η211T

}
,
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where M = diag
(
μ1, . . . , μd0

)
.

Now, suppose there exists μ and ν in Sk such that μ �= ν and P (μ) = P (ν). Define γ : [0, 1] →
R
d0 such that γ (t) = μ+ t (ν − μ), t ∈ [0, 1]. Further, define h(t) = 〈P (γ (t))−P (μ) , ν −μ〉,

as the cross-product of P (γ (t)) −P (μ) and ν − μ. Then h(1) = h(0) = 0 under the proposition
that P (μ) = P (ν). Therefore, by the Mean Value Theorem, as μ �= ν, there exists some point
c ∈ (0, 1) such that ∂h(t)/∂t |t=c = 0. Now,

∂h(t)

∂t
=

d0∑

d ′=1

(νd ′ − μd ′)
∂

∂t

[
pd ′ {γ (t)} − pd ′ (μ)

]

=
d0∑

d ′=1

(νd ′ − μd ′)

{
∂

∂γ
pd ′ (γ )

}T
∂γ (t)

∂t

= (ν − μ)T ∇P{γ (t)} (ν − μ)

= (η1 − η2) (ν − μ)T �(t) (ν − μ) + η2 (ν − μ)T M11T (ν − μ)

= (η1 − η2) (ν − μ)T �(t) (ν − μ) ,

as 1T (ν − μ) = 0, where �(t) = diag{γ (t)}.
As every component of μ and ν is positive, for any c ∈ (0, 1), the matrix �(c) is positive definite.
Further, as η1 > η2, ∂h(t)/∂t |t=c = 0 only if μ = ν, which contradicts the proposition. ��

Appendix C: Algorithm for Minimal Distance Mapping

The problem of finding projection of a point μ onto the space Sk,ε is equivalent to the following
nonlinear optimization problem:

minimizew‖w − μ‖2 such that
d0∑

i=1

wi = k, wi ≥ ε.

Duchi et al. (2008, Algorithm 1) provides a solution to the problem of projection of a given point
μ onto the space Sk,ε for ε = 0, which is modified for any given ε below.

INPUT: A vector µ, and a pair (k, ε).

1: Sort µ into µ� such that the elements of µ� are in descending order.
2: Find ρ = max

{
j : μ�

j − j−1
(∑j

l=1 μ�
l − k

)
> ε

}
.

3: Define θ = ρ−1
{∑j

l=1 μ�
l − k + (k − ρ)ε

}
.

OUTPUT: w such that wi = max {μi − θ, ε}.

Appendix D: Proof of Lemma 3

Proof. We consider the unconditional distribution of τ1:d0 , given the parameters μ1:d0 as the
proposal distribution, g. Clearly, the proposal distribution g and the target conditional joint distri-
bution f satisfies f (τ1:d0 |μ1:d0)/g(τ1:d0 |μ1:d0) ≤ M , where M−1 = P

(
τd ≤ τ1:d0

)
. Therefore,

for any random sample U ∼ U (0, 1), f (τ1:d0 |μ1:d0) ≥ MUg(τ1:d0 |μ1:d0) if the sample satisfies
the condition τd ≤ τ1:d0 , and f (τ1:d0 |μ1:d0) < MUg(τ1:d0 |μ1:d0) otherwise. Hence, by Lemma
2.3.1 of Robert andCasella (2004), algorithm above produces samples from the target distribution.
��
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