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Abstract
Large-scale datasets play a vital role in computer vision. But current datasets are annotated blindly without differentiation
to samples, making the data collection inefficient and unscalable. The open question is how to build a mega-scale dataset
actively. Although advanced active learning algorithms might be the answer, we experimentally found that they are lame in
the realistic annotation scenario where out-of-distribution data is extensive. This work thus proposes a novel active learning
framework for realistic dataset annotation. Equipped with this framework, we build a high-quality vision dataset—Bamboo,
which consists of 69M image classification annotations with 119K categories and 28M object bounding box annotations
with 809 categories. We organize these categories by a hierarchical taxonomy integrated from several knowledge bases. The
classification annotations are four times larger than ImageNet22K, and that of detection is three times larger than Object365.
Compared to ImageNet22K and Objects365, models pre-trained on Bamboo achieve superior performance among various
downstream tasks (6.2% gains on classification and 2.1% gains on detection). We believe our active learning framework and
Bamboo are essential for future work. Code and dataset are available at https://github.com/ZhangYuanhan-AI/Bamboo.
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1 Introduction

Large-scale pre-trainedmodels, trained in supervised (Ghiasi
et al., 2021; Kolesnikov et al., 2020; Yalniz et al., 2019) or
unsupervised (He et al., 2020;Chen et al., 2020b;Caron et al.,
2020) ways, are now essential for advanced computer vision.
These pre-trained models (Radford et al., 2021) are versatile,
useful for various tasks by adapting to different needs. The
success of these models (Bommasani et al., 2021) depends
heavily on access to large and varied datasets (Krizhevsky
et al., 2009; Deng et al., 2009; Sun et al., 2017; Lin et al.,
2014).

Creating a high-quality dataset involves careful selection
from a pool of unlabeled data for annotation. Yet, public
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Fig. 1 The overview of Bamboo Dataset. Bamboo is a new mega-scale
vision dataset built on a comprehensive label system with human–
machine synergy. aOur label system continually extends fromWordNet
with our solutions. Concepts in the label system are distinguished as
“common visual”, “non-common visual” or “non-visual” concepts. b
Raw data crawled by the query word person includes both the in-
distribution (ID) data and out-of-distribution (OOD) data. OOD data
implies noisy, covariate shift, and semantic shift data. Noisy data does

not present useful semantic information. Covariate shift data implies
semantic information, i.e. person. However, such semantic information
is of poor quality, annotators thus hard to annotate. Semantic shift data
also implies semantic information, i.e. tree. But the tree is not related
to the query word person. OOD rectification mitigates the ineffective-
ness of active learning through filtering OOD data. c Bamboo collects
69M classification annotation and 28M bounding box annotations

datasets often lack this selective approach, leading to signifi-
cant waste in annotation efforts. Citovsky et al. (2021) found
that only 70% of data in OpenImages (Kuznetsova et al.,
2020) are as effective as the entire dataset. Active learning
(AL) (Tong & Koller, 2001; Joshi et al., 2009; Settles, 2009;
Yang et al., 2015; Gilad-Bachrach et al., 2005; Iglesias et al.,
2011; Sznitman & Jedynak, 2010; Vezhnevets et al., 2012;
Gal, 2016; Citovsky et al., 2021; Sener & Savarese, 2018;
Roth&Small, 2006) has been extensively explored for select-
ing the most informative samples from an unlabeled data
pool. However, we observe that some of these ‘informative’
samples may be out-of-distribution compared to the desired
‘good’ samples. For instance, in image classification, given
the query label “person” and its web-crawled data, methods
like ClusterMargin(Citovsky et al., 2021), Margin (Roth &
Small, 2006), and CoreSet (Sener & Savarese, 2018) often
choose informative yet out-of-distribution samples. These
samples are discarded by annotators and are not used for
model training because they are either noisy (not provid-
ing useful semantic information), indicate a covariate shift
(misaligned but meaningful data), or show semantic shifts
(relevant but inaccurate information, e.g., tree instead of per-
son). In contrast, random sampling selects fewer informative
samples but includes more data that is relevant to the dis-
tribution. When the annotated data from AL is 70% less
than that from random sampling, the latter performs better,
as the benefits of having more data outweigh those of hav-
ing ‘higher-quality’ data (as shown in Fig. 1). To address
this issue, we propose a new active learning framework that

removes out-of-distribution data from the unlabeled pool
before sampling. This ensures that the data chosen are not
only informative but also relevant, leading to better perfor-
mance than random sampling in enhancing the effectiveness
of supervised learning models.

We aim to annotate a mega-scale classification and object
detection dataset with our proposed active learning frame-
work. First, we build a comprehensive label system for query-
ing diverse data covering numerous semantics. Specifically,
we form a unified label system with a hierarchical structure
consisting of 304,048 categories. It integrates label systems
from 19 latest public image classification datasets and five
object detection datasets and also absorbs 170,586 new cat-
egories from knowledge bases, e.g. Wikidata (Vrandečić
& Krötzsch, 2014). Then, we contribute Bamboo Dataset,
a mega-scale and information-dense dataset for the pre-
training of both classification and detection, which is active
annotating by human–machine synergy. Bamboo has three
appealing properties:
Comprehensive It consists of 69M image classification anno-
tations and 28M object bounding box annotations, spanning
over 119K visual categories. The scale of the label system
and the annotated data are the largest among all the publicly
available datasets. We illustrate the comparison of Bamboo
and publicly available datasets in the Fig. 1c.
Information-denseWe guarantee Bamboo is highly informa-
tive through the label system and the annotated data. The
label system is constructed by thoroughly integrating public
datasets and knowledge bases. Our active annotation pipeline
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specifically selects the annotated data to reducemodel uncer-
tainty.
Continual Our label system keeps the dataset growing
with the automatic concept linking strategies. We can con-
stantly absorb new categories in the real world and integrate
them into our label system. Moreover, leveraging the ever-
increasing internet data, our active annotation pipeline will
steadily sustainably expand the Bamboo dataset size.

Extensive experiments demonstrate that Bamboo dataset
is an effective pre-training source. The Bamboo pre-trained
model significantly outperforms CLIP ViT B/16 (Radford
et al., 2021) pre-trained model with 6.2% gain (85.6% vs
91.8%) on classification, and outperforms Objects365 (Shao
et al., 2019) pre-trained model with 2.1% gain (14.7%
vs 12.6%) on CityPersons (Zhang et al., 2017). In addi-
tion, we provide valuable observations regarding large-scale
pre-training from over 1000 experiments. We hope the Bam-
boo dataset and these observations will pave the way for
developing more general and effective vision models.

2 RelatedWorks

Learning of Representation at Scale Representation learn-
ing has advanced thanks to improvements in various learning
paradigms and large-scale datasets. Supervised learning
models (He et al., 2016; Chollet, 2017) leverage label
information to supervise representation learning, achieving
excellent performance among various downstream tasks. To
avoid the need for annotations that require a tremendous
amount of human and labeling cost, weakly-supervised and
self-supervised pre-training methods have been proposed.
Self-supervisedmethods (Caron et al., 2018;Misra& van der
Maaten, 2020;He et al., 2020;Chen et al., 2020a;Caron et al.,
2020; Zhang et al., 2016; Larsson et al., 2016;Wuet al., 2018;
Dosovitskiy et al., 2015; Li et al., 2020) with contrastive
learning have shown that unsupervised pre-training produces
features surpassing the supervised feature representations on
many downstream tasks (Krizhevsky et al., 2009; Nilsback
& Zisserman, 2006; Parkhi et al., 2012; Xiao et al., 2016;
Krause et al., 2013). Large weakly-supervised datasets, such
as Instagram hashtags (Mahajan et al., 2018) and JFT (Sun et
al., 2017), helps model (Yalniz et al., 2019; Zoph et al., 2020;
Xie et al., 2020) achieve significant gains on downstream
tasks. In addition, CLIP (Radford et al., 2021) pre-train mod-
els on both the image signal and text signal, achieving good
performance for the zero-shot evaluation. Our study is part of
a larger body of work on training models on sizeable super-
vised image datasets. As the labeling cost that hurdles the
supervised learning dataset is becoming increasingly signif-
icant, we systematically investigate how to collect, annotate
and build a mega-scale dataset efficiently, actively and con-
tinually.

Active Learning Active learning (AL) aims at finding the
minimum number of labeled images to have a supervised
learning algorithm reach a certain performance (Tong &
Koller, 2001; Joshi et al., 2009; Settles, 2009; Yang et al.,
2015;Gilad-Bachrach et al., 2005; Iglesias et al., 2011; Sznit-
man & Jedynak, 2010; Vezhnevets et al., 2012), [27]. The
main component in an active learning loop is sampling strate-
gies. The existing AL research is conducted on the curated
datasets. Each data point in the labeled and unlabeled pool
of these datasets is valid, i.e. available for labeling. However,
curated datasets can hardly imitate the annotation in realistic
scenarios where out-of-distribution data that is unavailable
for labeling appears on a large scale in the unlabeled pool.
From our experiments, we find the existing AL methods lag
in realistic scenarios. Therefore, we propose a novel active
annotation pipeline to improve the performance of ALmeth-
ods in realistic scenarios.

3 Label System Construction

In this section, we briefly introduce how to build a compre-
hensive label system. The number of concepts decides the
data amount upper bound—we crawl data based on querying
these labels. Starting fromWordNet (Miller, 1998),we enrich
its concepts from another two concept resources (Sect. 3.1)
through three designed linking strategies (Sect. 3.2).

3.1 Concepts Resources

WordNetWordNet is a lexical database of semantic relations
between concepts in more than 200 languages. Each mean-
ingful concept in WordNet, possibly described by multiple
words or phrases, is called a “synset”. Referring to Ima-
geNet22K (Deng et al., 2009), we only use the Noun words
of WordNet. WordNet is the foundation of our label system.
Public Datasets We collect 27 public datasets, including
ImageNet22K (Deng et al., 2009), , iNaturalist (Van Horn et
al., 2018), Herbarium2021,1 Danish Fungi 2020 (Picek et al.,
2021), iWildCam2020 (Beery et al., 2021),TsinghuaDogs (Zou
et al., 2020), Places (Zhou et al., 2017), FoodX-251 (Kaur
et al., 2019), CompCars (Yang et al., 2015), COCO (Lin
et al., 2014), Objects365 (Shao et al., 2019), OpenIm-
ages (Kuznetsova et al., 2020), SUN397 (Xiao et al., 2016),
Caltech101 (Fei-Fei et al., 2004), CUB (Welinder et al.,
2010), FGVC-Aircraft (Maji et al., 2013), STL10 (Coates
et al., 2011), EuroSAT (Helber et al., 2019), DTD (Cimpoi
et al., 2014), AID (Xia et al., 2017), Places365 (Zhou et
al., 2017), Pets (Parkhi et al., 2012), StandfordCars (Krause
et al., 2013), Flowers102 (Nilsback & Zisserman, 2006),

1 https://www.kaggle.com/c/herbarium-2021-fgvc8/overview.
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Fig. 2 The illustration of visual and non-visual concept. Vitamin do not
share any common semantic information. Economists implies common
semantic information—Man—but economists are not necessarily men

Cifar10 (Krizhevsky et al., 2009), Cifar100 (Krizhevsky et
al., 2009), Food-101 (Bossard et al., 2014).
Wikidata Wikidata (Vrandečić & Krötzsch, 2014) con-
tains a large number of concepts, such as different kinds
of foods, animals, and locations. As the number of con-
cepts inWikidata continues to grow, so far, we have included
170,586 concepts from it. These concepts are the leaf nodes
in their taxonomy.

3.2 Concepts Integration

WordNet is a lexical graph whose concepts imply semantic
relation. For example, the father node of “British Shorthair”
is “Domestic Cat”. How to integrate concepts from public
datasets and Wikidata into this WordNet is an open ques-
tion. We propose three parallel solutions to integrate these
categories into WordNet in this work.
Solution 1: Leveraging on the subclassOf The taxonomy
of Wikidata is contributed by adding the “subclassOf” that
is related to the hypernyms relationship in the taxonomy of
WordNet. Referred to Tanon et al. (2020), we link Wikidata
leaf node concepts to the WordNet by leveraging the “sub-
classOf”.
Solution 2: Parsing the Concept Referred to the previous
work Fabian et al. (2007), we can also link the concept to the
WordNet throughword parsing. For example, for the concept
Sumatran Orangutan, we parse this concept (Honnibal &
Montani, 2017) and get its head compound “Orangutan”. In
this way, we add Sumatran Orangutan as the new hyponym
of the “Orangutan” if “Orangutan” exists in WordNet.
Solution 3: Linking to the Closed Synset We calculate
the word embedding of both the synsets and given concepts
through Spacy (Honnibal & Montani, 2017). If a given con-
cept cannot be linked to WordNet, we add this category to
the hyponym of its nearest cosine distance synset.

3.3 Concepts Tagging

Visuality Yang et al has mentioned the non-visual category
problem in their work Yang et al. (2020). We illustrate visual
and non-visual words in Fig. 2. To mitigate this problem, we

conduct visual concept tagging for our build label system.
Specifically, a concept is non-visual if three out of five anno-
tators think this word is less concrete, and its sample images
can rarely imply a common semantic meaning. We illustrate
the concept tagging in Fig. 3a.
Commonality Based on the visual concepts, we further con-
duct common concept annotation for all visual concepts.
Referred to COCO (Lin et al., 2014), “common concept”
refers to entry-level categories that are commonly used by
humans when describing objects (e.g. dog, chair, person).
Specifically, a concept is positive only if it receives at least
three-fifths of the votes. Based on the proposed annotation
method, we retain 809 common concepts for the annotation
of object detection.

4 Active Dataset Construction—Bamboo

Equipped with the unified and comprehensive label sys-
tem, we start to construct Bamboo actively. In this section.
We first introduce the active learning pipeline for building
Bamboo in Sec 4.1. We summarize this pipeline in Algo-
rithm 1. Then in Sect. 4.2, we discuss the superiority of our
newly proposed active learning methods—we are the first
time beat the random sampling in selecting the most valu-
able data for data pre-training2.

Algorithm 1: Outline of AL Framework
input : Raw unlabeled pool P; Number of active learning

rounds T ; Neural network f ;
L0 ← Annotating a few data from P and adding all inherited
data as cold start; U0 ← P − L0;
Initializing model f0 based on L0;

for r ← 1 to T do
Pr ← Rectifying Ur−1 using fr−1;
Ur ← Sampling in Pr using fr−1;
Lr ← Annotating valid data from Ur ;
Ur ← Ur−1 − Ur ;
Lr ← Lr−1 ∪ Lr ;
Training fr on Lr ;

end

4.1 Active Learning Framework

4.1.1 Building Unlabeled Data Pool

For image classification, one query word has one visual con-
cept mentioned in Sect. 3.3. For object detection, one query
has two concepts, i.e., common concept + scene semantic
word or common concept + common concept. For example,

2 This step is not included in the current active learning research.
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Fig. 3 User interfaces for concept tagging and annotation. a The meta
informationof the concept tagging consists of tags, descriptions, and ref-
erence images. b Interface for image classification and object detection.
For the object detection task. The image is assigned to different annota-
tors based on its multiple pseudo labels. In addition, annotators should

choose the attribute of the bounding box. The box that covers more than
five bounding boxes of the same category, which heavily occlude each
other, should be marked as Group bbox. Other clear bounding box are
supposed to be marked as Normal bbox option

Fig. 4 a The illustration of out-of-distribution (OOD) data in realistic
scenarios. Mainly, three types of OOD data exist in the unlabeled data
pool, including noisy data, covariate shift data (i.e., OOD samples from
a different domain), and semantic shift data (i.e., OOD samples are

drawn from different classes). b The illustration of OOD rectification.
OOD rectification filters OOD data in the unlabeled data pool, which is
crucial for active learning
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dog + street or dog + ball. To further enrich the searching
results, any given query word can be converted to its syn-
onyms or its Chinese, Spanish, Dutch and Italian version for
querying. Totally, we obtain a 170M unlabeled pool for clas-
sification and a 200M unlabeled pool for detection.

4.1.2 Cold Start

Cold start is the very first step for active learning. The labeled
data pool L(0) to initialize the model φ(0) for the cold start
phase include two parts as follows.
Public Dataset As mentioned in Sect. 3.1, we use 24
datasets as concept resources, including 19 image classifi-
cation datasets and 5 object detection datasets. Refereed to
the evaluation suite of popular transfer learning study (Korn-
blith et al., 2019; Zhai et al., 2019; He et al., 2020), we
select 12 datasets for downstream evaluation. We include the
annotation of the other 12 datasets—9 image classification
datasets and 3 object detection datasets. In total, we inherit
27,848,477 classification annotations and 21,983,223 object
bounding box annotations from those 12 datasets.
New Annotated Data For concepts not included in public
datasets, we sample images fromunlabeled poolΘ and anno-
tate data for them until they have 50 annotated data.

4.1.3 OOD Rectification

Image Classification In this step, we rectify the latest unla-
beled data poolUCls

r−1. As shown in Fig 4b, in each round r , we
firstly utilize f Clsr−1 trained on LCls

r−1to acquire predictions of
each image in UCls

r−1. We infer an image is out-of-distribution
if its top-5 predicted categories do not overlap with its related
categories. Specifically, we define the related categories of
an image as the sub-population of hypernyms of its query
word. If an image is not out-of-distribution, we add it into
PCls
r−1 for further data sampling. In Sect. 4.2, we empirically

observe that OOD rectification is essential for AL to function
in realistic scenarios.
Object Detection Similar to classification, we acquire pro-
posal predictions of each image in UDet

r−1 by f Detr−1. On the
one hand, we filter out the image with less than two pro-
posals. Such images might be noisy data or semantic shift
data. On the other hand, we filter out the image with
more than 15 identical semantic proposals since such image
might be the covariate shift data. As shown in Fig 4b, the
remaining in-distribution data forms PDet

r−1 for the data sam-
pling.

4.1.4 Data Sampling

In this step, we use ClusterMargin (Citovsky et al., 2021),
which considers both the uncertainty and diversity in data,

Fig. 5 The Illustration of how our OOD rectification step helps active
learning performs better in realistic scenarios

to select the most valuable data from the latest rectified data
pool Pr for annotation.

4.1.5 Data Annotation

Finally,we rely on anonline platform to annotate valid data—
its querying word accurately describes the semantic meaning
of this data—in Ur , forming the labeled data setLr . We illus-
trate our online platform in Fig. 3, and introduce the details
of annotations as follows.
Image Classification To provide a comprehensive def-
inition of each category, we construct reference images
that are collected by querying Google image search and
Wikipedia (Estimation Lemma, 2010). For each image in
Ur , its meta-information has two parts: the query word of
this image and the reference images of the query word. We
then ask the five annotators whether this image conforms to
its meta information. An image is annotated and added into
Lr—valid data—only if at least 3 out of 5 annotators give
the positive answer to the question as mentioned above.
Object Detection Following Objects365 (Shao et al., 2019),
one annotator is responsible for annotating a specific cate-
gory, which improves the annotation efficiency and quality.
Similar to OpenImages (Kuznetsova et al., 2020), meta infor-
mation of an image includes not only its reference images but
also its pseudo labels that include (i) the query words of this
image. (ii) the category predictions of available detection
models. iii) re-labeling predictions (Yun et al., 2021) of the
latest trained classification model fC .
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Fig. 6 The study of active annotation inBamboo. a current ALmethods
struggle in realistic scenarios. Random sampling achieves better perfor-
mance than each ALmethod.OODRectification boosts all ALmethods
to outperform random sampling. AL methods are still more helpful for
model training with less valid data. It implies that the valid data that
AL methods selected are much more informative. b, c in both classifi-

cation and detection tasks, AL methods (ClusterMargin and Core-Set)
that consider both the uncertainty and diversity select the most valu-
able data for model training. LCls refers annotated valid data from a
given AL batch. Average accuracy denotes the average performance of
models on the downstream datasets

Fig. 7 Sorted distribution of image number per category in theBamboo.
a-i Bamboo-CLS contains 68,884,828 images spread across 119,035
categories. Category names are shown for every 250 intervals. Bamboo-
CLS includes some fine-grained concepts that not be included in the
current public datasets, such as Folland Midge. a-ii The new classifi-

cation annotated data accounts for 60.71% of images in Bamboo. b-i
Bamboo-DET contains 3,104,012 images across 809 categories. Cat-
egory names are shown for every 16 intervals. b-ii The new detection
annotated data accounts for 11% of images in Bamboo
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4.2 Studies on Active Annotation

In academic active learning (AL) works Citovsky et al.
(2021), Huang et al. (2021), researchers conduct data sam-
pling on the leave-out “unlabeled” data pool that are sep-
arated from a curated dataset, e.g. ImageNet (Citovsky et
al., 2021) and CIFAR10 (Roth & Small, 2006). All the data
in this “unlabeled” data pool is strictly valid.3 However, in
realistic annotation scenarios, the real unlabeled data pool is
composed of valid data and invalid data that is mostly out-
of-distribution data, as shown in Fig. 4a. Therefore, can AL
methods are effectivewhen the invalid data is in the unlabeled
data pool is an open question. And we found that:

Current Active Learning Methods are Ineffective for Sam-
pling Valuable Data in the Real unlabeled data pool.

As shown in Fig. 6a, we illustrate the number of L1. We
observe that AL sampling would retain fewer data inL1 than
random sampling. For example, Entropy Sampling selects
70% less data than random sampling, resulting in worse
downstream performance.
The Devils are in Uncertainty Modeling As discussed
in Kendall and Gal (2017), D’souza et al. (2021), there
are mainly two types of uncertainty for the deep models:
Aleatoric and Epistemic. Both uncertainties are informa-
tive, but the aleatoric uncertainty is the out-of-distribution
data, and the epistemic uncertainty is the in-distribution data.
Considering U0 where aleatoric-uncertain data, epistemic-
uncertain data, and other less-informative data exist, when
P(1) ← U(0), P(1) under AL sampling would have more
aleatoric-uncertain data than that under random sampling,
as AL methods tend to select uncertain data. Eventually,
L(1) under AL sampling should has less data than that under
random sampling as aleatoric uncertain data is invalid for
annotators. We illustrate this phenomenon in Fig. 5 left. As
shown in Fig. 6a, with much less L(1), AL methods’ perfor-
mances are hence worse than RS.
OOD Rec. Boosts AL Performance When Pr ← Rectify-
ing Ur−1 using fr−1 (our active learning framework), our
proposed OOD rectification filters out the aleatoric uncer-
tain data in U(0). Therefore, P(1) is only comprised of
epistemic-uncertain data—which is informative—and other
less-informative data. Since AL methods would select more
epistemic uncertain data in U(1) than random sampling,
they eventually perform better. We illustrate how OOD rec-
tification helps active learning performs better in realistic
scenarios in Fig. 5 right. As shown in Fig. 6(b,c), with OOD
rectification, in both classification and detection tasks, AL
methods (ClusterMargin and Core-Set) that consider both
the uncertainty and diversity select the most valuable data
for model training.

3 Annotator had deleted invalid data as dataset established.

5 Dataset Statistics

As shown in Fig. 7, we illustrate the sorted distribution of
image numbers per category in the Bamboo. Generally, we
emphasize that the new annotated data in the Bamboo-CLS
and Bamboo-DET are a powerful complement to the current
public datasets—This data mostly belongs to tail classes of
public datasets and new classes. In the following, we briefly
describe the data statistics of Bamboo.
Image Classification (Bamboo-CLS) Bamboo-CLS has
68,884,828 images spread across 119,035 categories. 42,648,217
out of 68,884,828 images are newly annotated, which is
twice of ImageNet22K. In addition, 20,000 out of 119,035
categories are from Wikidata. These categories mainly are
fine-grained concepts, such as Folland Midge (one type of
fighter) and hemaria hemishphaerica (a species of fungi).
To our knowledge, Bamboo-CLS is the largest clean image
dataset available to the vision research community, in terms
of the total number of images and categories.
ObjectDetection (Bamboo-DET)Bamboo-DEThas3,104,012
images across 809 categories. Specifically, 557,457 images
are newly annotated, and 150 concepts are from the Wiki-
data. In addition, we provide the statistics on instances per
image of Bamboo-DET. As shown in Fig. 8, Our newly anno-
tated data has 8.3 instances (on average) per image, which
is dense than existing datasets, i.e. MS-COCO, Object-365,
and OpenImages.

6 Experiments

6.1 Experimental Setups

6.1.1 Upstream Pre-training

Hyper-parameter We train the models on 64 A100 GPUs
for image classification, with a total batch size of 8192. We
employ anAdamW(Loshchilov&Hutter, 2017) optimizer of
30 epochs using a cosine decay scheduler with two epochs
of linear warm-up. The ResNet-50 backbone is initialized
from the model officially offered by PyTorch. The ViT B/16
backbone is initialized from ImageNet1K model provided
by timm.4 The weight decay, and warm-up learning rate are
2 × 10−8, 10−6, and 2 × 10−2.
Datasets Beyond the new annotated data, we include Ima-
geNet22K (Deng et al., 2009), INaturalist2021 (Van Horn et
al., 2018), Herbarium2021,5 Danish Fungi 2020 (Picek et al.,
2021), iWildCam2020 (Beery et al., 2021),TsinghuaDogs (Zou
et al., 2020), Places (Zhou et al., 2017), FoodX-251 (Kaur et

4 https://github.com/rwightman/pytorch-image-models/tree/master/
timm.
5 https://www.kaggle.com/c/herbarium-2021-fgvc8/overview
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Fig. 8 The statistics of the number of bounding boxes per image. Quan-
titatively, our new annotated data has 8.3 instances (on average) per
image,which ismore dense comparedwith the other datasets likeCOCO
and OpenImages

al., 2019), CompCars (Yang et al., 2015) in the upstream clas-
sification dataset training. We train the models on 48 A100
GPUs for detection, with a total batch size of 384, a total
learning rate of 0.4, SGD optimizer of momentum 0.9, and a
weight decay of 0.0001. We use the MultiStep learning rate
scheduler with the decay rate of 0.1 on [16, 22] epochs and
train for 26 epochs in total. We also applied the warm-up
learning rate of 0.0004 for 1 epoch. We used Cross-Entropy-
Loss for categorization and Smoothed-L1-Loss for bounding
box regression. Beyond the new annotated data, we include
COCO (Lin et al., 2014), Objects365 (Shao et al., 2019) and
OpenImages (Kuznetsova et al., 2020) in the upstream object
detection dataset training.

6.1.2 Downstream Evaluation

Datasets In the following sections, we adopt the down-
stream datasets that are widely used in the transfer learning
study (Kornblith et al., 2019; Zhai et al., 2019; He et
al., 2020). For models pre-trained on the image classifica-
tion datasets, we use CIFAR10 (Krizhevsky et al., 2009),
CIFAR100 (Krizhevsky et al., 2009), OxfordFlower (Nils-
back & Zisserman, 2006), Food101 (Bossard et al., 2014),
Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al.,
2012), DTD (Cimpoi et al., 2014), StanfordCars (Krause et
al., 2013), FGVC-Aircraft (Maji et al., 2013), SUN397 (Xiao
et al., 2016), ImageNet1K (Russakovsky et al., 2015) as the
downstream evaluation datasets. As for the object detection
task, we select PASCAL VOC (Everingham et al., 2010) and
CityPersons (Zhang et al., 2017) as the downstream evalu-
ation datasets. These datasets cover a wide range of image
domains. The number of images in each dataset ranges from
2000 to 80,000, and the number of classes in each dataset
ranges from 10 to 8000.
Evaluation Protocol For the classification task, we use
image features taken from the penultimate layer of each
model, ignoring any classification layer provided. We train
a logistic regression classifier for the linear probe evalua-
tion setting. We finetune the entire model loaded with its
backbone and FPN weights for the detection task. We only

report the evaluation performance of models on downstream
datasets.Wefinetune themodel on 8 1080-TiGPUs for detec-
tion, with the batch size of 16, SGD optimizer of momentum
0.9, andweight decay 0.0001 by loading theweights of back-
bone and FPN. We conduct a grid search on learning rate
among [5×10−4, 1×10−3, 5×10−3, 1×10−2]. The learn-
ing rate is decayed by 0.1 at 16 and 18 and stopped training
at 19 epochs.

6.2 Power of Bamboo as Pre-Training

6.2.1 Main Results

Information-Dense Annotations Matter As shown in
Table 2, ResNet-50 (RN50) pre-trained on CLIP (400M) or
IG-1B (1B) achieves better downstream task performance
than BiT pre-trained on ImageNet1K (IN1K) (Russakovsky
et al., 2015). However, compared to RN50 pre-trained
on Bamboo, CLIP-RN50 or RN50 pre-trained on IG-1B
achieves inferior performance.

It indicates that the amount of informative-dense anno-
tations instead of the sheer number of annotations is much
more essential for model pre-training. Compared to CLIP,
which leverages the vast amount of image-text pairs on the
web for pre-training, our Bamboo presents an active and con-
tinual framework that collects and annotates fully-supervised
samples in a highly scalable manner.
Comprehensive Label System Helps As shown in Table 2,
most methods pre-trained on IN1K, IG-1B, or WIT achieve
more than 90% accuracy on the OxfordPets and Oxford-
Flower. But they only achieve less than 80% accuracy
on the StanfordCars and FGVC-Aircraft. It indicates that
these pre-trained datasets might include more semantic
concepts related to OxfordPets andOxfordFlower. Our Bam-
booTX spreads a large spectrum of concepts. Notably, it
includesmuchmore concepts that are neglected in the current
public and nonpublic datasets.As a result,models pre-trained
on Bamboo achieve much better performance than other
methods. Beyond general object detection, it is also impor-
tant to validate the generalization ability on specific object
detection problems like pedestrian detection.
Bamboo is an Effective Pre-Training Source Compared
to other methods, Bamboo achieves the best performance
among downstream tasks on average. As shown in Table 2,
ViT B/16 pretrained on Bamboo outperforms CLIP with
6.2 points gain. It indicates that our annotation is much
more informative and hence more helpful for the model pre-
training. In addition, Table 3 presents that ResNet-50 with
FPN pretrained on Bamboo outperforms Objects365 with
1.1 points gain on PASCAL VOC and 2.1 points gain on
CityPersons.
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Table 1 Summary of Bamboo Datasets Concepts Images Boxes Anno

YFCC-100M (Thomee et al., 2016) – 100M – No

ImageNet22K (Deng et al., 2009) 22K 14M – Yes

Bamboo-CLS 119K 69M – Yes

COCO (Lin et al., 2014) 80 118K 1M Yes

Objects365 (Shao et al., 2019) 365 609K 10M Yes

OpenImages (Kuznetsova et al., 2020) 600 2M 14M Partial

Bamboo-DET 809 3M 27M Yes

Bamboo is the largest fully annotated vision dataset available to the general research community, in terms of
the total number of images, the number of concepts, and the number of bounding boxes (for object detection
task)

6.2.2 Further Analysis

The Influence of Similar Semantic Proposals The total
annotation cost for the object detection task depends on the
number of proposals. Images with dense proposals are more
expensive than sparse ones. Based on our observation, many
proposals with similar semantics tend to form a group in
a single image. To evaluate their effectiveness, we conduct
the following experiments on Objects365 (Shao et al., 2019)
dataset.

Firstly, we define an image as a crowded image if it
contains at least one category with more than 15 pro-
posals. By removing all 27K crowded images from the
full Objects365 dataset, we denote the remaining part as
Objects365-sparse. Keeping the number of proposals the
same as Objects365-sparse, we randomly removed 90K
images from the full Objects365 dataset and marked the
remaining part as Objects365-random. Furthermore, keep-
ing the total object amount the same as Objects365-sparse,
we randomly removed 101K non-crowded images from the
full Objects365 dataset and denoted the remaining part as
Objects365-dense.

Given the same annotation budget, we find that choosing
to label non-crowded images yields better results for pre-
training performance. Therefore, as mentioned in Sect. 3.3.2
of the main paper, we filter out covariate shift data in the
OOD rectification step.
FinetuningTransferWecompared ourmodel pre-trained on
Bamboo to variouswith theResNet-50 backbone.Wepresent
the finetuning transfer performance of themodels pre-trained
onBamboo. Thefinetuning strategy among each downstream
task is followed by the SimCLR (Chen et al., 2020a). Table 5
shows the comparison. Bamboomodel achieves a 1.3% aver-
age accuracy gain compared to BiT-M pre-trained on the
current largest public classification dataset: ImageNet22K. It
indicates a larger, carefully annotated dataset can continually
improve the performance ofmodels. Besides, Bamboomodel
achieves a 0.5% average accuracy gain compared to SWSL,
pre-trained on the IG-1B with 1B weakly supervised hash-

tags. Bamboo is 20 times smaller than IG-1B,which indicates
that the amount of informative-dense annotations instead of
the sheer number of weak annotations is muchmore essential
for model pre-training.
Few-Shot Linear-probing Transfer We present the fero-
shot transfer performance of the models pre-trained on
Bamboo. We compared our model pre-trained on Bamboo to
CLIP models with the same backbone.

Table 4 shows the comparison. We can indicate that Bam-
boo model conclusively outperforms CLIP model with the
samebackbone:RN50. Specifically, Bamboomodel achieves
a 6% average accuracy gain. On the FGVC-Aircraft, Bam-
boo model achieves 87.2%, despite having never seen any
training images from this dataset. Bamboo includes all the
concepts in the downstream tasks. However, we conduct
data overlap analysis of Bamboo in Sect. 7, ensuring Bam-
boo rarely includes downstream data.
Robustness to Natural Distribution Shift We conduct
experiments on theObjectNet (Barbu et al., 2019) to compare
Bamboo models with other models when evaluated on the
data with controls for rotation, background, and viewpoint.
ObjectNet is a dataset collected in the real world, where mul-
tiple objects are always present. There are 313 object classes
in total, with 113 overlapping with ImageNet1K. We follow
the literature (Kolesnikov et al., 2020; Radford et al., 2021)
and evaluate our models on those 113 classes.

As shown above, we compare Bamboo models with the
state-of-the-art model with the same backbone. Specifically,
ResNet-50 pre-trained onBamboo achieves 1.2% gains com-
pared with ResNet-50 pre-trained on JFT-300M. ViT B/16
pre-trained on Bamboo achieves 3.2% gains compared with
ViT B/16 pre-trained on Anno-1.3B. Even though JFT-300M
and Anno-1.3B are much larger than Bamboo, the informa-
tive data in Bamboo is more helpful for pre-trained models
in real scenarios.
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Table 3 Comparisons of
downstream detection tasks
performance

Data Anno. VOC CITY COCO
AP50 ↑ MR ↓ mmAP ↑

COCO (Shao et al., 2019) 1M 85.1 16.2 –

OpenImages (Shao et al., 2019) 14M 82.4 16.8 37.4

Objects365 10M 86.4 14.7 39.3

Bamboo 27M 87.5 12.6 43.9

Pre-trainedmodel onBamboo achieves significant performance gain. Bamboo here refers to theBamboo-DET.
VOCmeans the PASCALVOCdataset (Everinghamet al., 2010). CITY.means theCityPersons dataset (Zhang
et al., 2017)

7 Social Impact

The proposed Bamboo dataset and pre-training model shows
the capacity and generalization of learned image represen-
tation which could benefit many applications of computer
vision. However, our data usage might bring several risks,
such as data overlapping, privacy, and inappropriate content.
We discuss these risks and their mitigation strategies as fol-
lows.
Data Overlapping A concern with pre-training on an
extensive dataset is unintentional overlap with downstream
evaluation (Radford et al., 2021). To enable a meaningful
test of generalization, we identify and remove all duplicates
among upstream data. Specifically, we utilize Difference
Hash (DHash) (Ben, 2017) to present the information of
each image. We calculate the hash-code of each downstream
image and each crawled image, and two imageswith the same
hash-code are regarded as similar ones. Then, we filter out
the crawled images that are similar to downstream images.
Based on the above method, we discard 122,939 images for
classification and 1046 images for detection from the unla-
beled pool.
Copyright We crawl only the data under the Creative Com-
mons license (CC-BY) for the Bamboo-DET. This license
allows free use, redistribution, and adaptation for non-
commercial purposes. For the Bamboo-CLS data, 30% of
data is under the CC-BY license because of its large vol-
ume of data. For Bamboo-CLS data that is not under the
CC-BY license, referred to LAION-400M (Schuhmann et
al., 2021) and Conceptual 12M (Changpinyo et al., 2021),
we only present the lists of URLs to this data without redis-
tribution. We build the meta file as follow.

[image_url] [class_index]

Referred to Authors Guild, Inc. v. Google Inc. (Camp-
bell, 2016), training data on the copyrighted works might
be considered as transformative uses and was thus might be
regarded as Fair Use.6 In addition, referred to Article 30-4 of
the newCopyright Act (act, 2010), there are no restrictions on

6 https://www.copyright.gov/fair-use/index.html.

the subject, purpose, and method of data analysis, and there
is no obligation to compensate the copyright holder. How-
ever, we admit that using copyright material as training data
is still a controversial issue in Artificial Intelligence, and we
would no doubt follow the newest lawworldwide. Bamboo is
specifically open for non-commercial research and/or educa-
tional purposes to respect the copyright law. For researchers
and educators who wish to use copyrighted images for that
purpose, training or benchmarking models with copyrighted
works would be qualified as transformative uses and thus
not infringe copyright law in the U.S. Nevertheless, the users
must strictly follow the Flickr Terms of Use.7 And the users
of these images accept full responsibility for the use of the
image.
Problematic Content The inappropriate contents such as
drugs, nudity, and other offensive content exist in the web
data. we ask annotators to discard such images instead of
conducting annotation.
Privacy To mitigate privacy issues with public visual
datasets, researchers have attempted to obfuscate private
information before publishing the data (Frome et al., 2009;
Yang et al., 2021). We plan to follow this line of work to blur
faces, and license plates in our new annotated data. In addi-
tion, if the original picture found at the URL present on the
Bamboo on the record states users’ names, phone numbers,
or any personal information, users can request a takedown of
this image.
BiasThe imageswere crawled fromFlickr, thus inheriting all
the biases of that website. The usage of user-generated data
might bring the risk of bias. We plan to tackle this problem
by balancing various categories.

8 Conclusion

In our work, with a human–machine synergy, we actively
and continually build a mega-scale and information-dense
dataset, namely Bamboo. Bamboo is the largest clean
image dataset available to the vision research community,

7 https://www.flickr.com/help/terms/api.

123

https://www.copyright.gov/fair-use/index.html
https://www.flickr.com/help/terms/api


International Journal of Computer Vision

Ta
bl
e
4

C
om

pa
ri
so
ns

of
fe
w
-s
ho
td

ow
ns
tr
ea
m

cl
as
si
fic
at
io
n
ta
sk
s
pe
rf
or
m
an
ce

am
on
g
di
ff
er
en
tp

re
-t
ra
in
in
g
m
et
ho
ds

M
et
ho
d

D
at
a

A
nn
ot
at
io
n

M
od
el

Pa
ra
di
gm

C
IF
A
R
10

C
IF
A
R
10
0

Fo
od
10
1

Pe
ts

Fl
ow

er
s

SU
N
39
7

C
ar
s

D
T
D

C
al
te
ch
10
1

A
ir
cr
af
t

IN
1K

A
V
G

↑
C
L
IP

(R
ad
fo
rd

et
al
.,
20
21
)

W
IT

40
0M

R
N
50

L
an
g.

91
.6

68
.7

89
.2

88
.9

70
.4

65
.2

65
.6

46
89
.3

27
.1

68
.6

70
.0

R
N
50

B
am

bo
o

69
M

R
N
50

Su
p

93
.8

67
.7

81
.6

74
.3

87
.3

58
.7

63
.0

51
.1

88
.4

87
.2

82
.5

76
.0

B
am

bo
o
ac
hi
ev
es

th
e
st
at
e-
of
-t
he
-a
rt
s
lin

ea
r
pr
ob
e
pe
rf
or
m
an
ce

on
th
e
do
w
ns
tr
ea
m

ta
sk
s.
L
an
g.

in
di
ca
te
s
im

ag
e-
te
xt

pa
ir.

B
am

bo
o
he
re

re
fe
rs

to
th
e
B
am

bo
o-
C
L
S.

Pe
ts
in
di
ca
te
s
O
xf
or
dP

et
s.

Fl
ow

er
s
in
di
ca
te
s
O
xf
or
dF

lo
w
er
.
C
ar
s
in
di
ca
te
s
St
an
fo
rd
C
ar
s.
A
ir
cr
af
t
in
di
ca
te
s
FG

V
C
-A

ir
cr
af
t.
IN

1K
in
di
ca
te
s
Im

ag
eN

et
1K

.
R
es
ul
ts
re
po

rt
ed

by
th
e
au
th
or

ar
e
m
ar
ke
d
in

ita
lic

.
W
e
m
ai
nl
y

co
m
pa
re

w
ith

th
e
m
et
ho
ds

co
nd
uc
te
d
on

su
pe
rv
is
ed

le
ar
ni
ng
.O

th
er

pe
rf
or
m
an
ce

of
cu
rr
en
tm

et
ho
ds

ar
e
al
so

pr
es
en
te
d

Ta
bl
e
5

C
om

pa
ri
so
ns

of
fin

e-
tu
ni
ng

do
w
ns
tr
ea
m

cl
as
si
fic
at
io
n
ta
sk
s
pe
rf
or
m
an
ce

am
on
g
di
ff
er
en
tp

re
-t
ra
in
in
g
m
et
ho
ds

M
et
ho
d

D
at
a

A
nn
ot
at
io
n

M
od
el

Pa
ra
di
gm

C
IF
A
R
10

C
IF
A
R
10
0

Fo
od
10
1

Pe
ts

Fl
ow

er
s

SU
N
39
7

C
ar
s

D
T
D

C
al
te
ch
10
1

A
ir
cr
af
t

IN
1K

A
V
G

↑
D
IN

O
IN

1K
1.
2M

R
N
50

Se
lf

97
.1

84
.0

86
.3

90
.0

96
.1

65
.2

84
.6

77
.6

91
.4

81
.8

66
.5

83
.7

SW
A
V

IN
1K

1.
2M

R
N
50

Se
lf

97
.2

84
.2

86
.0

90
.3

95
.7

64
.4

83
.9

77
.2

91
.7

81
.2

66
.9

83
.5

SW
SL

IG
-1
B

1B
R
N
50

Se
m
i

97
.0

86
.5

87
.3

94
.4

97
.0

66
.0

88
.5

78
.3

93
.8

84
.0

81
.7

86
.8

B
iT
-S

IN
1K

1.
2M

R
N
50

Su
p

97
.0

85
.0

85
.7

92
.8

95
.0

60
.3

87
.5

74
.7

92
.0

83
.8

75
.2

84
.5

B
iT
-M

IN
22
K

14
M

R
N
50

Su
p

97
.6

86
.2

87
.9

91
.5

98
.1

64
.2

88
.2

78
.4

92
.9

84
.3

76
.7

86
.0

R
N
50

B
am

bo
o

69
M

R
N
50

Su
p

97
.3

87
.0

87
.5

92
.0

99
.4

72
.2

91
.4

77
.1

93
.9

85
.9

77
.1

87
.3

B
am

bo
o
ac
hi
ev
es

th
e
st
at
e-
of
-t
he
-a
rt
s
fin

e-
tu
ni
ng

pe
rf
or
m
an
ce

on
th
e
do
w
ns
tr
ea
m

ta
sk
s

123



International Journal of Computer Vision

Dataset Images Proposals VOC
AP50 ↑

Objects365-sparse 581K 8.2M 86.3
Objects365-random 519K 8.2M 85.8
Objects365-dense 508K 8.2M 85.1

Method Data Model Para. ObjectNet ↑
BiT-
L (Kolesnikov
et al.,
2020)

JFT-300M RN50 Weak. 37.6

ANN-
1.3B (Beal
et al.,
2021)

ANN-1.3B B/16 Weak. 50.7

RN50 Bamboo RN50 Sup. 38.8
B/16 Bamboo B/16 Sup. 53.9

in terms of the total number of images and the num-
ber of categories, for classification and detection tasks.
Our key insight is that a unified and visually-oriented
label system is crucial for model pre-training, and recti-
fying OOD samples is indispensable for AL to function
in realistic scenarios. We have demonstrated the effective-
ness of Bamboo as a better pre-training dataset for various
downstream tasks and provided several valuable observa-
tions.
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