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Abstract

We develop a theory of polynomials and, in particular, an analog of the theory of
Legendre orthogonal polynomials on the bubble-diamond fractals, a class of fractal
sets that can be viewed as the completion of a limit of a sequence of finite graph
approximations. In this setting, a polynomial of degree j can be viewed as a multihar-
monic function, a solution of the equation A7+ = 0. We prove that the sequence of
orthogonal polynomials we construct obeys a three-term recursion formula.
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1 Introduction

During the last two decades, a theory of calculus on fractal sets such as the Sierpinski
gasket (SG) has been developed. It is based on the spectral analysis of the fractal
Laplacian [2, 8, 11]. In this context, a polynomial of degree j on SG is a solution of
the equation A/*!y = 0, where A denoted the Laplacian on SG [5, 10]. Although
most aspects of the theory of polynomials in this setting parallel their counterparts on
the unit interval, several striking differences exist. In particular, there is no analog of
the Weierstrass Theorem on SG; that is, the set of polynomials on SG is not complete
on L?(SG) [5, Theorem 4.3.6]. Furthermore, the space of polynomials on SG is not
an algebra under pointwise multiplication. However, a theory of orthogonal polyno-
mials on SG was initiated in [9] and resulted in an analog of Legendre orthogonal
polynomials on [—1, 1].

This paper studies the bubble-diamond fractals, a class of fractals defined by a
branching parameter » € N. One significant interest in exploring this class of frac-
tals is that they present different geometrical properties, including a wide range of
Hausdorff and spectral dimensions. In general, diamond-type self-similar graphs have
provided an essential collection of structures with interesting physical and mathemati-
cal properties and a broad variety of geometries [1, 3, 6]. The structure of these fractals
is such that they combine spectral properties of Dyson hierarchical models and trans-
port properties of one-dimensional chains. In what follows, we will denote by Kj, the
bubble-diamond fractal with branching parameter b € N, see Definition 2.5.

In this paper, we develop a theory of polynomials and orthogonal polynomials
theory on this class of bubble-diamond fractals. First, in Sect. 2, we define the bubble-
diamond fractal K, as a particular completion of a limit of self-similar bubble-diamond
graphs introduced in [7]. Subsequently, we introduce the main analytic tools on Kp:
the Laplacian and the Green operator. Next, in Sect. 3, we define and investigate the
fundamental properties of polynomials on the bubble-diamond fractals following the
approach developed in [11]. Finally, in Sect. 4, we introduce a class of monomials
and construct analogues of the Legendre orthogonal polynomials on K, providing
asymptotic results on relevant coefficients and defining a three-term recursion relation
for the Legendre orthogonal polynomials.

2 Bubble-Diamond Fractals

In this section, we define the bubble-diamond fractals as the completion of the limit
of finite graph approximations. To this end, we will first define these finite graph
approximations, then construct a suitable metric on the union of these finite graph
approximations, and finally define the bubble-diamond fractals. Throughout the pro-
cess, we will develop several analytic tools on K}, that will be essential in creating a
theory of polynomials on the bubble-diamond fractal.
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Fig.1 Bubble-diamond graphs G| and G, forb =3

2.1 Analytic Tools on Finite Bubble-Diamond Graphs

First, we will construct a sequence of finite bubble-diamond graphs G, that approx-
imate K. In the process, we will develop several analytic tools, including the graph
Laplacian A, and Green’s function Gy, on these finite graph approximations that
we will extend to K} in the following subsection. Note below, as will occur often
throughout this paper, that we drop the dependence on the branching parameter » € N
to simplify our notation.

Definition 2.1 For an integer b > 1, the bubble-diamond graphs with branching
parameter b are an inductively constructed sequence of graphs G, = (Vy, E;) for
£ € N, where V; and E, are respectively the sets of vertices and edges of Gy.

First, we will let Gy = (Vy, Eg) be the graph with two vertices Vo = {q1, ¢2}
joined by an edge (q1, g2) € Eop. Then, at level £ € N, we construct G, by modifying
each edge from G¢_; by introducing two new vertices, each of which is joined to
one of the two original vertices by an edge and which are joined to each another by
b distinct edges. Note in particular that Vo C V| C ... for each subsequent level of
bubble-diamond graphs.

For a particular instance of bubble-diamond graphs, see G| and G, for b = 3 in
Fig. 1.

There is an equivalent construction of the vertices V; of the bubble-diamond graphs
through a set of mappings that will be important in constructing polynomials on the
bubble-diamond fractals. To see this, we note that we can realize the general structure
of G¢41 by gluing together b 4 2 copies of G as in Figure 2. This gives us a series
of maps Ff Ve — Vegg fori € {1,2,...,b+ 2} given by

Fiz (p) = the corresponding point to p in G;Op yi, 2.1

One important observation is that Ff (p) = Fi“'" (p) for all n > 0 by considering
Ve C Vi44, and so we will drop the dependence on ¢ in the notation F; : V; — V1.
With this map defined, we can construct

Vin= U FO, (2.2)
ie{l,2,...,b+2}

which is equivalent to the direct geometric construction of Vy | above.
We will now develop a number of analytic tools on the finite graph approximations
of K. First, we define the graph Laplacian of a function f defined on the vertices V,
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Fig.2 Constructing G4 by gluing together b + 2 copies of G

of a graph approximation G, given by

> @) - £, 23)

p~q

Azf(P)=(dg( )

where the sum is taken over every edge {p, g} € E;. The finite graph Laplacian has
an associated energy functional

b \7¢ 5
5z(f)=(2b—+1) [;qmp)—f(qn (2.4)

known as the graph energy. The constantr = b/(2b+ 1) in the above formula is known
as the renormalization constant for the bubble-diamond graphs, which is defined so
that & satisfies the following energy-minimizing property.

Proposition 2.2 For any function f_defined on V; and any o >, we have that
E(f) < E/y(f) for any extension f of f to Vy, i.e., for any function f on Vy that

satisfies flV( = f.

Proof From the second construction of Gy, above, it is clear that it suffices to show
that this property holds from £ = 0 to £’ = 1. Letting V| = {q, P1, P2, g2} be the
vertices of G1, we compute for any function f on Vj and extension f to V; that

& =r" (a0 = o) + (Fa2) = Tp2n? + b(Fp1) = Fp2)?).

By taking partial derivatives, we find that £ ( f ) is minimized when

~ b+

flpy) = <2b+1)f(q1)+(2b+1>f(qz),
~ b b+

f(p2) = <2b+1>f(cn)+(2b+1>f(qz)

which gives us exactly the minimum graph energy &; (f) =&y (f) asisdesired. O
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We further note that the graph energy induces a bilinear form through the polariza-
tion identity

1
&u(f.8) = 1 Ee(f+8)—&(f—28). 2.5

To see how the graph Laplacian A, and graph energy &£, on the finite bubble-diamond
graphs are associated, we will turn to the Gauss-Green formula in the following sub-
section.

Lastly, we will construct a function Gy on V; x V, that will serve as an analogue
of Green’s function in classical calculus. To this end, we will define

£
Gep.)=Y_. > gy Vpy i), (2.6)

m=0x,y€Vi11/Vm

where g(x, x) = ar™ and g(x, y) = Br™ for x # y with constants & = r>(b + 1)/b
and B = r?, and where wﬁ’") is the piecewise harmonic function on V,, defined by

;m)( p) = dxp. Again, to see why Gy is an analogue of Green’s function on Vg, we
will turn to solving the Poisson equation in the following subsection.

2.2 Bubble-Diamond Fractals

We will now construct the bubble-diamond fractals from the above finite graph approx-
imations G. First, we will define the graph approximation

V, = U 178 2.7

=0

We note that we can extend in a natural way the maps F; : Vo — Vp that define
the finite bubble-diamond graphs to maps F; : Vi, — V. on the graph approximation.
We will now extend the graph energy as defined in (2.4) to the graph approximation
in the following way.

Definition 2.3 The graph energy of a function f defined on V, is defined to be
E(f) = lim E(flv,). (2.8)
{—00

From this, we will define the resistance metric R(p, q) between points p, g € V, to
be the minimum value of R such that

1f(p) — fF(@I* < RE(S) (2.9)

for all f € domé, i.e., for all functions f on V, such that £(f) < oo.

As with above, we extend the graph energy on V to a bilinear form £(f, g) through
the polarization identity (2.5). Both the graph energy and resistance metric play an
important role for the graph approximation, as shown in the following result.
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Proposition 2.4 The graphenergy £ is aninner product on dom £ / (constant functions).
Furthermore, the resistance metric is a metric on V.

Proof 1t is clear that £ is symmetric, linear in both arguments, and satisfies £(f) > 0,
so it remains to show that £(f) = 0 if and only if f is constant. We recall by
Proposition 2.2 that & is nondecreasing as £ — 0o, and so we have that

E(f) =0« E(f) =0forall £ € N.

It is clear from (2.4) that £ (f) = 0 if and only if f|y, is constant, and so £(f) =0
if and only if f is constant on Vi as is desired.

Next, it is clear that R is symmetric and positive-definite, so it remains to show that
R satisfies the triangle inequality. To this end, we will consider distinct p, g, z € Vi,
and we note that there is some £ € N such that p, g, z € V,. It suffices to consider the
case that p ~ g and g ~ z in V;. We will show the result when ¢ = 1, where we will
let Vi = {q1, p1, p2, g2} be the vertices of G, and we note that the result generalizes
for £ > 1 by the energy-minimizing algorithm in Proposition 2.2. We will assume
without a loss of generality that (p, ¢, z) = (q1, p1, p2). Recall thatr = b/(2b + 1).
First, we have from (2.4) for any function f € dom € that

rE(f) = r&i(f) = 1f(p) — F@QP +blf(q) — fF@I?

(.2 Y () 2 s
_<m> Lf(p) = f@I"+ <b—+1> 1f(p) — [

1! 5
> <1+E> [ f(p) — f(2)]

by taking the energy-minimizing value of f(q) = 1/(b+ 1) f(p) +b/(b+ 1) f(2).
Then, we will consider the function f, € dom £ defined by extending

folvilg) =1, fplvi(p1) = fplvi(p2) = fplvi(q2) =0
to V, by the energy-minimizing algorithm in Proposition 2.2. We compute that

E(fp) = E1(fplv) = r~! and that |f,(p) — fp(@)> = 1, and so R(p,q) > r.
Similarly, by extending the function f, € dom £ defined on V; by

fvi(q) = flvi(p) =0, fzlvi(p2) = fzlv (q2) =1,

we compute that £(f;) = & (fzlv,) = br~! and that | f;(q) — f.(z)] = 1, and so
R(g,r) > r/b. Putting this together, we have for any f € dom & that

1
1F(p) = f@I < (1 + Z) ré(f) = (R(p,q) + R(g, 2) E(f),

and so we have that R(p,z) < R(p,q) + R(q, z) with R satisfying the triangle
inequality as is desired. O
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We quickly remark that we can show using the above result that dom &/
(constant functions) is a Hilbert space with respect to £. With the above result, we can
finally construct the bubble-diamond fractals as the completion of the graph approxi-
mation.

Definition 2.5 The bubble-diamond fractal Kp with branching parameter b is the
R-completion of V.

Similar to above, we can equivalently construct the bubble-diamond fractals as the
unique compact set K, that satisfies

K= | F&. (2.10)
ie{l,2,...b+2}

We will now extend the analytic tools from above to K. First, we will inductively
define a self-similar measure | on K given by u(Kp) = 1 and

_ (! -1
M(A)—(b—H) Y. wE A .11

ie{l,2,...,b+2}

This scaling condition uniquely defines u on K}, [10, Section 1.2]. With this measure,
we can define the Laplacian on K.

Definition 2.6 Letu € dom & and f a continuous on K. We say that u € dom A with
Au = fif

cw.g) =~ [ fodu 2.12)
Kp
for all g € dom £ with boundary conditions g(g1) = g(¢g2) = 0.

The connection between our formulation of the Laplacian A on K} and the graph
Laplacian A, on V; as defined in (2.3) is made clear in the following pointwise formula.

Proposition 2.7 Forany f € dom A and p € V, \ Vo, we have that

2 —m
Af(p) = (m) lim_ (brj) AmF(p). (2.13)

Conversely, suppose f is continuous on Kj, and the right side of (2.13) converges
uniformly to a continuous function on Vi \ Vo. Then, u € dom A and (2.13) holds.
Furthermore, the Laplacian satisfies the following scaling identity

A(foF) = (ﬁ) (AfoFy). (2.14)

Proof By [10, Theorem 2.2.1], it suffices to compute the integral over K; of the

piecewise harmonic function 1//)5'") on V,, defined by 1/;;5’")( p) = 8yp. First, we note
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thateach p € V,, is an element of (b+4-1) many m-cells F (Kp) = (F;; 0- - -0 F;, ) (K}).
On each m-cell F(K}p) with boundary points {F(g1), F(q2)}, we note, since there are
(b + 2)™ many m-cells in Kp, that
1
(m) (m)
wdi= [ au=t= [ (u i, e = ot
qgv:* /Kh q K, F(Ky) F(q1) F(g2) (b +2)m

(m) _
= dm=—— .
F(Kp) v 2(b +2)"

By summing the above integral over the (b + 1) many m-cells containing x € V,, to
compute the integral over K}, we recover the above formula as is desired. The scaling
identity is then an immediate consequence of the pointwise formula. O

Now that we have defined A on K}, we can return to establish the correspondence
between A and £ that was alluded to in the above subsection. To do so, we will first
define the normal derivative of a function f on K} at a boundary point g € Vj.

Definition 2.8 The normal derivative of afunction f on Kj ataboundary pointg € Vo
is given by

0 /(@) = lim =" (f(g) = f(xm), 2.15)

where x,, = (Fpy10---0Fpy1)(q2)ifg = q1 € Voand x,, = (Fpi20---0 Fp12)(q1)
if g = g2 € Vp, both with m applications of F;. In particular, the normal derivative
exists for all u € dom A [10, Theorem 2.3.2].

Finally, with these definition of the graph energy, Laplacian, and normal derivative
on Kj, we can finally state the Gauss-Green formula that will be essential in our
development of a theory of polynomials on Kp.

Proposition 2.9 [10, Theorem 2.3.2] For any u € dom A, we have that
Eu,g) =— / (Au)gdp + ) g(dpu) (2.16)
Ky Vo

holds for all v € dom &.

The last analytic tool that we will develop on K}, is finishing our construction of
Green’s formula. We will extend the construction from (2.6) of Green’s formula on
Ve x Vi to Kp x Kj in the following way.

Definition 2.10 We define Green’s function on V, x V, to be
G(p,q) = Zliﬁngo Ge(p,q), (2.17)

which we then continuously extend to be a function on K x Kj.
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This construction of Green’s function will allow us to solve the Dirichlet problem
Au = f with the boundary conditions u(q1) = u(gz) = 0 for any continuous function
f on Kp, or, equivalently, to show that the restriction of the Laplacian A to the domain
u € dom A with u(q1) = u(q2) = 0 is invertible.

Proposition 2.11 [10, Theorem 2.6.1] The Dirichlet problem Au = f with u(q;) =
u(q2) = 0 has a unique solution u € dom A for any continuous function f on Ky
given by

u(p) = —/K G(p.q) f(@du(q). (2.18)
b

One important observation that we will make here is that, when b = 1, the bubble-
diamond fractal K}, reduces to the unit interval. In this case, we have further that the
Laplacian, normal derivative, and Green’s function respectively reduce to the second
derivative, first derivative, and Green’s function from classical calculus. This will
continue for the rest of the paper, where our construction of the monomials and the
Legendre polynomials will reduce down similarly to the classical case.

3 Polynomials on the Bubble-Diamond Fractals

We now define and investigate the class of polynomials on K. As motivation, we
first define and investigate the properties of harmonic functions, i.e., polynomials of
degree zero as are defined below. To construct these harmonic functions, we propose an
extension algorithm. Subsequently, we use an approach developed in [11] to construct
higher-order polynomials. In particular, as seen below, a polynomial on K, can be
viewed as a multiharmonic function.

Definition 3.1 For each j > 0, welet H; = {f : AJF1f = 0} be the space of all
polynomials of degree at most j.

The next result proves that 7; is a vector space of dimension 2j + 2. More specif-
ically, the following statements motivated by [11, Lemma 2.2, Lemma 2.3] hold.

Proposition 3.2 Forany j > Oandk = 10r2, let fji be the solution to Aj+1fjk =0
that satisfies the boundary conditions

A" fix(gn) = 8jmbkn for n=1,2.

(a) For each j > O, the set {fyr : m = 0,1,...,j; k = 1,2} is a basis for H;.
Furthermore, f € 'H; if and only if

J o2
£="> (A" f(q0) k- 3.1)

m=0 k=1
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(b) Fori € {1,2,...,b+2}andk € {1, 2}, we have that
fiko Fi —%;(b +2) FG-mk (Fidn) fonn- (3.2)

Proof The first part follows by observing that both sides of (3.1) belong to ;. The
second part is an application of (2.14). O

The scaling identity (3.2) will be particularly important in constructing the mul-

tiharmonic functions fjx, as it will suffice to compute the values of fjx(Fig,) to
construct the multiharmonic functions on all of V.

3.1 Harmonic Functions

To motivate the construction of polynomials on K, we first describe the basis for
the space Ho of harmonic functions by explicitly computing the harmonic functions
fo1, fo2, which we will do in the sequel.

We recall from Proposition 2.2, given a function f on V), that the energy minimizing
extension f of f to V| is given by

FF _ b+ b
S b+16]2)—<2b+1>f( 1)+(2b+1>f(612),

- (b b+
f(Fpy2q1) = <2b+1> flq)+ <2b+1>f(f12)

From this observation, we iteratively compute the values of the harmonic function fy;
on V, by letting fo1(q1) = 1 and fy1(g2) = 0 and then defining

Sor(Fiq1) _ A for(q1) ’ 3.3)
fo1(Fig2) for(q2)

where A; are the harmonic extension matrices

1 0 b b+1
Apr1=| pa b , Apa=126+120+1],
2b+1 2b+1 0 !
b+1 b
A |2+1 2041
e b b+1

2b+1 2b+1
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il

Fig.3 The harmonic function fp; on the bubble-diamond fractals with branching parameter b = 1, 2, 3,5

fori € {1,2, ..., b}. We repeat this harmonic extension algorithm iteratively to com-
pute the values of f; on the rest of V,, and we perform a similar computation to

construct fop.

We illustrate several harmonic functions fo; for different branching parameters,
see Fig. 3. Of particular interest, note that the harmonic extension algorithm generates
fo1 as a linear function on the real line when b = 1.

3.2 Higher Order Polynomials

In this section, for all j > 0, we evaluate fji(F;gy,) foralli € {1,2,...,b+ 2} and
k € {1, 2}. These values together with (3.2) are needed to construct the multiharmonic
basis { fo1, fo2, f11, f12.--. fj1, fj2} for H ;. Motivated by the results proved in [11],
we need to evaluate the inner products of the basis elements, i.e.,

1(jk, j'K) :/K fikfjwdp. 34
b

forall j, j/ > 0and k, kK’ € {1, 2}. Subsequently, we provide two recursive formulas
for fjx(Fign) and I (jk, j'k’) that can be simultaneously solved. In particular, we will
define the quantities to be solved for as
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ay = I(Lk, Ok),

by = I(Ck, On) for k # n,

(3.5)

¢
Pe=<b:_2> Jo(Figk)) = (;ﬁ) Sfex(Frq;) fori #k,

¢
qe = <br?) fex (Fign) for i, k, n distinct.

We begin by evaluating the initial value of these quantities. We note by the self-
similarity of w that

b+2

1<0k,0k>=/Kb forfowdin = b+22/ (for o ) (fowr o .

It follows from (3.2) that the following equation holds

1(01,01) A(11,11) A(11,12) A(11,21) A(11,22)\ [1(01,01)
1001,02) | [ AQ2, 11) A(12,12) A(12,21) A(12,22) | | 1(01,02)
102,00) | ~ | A1, 11) A21,12) A21,21) A21,22) | | 102,01 |°
1(02,02) A(22,11) A(22,12) A(22,21) A(22,22)) \1(02,02)

(3.6)

where the values of A(kk’, nn’) are computed as

b+2

1
AKK'  nn') = —— Z ox(Fi(qn)) for (Fi(gu))

from the harmonic extension algorithm.
We observe by symmetry that ag = 1(01,01) = 1(02,02) and by = 1(01,02) =
1(02,01) and that

S 100.0)) - / forCfon + fodu+ [ fotor + i

i=1 j=I

(for + fo)du = 1.
Ky

Consequently, we have that (3.6) reduces to

ao) _ (A1 1)+ A(11,22) A(11, 12) + A(11,21)\ {ao
bo) =~ \A12, 11) + A(12,22) A(12,12) + A(12,21) :
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With this new matrix representation, we can now directly compute the initial values
of ag, by as

_ b+l b an
O=EST 4 T oaray ‘

. T. . N
sinceap+bo = 1/2 and (ao bo) is an eigenvector of the above matrix with eigenvalue
1. Furthermore, we compute the initial values of py, g¢ as

b+1 b

b+t __v 3.8
w1 (3-8)

po= 2+ 1

from the construction of the harmonic functions above and (3.2).
We will now state our two recursive formulas for computing ay, by, pe¢, and g¢. The
first recursive formula for ay, by is an application of [11, Lemma 2.4].

Theorem 3.3 For any j > 0, the quantities a; and b; in (3.5) satisfy the recursive
formula

j—1

b+27T12p + 1)/t
aj =viaj+wb;+Ob+1) Z(ag + by) ((b+ Dpj—¢ +bqj,e),

bi

=0
b+2)J+1 b + 1))+ =
®+2 b(j +1 bj =viaj+uvbj+®+1) Z(a_i +bj)bpj—¢+ b+ 1Dgjy),
=0
(3.9)
where
20 + 802 +Tb+2 2b% + 6b% +6b +2 2b3 +4b% +2b
V] = s, V= , V| =—77FT),
! 2b+ 1 2 2b+ 1 ! 2b+ 1
2b% + 6b% + 3b
0=
2b+1

and the initial conditions ag, by, po, and qo are given by (3.7) and (3.8).

Proof Let A = 1/(b +2) and r = b/(2b + 1). We compute (3.4) for j/ = 0 to find
that

(o) () Z;[ae([

—_
+
S| =
[
=
\

\\
+
)
\

\\
N———"

W41\ 2b+ 1 bj
(b[b+1]>Z bepi—) <b[b+1])“f+?
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NEEIRPN
pb+11) Y T

Jj—1 1
= Z(ae + by) <|:1 + Ei| Dj—t+ q/'—(i>
£=0

20 +8b>+7b4+2  2(b+1)?

T et nee D YT by

which after simplifications yield the first equation as is desired. The second equation
is obtained through a comparable method. O

The second recursive formula for py, g, is an application of [11, Lemma 2.6].

Theorem 3.4 For any j > O, the quantities p; and q; in (3.5) satisfy the recursive
formula

j—1

@+ Dpj == [pjec1(@+ DPag +b%b) +bb + Daj 1@ +bp) | = b+ Dbj 1,
2
@b+1)g; =- Z [b(b +Dpj_g—1(ag+bg) +qj—e—1((0+ 1)2ag + bzbz)] —bbj_y,
=0
(3.10)

where the initial conditions ag, by, po, and qo are given by (3.7) and (3.8).

By solving (3.9) and (3.10) simultaneously, we are able to compute f;(F;gy), and
we then apply (3.2) to compute the values of fj; on Vi so that fj; can be continuously
extended to functions on Kj. This completes our construction of a first basis for
polynomials on the bubble-diamond fractals.

Figure 4 displays the basis function f; on the bubble-diamond fractal with branch-
ing parameter b = 2.

4 Orthogonal Polynomials on the Bubble-Diamond Fractals

Finally, in this section, we construct a sequence of orthogonal polynomials on the
bubble-diamond fractals in analogy to the Legendre polynomials. To do so, we
consider a different basis for H j» whose members we call monomials on the bubble-
diamond fractals. When applying the Gram-Schmidt orthogonalization process to
these monomials, we obtain the desired sequence of orthogonal polynomials on Kj.
For comparison to the Sierpinski, we refer to [4, 9].

We will first define the monomial functions on K} that we will later construct.

Definition 4.1 Foreach j > Oand k € {1, 2}, we will let Pj; € H; be the monomials
defined by the boundary conditions

A" Pji(q1) = Smjdr1,
O A" Pji(q1) = Omjdi2
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Fig.4 The harmonic functions fo1, f11, f21. f31 on the bubble-diamond fractal with branching parameter
b=2

forallm € {0, 1, ..., j}.

We observe that the set {Py1, Poz, ..., Pj1, Pj2} in H; is analogous to the set of
monmials x2/+* /(2 j 4 k)! on the real line. Furthermore, we note that this construction
could have similarly been performed by using the boundary conditions at g € Vj.

As with the multiharmonic functions fj, we have a comparable scaling identity
for Pjy that follows from Proposition 3.3.

Proposition4.2 Fori € {1,2,...,b+ 2} and k € {1, 2}, we have that

r J
(b 2) Pj1 k=1,
ijOFi = + . (41)

r J
" Y P, k=2
r<b+2> 72

Proof Let . = 1/(b + 2) and r = b/(2b + 1). By taking Laplacians, we compute
using (2.14) that

AJ(Pj o F"y = (rA)™ Pyt o FJ" = (r\)"™ Py
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since Pp; = 1 is a constant map. We finally note that AP(; {)r = Pji, which gives
us the desired result for k = 1. The result for k = 2 is obtained through a comparable
method. o

Similar to our application of Proposition 3.2 above, we can now use (4.1) to construct
Pj on all of Vi from just the value of Pj;(g2), which we compute by solving a pair
of recursive formulas. To this end, we will define the quantities

aj = Pj1(q2),
Bj = Pj2(q2),

nj = 0 Pj1(q2),

4.2)

Vi = anPjZ(qZ)

with initial values og = 1, a1 = 1/2, Bop = —1, no = —1, and yp = 1 computed by
noting that Poo = fo1 + fo2 and Po1 = fo2.

We will now state the two recursive formulas for «;, 8; and 7;, y;, which are
derived from the same method as [8, Theorem 2.3, Theorem 2.12].

Theorem 4.3 For any j > O, the quantities oj, Bj, nj, and y; in (4.2) satisfy the
recursive formula

j-1 £
=1 =1
j—1j—t
Bi =)D Pewdji-v.
=0 z//;o “4.3)
nj =bj_1+ Za,’—eae—l,
=0
J
yj = Zﬁj—[“[—h
=0
where
o (b+1)?
S BT D@ DG L2 T @b+ DI T — 1)’
b+ 1)2

YT b D+ 22+ )i — 1)
and the initial conditions oy, o1, Po, No, and yo are given above.

By applying the scaling identity (4.1), we once again compute the values of Pj;
on Vi so that Pj; can be continuously extended to functions on Kj. This completes
our construction of a second basis of monomials on the bubble-diamond fractals. For
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Fig.5 The monomials Py;, Py, P11, P12 on the bubble-diamond fractal with branching parameter b = 2

particular instances of Pj; on the bubble-diamond fractal with branching parameter
b =2, see Fig. 5.

Finally, we will construct the Legendre polynomials on Kj by performing the
Gram-Schmidt orthogonalization process on the above monomial basis. To this end,
the next result allows us to compute the inner products for the monomials defined in
Definition 4.1

Theorem 4.4 Forall j, j' > 0, we have that

(Pj1, Pty =) _o(@j—gnjryest — jrpes1nj—e),
(Pj1. Pjn) =) _o(@j—eVjrsest — Bjrsesinj—0), 4.4)

(Pj2, Pja) = Y0_oBj—tVjrse41 — Bjrae+1¥j—0)-

Proof Following the procedure of [9, Lemma 2.1], we find that

j 2
(Pjis Peir) = Y > (PG—0i (@) 9n Py e41)i7 (@n) = P10 (@n)n P —03i (dn)) -
£=0 n=1
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From the above definitions, this simplifies to

i
(Pj1, Pr1) = Z(ijfﬂ)lw@rl = Qhte+1Mj -0,
=0

where we note that P41y (q1) = 0, Pk4e+1)i'(q1) = 0 for all k, £ > 0. The rest
of the identities hold through a comparable method. O

We quickly note that we can alternatively express

J
(Pj2, Pjri) = Z(ﬂj—(ﬁj’+€+1 — et 1Vj—t)
£=0

by examining the symmetry of the coefficients.

We now apply the Gram-Schmidt orthogonalization process to the monomials
{Pj1, Pj2}j>0. To make more clear the association with the Legendre polynomials
from classical calculus, we will make the change in notation P3j ) = Pj; which
makes Ppjx) € H;. We will then construct a family of orthogonal polynomials as
follows.

Definition 4.5 The orthogonal polynomials {p;};>o are obtained by applying the
Gram-Schmidt process to {P;};>1, where po = Py and for j > 1 we have that

j—1
pi(x) = Pj(x) = Y _di(Pj. pe) pe(x) (4.5)
£=0
for coefficients d; = ||pj||_1.
By normalizing this family of polynomials as 77; = d; p;, we obtain the analog for

the Legendre orthogonal polynomials on K.

Definition 4.6 For each j > 0, we will call w; € H; the Legendre polynomial of
degree j as constructed above, which satisfies

(T[j,ﬂ'j/) :Sjj/ (46)
forall j, j/ > 0.

Figure 6 displays some of these orthogonal polynomials on a bubble-diamond
fractal with branching parameter b = 1, 2. In particular, when b = 1, we observe that
this construction recovers the classical Legendre orthogonal polynomials on the unit
interval.

We show that, like in the classical case, the family of orthogonal polynomials
{pj}j=0 satisfies a three-term recursion formula. To this end, consider for all j > 0
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Fig.6 The first five Legendre polynomials on the bubble-diamond fractals with branching parameter b =
1,2

the auxiliary polynomial g; given by

gj+1(x) = —/K G, y)pj(y)du(y), 4.7
b

where G is Green’s function defined in Proposition 2.10. It follows from construction
that

Agj+1=pj, (4.8)

where g; 1 € H 41 is a polynomial of degree at most j + 1. As such, we have the
following three-term recursion formula.

Theorem 4.7 For all j > 0, we have that
git1(x) =pj1(x)+sjpj(x)+tjpj_1(x), 4.9

where p_| = go = 0. Furthermore, the coefficients {s;} >0 and {t;} ;>0 are given by

sj=di(gj+1,P)),

(4.10)
2 -2
tj = djfldj .

In particular, we have that d;z = d(;zt] fy...tj.
Proof Forall j > 0and ¢ € {0, 1,..., j}, we see that
(gj+1, pe) = —f/ G, pj(V)pe(x)du(y)du(x) = (pj, ge+1). (4.11)
KpxKj

Because g/ is a polynomial of degree at most £ + 1, we have that gy is orthogonal
to all p; for which £ + 1 < j. Thus, the expansion of g;1 € H ;1 with respect to
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the set of orthogonal polynomials { pg}éi& is of the form

gj+1=apjy1+bpj+cpj-1. (4.12)

We note that p; can be expressed as a sum of P; and lower-order terms, which implies
that g ;41 can be expressed as a sum of P; 1 and lower order terms. We thus have that
gj+1 — pj+1 is orthogonal to p;11, and so a = 1. Taking the inner product of g1
with p;, we find the coefficients s;. Furthermore, taking the inner product of g;1
with p;_ yields

1i{pj-1, Pj—-1) = (&j+1, Pj-1)
=(pj &)
=(pj,pj+Sj-1Pj-1+1j-1pj-2)
(pjvp])
which gives us the desired formula for the coefficients ¢;. O

The following result about the orthonormal sequence {7} ;>0 is a consequence of
Theorem 4.7.

Corollary 4.8 Let {r j}°° be the sequence of orthogonal polynomials given in Defi-
nition 4.6. Let go = 0 andfor j > 0 define

gjt1(x) = —/K Gx, y)mi(y)du(y).
b

The following three-term recursion formula holds.

gi+1(x) = tj1mjp1 (0) + 557 (%) + /1701 (%), (4.13)
where the sequence {s;} j>0 and {t;} j>o are defined in Theorem 4.7.

The following result shows that the sequences in the three-term recursion for-
mula (4.9) are bounded.

Corollary 4.9 Let {s;} ;>0 and {t;} >0 be defined as in Theorem 4.7. For each j > 0,

we have that
0<t; <|IGl3,
' (4.14)
—IGll2 <s; <0,

where |G| is the L? norm of the Green function. Furthermore,

lpjll =d;" < dy ' IGI3.
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Proof The fact that t; > 0 follows from the second equation in (4.10). In addition,
;2 = 1(g+1 pi=D = llgjailadjo1 < 1Gllad; 'd},.

Consequently, ¢t; < [|Gll2d j_ldj_l = ||G||2t]1./ 2, from which the first inequality
in (4.14) follows.

The second inequality follows from writing the Green function in terms of the
eigenvalues and eigenvectors of the Laplacian, see [9, Theorem 2.1]. O

5 Numerics

The figures and numerics included in this paper were generated by an implementation
of the above constructions in a Python script by embedding K in [0, 112, made
available as a GitHub repository here. The included README . md file contains more
specific details on the implementation of the code.
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