
Natural Computing
https://doi.org/10.1007/s11047-024-09986-1

RESEARCH

On the spectrum between reaction systems and string rewriting

Artiom Alhazov1 · Rudolf Freund2 · Sergiu Ivanov3

Accepted: 21 March 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
Reaction systems are a model of computing aiming to formalize biochemistry by capturing the qualitative relations between
the species, and explicitly discarding any accounts of multiplicity. From the point of view of the formal language theory,
this situates them in the realm of set rewriting. In this work, we propose a series of extensions of reaction systems to use
strings. These extensions form a spectrum in the sense that all of them honor the hallmark features of the original model: the
threshold principle and the non-permanency principle. We thoroughly discuss the details of the structure and the behavior of
these variants, and commence studying their expressive power by comparing them to some classic models of computing.

Keywords Reaction systems · String rewriting · Computational power

Mathematics Subject Classification 68Q07 · 68Q10 · 68Q42 · 68Q45

1 Introduction

Reaction systems are a model of computing aiming to
abstract the operation of biochemical reactions in a formal
framework (Brijder et al. 2011; Ehrenfeucht and Rozenberg
2007). Rather than delving in quantitative details of biochem-
istry, reaction systems focus on the higher-level qualitative
information that can be derived from pre-existing biological
knowledge, and are particularly suited to expressing qualita-
tive relations between entities. Starting from this postulate,
reaction systems are defined to only qualify the entities of
interest as present or absent, omitting the representation of
any kind ofmultiplicity. Furthermore, when an entity is avail-
able in the system, it is considered to be available in unlimited

B Sergiu Ivanov
sergiu.ivanov@universite-paris-saclay.fr

Artiom Alhazov
artiom@math.md

Rudolf Freund
rudi@emcc.at

1 Vladimir Andrunachievici Institute of Mathematics and
Computer Science, State University of Moldova, Academiei
5, 2028 Chişinău, Moldova

2 Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040
Vienna, Austria

3 IBISC, Univ. Évry, Paris-Saclay University, 23, boulevard de
France, 91034 Évry, France

amounts—this is called the threshold principle. This in par-
ticular excludes competition for resources, since the presence
of any entity is always sufficient for all interactions it is impli-
cated in. Thus entities in reaction systems resemble Boolean
variables, as discussed already in the seminal paper (Brijder
et al. 2011), and also in Alhazov et al. (2023).

While reaction systems set aside any quantitative data and
competition for resources, they still aim to stay close to bio-
chemical systems by imposing mandatory degradation of the
species—if an entity is not explicitly sustained (reproduced),
it must disappear from the system. In the reaction system lit-
erature this is typically referred to as the non-permanency
principle.

From the point of view of formal language theory, these
characteristics of reaction systems situate them in the realm
of set rewriting models of computing—the state of a reaction
system is defined as the set of species which are currently
present, and transitions happen by replacing the current state
with the new one, given by the right-hand sides of the reac-
tions. While set rewriting is a natural concept, it has attracted
less attention, and formal language theory has historically
been more focused on rewriting strings [e.g. Rozenberg and
Salomaa (1997)], especially because set rewriting can be seen
as a form of finite-state transition system.

The starting motivation of the present work is to extend
reaction systems by considering ways of introducing strings.
On the one hand, this enriches the modelling potential of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-024-09986-1&domain=pdf

A. Alhazov et al.

reaction system, since such new variants operating on strings
may be used to represent additional details in real-world phe-
nomena. On the other hand, extensions generally modulate
the computational power in non-trivial ways, which allows
for further theoretical exploration. Finally, characterizing the
expressive power of such formalisms also gives important
hints with respect to feasibility of model checking, as exem-
plified in the works (Mȩski et al. 2015, 2017, 2019; Azimi
et al. 2015, 2016, 2017).

Direct connections between reaction systems and string
rewriting have already been explored before, e.g. Brijder
et al. (2011), Dennunzio et al. (2015b), but mostly for
characterizing computational power by comparing thebehav-
ior of reaction systems to that of automata operating on
strings. Reaction automata—an extension of reaction sys-
tems operating on multisets and recognizing strings—have
been extensively considered as well (Okubo et al. 2012b, a;
Yokomori and Okubo 2021). This model of computing oper-
ates on multisets and recognizes strings by sequentially
reading symbols from the input, somewhat in the spirit of
P automata (Csuhaj-Varjú and Vaszil 2002). However, reac-
tion automata do not respect the original non-permanency
principle, and their reactions operate on multisets rather than
on strings.

In this paper,we give severalways of introducing strings in
reaction systems, and show that they form, in fact, a spectrum
in the following sense:

1. all proposed variants are subject to the threshold principle
and the non-permanency principle as the original reaction
systems, implying in particular the absence of explicit
competition for resources,

2. the proposed variants are progressively closer to string
rewriting.

We commence here the exploration of this spectrum
between reaction systems and string rewriting. We start by
formulating intuitive expectations of the formalism in Sect. 3,
and we then introduce a formal framework for extending
reaction systemswith string rewritingmechanisms in Sect. 4,
somewhat in the spirit of Freund andVerlan (2007). In Sect. 5,
we set up theoretical tools for comparing the behaviors of
thus extended reaction systems to the original model. Then
we propose three restrictions of this general formalism in
Sect. 6, to which we refer by the terms “reaction systems
with strings of type 0”, “type 1”, and “type 2”, in reference
to the Chomsky hierarchy of formal grammars. We study the
computational power of these variants by comparing them to
the original reaction systems and to other well-known mod-
els of computing—register machines and Turing machines.
We conclude by discussing some of the subtleties, and by
drawing the general landscape of the questions remaining
open (Sect. 7).

2 Preliminaries

In this section we briefly recall the notions of reaction sys-
tems and formal language theory necessary for reading this
paper. For a more extensive introduction and overview we
recommend (Rozenberg and Salomaa 1997; Brijder et al.
2011; Ivanov and Petre 2020).

Given a set A, we denote byP(A) the power set of A, i.e.,
the set of all subsets of A. A multiset over A is a function
w : A → N assigning to every element x ∈ A its multi-
plicityw(x). We will often represent a multiset by any string
containing the elements of w in the same number of copies.
We denote the set of all multisets over A by A◦.

2.1 Reaction systems

Given a finite set S—called the background set of species—a
reaction in S is a triple a : (Ra, Ia, Pa), with Ra, Ia, Pa ⊆ S,
and Ra ∩ Ia = ∅. The subsets of species Ra , Ia , and Pa
are called the reactants, the inhibitors, and the products of
reaction a.

Given a subset of species W ⊆ S, reaction a is said to be
enabled inW if Ra ⊆ W and Ia ∩W = ∅. The result of a on
W is denoted by resa(W) and is equal to the set of products of
a: resa(W) = Pa . Given a set of reactions A, all of which are
enabled inW , the result of A is resA(W) = ⋃

a∈A resa(W) =
⋃

a∈A Pa . A reaction system over the background set S is a
tuple A = (S, A), where A is a set of reactions in S. The
result of A on W is defined as the result of all its reactions:
resA(W) = resA(W). A state of a reaction system A =
(S, A) over the background set of species S is any subset of
species W ⊆ S. A state W is reachable by A if there exists
another state V ⊆ S such that resA(V) = W .

Reaction systems are open dynamical systems, a feature
formally defined in their dynamics. Consider the following
sequence of subsets of species, called the context sequence
γ = (Ci)0≤i≤n , Ci ⊆ S, n ∈ N. An interactive process in A
is defined as the pair πγ (A) = (δγ (A), τγ (A)), where

• δγ (A) = (Di)0≤i≤n is the result sequence: Di =
resA(Di−1 ∪ Ci−1) for 0 < i ≤ n, and D0 = ∅,

• τγ (A) = (Wi)0≤i≤n is the state sequence:Wi = Ci ∪Di .

Each element Di of δγ (A) is computed as the result ofA on
the previous state Wi−1, and each state is computed as the
union between the result ofA and the corresponding element
of the context sequence. C0 is the called the initial context of
πγ (A), W0 is called its initial state, and Wn is the called the
result of A along the context sequence γ , and is denoted by
resγA(W0) = Wn . If the context sequence γ only consists of
empty contexts, then the corresponding interactive process
πγ (A) is called context-independent. A state W is called

123

On the spectrum between reaction systems and string rewriting

reachable from state V if there exists a context sequence γ

such that W = resγA(V).

Example 1 Consider the reaction systemA = (S, A), where
S = {x, y, z} and A = { a1 : ({x}, {y}, {z}), a2 :
({y}, {x}, {z}) }. Reaction a1 is enabled in {x}, but not in
{x, y} or ∅. The result of a1 on {x} is resa1({x}) = {z}. The
result of A on {x} is resA({x}) = {z} again, because a2 is not
enabled in {x}.

Consider the context sequence γ = (C0 = {x},C1 =
{y},C2 = ∅). The interactive process πγ (A) consists of the
following sequences:

• result sequence: δγ (A) = (D0 = ∅, D1 = {z}, D2 =
{z});

• state sequence: τγ (A) = (W0 = {x},W1 = {y, z},W2 =
{z}).

Therefore, {z} is reachable from {x} as there exists the context
sequence γ driving A from {x} to {z}.
Remark 1 In Brijder et al. (2011), the reactant and the
inhibitor sets of a reaction are required to be nonempty, while
the seminal paper (Ehrenfeucht and Rozenberg 2007) does
not explicitly state this requirement. Laterworks have studied
the influence of this restriction on different aspects ranging
from expressive power to modelling, e.g. Azimi et al. (2014),
Salomaa (2014, 2015), Dennunzio et al. (2019, 2015a, b),
Azimi et al. (2015, 2016). In this paper, we do not explicitly
consider the nonemptiness requirement.

2.2 Strings and grammars

The presentation in this section follows the works (Alhazov
et al. 2021; Freund 2019).

Given a finite set of symbols (an alphabet) V , we denote
V ∗ the set of all finite strings over V , sometimes also referred
to as the free monoid over V . The set V ∗ includes the empty
string λ—the neutral element of the monoid. The set of all
non-empty strings is denoted by V+ = V ∗\{λ}. The length
of a string w ∈ V ∗ is denoted by |w|, and the number of
occurrences of a symbol x ∈ V in w is denoted by |w|x .

Given a finite set of symbols V , a string rewriting grammar
is a construct G = (V , T , S, R), where V is a finite alphabet
of symbols, T ⊆ V is the set of terminal symbols, S ∈ V
is the axiom—the starting symbol, and R is the set of string
rewriting rules of the form α → β, α, β ∈ V ∗.

Classically, the left-hand side α is required to be non-
empty, but in this work we do not impose this restriction.
Allowing empty left-hand sides gives rise to what is typi-
cally called context-free insertion rules of the form λ →
β, which effectively insert the new substring β at a non-
deterministically chosen position in the string. Grammars

in which rules are only allowed to carry out some types
of insertion and deletion, with or without context, are typi-
cally referred to as insertion-deletion systems and are known
to have hierarchies of computational power which do not
overlap with the classical Chomksy hierarchy (Verlan 2010;
Ivanov 2015).

Given a rule r : α → β, applying it to a string
w1αw2 ∈ V+, results in the string w1βw2, denoted by
w1αw2

r�⇒ w1βw2, wherew1, w2 ∈ V ∗. This operation gen-
erates the binary relation

r�⇒ ⊆ V ∗ × V ∗, i.e., (w, v) ∈ r�⇒,
also written as w

r�⇒ v if v can be obtained from w by apply-

ing r . Given a set of rules R, we write
R�⇒ = ⋃

r∈R
r�⇒.

Informally, w
R�⇒ v means that there exists a rule r ∈ R

such that w
r�⇒ v. We use the notations

r�⇒∗
and

R�⇒∗
to

refer to the reflexive and transitive closure of the relations
r�⇒ and

R�⇒ respectively. In other words, w
r�⇒∗

v means that
v can be obtained from w in zero or more applications of r ,

and w
R�⇒∗

v means that v can be obtained from w by zero
or more applications of rules from R. Given the grammar
G = (V , T , S, R), the language generated by G is defined
as the set of all terminal strings which can be obtained from
S:

L(G) =
{

w ∈ T ∗ | S R�⇒∗
w

}

. (1)

Example 2 Consider the alphabet V = {S, a, b}, the set of
terminal symbols T = {a, b}, and the set of rules R = {S →
aSb, S → λ}. Then the language generated by the grammar
G = (V , T , S, R) is {anbn | n ∈ N}. Remark that R con-
tains the erasing rule λ, but it is possible to replace it by the
rule S → ab, which allows for generating the very similar
language {ambm | m ∈ N,m > 0}. Both of these languages
belong to the class of context-free languages, since they can
be generated by rules with exactly one non-terminal in the
left-hand side.

In this work, we use the conventional notations for classes
of languages generated by string rewriting grammars with
rules of different shapes:

1. REG, regular languages: rules of the form A → cB,
A → c, and A → λ, for A, B ∈ V \T , and c ∈ T ;

2. CF , context-free languages: rules of the form A → w,
with A ∈ V \T and w ∈ V ∗;

3. CS, context-sensitive languages: rules of the formαAβ →
αwβ, with α, β ∈ V ∗, A ∈ V \T , and w ∈ V+ a non-
empty string over V ;

4. RE , recursively enumerable languages: arbitrary rewrit-
ing rules.

The expressive power of string rewriting grammars can
be modulated in powerful ways by introducing various con-

123

A. Alhazov et al.

trol mechanisms which modify when and how the rules are
applied. We refer to Dassow and Păun (1989) for an in-depth
overview. In this paper, we focus on random-context and
semi-contextual grammars, which extend the applicability
conditions of rules as described in the following paragraphs
[see also Ivanov and Verlan (2015, 2021)].

Given a finite alphabet V , a semi-contextual rule is the
triple r : (α → β, P, Q), where α → β is a string rewriting
rulewithα, β ∈ V ∗ and P, Q ⊆ V+ are sets of strings called
the permitting and the forbidden context respectively. The
rule r is applicable to a stringw if the following 3 conditions
are satisfied:

1. α is a substring of w,
2. all strings in P are substrings of w,
3. all strings in Q are not substrings of w.

A semi-contextual grammar is a grammar whose rules are
semi-contextual, and the language of such a grammar is
defined as in equation (1) above.

If all elements in the permitting context P and the for-
bidden context Q of a semi-contextual rule r are individual
symbols, i.e., P, Q ⊆ V , then r is called a random-context
rule. A random-context grammar is a grammar containing
only random-context rules.

Example 3 Consider the semi-conditional grammar G =
(V , T , S, R) with the alphabet V = {S, A, Ā, B, B̄, a, b},
the set of terminal symbols T = {a, b}, and the following set
of rules:

r0 : (S → AB,∅,∅)

r1 : (A → a Ā, {B},∅)

r2 : (B → bB̄, { Ā},∅)

r3 : (Ā → A, {B̄},∅) r5 : (Ā → λ, {B̄},∅)

r4 : (B̄ → B, {A},∅) r6 : (B̄ → λ, {A, Ā},∅)

Derivations in this grammar start by applying r0 which yields
the string AB. The only rule applicable at this point is r1,
since all other rules require symbols absent from the string.
Applying r1 yields the string a ĀB. The only rule applicable
now is r2, yielding a ĀbB̄. A choice between r3 and r5 is
possible at this step. If r3 is applied, the string is transformed
into aAbB̄, and the only rule applicable at this point will be
r4, which will lead to the string aAbB. These are therefore
the first 5 possible steps of a derivation in G:

S
r0�⇒ AB

r1�⇒ a ĀB
r2�⇒ a ĀbB̄

r3�⇒ aAbB̄
r4�⇒ aAbB.

From this point on, rules r1 through r4 may applied in a 4-step
loop, yielding strings of the shape ak Abk B. If at some point
instead of applying r3, r5 is applied, then the string ak Ābk B̄
will be rewritten into akbk B̄, which will render r6 applicable,

yielding the terminal string akbk . Therefore, the language of
G is

L(G) = {anbn | n ∈ N, n > 0}.

Note that the rewriting rules in R are essentially regu-
lar rules,1 except the rule r0 : S → AB which is only
applied once, while the language L(G) is non-regular. There-
fore, adding semi-contextual conditions to the rules strictly
increases their computational power. Finally, note that the
elements of permitting and forbidden contexts in G are indi-
vidual symbols, meaning that G is also a random-context
grammar.

3 Reaction systemsmeet strings

In this section, we informally discuss three ways of mod-
ifying reaction systems to handle strings, which we then
formalize and study in Sect. 6. Clearly, the first step in con-
sidering reaction systemswith strings is imagining that states
are strings rather than sets over a finite alphabet. With this
starting point fixed, the possibilities of further modifications
and extensions are quite rich, as we briefly show in the fol-
lowing paragraphs.

Reactions as insertions The immediate first challenge is
translating reactions to operate on strings. Consider the back-
ground set of species S and a reaction a : (Ra, Ia, Pa). Due
to the threshold principle postulating that if a resource is
present it is always present in sufficient quantities to satisfy
any needs, the reactants of a behave rather like a permit-
ting context, instead of a resource that a should consume.
Similarly, the inhibitors can be seen as a forbidden context
for a. Informally, the reaction a can be seen as an inser-
tion rule with permitting and forbidden contexts of the form
(λ → Pa, Ra, Ia).

Direct parallelism Reactions in reaction systems are
always applied all at once, in parallel. Since there is effec-
tively no competition for resources and no multiplicities, this
implies that every reaction is applied once at every step. If the
state and the products Pa are considered to be strings, then
reactions extended to strings should be applied in parallel,
but not in a maximally parallel mode, because if a is appli-
cable once, it can be applied any arbitrary number of times
at the same step. In P systems, this mode is called the set-
maximal mode: apply non-extendable sets of rules, instead

1 Classically, regular rules have exactly one non-terminal in the left-
hand side, with the right-hand side of the form λ, a, or aB, a ∈ T
and B ∈ V \T . This example includes the renaming rules Ā → A
and B̄ → B. These would correspond to ε-transitions in the finite
automaton, which can be avoided by a simple transformation on the
non-terminals of the grammar.

123

On the spectrum between reaction systems and string rewriting

of non-extendable multisets of rules, see e.g. Alhazov et al.
(2016b).

Employing the set-maximalmode is a very reasonable first
approach, but a direct consequence of it is that the properties
of the state as a string will not be used at all, as nothing in
how the reactions are applied will depend on the number of
symbols in the state or on their positions. As a consequence,
this way of introducing strings will produce a model of com-
puting of power essentially identical to the original reaction
systems (Sect. 6.1).

Preserve multiplicities Consider the state string w over
the alphabet of species S and a reaction a : (Ra, Ia, Pa). To
make the derivation step depend on the multiplicities of the
symbols inw, it is possible tomodulate the number of times a
is applied by these multiplicities. More concretely, the num-
ber of applications of a to w may be defined as a function
mul of |w|x , for all x ∈ Ra ∪ Ia . The functionmulmay take
into account these multiplicities in different ways, e.g. take
the minimum, the maximum, or the sum of the multiplicities
of symbols in Ra , Ia , or both. The function mul can there-
fore be seen as a way to introduce the notion of resources in
string-based reaction systems, without necessarily violating
the threshold principle.

From the standpoint of computational power, introduc-
ing a dependency between the multiplicities of the symbols
in the string and the number of times a reaction is applied
allows for reliable encoding of natural numbers in the num-
ber of copies of a symbol ar . Indeed, all copies of ar can be
reliably maintained by picking a “good” function mul, and
constructing the corresponding reactions compensating for
the degradation of symbols, i.e., the non-permanency prin-
ciple. In fact, we show in Sect. 6.2 that this idea allows for
simulating register register machines, given an appropriate
family of context sequences.

Preserve positions To go beyond preserving the multiplic-
ities, it is possible to also attach the positions at which the
insertions induced by a reaction a : (Ra, Ia, Pa) occur to the
locations of the elements of Ra and Ia in the string. Simi-
larly to preserving the multiplicities, this can be achieved by
defining a function pos taking the positions of the symbols
in Ra , Ia , or both, and producing the set of positions at which
the insertions of Pa should happen.

This particular extension brings the model of comput-
ing even closer to string rewriting, while still explicitly
maintaining compliance with the threshold principle and
the non-permanency principle. In Sect. 6.3, we show how
reaction systems extended in this way can simulate Turing
machines, given an appropriate family of context sequences.

4 Reaction systems with strings

As with conventional reaction systems in Sect. 2.1, we start
with the background set of species V—a finite alphabet of
symbols. A state w is any finite string w ∈ V ∗. To stream-
line the definitions in this section, we also introduce a slight
generalization of the notion of string rewriting grammars as
defined in Sect. 2.2.

Definition 1 A string transformer is a constructG = (V , R),
where V is a finite alphabet of symbols and R is a set of string
rewriting rules.

With respect to the definition of a string rewriting gram-
mar, that of a string transformer omits the starting symbol S
as well as the terminal alphabet T . Semantics-wise, apply-
ing a string transformer G to a string w ∈ V ∗ consists in
applying the applicable rules of G to w, according to the
mode—sequential, maximally parallel, etc.—as in the case
of string rewriting grammars and their different flavors.

Definition 2 A reaction system with strings (RSS) is a con-
struct rss = (G,mctx,mode, apply,post), where:

• G = (V , R) is a string transformer;
• mctx : V ∗ × V ∗ → P(V ∗) is the context merging func-
tion, defining how to merge a context into a state2;

• mode : V ∗ → P(R◦) is the derivation mode, defining
which multisets of rules R are applicable to a state in V ∗;

• apply : R◦ × V ∗ → P(V ∗) gives all possible results of
applying a multiset of rules to a string;

• post : V ∗ → V ∗ is the post-processing function, applied
to the string after the rules have been applied.

The functions mctx, mode, apply, and post must be com-
putable.

In what follows, to make notation more compact, we will
also use the symbol post to refer to the natural extension of
post as defined above to sets of strings, i.e., the function with
the type P(V ∗) → P(V ∗) assigning to a set B ⊆ V ∗ the set
{post(w) | w ∈ B}.

As in the original reaction systems, the dynamics of RSS
are defined by interactive processes. A context is any string
γi ∈ V ∗, and a context sequence of length n+1 is a sequence
of such strings: γ = (γi)0≤i≤n . The following definition
lifts the original notion of an interactive process to reaction
systems with strings (cf. Sect. 2.1). We keep the notations
largely similar.

2 The first argument of mctx is the context and the second is the state.
This function need not be commutative, nor deterministic.

123

A. Alhazov et al.

Definition 3 Given a reaction system with strings rss =
(G,mctx,mode, apply,post) and a context sequence γ =
(γi)0≤i≤n , an interactive process generated by γ is the pair
πγ = (δγ , τγ), where:

• δγ = (δi)0≤i≤n is the result sequence, with δ0 = λ,
δi ∈ post(apply(ρ,wi−1)), and ρ ∈ mode(wi−1);

• τγ = (wi)0≤i≤n , is the state sequence:wi ∈ mctx(γi , δi).

This definition incorporates three levels of non-determinism.
First of all, the state wi is non-deterministically picked
among all possible ways to merge the context γi into δi
given bymctx(γi , δi). Secondly, ρ is a multiset of rules non-
deterministically picked among the applicable multisets of
rules given bymode(wi). Finally, δi is non-deterministically
picked among the possible results of applying ρ to wi−1,
post-processed bypost. The immediate consequence of these
levels of non-determinism is that a single context sequence
may yield multiple different interactive processes.

Remark 2 Definition 3 is mutually recursive: δi relies on
wi−1, whilewi−1 relies on δi−1. This is similar to the original
definition in Sect. 2.1, in which Di is essentially defined to
be resA(Wi−1). Classic definitions of interactive processes
in reaction systems do not feature explicit mutual recursion
because the procedure of constructing the state Wi is a sim-
ple union Di ∪ Ci . On the other hand, in reaction systems
with stringsmctx(γi , δi) may yield multiple different states,
whichmeans that the definition of an interactive processmust
feature explicit mutual recursion.

The following example shows that Definition 3 is a strict
generalization of reaction systems as defined in Sect. 2.1.

Example 4 Consider a finite alphabet V with an arbitrary
total order on the symbols, e.g., V = {x1, . . . , xm}, and
the embedding e : P(V) → V ∗ associating to every sub-
set V ′ ⊆ V the string containing exactly once the symbols
in V ′, in order: e({xi1 , . . . , xik }) = xi1 . . . xik . Also con-
sider the dual projection supp : V ∗ → P(V) associating to
every string the set of symbols it contains: supp(w) = {x |
x appears in w}. Finally, define the function flat : V ∗ → V ∗,
flat(w) = e(supp(w)), which essentially removes the dupli-
cates from w and reorders the symbols according to the total
order on V .

Take a reaction system A = (V , R), and construct the
following set of random-context string rewriting rules:

R′ = { ra : (λ → e(Pa), Ra, Ia) | a : (Ra, Ia, Pa) ∈ R }.

Furthermore, define the following functions:

mctx(γ ′, w) = {γ ′ · w},
mode(w) = {ρw},

ρw(ra) =
{
1, if ra is applicable to w,

0, otherwise,

apply(ρ,w) =
{∏

ra∈ρ e(Pa)
}

,

post(w) = flat(w).

The function mctx simply concatenates the context γ ′ with
the current state w, mode(w) constructs the multiset ρw in
which all rules applicable to w appear with multiplicity 1,
apply concatenates the product strings e(Pa) of all reactions
in ρ in the order given by an arbitrary total order on the
reactions in R, and finally post removes all duplicates from
the string. Remark that all these function are deterministic.

Construct the reaction system with strings rss =
(G,mctx,mode, apply,post)withG = (V , R′), consider a
context sequence γ = (γi)0≤i≤n and the corresponding inter-
active process πγ = (

(δi)0≤i≤n, (wi)0≤i≤n
)
. Then the pair(

(supp(δi))0≤i≤n,

(supp(wi))0≤i≤n
)
is an interactive process of the origi-

nal reaction system A, induced by the context sequence
(supp(γi))0≤i≤n . Indeed, the functions above essentially
implement in strings the original semantics of interactive
processes as defined in Sect. 2.1; see Theorem 2 for a for-
mal argument.

The following example gives a concrete instantiation of
the construction above.

Example 5 Consider the alphabet V = {x, y} and the reac-
tions R = { a : ({x}, {y}, {y}), b : ({x},∅, {x, y}) }.
Construct the following set of random-context string rewrit-
ing rules:

R′ = { ra : (λ → y, {x}, {y}), rb : (λ → xy, {x},∅) },

as well as the reaction system with strings rss = (G,mctx,
mode, apply,post) with G = (V , R′), and the functions
mctx, mode, apply, and post defined as in Example 4.
Consider the context sequence γ = (x, x, λ). The fol-
lowing is the corresponding interactive process πγ =(
(δi)0≤i≤2, (wi)0≤i≤2

)
:

i 0 1 2
γi x x λ

δi λ xy xy
wi x xxy xy

Both rules ra and rb can be applied at the first step, since
w0 contains x and no y, and even if w0 contains only one
copy of x , because ra and rb do not compete for this copy.

123

On the spectrum between reaction systems and string rewriting

Applying both rules results in the string apply(rarb, x) =
yxy, yielding δ1 = xy = flat(yxy), from which mctx is
used to obtain w1 = xxy by prepending the context γ1 = x .
Only rule rb can be applied now, yielding δ2 = xy = w2.

Reaction systems with strings are also a direct member
of the family of string rewriting models of computing. The
following example stresses this strong relationship.

Example 6 Consider the string transformer G = (V , R)

(with semi-conditional rules) and define the following func-
tions:

mctx(γ ′, w) = {γ ′ · w},
mode(w) = {r | r ∈ R, r is applicable to w},

apply(r , w) = {v | w
r�⇒ v},

post(w) = w.

Thus, mctx appends the context to the current string as in
Example 4, mode(w) returns the set of all singleton mul-
tisets each containing one rule applicable to w, apply(w)

constructs the set of strings derivable from w by the rule r ,
and post does no post-processing of the string.

Construct now the reaction system with strings rss =
(G,mctx,mode, apply,post). Supposing that S ∈ V , each
interactive process yielded by the context sequence γ =
(γi)0≤i≤n with γ0 = S and γi = λ for 1 ≤ i ≤ n will
correspond to a derivation of length n of the string rewriting
grammar (V , V , S, R).

As before, the following example gives a concrete instan-
tiation of this construction.

Example 7 Take the alphabet V = {S, a, b} and the set of
semi-conditional rules R = { r1 : (S → aSb,∅,∅), r2 :
(S → λ,∅,∅) } with empty permitting and forbidden con-
texts. Consider the string transformer G = (V , R) and the
reaction system with strings rss = (G,mctx,mode, apply,
post), with the functions mctx, mode, apply, and post
defined as in Example 6. The following is one of the inter-
active processes in rss yielded by the context sequence
γ = (S, λ, λ, λ):

i 0 1 2 3
γi S λ λ λ

δi λ aSb aaSbb aabb
wi S aSb aaSbb aabb

In the first step both rules r1and r2 are applicable, mean-
ing that mode(S) = {r1, r2}, apply(r1, S) = {aSb}, and
apply(r2, S) = {λ}. In this interactive process, r1 is applied,
yielding δ1 = aSb = w1. The same rule is applied in the sec-
ond step, leading to δ2 = aaSbb = w2. Both rules are again
applicable in the third step, but this time r2 is applied, yield-
ing δ3 = aabb = w3. We insist on the fact that this is only

one of the interactive processes yielded by γ . The follow-
ing table presents the result sequences of all such interactive
processes, together with the applied rules:

i 0 1 2 3 Rules applied
γi S λ λ λ

δ
(1)
i λ λ λ λ r2

δ
(2)
i λ aSb ab ab r1r2

δ
(3)
i λ aSb aaSbb aabb r1r1r2

δ
(4)
i λ aSb aaSbb aaaSbbb r1r1r1

Remark 3 The definition of apply in Example 6 is incom-
plete: indeed, the function is only defined for singleton
multisets, containing exactly one copy of a rule. To formally
comply with Definition 2, we would need to instead provide
a description similar to the following one:

apply(ρ,w) =
{

{v | w
r�⇒ v}, ρ = r ∈ R,

∅, otherwise.
(2)

Note however that according to the dynamics of reaction
systems with strings (Definition 3), apply is only used with
multisets of rules produced by mode, and in the example
above mode only produces singleton multisets. Therefore,
the value apply is assigned in the second line of equation (2)
is of no importance.

Given this observation, in what follows we will systemati-
cally define apply only for the multisets of rules produced by
mode, and will implicitly suppose that apply is also defined
to produce e.g. ∅ for all other multisets of rules.

5 Relationship between reaction systems
and RSS

In order to compare the behavior of different variants of
reaction systems with strings to that of conventional reac-
tion systems, we introduce in this section two compatibility
conditions.

Definition 4 A reaction system with strings rss is set-
compliant if there exists a reaction system Arss over the
same alphabet such that for any context sequence γ =
(γi)1≤i≤n for rss and a corresponding interactive process
πγ = (

(δi)0≤i≤n, (wi)0≤i≤n
)
generated by γ , the pair(

(supp(δi))0≤i≤n, (supp(wi))0≤i≤n
)
is the interactive pro-

cess of the reaction system Arss generated by the context
sequence (supp(γi))0≤i≤n .

Informally, all interactive processes of a set-compliant
RSS are interactive processes of a conventional reaction sys-
tem, modulo the projection supp. Note that this definition
does not require set-compliant reaction systems with strings

123

A. Alhazov et al.

to be deterministic, but it does restrict all interactive pro-
cesses inducedby the samecontext sequence to have the same
projection by supp. Furthermore, this definition imposes the
same equality restriction on all interactive processes induced
by all context sequences with the same projection by supp.

Definition 5 A reaction system with strings rss is set-
compatible if there exists a reaction system Arss over the
same alphabet V such that for any context sequence γ =
(Ci)0≤i≤n of Arss there exists a context sequence γ ′ =
(γ ′

i)0≤i≤n such that supp(γ ′
i) = Ci , and which generates

an interactive process
(
(δi)0≤i≤n, (wi)0≤i≤n

)
of rss with

the property that
(
(supp(δi))0≤i≤n, (supp(wi))0≤i≤n

)
is the

interactive process of Arss generated by γ .

Informally, a reaction system with strings rss is set-
compatible if all interactive processes of a conventional
reaction system Arss can be mapped onto a subset of the
interactive processes of rss.

Example 8 Consider the reaction system with strings rss =
(G,mctx,mode, apply,post) with G = (V , R), V =
{a, b, c}, R = {rb : a → b, rc : aa → c}, the functions
mode and apply defined as follows:

mode(w) = {ρw},
ρw = {rkc r tb | k is the biggest natural s.t. |w|a = 2k + t} 3,
apply(rkc r

t
b, w) = {ckbt },

and the other functions defined as in Example 4:mctx(γ ′, w)

= {γ ′ · w} and post(w) = flat(w). Intuitively, the function
mode(w) picks the rule rc as many times as there are pairs
of a in w, and if an odd a is left, it adds rb to ρw. apply in its
turn simply discards the structure of w and concatenates the
right-hand sides of rc and rb in the corresponding number of
copies.

Consider now two context sequences γ1 and γ2 of rss, as
well as the state sequences τ1 and τ2 of the corresponding
interactive processes, together with the projections by supp:

γ1 = (a, λ), γ2 = (aa, λ),

τ1 = (a, b), τ2 = (aa, c),
supp(γ1) = (a, λ) = supp(γ2) = (a, λ),

supp(τ1) = (a, b) �= supp(τ2) = (a, c).

The projections supp(γ1) and supp(γ2) are the same, but
the projections of the state sequences supp(τ1) and supp(τ2)

are different. Since conventional reaction systems are deter-
ministic, there cannot exist a reaction system featuring both
state sequences for the same context sequence supp(τ1) =

3 In other words, k is the quotient and t the remainder of dividing |w|a
by 2.

supp(τ2). The reaction system with strings rss is therefore
not set-compliant.

On the other hand, take the embedding e : P(V) → V ∗
defined in Example 4, consider the reaction systemArss over
V with the only reaction ({a},∅, {b}), and take an arbitrary
context sequence γ = (Ci)1≤i≤n . It follows from the defini-
tion of e that all strings e(Ci) will contain at most one copy
of a, meaning that in any interactive process of rss gener-
ated by the sequence (e(Ci))1≤i≤n only the rule a → b will
ever be applied. It follows from the definitions of the func-
tions mctx, mode, apply, and post that embedding a result
sequence (Di)1≤i≤n of Arss into V ∗ will yield the corre-
sponding result sequence (e(Di))i≤i≤n of rss, meaning that
the reaction system with strings rss is set-compatible.

The previous example shows that set-compliance is a
stronger requirement, since it requires essentially that all
interactive processes of a reaction systemwith strings should
project by supp onto interactive processes of a single conven-
tional reaction system. On the other hand, set-compatibility
intuitively requires that only a part of all possible inter-
active processes should be representable by the interactive
processes of a conventional reaction system. This intuitive
observation directly leads to the following statement.

Proposition 1 A reaction system with strings rss which is
set-compliant is set-compatible.

Proof According to Definition 4, that rss is set-compliant
means that there exists a conventional reaction system Arss

such that all interactive processes of rss map onto interactive
processes of Arss by supp. By directly checking the condi-
tions of Definition 5, one can verify that the same reaction
systemArss satisfies them, which proves the statement of the
proposition. ��

Example 8 shows that the converse statement is not true—
not every set-compatible reaction system is set-compliant.

6 The spectrum between reaction systems
and string rewriting

Examples 4 and 6 show the two ends of the spectrum between
reaction systems and string rewriting. In this section we will
provide further constructs situated along this spectrum and
formalizing the ideas from Sect. 3. For brevity, we will refer
to these formalizations using the terms “type k”, in which
k can be seen as an informal measure of the strength of the
restrictions added to the general model of reaction systems
with strings—similarly to the Chomsky hierarchy.

123

On the spectrum between reaction systems and string rewriting

6.1 RSS of Type 0

The following definition further formalizes the construction
from Example 4, which also corresponds to the informal dis-
cussion in paragraphs “Reactions as insertions” and “Direct
parallelism” from Sect. 3.

Definition 6 A reaction system with strings of type 0 is
a reaction system with strings as in Definition 2 rss =
(G,mctx,mode, apply,post), which additionally satisfies
the following conditions:

1. the rules in the string transformer G = (V , R) are
random-context rules of the form r : (λ → αr , Pr , Qr),
with αr ∈ V ∗, P, Q ⊆ V ;

2. mctx(γ ′, w) = {γ ′ · w} 3

3. mode(w)={ρw}, where ρw(r)=

⎧
⎪⎨

⎪⎩

1, if r is applicable

to w,

0, otherwise;
4. apply(ρ,w) =

{∏
r∈ρ αr

}
, where the concatenation

happens according to an arbitrary but fixed total order
on R,

5. post(w) = flat(w).

The following statements formalize the remark at the
end of Example 4 about the relation between the interac-
tive processes of reaction systems with strings of type 0 and
conventional reaction systems.

Theorem 2 All reaction systems with strings of type 0 are
set-compliant.

Proof Consider a reaction system with strings of type 0
rss = (G,mctx,mode, apply,post) with G = (V , R),
and pick any context sequence γ = (γi)1≤i≤n . Since rss
is of type 0, all 4 functionsmctx,mode, apply, and post are
deterministic, meaning that γ generates exactly one interac-
tive process ((δi)1≤i≤n, (wi)1≤i≤n).

Define the function pj
(
r : (λ → α, Pr , Ir)

) =
(supp(αr), Ir , Pr) converting a random-context rule from
R into a reaction, and construct the reaction system A =
(V , R′) with R′ = {pj(r) | r ∈ R}. Pick a state wi ∈ V ∗ and
remark that, if mode(wi) = {ρwi }, then {pj(r) | r ∈ ρwi } is
exactly the set of reactions enabled inA in the set supp(wi).
Therefore, the only stringwi+1 ∈ post(apply(ρwi , wi))will
have the property supp(wi+1) = resA(supp(wi)). This,
together with the commutativity supp(mctx(γi , wi)) =
supp(γi) ∪ supp(wi) implies the set-compliance of rss. ��

By Proposition 1, we also directly obtain the following
result.

3 More generally,mctx; may be the shuffle of γ ′ andw,mctx(γ ′, w) =
γ ′
� w.

Corollary 3 All reaction systems with strings of type 0 are
set-compatible.

Remark 4 Defining post to be flat in Definition 6 does not
have a major impact on the expressiveness of the behavior
of RSS of type 0: the applicability conditions of the rules do
not depend on the number of copies of symbols, and mode
will anyway only include one copy of every applicable rule
into the multiset ρw. In particular, if Definition 6 defined
post(w) = w, Theorem 2 would also hold. To formally dis-
tinguish between these two slight variations, we use the term
reaction systems with strings of type 0′ (read as “type zero-
prime”) to refer to the variant in which post(w) = w.

6.2 RSS of Type 1

The previous results show that reaction systems of type 0
have essentially the same behavior as conventional reaction
systems. We now formalize the discussion from paragraph
“Preserve multiplicities” in Sect. 3. We start by defining the
multiset support function supp∗ : V ∗ → V ◦ over an alpha-
bet V in the followingway: supp∗(w)(a) = |w|a , i.e., supp∗
assigns to a string w the multiset containing the same sym-
bols in exactly the same multplicities.

Definition 7 A reaction system with strings of type 1 or with
multiplicity preservation is a reaction system with strings as
in Definition 2, rss = (G,mctx,mode, apply,post,mul),
with G = (V , R), the additional computable function mul :
V ◦ × R → N, and satisfying the following conditions:

1. the rules in the string transformer G = (V , R) are
random-context rules of the form r : (λ → αr , Pr , Qr),
with αr ∈ V ∗, P, Q ⊆ V ;

2. mctx(γ ′, w) = {γ ′ · w};
3. mode(w) = {ρw}, where ρw(r) ={

mul(supp∗(w), r), if r is applicable to w,

0, otherwise;
4. apply(ρ,w) =

{∏
r∈ρ(αr)

ρ(r)
}
, where the concatena-

tion happens according to an arbitrary but fixed total order
on R, and a right hand side of a rule r occurs asmany times
as r appears in ρ;

5. post(w) = w.

The central difference between RSS of type 0 in Defini-
tion 6 and type 1 in Definition 7 is in function mode: it is
still deterministic in RSS of type 1, but this time the num-
ber of times a rule appears in the single multiset of rules
is determined by the function mul, which in its turn derives
this number from themultiplicities of symbols inw, andmay
therefore do arbitrary computable connections with the com-
ponents of the rule r . Accordingly, apply is slightly modified

123

A. Alhazov et al.

to account for multiplicities of rules in ρ. Finally, post just
keeps the only string resulting from apply as it is.

We will now show a connection between RSS of type
1 with a subclass of register machines, which are a model
of computing equipped with a finite number of numerical
registers, each of which stores a natural number, and with a
program consisting of increment and decrement instructions.
Each instruction is labelled with a state, and indicates which
instruction or instructions are to be executed next. The pro-
gram also has a special halting instruction which indicates
that the execution is finished and the result can be retrieved.
We refer to Korec (1996) for a detailed technical presenta-
tion of register machines and their computing power, and to
Păun et al. (2010) for a rich overview of the use of register
machines in evaluating the computing power of othermodels.

Example 9 Consider register machines only equipped with
increment instructions of the form (p,ADD(r), q), meaning
that in state p the machine increments register r and goes to
state q. Such register machines are deterministic, and each
oneproduces exactly oneoutput: the vector of numbers stored
in its registers when the halting configuration is reached.

Consider such a deterministic register machine M and
construct the RSS of type 1 rssM with the alphabet V =
Q∪A,whereQ is the set of states ofM and A = {a1, . . . , am}
has a symbol for every register of M . The rules of rssM are
the following:

rp : (λ → qar , {p},∅), for every instruction (p,ADD(r), q),

rr : (λ → ar , {ar },∅), for every ar ∈ A.

Define the function mul in the following way:

mul(w̄, rp) = w̄(p), p ∈ Q,

mul(w̄, rr) = w̄(ar), ar ∈ A.

Intuitively, the rules rp will produce the new state symbol cor-
responding to instruction p in as many copies as p is present
in the current string, and the rules rr will simply maintain the
register symbols ar in the same number of copies.

Take now a context sequence γ = (q0, λ, . . . , λ) of length
n+1, where q0 is the starting state of M . Then the interactive
process generated by γ will essentially simulate the compu-
tation of M of length n. Remark that if M reaches the halting
instruction ph in less than n steps, then rssM will simply
lose the state symbol ph and maintain the multiplicities of
ar , because the halting instruction will have no rule associ-
ated to it in R. Finally, note that the simulation will only be
valid if the context sequence has the form specified above.
Introducing extra symbols from Q or A via the contexts may
obviously break the simulation relationship to M .

The previous example shows that RSS of type 1 can count,
and the size of their configuration is unbounded, even as they

respect the threshold principle and the non-permanency prin-
ciple. Nevertheless, this result is somewhat underwhelming,
since we picked a very restrained class of register machines.
The following example shows how non-determinism can be
injected via the context sequence, considerably enriching the
possible behaviors of an RSS of type 1.

Example 10 Consider register machines equipped with non-
deterministic increment instructions of the form (p,ADD(r),
q, s), meaning that in state p themachine increments register
r and non-deterministically chooses between going to state
q or to state s. For such instructions we will use the notation
next(p) = {q, s}. Register machines of this form generate
all linear vector languages [see Păun et al. (2010)].

Consider such a register machine M and construct the
RSS of type 1 rssM with the alphabet V = Q ∪ Q̄ ∪ A,
where Q is the set of states of M , Q̄ = {q̄ | q ∈ Q}, and
A = {a1, . . . , am} has a symbol for every register of M . The
rules of rssM are the following:

rp : (λ → qar , {p, q̄},∅), p ∈ Q, q ∈ next(p),
r̄ p : (λ → p, {p}, {q̄}), p ∈ Q, q ∈ next(p),
rr : (λ → ar , {ar },∅), for every ar ∈ A.

We define the function mul as follows:

mul(w̄, rp) = w̄(p), p ∈ Q,

mul(w̄, r̄ p) = w̄(p), p ∈ Q,

mul(w̄, rr) = w̄(ar), ar ∈ A.

Intuitively, if the current configuration contains both p and
q̄ such that q ∈ next(p), then the corresponding rule rp will
simulate the transition to q, adding a copy of ar . Otherwise,
if the configuration does not contain such a q̄ , then rp will
not be applicable, and r̄ p will instead maintain the current
state symbol p. Note that if both p and q̄ are present in the
current configuration, only the multiplicity of p affects the
multiplicity assigned to the rules rp and r̄ p.

Consider now the following family of context sequences

�n = {(q0γ0, γ1, . . . , γn) | γi ∈ Q̄, 0 ≤ i ≤ n}.

In other words, �n contains all context sequences in which
each context is exactly one symbol from Q̄, except for the
very first one which also contains the initial state q0 of M .
When run with such a context sequence γ ∈ �n , rssM will
apply a rule rp simulating an increment whenever the con-
text sequence injects the correct q̄—i.e., such a symbol q̄ that
q ∈ next(p)—or a rule r̄ p whenever the wrong q̄ is injected.
Therefore, the set of interactive processes generated by the
context sequences in �n+1 will simulate all computations of
M of length less or equal to n. This means that the contexts
from the set �∗ = ⋃

n∈N �n will generate interactive pro-
cesses corresponding to all computations of M .

123

On the spectrum between reaction systems and string rewriting

Observe that rssM contains no rules for the halting instruc-
tion h of M , because next(h) = ∅. This means that if a
simulation reaches h at step i < n, i.e., before the con-
text sequence is exhausted, then all the subsequent results
(δ j)i< j≤n will be equal to the same string over A in which
the multplicities of the symbols ar will correspond to the
values of the corresponding registers r when M reached the
halting instruction.

The two examples above show that RSS of type 1 can
explore unbounded state spaces by counting register symbols
ar . This is ensured by the function mul which allows for
carrying over symbol multiplicities from the current string-
state to the numbers of times rules are applied. In general,
this comes with losing the strong connection to conventional
reaction systems featured by RSS of type 0.

Example 11 Consider the singleton alphabet V = {a} and
the RSS of type 1 rss over it with the only rule r : (λ →
a, {a},∅), with the function mul defined as follows:

mul(w̄, r) =
{
1, w̄(a) = 1,

0, w̄(a) > 1.

Consider now two context sequences γ1 = (a, λ) and γ2 =
(aa, λ). The state sequences of the interactive processes of
rss generated by γ1 and γ2 will be respectively τ1 = (a, a)

and τ2 = (aa, λ), because in the case of γ2 mulwill deny the
application of r , even though it is applicable to the string aa.
Note now that the projections by supp of γ1 and γ2 are the
same: ({a},∅), but the projections of the state sequences τ1
and τ2 are different, meaning that rss is not set-compliant.

This reaction system with strings rss is on the other hand
still set-compatible. Indeed, consider the reaction system
with no reactions at allA = (V ,∅). Then the result sequence
of any interactive process ofA entirely consists of empty sets,
and the state sequence is equal to the context sequence. Fur-
thermore, the elements of any context sequence are either ∅
or {a}. Take any such context sequence of A and construct
a context sequence for rss by replacing all ∅ by λ and all
{a} by aa. According to the definition ofmul, always inject-
ing two copies of a will essentially disable the only rule r
of rss, meaning that the corresponding result sequence will
only contain empty strings, and that the state sequencewill be
equal to the context sequence. Therefore,A satisfies the con-
ditions of Definition 5, implying that rss is set-compatible.

The salient feature of function mul used in the example
above is that it can deny the application of an applicable rule.
It is possible to restrictmul to comply with the mode and not
disable rules in this way.

Definition 8 The multiplicity function mul : V ◦ × R → N

of an RSS of type 1 is called non-denying if, for any w ∈ V ∗

and for any r ∈ R, mul(supp∗(w), r) > 0 if r is applicable
to w.

Thus, a non-denying multiplicity function can modulate
the number of times a rule is applied, but not prevent it from
being applied if it is applicable. This drastically changes the
effect of the multiplicity function, as the following theorem
shows.

Theorem 4 All reaction systems with strings of type 1 with a
non-denying multiplicity function mul are set-compliant.

Proof It suffices to remark that a non-denying mul only
affects the number of times an applicable rule is applied, i.e.,
the number of copies in which its right-hand side will appear
in the result produced by apply. Modifying this number does
not change the projection on sets by supp in any way. Simi-
larly, post being the identity function in the definition of RSS
of type 1 (Definition 7) does not change the projection of the
result sequence by supp with respect to RSS of type 0, in
which post is defined to be the function flat (Definition 6).4

These observations allows us to directly apply the argument
of Theorem 2 to prove the above statement. ��

On the other hand, denying multiplicity functions allow
for directly simulating computations of register machines
with both increment and decrement instructions up to a cer-
tain length.

Example 12 Consider a deterministic register machine M
with two kinds of instructions:

• (p, ADD(r), q): in state p, increment register r and go
to state q:

• (p, SU B(r), q, z): in state p, if register r is non-zero,
decrement it and go to state q, otherwise go to state z.

Such register machines are known to be computationally
complete (Korec 1996; Cocke and Minsky 1964; Păun et al.
2010),meaning that for any computable function f of vectors
of numbers there exists a register machine which computes
f .
Construct now the RSS of type 1 rssM with the alphabet

V = Q ∪ A, where, as in Example 9, Q is the set of states
of M and A = {a1, . . . , an} has a symbol for every register
of M . The following list gives the rules of rssM , as well as
the multiplicities they are assigned in order to simulate the
program of M :

• for every instruction (p,ADD(r), q):

rp : (λ → qar , {p},∅) and mul(w̄, rp) = w̄(p);
4 See also Remark 4 for a discussion of post taken to be flat in Defini-
tion 6.

123

A. Alhazov et al.

• for every instruction (p,SUB(r), q, z):

rqp : (λ → q, {p},∅) and r zp : (λ → z, {p},∅),

together with the multiplicities

mul(w̄, rqp) =
{
1, w̄(ar) > 0,

0, otherwise,
and mul(w̄, r zp)

=
{
1, w̄(ar) = 0,

0, otherwise;

• for every symbol ar ∈ A:

rr : (λ → ar , {ar },∅),

and the following multiplicity assignment:

mul(w̄, rr)

=
{

w̄(ar) − 1, ∃p ∈ dec(r) : w̄(p) = 1, and w̄(ar) > 0,

w̄(ar), otherwise.

where dec(r) is the set of states in which M attempts a
decrement on register r .

The behaviour of rule rp for increment instructions
(p,ADD(r), q) is exactly the same as in Example 9: a copy
of ar is added once if p appears in the string.

In the case of a decrement instruction (p,SUB(r), q, z),
the two rules rqp and r zp add the new state symbol, while
the functionmul checks the corresponding conditions on the
multiplicity of ar and decides which of the two rules to apply.
More concretely, if the string still contains copies of ar , rule
rqp is applied; otherwise, rule r zp is applied. Note thatmulwill
deny applications of applicable functions,mul is therefore a
denying multiplicity function.

Finally, rule rr , and particularly the multiplicity mul
assigns to it, has the role of maintaining the current number
of copies of ar in the string, unless the current instruction
symbol corresponds to a decrement instruction on register r ,
and there are still copies of ar in the string.

Consider now the context sequence γ = (γ0, λ, . . . , λ)

of length n + 1 and γ0 = q0a
k1
r1 . . . akmrm , where q0 is the

initial state of M , and ki is the initial value of register ri . The
interactive process generated by γ will exactly simulate the
computation of M of length n on the corresponding input
vector (k1, . . . , km).

Remark 5 In Examples 9, 10, and 12, the function mul
assigns to the rules rp simulating ADD instructions the
same multiplicity as that of the corresponding symbol p
in the current state of the reaction system with strings, i.e.,
mul(w̄, rp) = w̄(p). In Example 10, mul assigns the same
multiplicity to rule r̄ p, which is also part of simulating an

ADD instruction: mul(w̄, r̄ p) = w̄(p). The important part
about these definitions ofmul is that they enable the correct
rules rp (and r̄ p) corresponding to the symbol p appearing
in the current state, not the actual multiplicities assigned to
these rules. In other words, in these examplesmul could also
be defined in the following way:

mul(w̄, rp) =
{
1, w̄(p) > 0,

0, otherwise,

similarly to how mul(w̄, rqp) is defined in Example 12.

6.3 RSS of Type 2

As discussed in paragraph “Preserve positions” of Sect. 3,
we can even go beyond preserving symbol multiplicities—
which yields quite powerful devices as the previous section
shows—and seek to also maintain a connection between the
positions atwhich insertions occur, and the positions atwhich
some of the reactants or inhibitors appear in the string.

In what follows, we will rely on the position function
pos : V ∗ × R → P(N) which, given a word w and a rule
r , produces a set of “positions” at which the right-hand side
of r should appear in the result. The exact meaning of the
term “position” will be clarified in Definition 9, but we first
define two utility functions to manipulate subsets ofN×V ∗,
which will intuitively correspond to pairs of the form (posi-
tion, word) in our constructions.

First, we introduce the function sort1 which sorts a subset
B ⊆ N × V ∗ by the numerical value of its first element.
We do not require the values of the first elements in B to be
distinct, so sort1 produces a set of ordered sequences of pairs
(position, word)5. Thus, a sequence (i1, α1) . . . (im, αm) ∈
sort1(B) has the property that ik ≤ ik+1, for all 1 ≤ k < m.
If, as an example, B = {(1, α1), (1, α2), (2, α3)} for some
strings α1, α2, α3, then

sort1(B) = { (1, α1)(1, α2)(2, α3),

(1, α2)(1, α1)(2, α3) }.

Second, we introduce the function cat2 which concate-
nates the second elements of a sequence of pairs (position,
word)6:

cat2
(
(i1, α1) . . . (im, αm)

) = α1 . . . αm .

5 Formally, the type of this function is sort1 : P(N × V ∗) → P(
(N ×

V ∗)∗
)
.

6 Formally, the type of this function is cat2 : (N × V ∗)∗ → V ∗.
Note that cat2 discards the first elements of the pairs in the argument
sequence, and just concatenates the words in the order in which the
appear.

123

On the spectrum between reaction systems and string rewriting

Wewill also use the symbol cat2 to refer to a natural extension
of this function to sets of sequences of pairs from N × V ∗.

We now define RSS of type 2 using these utility functions.

Definition 9 A reaction system with strings of type 2 or with
position preservation is a reaction system with strings as
in Definition 2, rss = (G,mctx,mode, apply,post,pos),
with G = (V , R), the additional computable function pos :
V ∗ × R → P(N), and satisfying the following conditions:

1. the rules in the string transformer G = (V , R) are
random-context rules of the form r : (λ → αr , Pr , Qr),
with αr ∈ V ∗, P, Q ⊆ V ;

2. mctx(γ ′, w) = {γ ′ · w};
3. mode(w) =

{ρw}, where ρw =
{
1, if r is applicable to w,

0, otherwise;
4. The function apply is defined in the following way:

apply(ρ,w) = cat2

(

sort1

(
⋃

r∈ρ

(pos(w, r) × {αr })
))

.

5. post(w) = w.

In RSS of type 2, the functionmode is in fact the same as
in RSS of type 0: it produces one single multiset of rules, in
which a rule may have multiplicity 0 or 1, meaning that the
only element ofmode(w) is essentially just a set. The func-
tion apply on the other hand employs the function pos in the
most intimate way. The operation of apply can alternatively
be described by the following algorithm:

1. For every rule r in multiset ρ (which is essentially a set),
use pos to construct the set of positions at which its right-
hand side αr should appear in the result.

2. Sort the resulting set of pairs (position, word) by position,
potentially producing multiple sorted sequences.

3. For each obtained sequence, concatenate the correspond-
ing subwords.

Thus, the exact meaning of the term “position” in the above
is “relative position with respect to the other subwords in the
resulting string”.

Wewill now show that having a fine control over the order
in which the right-hand sides of the rules are concatenated
allows for directly simulating Turing machines—the golden
standard of computationally complete models of computing.
Multiple equivalent definitions of the model exist—e.g. Fre-
und and Staiger (2019). Here we quickly recall the essential
parts. A Turingmachine is an automaton operating on a finite
unbounded tape, whose cells contain elements of the tape
alphabet �, and which is bounded by the left end marker �

and the right end marker �. The Turing machine has a head
with a state coming from the finite state alphabet Q. The
head points on one of the tape cells. Depending on the state,
it may rewrite the symbol to another one, and move one cell
left or right. Without losing generality, we may consider that
themachine alwaysmoves its head, i.e., that its program con-
tains no instructions that rewrite the tape symbol, but keep
the head in place. In order to obtain a uniform string repre-
sentation of a configuration of the machine, we will write the
current state symbol to the left of the tape symbol to which
the head is currently pointing. For example, here is how we
write a configuration in which the machine is in state p and
its head points to the i-th tape cell:

�a1 . . . ai−1 pai . . . am � .

This notation allows us to write every instruction in the
program of a (deterministic) Turing machine in one of the
following three forms:

• pa → bq, p, q ∈ Q, a, b ∈ �: in state p and reading
symbol a on the tape, replace it by b (b may be the same
as a), switch to state q, and move one cell right;

• cpa → qcb, p, q ∈ Q, a, b, c ∈ �: in state p and
reading symbol a on the tape, replace it by b (b may be
the same as a), switch to state q, and move one cell left;

• p� → aq�, p, q ∈ Q, a ∈ �: in state p and with the
head pointing to the right end of the tape, add a new cell
to the tape, write a onto it7, switch to state q, and move
one cell right.

Before showing how RSS of type 2 can simulate the
computations of a Turing machine, we introduce the helper
function find : V ×V ∗ → P(N): given a symbol a ∈ V and
a string w ∈ V ∗, find(a, w) returns the set of all positions at
which a appears in w. For example, find(l, hello) = {3, 4},
and find(a, hello) = ∅.
Example 13 Consider a Turing machine M defined as above,
with the tape alphabet � and the state alphabet Q, and
construct an RSS of type 2 rssM with the alphabet V =
� ∪ Q ∪ {�, �}. The set of rules of rssM will only contain
rules of one form:

rx : (λ → x, {x},∅),

where x ∈ V can be any symbol. We will use the notation
ra for rules rx in which x ∈ �, and rp in the cases in which

7 Often this newcell contains a special blank symbol ∈ �, designating
the fact the cell does not yet contain “useful” information. In this paper,
we do not rely on the distinction between and �\{}, so we do not
emphasize it.

123

A. Alhazov et al.

x ∈ Q, and we will write r� and r� for the rules sustaining
the left and right end markers respectively.

We will now describe how the values of the function pos
are computed depending on the shape of the fixed current
configuration w, the state symbol p appearing in w, and the
rule ra for which the set of positions needs to be computed.
A valid configuration w contains only one state symbol p.
In what follows, we denote by i p the position at which p
appears in the string w, i.e., {i p} = find(p, w).

• when p corresponds to an instruction pa → bq and w

contains the substring pa:

– for all x ∈ {�, �} ∪ �\{a, b}: pos(w, rx) =
find(x, w);

– pos(w, ra) = find(a, w)\{i p + 1};
– pos(w, rb) = find(b, w) ∪ {i p};
– in case a = b, pos(w, ra) = pos(w, rb) =

find(a, w)\{i p + 1} ∪ {i p};
– pos(w, rq) = {i p + 1}, and pos(w, ry) = ∅ for all

y ∈ Q\{q};
• when p corresponds to an instruction cpa → qcb and w

contains the substring cpa:

– for all x ∈ {�, �} ∪ �\{a, b, c}: pos(w, rx) =
find(x, w);

– pos(w, ra) = find(a, w) \ {i p + 1};
– pos(w, rb) = find(b, w) ∪ {i p + 1};
– in case a = b, pos(w, ra) = pos(w, rb) =
find(a, w) = find(b, w);

– pos(w, rc) = find(c, w)\{i p − 1} ∪ {i p};
– pos(w, rq) = {i p − 1}, and pos(w, ry) = ∅ for all

y ∈ Q\{q};
• when p corresponds to an instruction p� → aq� and w

contains the substring p�:
– for all x ∈ {�} ∪ �\{a}: pos(w, rx) = find(x, w);
– pos(w, ra) = find(a, w) ∪ {i p};
– pos(w, r�) = {i p + 2};
– pos(w, rq) = {i p + 1}, and pos(w, ry) = ∅ for all

y ∈ Q\{q}.
• whennone of the above conditions are true:pos(w, rx) =
find(x, w), for all x ∈ V .

At every computation step, function pos scans the current
string w and calculates the new positions of rule right-hand
sides based on the current state symbol p and the symbols
appearing around it. Recall that all right-hand sides are sin-
gle symbols, so in this case pos computes actual symbol
positions in the resulting string. Essentially, pos arranges the
reproduction of all symbols which are not concerned by the
current instruction at the same positions as the ones at which
the appear in w. On the other hand, for the symbols which

are affected by the current instruction, pos arranges their
insertion or disappearance at appropriate positions.

We remark that all positions pos produces for all rules are
always distinct, i.e., if x �= y, pos(w, rx) ∩ pos(w, ry) =
∅, for any fixed w correctly representing a configuration of
the Turing machine M . This means that the set produced by
apply will always be a singleton set.

Consider now a context sequence of length n + 1 of the
form γ = (γ0, λ, . . . , λ), where γ0 is a string correctly
encoding an initial configuration of M . Then it follows from
the construction of rssM above—and particularly from that
of pos—that the only interactive process generated by γ will
correspond to an n-step computation of the Turing machine
M . Note that if at some point M blocks, i.e., encounters the
situation in which the current instruction is not applicable to
the string, rssM will simply maintain the tape in the same
configuration for the rest of the computation induced by γ .

The example above shows the extent of the power of the
(computable) function pos: it causes the reconstruction of
the correct new configuration at every step, and renders the
function mode essentially useless. Unsurprisingly, pos in
RSS of type 2 can also directly simulate any multiplicity
function mul in RSS of type 1.

Proposition 5 For every RSS of type 1 rss1 there exists an
RSS of type 2 rss2 over the same alphabet V and with the
same set of rules R, such that the interactive processes gen-
erated by any context sequence γ are the same in rss1 and
rss2.

Proof The functionsmctx and post are defined in exactly the
same way in RSS of types 1 and 2, so we only need to show
how pos in conjunction with apply in rss2 can simulate the
effect of the multiplicity function in rss1.

Fix an arbitrary total order on the set of rules R =
{r1, . . . , rm} and recursively define pos in the followingway:

pos(w, r1) = {1, . . . ,mul(supp∗(w), r1)},
maxi = max pos(w, ri),

pos(w, ri+1) = {maxi + 1, . . . ,maxi + 1

+mul(supp∗(w), ri+1)}, 1 ≤ i < m.

In other words, pos induces the replication of the right-
hand side of the rule ri the number of times prescribed by
mul(supp∗(w), ri), and then ensures that the indices associ-
ated to these right-hand sides conform to the total order on
the set of rules R. This is precisely the behavior of mode,
mul, and apply in RSS of type 1, which proves the statement
of the proposition. ��

Similarly to the discussion aroundDefinition 8 inSect. 6.2,
we remark that in Example 13 a considerable amount of

123

On the spectrum between reaction systems and string rewriting

power comes from the capability of pos to deny the applica-
tion of an otherwise applicable rule. The following definition
captures this property of pos.

Definition 10 The position function pos : V ∗ × R → P(N)

of an RSS of type 2 is called non-denying if, for any w ∈ V ∗
and for any r ∈ R, |pos(w, r)| ≥ 1 if r is applicable to w.

Similarly to Theorem 4, RSS type of type 2 restricted to
only non-denying position functions are set-compatible, for
similar reasons.

Theorem 6 All reaction systems with strings of type 2 with a
non-denying position function pos are set-compliant.

Proof Similarly to the proof of Theorem 4, we remark that a
non-denying position function pos only affects the positions
and the number of copies in which right-hand sides appear
in the resulting string, and both these features have no effect
on the projection supp of the current configuration on sets.
Therefore, RSS of type 2 with non-denying functions are
set-compliant, for the same reasons as RSS of type 1. ��

7 Discussion

7.1 Summary of the results

In this work, we set out with the idea of outlining differ-
ent possibilities for extending reaction systems to operate on
strings, and established the first landmarks of the spectrum
ranging from reaction systems as a set rewriting formalism
all the way to string rewriting grammars. Figure1 gives a
graphical summary of the results. The vertical arrow rep-
resents proximity to string rewriting, set rewriting being
the furthest and Turing machines the closest. The horizon-
tal axis corresponds to the types of reaction systems with
strings introduced in this paper. The dashed line illustrates
the major separation between set-compliant and non-set-
compliant variants (Definition 4), the possible behaviors of
the set-compliant variants being quite limited. The arrow
from Type 0 to Type 1 with denying mul indicates the fact
that RSS of type 0 (or rather of type 0′, cf. Remark 4) can
be seen as a particular case of RSS of type 1. Similarly, the
arrow from Type 1 with denyingmul to Type 2 with denying
pos indicates that RSS of type 1 can be seen as a particular
case of RSS of type 2, as formalized by Proposition 5.

The strong effect of allowing denying multiplicity func-
tions mul and position functions pos boosting the power of
the corresponding variants of reaction systems with strings
is in fact not surprising, as these functions implement what
is essentially appearance checking—some operations are
allowed or not depending on the form of the string (Rozen-
berg and Salomaa 1997). Non-denying mul and pos do not

have this power any more, hence the set compliance of the
corresponding types of reaction systems with strings.

Most proposed extensions to strings respect the original
mindset, expressed as the threshold principle and the non-
permanency principle: all three types of reaction systems
with strings discard symbols not explicitly reproduced, and
do not impose competition for resources—the presence of a
symbol is enough to render applicable any rule needing it.

Furthermore, reaction systems with strings of types 0
and 1 are deterministic, i.e., these RSS will always pro-
duce exactly one string, whatever the current configuration.
As Sects. 6.1 and 6.2 show, this restricts direct simulation
constructions to deterministic models of computing. Nev-
ertheless, Example 10 shows that enough non-determinism
can be injected via the context sequence, allowing to simu-
late non-deterministic register machines. In this sense, RSS
of types 0 and 1 further comply with the original mindset in
the strong connection between their behavior and the shape
of the context sequence.

7.2 Open questions

Weleavemultiple openquestions in this thoroughly exploratory
work. This section lists the ones which appear to us the most
interesting or promising.

1. Limits of set-compatibility. It appears from our results that
set-compliance (Definition 4) is a strong property, requir-
ing a direct mapping of the entire behavior space of an
RSS onto the interactive processes of a conventional reac-
tion system. We show multiple examples of RSS which
are set-compliant, and others which are not. The extent of
set-compatibility (Definition 5) on the other hand appears
harder to characterize. We conjecture that a large class of
RSS are set-compatible, covering in particular all three
types of RSS presented here, but we also conjecture that
there exist RSS which are not set-compatible.

2. Beyond simple random-context rules. In all three types
of reaction systems with strings shown in this paper, the
rules themselves have a very particular shape: (λ →
αr , Pr , Qr), where Pr and Qr only contain individual
symbols. The effect of allowing strings in Pr and Qr

remains to be explored. A particular variation might be
allowing strings in Pr and Qr , but requiring these two
to be singleton sets. One important degree of freedom in
such extensions would be the definitions ofmul and pos:
how to account for multiplicities and positions of strings
in the permitting and forbidden contexts? Even further,
what effect having non-empty rule left-hand sides may
bring about?

3. Derivation modes. In this work, we mainly consider fla-
vors of the parallel mode, employing all applicable rules
at every step of the computation. Modes on the other hand

123

A. Alhazov et al.

Fig. 1 A visual summary of the
spectrum between reaction
systems and set rewriting

are known to have a considerable impact on the computa-
tional power of a formalism [e.g., Alhazov et al. (2022)].
Exploring different derivation modes in reaction systems
with strings should yield further non-trivial results.

7.3 Further connections to other models of
computing

Besides the spectrum we propose in this work, further con-
nections can be established between reaction systems and
other models of computing, string-based or not. Among
examples we can cite time-varying distributed Head systems
(TVDH systems), which feature multiple components cor-
responding to test tubes containing different enzymes [e.g.
Margenstern and Rogozhin (2001)]. The system transfers a
set of strings from a component to another, applies all appli-
cable splicing rules available in that component, and only
keeps the results of splicing, discarding the strings that did
not interact. In other words, this is an implementation of the
non-permanency principle in a splicing-basedmodel of com-
puting. More subtly, any individual string may interact with
as many other strings as the splicing rules allow, meaning
that TVDH systems also implement the threshold principle.

Another string-based model of computing of the same
lineage are Lindenmayer systems or L-systems, in which
context-free rewriting rules are applied in parallel to a string
(Păun et al. 2010; Lindenmayer 1968; Wikipedia contribu-
tors 2023). All symbols must have an associated rule, even
if it is of the trivial form a → a. This can be seen again as
an implementation of the non-permanency principle: sym-
bols do not explicitly degrade in L-systems, yet they need
to be reproduced at every step. The determinism of reac-
tion systemsmakes them specifically similar to deterministic
L-systems (D0L systems), in which exactly one rule is avail-
able for every symbol. On the other hand, explicit presence
of inhibitors in reaction systems potentially puts them quite
apart from L-systems, which do not feature explicit inhibi-
tion. Deeper comparisons of reaction systems with strings to
L-systems may give further insights into their computational
power.

Finally, an exploration similar to the work we present in
this paper was done in Alhazov et al. (2016a) with the goal of
building a bridge between reaction systems andP systems—a
hierarchical multiset rewriting-based model of computing. P
systems traditionally operate on multisets of objects and not
on strings, and this is the approach taken in Alhazov et al.
(2016a). Nevertheless, this work presents similar ideas, in
particular concerning the reinterpretation of reactions on a
different substrate, relying on sets rather than richer struc-
tures, connections to TDVH systems, etc.

Acknowledgements We acknowledge the reviewers for their insightful
and helpful suggestions.

Funding Artiom Alhazov acknowledges project 20.80009.5007.22
“Intelligent information systems for solving ill-structured problems,
processing knowledge and big data” by the National Agency for
Research and Development.

Data availibility No data associated in the manuscript.

Declarations

Conflicts of Interests The authors declare no conflict of interest—
financial or non-financial—during the preparation of this work.

References

Alhazov A, Aman B, Freund R, Ivanov S (2016a) Simulating R systems
by P systems. In: Leporati A, RozenbergG, SalomaaA, Zandron C
(eds)Membrane computing—17th international conference, CMC
2016, Milan, Italy, July 25–29, 2016, Revised selected papers.
Lecture notes in computer science, vol 10105, pp 51–66. Springer,
Berlin. https://doi.org/10.1007/978-3-319-54072-6_4

Alhazov A, Freund R, Verlan S (2016b) P systems working in maximal
variants of the set derivation mode. In: Leporati A, Rozenberg G,
Salomaa A, Zandron C (eds) Membrane computing—17th inter-
national conference, CMC 2016, Milan, Italy, July 25-29, 2016,
Revised selected papers. Lecture notes in computer science, vol
10105, pp 83–102. Springer, Cham. https://doi.org/10.1007/978-
3-319-54072-6_6

Alhazov A, Freund R, Ivanov S, Oswald M (2021) Relations between
control mechanisms for sequential grammars. Fundam Informati-
cae 181(2–3):239–271. https://doi.org/10.3233/FI-2021-2058

AlhazovA, FreundR, Ivanov S,OswaldM (2022)Variants of derivation
modes for which purely catalytic P systems are computationally
complete. TheorComput Sci 920:95–112. https://doi.org/10.1016/
J.TCS.2022.03.007

123

https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.3233/FI-2021-2058
https://doi.org/10.1016/J.TCS.2022.03.007
https://doi.org/10.1016/J.TCS.2022.03.007

On the spectrum between reaction systems and string rewriting

Alhazov A, Ferrari-Dominguez V, Freund R, Glade N, Ivanov S (2023)
A P systems variant for reasoning about sequential controllability
of Boolean networks. Theor Comput Sci 970:114056. https://doi.
org/10.1016/j.tcs.2023.114056

Azimi S, Iancu B, Petre I (2014) Reaction system models for the heat
shock response. Fundam Informaticae 131(3–4):299–312. https://
doi.org/10.3233/FI-2014-1016

AzimiS,GratieC, IvanovS,Petre I (2015)Dependencygraphs andmass
conservation in reaction systems. Theor Comput Sci 598:23–39.
https://doi.org/10.1016/j.tcs.2015.02.014

Azimi S, Gratie C, Ivanov S, Manzoni L, Petre I, Porreca AE (2016)
Complexity of model checking for reaction systems. Theor Com-
put Sci 623:103–113. https://doi.org/10.1016/j.tcs.2015.11.040

Azimi S, Panchal C, Mizera A, Petre I (2017) Multi-stability, limit
cycles, and period-doubling bifurcation with reaction systems. Int
J Found Comput Sci 28(08):1007–1020. https://doi.org/10.1142/
S0129054117500368

Brijder R, Ehrenfeucht A, Main MG, Rozenberg G (2011) A tour
of reaction systems. Int J Found Comput Sci 22(7):1499–1517.
https://doi.org/10.1142/S0129054111008842

Cocke J, Minsky M (1964) Universality of tag systems with P=2. J
ACM 11(1):15–20

Csuhaj-Varjú E, Vaszil G (2002) P automata or purely communicat-
ing accepting P systems. In: Paun G, Rozenberg G, Salomaa A,
Zandron C (eds) Membrane computing, international workshop,
WMC-CdeA 2002, Curtea de Arges, Romania, August 19–23,
2002, Revised Papers. Lecture notes in computer science, vol
2597, pp 219–233. Springer, Berlin. https://doi.org/10.1007/3-
540-36490-0_14

Dassow J, Păun G (1989) Regulated rewriting in formal language
theory. Springer, Heidelberg. https://www.springer.com/de/book/
9783642749346

Dennunzio A, Formenti E, Manzoni L (2015a) Reaction systems and
extremal combinatorics properties. Theor Comput Sci 598:138–
149. https://doi.org/10.1016/J.TCS.2015.06.001

Dennunzio A, Formenti E, Manzoni L, Porreca AE (2015b) Ances-
tors, descendants, and gardens of Eden in reaction systems.
Theor Comput Sci 608:16–26. https://doi.org/10.1016/j.tcs.2015.
05.046. From Computer Science to Biology and Back

Dennunzio A, Formenti E, Manzoni L, Porreca AE (2019) Complex-
ity of the dynamics of reaction systems. Inf Comput 267:96–109.
https://doi.org/10.1016/j.ic.2019.03.006

Ehrenfeucht A, Rozenberg G (2007) Reaction systems. Fundam Infor-
maticae 75(1–4):263–280

Freund R (2019) A general framework for sequential grammars with
control mechanisms. In: Hospodár M, Jirásková G, Konstantinidis
S (eds) Descriptional complexity of formal systems—21st IFIP
WG 1.02 international conference, DCFS 2019, Košice, Slovakia,
July 17–19, 2019, Proceedings. Lecture notes in computer science,
vol 11612, pp 1–34. Springer, Cham. https://doi.org/10.1007/978-
3-030-23247-4_1

Freund R, Staiger L (2019) Turing machines with activations of tran-
sitions. In: Freund R, Holzer M, Sempere JM (eds) Eleventh
workshop on non-classical models of automata and applications,
NCMA 2019, Valencia, Spain, July 2–3, 2019. Österreichische
Computer Gesellschaft, Vienna, pp 79–91

Freund R, Verlan S (2007) A formal framework for static (tissue)
P systems. In: Eleftherakis G, Kefalas P, Păun Gh, Rozenberg
G, Salomaa A (eds) Membrane computing, 8th international
workshop, WMC 2007, Thessaloniki, Greece, June 25–28, 2007
Revised selected and invited papers. Lecture notes in computer
science, vol. 4860, pp. 271–284. Springer, Heidelberg. https://doi.
org/10.1007/978-3-540-77312-2_17

Ivanov S (2015) On the power and universality of biologically-inspired
models of computation. Ph.D. thesis, University of Paris-Est,
France. https://tel.archives-ouvertes.fr/tel-01272318

Ivanov S, Petre I (2020) Controllability of reaction systems. J
Membr Comput 2(4):290–302. https://doi.org/10.1007/S41965-
020-00055-X

Ivanov S, Verlan S (2015) Random context and semi-conditional
insertion-deletion systems. Fundam Informaticae 138(1–2):127–
144. https://doi.org/10.3233/FI-2015-1203

Ivanov S, Verlan S (2021) Single semi-contextual insertion-deletion
systems. Nat Comput 20(4):703–712. https://doi.org/10.1007/
S11047-021-09861-3

Korec I (1996) Small universal register machines. Theor Comput Sci
168(2):267–301. https://doi.org/10.1016/S0304-3975(96)00080-
1

Lindenmayer A (1968) Mathematical models for cellular interaction in
development. J Theor Biol 18:280–315

Margenstern M, Rogozhin Yu (2001) About time-varying distributed
H systems. In: Condon A, Rozenberg G (eds) DNA computing.
Springer, Berlin, pp 53–62

Mȩski A, Penczek W, Rozenberg G (2015) Model checking temporal
properties of reaction systems. Inf Sci 313:22–42. https://doi.org/
10.1016/j.ins.2015.03.048

Mȩski A, KoutnyM, PenczekW (2017) Verification of linear-time tem-
poral properties for reaction systems with discrete concentrations.
Fund Inform 154:289–306. https://doi.org/10.3233/FI-2017-1567

Mȩski A, Koutny M, Penczek W (2019) Model checking for temporal-
epistemic properties of distributed reaction systems. Technical
report, School of Computing, University of Newcastle upon Tyne

Okubo F, Kobayashi S, Yokomori T (2012a) On the properties of
language classes defined by bounded reaction automata. Theor
Comput Sci 454:206–221. https://doi.org/10.1016/J.TCS.2012.
03.024

Okubo F, Kobayashi S, Yokomori T (2012b) Reaction automata. Theor
Comput Sci 429:247–257. https://doi.org/10.1016/j.tcs.2011.12.
045. Magic in Science

Păun Gh, Rozenberg G, Salomaa A (eds) (2010) The Oxford handbook
of membrane computing. Oxford University Press, Oxford

Rozenberg G, Salomaa A (eds) (1997) Handbook of formal lan-
guages, vol 1–3. Springer, Berlin. https://doi.org/10.1007/978-3-
642-59136-5

Salomaa A (2014) Minimal reaction systems defining subset functions.
In: Calude CS, Freivalds R, Iwama K (eds) Computing with new
resources—essays dedicated to Jozef Gruska on the Occasion of
His 80th Birthday. Lecture Notes in Computer Science, vol 8808,
pp 436–446. Springer, Cham. https://doi.org/10.1007/978-3-319-
13350-8_32

Salomaa A (2015) Two-step simulations of reaction systems by mini-
mal ones. Acta Cybern 22(2):247–257. https://doi.org/10.14232/
actacyb.22.2.2015.2

Verlan S (2010) Study of language-theoretic computational paradigms
inspired by biology, Paris. Habilation thesis

Wikipedia contributors (2023) L-system—Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=L-system&
oldid=1182891458. Online; Accessed 19-November-2023

Yokomori T, Okubo F (2021) Theory of reaction automata: a survey.
J Membr Comput 3(1):63–85. https://doi.org/10.1007/S41965-
021-00070-6

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/j.tcs.2023.114056
https://doi.org/10.1016/j.tcs.2023.114056
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.1016/j.tcs.2015.02.014
https://doi.org/10.1016/j.tcs.2015.11.040
https://doi.org/10.1142/S0129054117500368
https://doi.org/10.1142/S0129054117500368
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1007/3-540-36490-0_14
https://doi.org/10.1007/3-540-36490-0_14
https://www.springer.com/de/book/9783642749346
https://www.springer.com/de/book/9783642749346
https://doi.org/10.1016/J.TCS.2015.06.001
https://doi.org/10.1016/j.tcs.2015.05.046
https://doi.org/10.1016/j.tcs.2015.05.046
https://doi.org/10.1016/j.ic.2019.03.006
https://doi.org/10.1007/978-3-030-23247-4_1
https://doi.org/10.1007/978-3-030-23247-4_1
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://tel.archives-ouvertes.fr/tel-01272318
https://doi.org/10.1007/S41965-020-00055-X
https://doi.org/10.1007/S41965-020-00055-X
https://doi.org/10.3233/FI-2015-1203
https://doi.org/10.1007/S11047-021-09861-3
https://doi.org/10.1007/S11047-021-09861-3
https://doi.org/10.1016/S0304-3975(96)00080-1
https://doi.org/10.1016/S0304-3975(96)00080-1
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.3233/FI-2017-1567
https://doi.org/10.1016/J.TCS.2012.03.024
https://doi.org/10.1016/J.TCS.2012.03.024
https://doi.org/10.1016/j.tcs.2011.12.045
https://doi.org/10.1016/j.tcs.2011.12.045
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-319-13350-8_32
https://doi.org/10.1007/978-3-319-13350-8_32
https://doi.org/10.14232/actacyb.22.2.2015.2
https://doi.org/10.14232/actacyb.22.2.2015.2
https://en.wikipedia.org/w/index.php?title=L-system&oldid=1182891458
https://en.wikipedia.org/w/index.php?title=L-system&oldid=1182891458
https://doi.org/10.1007/S41965-021-00070-6
https://doi.org/10.1007/S41965-021-00070-6

	On the spectrum between reaction systems and string rewriting
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reaction systems
	2.2 Strings and grammars

	3 Reaction systems meet strings
	4 Reaction systems with strings
	5 Relationship between reaction systems and RSS
	6 The spectrum between reaction systems and string rewriting
	6.1 RSS of Type 0
	6.2 RSS of Type 1
	6.3 RSS of Type 2

	7 Discussion
	7.1 Summary of the results
	7.2 Open questions
	7.3 Further connections to other models of computing

	Acknowledgements
	References

